Applied Mathematics and Computation 232 (2014) 178–182
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Reduction of joint c-numerical ranges M.T. Chien a,⇑,1, H. Nakazato a,b,2 a b
Department of Mathematics, Soochow University, Taipei 11102, Taiwan Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
a r t i c l e
i n f o
a b s t r a c t Let ðH1 ; H2 ; . . . ; Hm Þ be an m-tuple of n-by-n Hermitian matrices and c 2 Rn . We investigate the reduction problem of the joint c-numerical range W c ðH1 ; H2 ; . . . ; Hm Þ. In particular, for m ¼ 3 and n P 3, we prove that W c ðH1 ; H2 ; H3 Þ is attainable by the joint numerical range WðK 1 ; K 2 ; K 3 Þ for some triple Hermitian matrices ðK 1 ; K 2 ; K 3 Þ. Ó 2014 Elsevier Inc. All rights reserved.
Keywords: Joint c-numerical range Reduction Compound matrix Robust control
1. Introduction Let A 2 M n , the algebra of n-by-n complex matrices. For a real n-tuple c ¼ ðc1 ; c2 ; . . . ; cn Þ, the c-numerical range W c ðAÞ of A is defined as the set
( ) n X n W c ðAÞ ¼ cj xj Axj : fx1 ; x2 ; . . . ; xn g is an orthonormal basis for C : j¼1
Westwick [18] proved the convexity of the range W c ðAÞ. If c ¼ ð1; . . . ; 1; 0; . . . ; 0Þ, with 1’s appearing k times, W c ðAÞ becomes the k-numerical range W k ðAÞ. In particular, k ¼ 1; W k ðAÞ reduces to the classical numerical range which is usually denoted by WðAÞ. The subject of various numerical ranges has been extensively developed and studied (see, for instance, [8,13]), and has connections to many different branches of science, such as quantum mechanics [7] and stability theory [6,14]. It is shown in [3] that for some nilpotent Toeplitz matrix A 2 M n and any c 2 Rn , there exists an n!-by-n! matrix B satisfying W c ðAÞ ¼ WðBÞ. Furthermore, the paper [4] proves that this reduction property is also true for arbitrary matrix A 2 M n , and the size of B can be decreased to
n
p1 p2 p‘
¼
n! ; p1 ! p2 ! p‘ !
where p1 ; p2 ; . . . ; p‘ are respectively the multiplicities of distinct coordinates ci1 > ci2 > > ci‘ of c 2 Rn . We introduce a real ternary form
F A ðt; x; yÞ ¼ detðtIn þ xRðAÞ þ yIðAÞÞ; where RðAÞ ¼ ðA þ A Þ=2 and IðAÞ ¼ ðA A Þ=ð2iÞ. The ternary form satisfies the equation
F A ðt; x; yÞ ¼
n Y
ðt kj ðxRðAÞ þ yIðAÞÞÞ
j¼1
⇑ Corresponding author. 1 2
E-mail addresses:
[email protected] (M.T. Chien),
[email protected] (H. Nakazato). Partially supported by Taiwan National Science Council under NSC 102-2115-M-031-001. Supported in part by Japan Society for Promotion of Science, KAKENHI (23540180).
http://dx.doi.org/10.1016/j.amc.2014.01.067 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.
179
M.T. Chien, H. Nakazato / Applied Mathematics and Computation 232 (2014) 178–182
for every ðx; yÞ 2 R2 , where k1 ðÞ P k2 ðÞ P P kn ðÞ denote the decreasing eigenvalues of an n-by-n Hermitian matrix. It is well known that WðAÞ is the convex hull of the real affine part of the dual curve of F A ðt; x; yÞ ¼ 0. For the study of c-numerical range, a real ternary form GA;c ðt; x; yÞ of degree n!=ðp1 ! p2 ! . . . p‘ !Þ is defined in [4] by
GA;c ðt; x; yÞ ¼
Y
t
! X crðjÞ kj ðxRðAÞ þ yIðAÞÞ
r
rðjÞ
2
for every ðx; yÞ 2 R , and where r runs over the partitions of f1; 2; . . . ; ng with p1 ; p2 ; . . . ; p‘ elements. The form GA;c ðt; x; yÞ itself and its irreducible factors in C½t; x; y are hyperbolic with respect to ð1; 0; 0Þ, that is, the roots of the equation GA;c ðt; x; yÞ ¼ 0 in t are all real for every ðx; yÞ 2 R. For simplicity, we assume that GA;c ðt; x; yÞ is irreducible. If GA;c ðt; x; yÞ ¼ 0 is a rational curve, the paper [4] applies Henrion’s method [11] to construct a matrix B so that W c ðAÞ ¼ WðBÞ. This method consists of two steps. The first step, using Bezout resultant, constructs triple Hermitian matrices ðC 0 ; C 1 ; C 2 Þ satisfying
GA;c ðt; x; yÞ ¼ det ðC 0 Þ1 detðtC 0 þ xC 1 þ yC 2 Þ 1=2
1=2
with a positive definite Hermitian matrix C 0 . The second step is the construction of B as C 0 ðC 1 þ iC 2 ÞC 0 , which involves the square root of a positive definite matrix. In this paper, we use compound matrix method which is applicable to reduce the joint c-numerical ranges of m-tuple of Hermitian matrices. We recall a generalization of the c-numerical range, namely, joint c-numerical range. Let Hn be the real vector space of nby-n complex Hermitian matrices. For any c ¼ ðc1 ; c2 ; . . . ; cn Þ 2 Rn and an ordered m-tuple H ¼ ðH1 ; H2 ; . . . ; Hm Þ 2 Hm n , the joint c-numerical range of H is defined as the set
W c ðHÞ ¼ W c ðH1 ; H2 ; . . . ; Hm Þ ( ! ) n n n X X X ¼ cj hH1 nj ; nj i; cj hH2 nj ; nj i; . . . ; cj hHm nj ; nj i 2 Rm : fn1 ; n2 ; . . . ; nn g is an orthonormal basis for Cn : j¼1
j¼1
j¼1
If c ¼ ð1; . . . ; 1; 0; . . . ; 0Þ, with 1’s appearing k times, W c ðH1 ; H2 ; . . . ; Hm Þ reduces to the joint k-numerical range W k ðHÞ ¼ W k ðH1 ; H2 ; . . . ; Hm Þ. Moreover, for k ¼ 1, the joint k-numerical range is just the joint regular numerical WðH1 ; H2 ; . . . ; Hm Þ. The object of joint numerical range is useful to the study of robust control problems (cf. [5,9]), and the joint k-numerical range is closely connected to the quadratic system (cf. [16]). Sufficient conditions for the joint numerical range to be convex are also discussed in [9]. If m ¼ 2, the joint c-numerical range W c ðH1 ; H2 Þ is identified with the c-numerical range W c ðH1 þ iH2 Þ which is convex. However, the joint c-numerical range W c ðH1 ; H2 ; . . . ; Hm Þ is in general not convex. Even for the joint numerical range W ðH1 ; H2 ; . . . ; Hm Þ, there are examples of non-convexity for m ¼ 3; n ¼ 2 and m ¼ 4; n ¼ 3 (cf. [9]). Nevertheless, Au-Yeung and Tsing [1] proved the convexity of the range W c ðH1 ; H2 ; H3 Þ for n P 3. In this paper, we introduce compound matrix method to investigate the reduction problem of the joint c-numerical ranges of m-tuple of Hermitian matrices. In particular, the joint c-numerical range of triple Hermitian matrices is attainable by a c-numerical range of some triple Hermitian matrices. 2. Reduction Let A 2 M n , and c ¼ ðc1 ; c2 ; . . . ; cn Þ 2 Rn . The method used in [4] to prove W c ðAÞ ¼ WðBÞ for some matrix B is based on an affirmative solution of the Lax–Fiedler conjecture [10]. We introduce compound matrices as a tool to investigate the reduction problem of the joint c-numerical range. The kth compound matrix C k ðAÞ of A is an N-by-N matrix whose a; b entry is det A½ajb, where N ¼ n C k ¼ n!=ðk!ðn kÞ!Þ, a; b 2 Q k;n and
Q k;n ¼ fa ¼ ða1 ; . . . ; ak Þ : 1 6 a1 < < ak 6 ng with usual lexicographical order. The kth additive compound matrix Dk ðAÞ of A is defined as
Dk ðAÞ ¼
d C k ðI þ tAÞjt¼0 ; dt
equivalently, Dk ðAÞ is the linear term in
C k ðI þ tAÞ ¼ I þ tDk ðAÞ þ t 2 R þ : (For references on the compound matrices, see, for instance, [15, pp. 502–507], also [12,17].) Let fe1 ; e2 ; . . . ; en g be the standard orthonormal basis of Cn . We consider the tensor product Cnk of k copies of the Hilbert space Cn . For k vectors n1 ; n2 ; . . . ; nk in Cn , their exterior product n1 ^ n2 ^ nk 2 Cnk is defined as
1 X pffiffiffiffi sgnr nrð1Þ nrð2Þ nrðkÞ : k! r2Sk
180
M.T. Chien, H. Nakazato / Applied Mathematics and Computation 232 (2014) 178–182
Let V k ðCÞ be the n C k -dimensional vector space spanned by exterior products
ei1 ^ ei2 ^ ^ eik ; 1 6 i1 < i2 < < ik 6 n. An element in V k ðCÞ is called a decomposable k-vector if it is expressed as the exterior product n1 ^ n2 ^ nk of some k vectors n1 ; n2 ; . . . ; nk in Cn . In the case n ¼ 2, it is easy to find the relation that
W ðc1 ;c2 Þ ðH1 ; H2 ; . . . ; Hm Þ ¼ ðc1 c2 ÞWðH1 ; H2 ; . . . ; Hm Þ þ c2 ðtrðH1 Þ; trðH2 Þ; . . . ; trðHm ÞÞ ¼ Wððc1 c2 ÞH1 þ c2 trðH1 ÞI2 ; ðc1 c2 ÞH2 þ c2 trðH2 ÞI2 . . . ; ðc1 c2 ÞHm þ c2 trðHm ÞI2 Þ: Therefore the joint c-numerical range of m-tuple of 2-by-2 Hermitian matrices is attainable by the c- numerical range of some m-tuple of 2-by-2 Hermitian matrices. Hence in the following of this paper, we always assume that the size of Hermitian matrices n P 3. n Theorem 1. Let H ¼ ðH1 ; H2 ; . . . ; Hm Þ 2 Hm in decreasing order with ‘ distinct coordinates of n , and c ¼ ðc 1 ; c 2 ; . . . ; cn Þ 2 R multiplicities p1 ; p2 ; . . . ; p‘ respectively. Then there exists m-tuple of N-by-N Hermitian matrices ðK 1 ; K 2 ; . . . ; K m Þ such that
W c ðHÞ WðK 1 ; K 2 ; . . . ; K m Þ;
ð1Þ
convðW c ðHÞÞ ¼ convðWðK 1 ; K 2 ; . . . ; K m ÞÞ;
ð2Þ
and
where
N ¼ n C p1 n C p1 þp2 n C p1 þþp‘1 : Proof. It is obvious that
W ðc1 þc0 ;c2 þc0 ;...;cn þc0 Þ ðH1 ; H2 ; . . . ; Hm Þ ¼ W ðc1 ;c2 ;...;cn Þ ðH1 ; H2 ; . . . ; Hm Þ þ c0 ðtrðH1 Þ; trðH2 Þ; . . . ; trðHm ÞÞ: Hence we may assume without loss of generality that cn ¼ 0. Define a sequence bi ¼ ci ciþ1 ; i ¼ 1; 2; . . . ; n 1. Then for any orthonormal basis fn1 ; n2 ; . . . ; nn g of Cn and j ¼ 1; 2; . . . ; m, we have that
c1 hHj n1 ; n1 i þ c2 hHj n2 ; n2 i þ þ cn1 hHj nn1 ; nn1 i þ cn hHj nn ; nn i ¼ ¼
X
n1 X bs ðhHj n1 ; n1 i þ hHj n2 ; n2 i þ þ hHj ns ; ns iÞ s¼1
bs ðhHj n1 ; n1 i þ hHj n2 ; n2 i þ þ hHj ns ; ns iÞ:
ð3Þ
s¼p1 ;p1 þp2 ;...;p1 þþp‘1
Eq. (3) provides a motivation to define the following Hermitian matrices, for j ¼ 1; 2; . . . ; m,
K j ¼ bp1 ðDp1 ðHj Þ Im2 Im3 Im‘1 Þ þ bp1 þp2 ðIm1 Dp1 þp2 ðHj Þ Im3 Im‘1 Þ þ bp1 þp2 þp3 ðIm1 Im2 Dp1 þp2 þp3 ðHj Þ Im‘1 Þ þ þ bp1 þþp‘1 ðIp1 Im1 Im‘2 Dp1 þþp‘1 ðHj ÞÞ;
ð4Þ
where ms ¼ n C p1 þp2 þþps ; s ¼ 1; 2; . . . ; ‘ 1. For each component Hermitian matrix Hj , the ði; jÞ-entry of Dk ðHj Þ is characterized as
Dk ðHj Þði1 ; i2 ; . . . ; ik : j1 ; j2 ; . . . ; jk Þ ¼ hDk ðHj Þej1 ^ ^ ejk ; ei1 ^ ^ eik i ¼
k X
hHj ejs ; eis i:
s¼1
This relation also holds for an arbitrary orthonormal basis fn1 ; n2 ; . . . ; nn g of Cn that
hDk ðHj Þnj1 ^ ^ njk ; n1 ^ ^ nk i ¼
k X hHj njs ; ns i:
ð5Þ
s¼1
By (5), Eq. (3) becomes
c1 hHj n1 ; n1 i þ c2 hHj n2 ; n2 i þ þ cn1 hHj nn1 ; nn1 i þ cn hHj nn ; nn i X ¼ bs hDs ðHj Þnj1 ^ ^ njs ; n1 ^ ^ ns i s¼p1 ;p1 þp2 ;...;p1 þþp‘1
¼ hK j ðn1 ^ ^ np1 n1 ^ ^ np1 þþp‘1 Þ; ðn1 ^ ^ np1 n1 ^ ^ np1 þþp‘1 Þi: Since the vector n1 ^ ^ np1 n1 ^ ^ np1 þþp‘1 is unital, the inclusion (1) then follows. A fundamental property proved in [15, Theorem F.5], shows that the eigenvalues of the kth additive compound of A are sums of k eigenvalues of A (see also [2]). Hence we have that
181
M.T. Chien, H. Nakazato / Applied Mathematics and Computation 232 (2014) 178–182 k X kj ðRðeih AÞÞ ¼ k1 ðRðeih Dk ðAÞÞÞ
ð6Þ
j¼1
for 0 6 h < 2p. We easily obtain a generalization of (6) that k X kj ðx1 H1 þ x2 H2 þ þ xm Hm Þ ¼ k1 ðDk ðx1 H1 þ x2 H2 þ þ xm Hm ÞÞ
ð7Þ
j¼1
for ðx1 ; x2 ; . . . ; xm Þ 2 Rm . By a result on the spectrum of the Kronecker sum of matrices in [13, Theorem 4.4.5], we obtain that
(
rðx1 K 1 þ x2 K 2 þ þ xm K m Þ ¼ t1 þ t2 þ t3 þ þ t‘1 : tj 2 ðbp1 þþpj Þr
m X
!
)
xq Dp1 þ...þpj ðHq Þ ;
j ¼ 1; 2; . . . ; ‘ 1 :
q¼1
Then, by equality (7), we have that ‘1 m X X k1 ðx1 K 1 þ x2 K 2 þ þ xm K m Þ ¼ bp1 þþpj k1 xq Dp1 þþpj ðHq Þ j¼1
q¼1
‘1 m X X bp1 þþpj k1 xq H q ¼ j¼1
!
! þ þ kp1 þþpj
q¼1
m X
!! xq H q
q¼1
n X cj kj ðx1 H1 þ x2 H2 þ þ xm Hm Þ: ¼
ð8Þ
j¼1
Suppose that /ðxÞ is the support function of convðW c ðHÞÞ. Then, for x ¼ ðx1 ; x2 ; . . . ; xm Þ 2 Rm , we have
/ðxÞ ¼ maxfhx; yi : y 2 convðW c ðHÞÞg ¼ maxfhx; yi : y 2 W c ðHÞg ( * + ) n m X X ¼ max cj xk Hk nj ; nj : fn1 ; n2 ; . . . ; nn g is an orthonormal basis for Cn j¼1
k¼1
n X cj kj ðx1 H1 þ x2 H2 þ þ xm Hm Þ ¼ k1 ðx1 K 1 þ x2 K 2 þ þ xm K m Þ; ¼
ðby ð8ÞÞ
j¼1
which is the support function of convðWðK 1 ; K 2 ; . . . ; K m ÞÞ. This proves that both convex sets convðW c ðHÞÞ and convðWðK 1 ; K 2 ; . . . ; K m ÞÞ have the same support function, and thus (2) follows. h The inclusion (1) is important for the joint c-numerical range W c ðHÞ and the joint regular numerical range WðK 1 ; K 2 ; . . . ; K m Þ, both ranges may not convex. We give an example to show that two sets may have the same convex hulls but do not contain each other. Consider two sets A ¼ fðx; yÞ : 0 6 x 6 1; 0 6 y 6 xg [ ð0; 1Þ and B ¼ fðx; yÞ : 0 6 x 6 1; 0 6 y 6 1 xg [ ð1; 1Þ. Then convðAÞ ¼ convðBÞ, but neither A # B nor B # A. As a consequence of Theorem 1, we have the following reduction of joint c-numerical ranges. n Theorem 2. Let H ¼ ðH1 ; H2 ; . . . ; Hm Þ 2 Hm in decreasing order with ‘ distinct coordinates of n , and c ¼ ðc 1 ; c2 ; . . . ; cn Þ 2 R multiplicities p1 ; p2 ; . . . ; p‘ respectively, and let K 1 ; K 2 ; . . . ; K m be defined as in (4). If W c ðHÞ is convex then W c ðHÞ ¼ WðK 1 ; K 2 ; . . . ; K m Þ.
Proof. If W c ðHÞ is convex then, by Theorem 1, we have that
W c ðHÞ WðK 1 ; K 2 ; . . . ; K m Þ convðWðK 1 ; K 2 ; . . . ; K m ÞÞ ¼ convðW c ðHÞÞ ¼ W c ðHÞ: In particular, for m ¼ 3, the following result is immediate. Theorem 3. Let H ¼ ðH1 ; H2 ; H3 Þ be a triple n-by-n Hermitian matrices, and c ¼ ðc1 ; c2 ; . . . ; cn Þ 2 Rn in decreasing order with ‘ distinct coordinates of multiplicities p1 ; p2 ; . . . ; p‘ respectively, and let K 1 ; K 2 ; K 3 be defined as in (4). Then W c ðH1 ; H2 ; H3 Þ ¼ WðK 1 ; K 2 ; K 3 Þ, and W k ðH1 ; H2 ; H3 Þ ¼ WðDk ðH1 Þ; Dk ðH2 Þ; Dk ðH3 ÞÞ for 1 6 k 6 n. Proof. It is shown in [1] that W c ðH1 ; H2 ; H3 Þ is convex, and thus by Theorem 2, we conclude that W c ðH1 ; H2 ; H3 Þ ¼ WðK 1 ; K 2 ; K 3 Þ. Moreover, for c ¼ ð1; . . . ; 1; 0; . . . ; 0Þ with 1’s appearing k times, then for j ¼ 1; 2; 3, the K j Hermitian matrices defined in (4) become
K j ¼ Dk ðHj Þ Im2 Im3 Im‘1 :
182
M.T. Chien, H. Nakazato / Applied Mathematics and Computation 232 (2014) 178–182
Let A 2 M n and c 2 Rn with distinct coordinates c1 > c2 > > cn . It is proved in [4] that there exists an n!-by-n! matrix B satisfying W c ðAÞ ¼ WðBÞ. For n ¼ 3, a 6-by-6 matrix B exists so that W c ðAÞ ¼ WðBÞ. In the case of triple 3-by-3 Hermitian matrices H1 ; H2 ; H3 , Theorem 3 assures that there exist 9-by-9 Hermitian matrices K 1 ; K 2 ; K 3 such that W c ðH1 ; H2 ; H3 Þ ¼ WðK 1 ; K 2 ; K 3 Þ. For example, we consider a 3-by-3 Hermitian matrix
0
k1
B H ¼ @ a12
a13
1
a12 a13 C k2 a23 A: a23 k3
The additive compound matrix D2 ðHÞ is given by
0
a23
k1 þ k2
B D2 ðHÞ ¼ @ a23
a12 C A:
k1 þ k3
a13
1
a13
a12
k2 þ k3
Suppose that ðc1 ; c2 ; c3 Þ ¼ ðb þ 1; b; 0Þ with b ¼ 3, and
0
1 1 0 0 B C H 1 ¼ @ 0 0 0 A; 0 0 1
0
1 0 1 0 B C H2 ¼ @ 1 0 2 A; 0 2 0
0
1 0 1þi 1i B C H3 ¼ @ 1 i 0 1 i A: 1þi 1þi 0
Then, the construction K j ; j ¼ 1; 2; 3, in Theorem 3 becomes
K j ¼ Hj I3 þ 3I3 D2 ðHj Þ:
ð9Þ
For instance
K 1 ¼ diagð4; 1; 2; 3; 0; 3; 2; 1; 4Þ; 0
0 B6 B B B0 B B B1 B K2 ¼ B B0 B B0 B B0 B B @0
6 0 0
1 0
3 0
0
0
0
1 0
0
0
0
0
0C C C 0C C C 0C C 0C C; C 2C C 0C C C 3A 0
3 0
0
0 1
0
0
6 0 2 0
0
1 0
1
0
6 0 3 0 2
0
1 0
0 0
0 2 0 0 0 6 0 0 2 0 6 0
3 0
0
0
0 0 0 0 0 2 0 3
and K 3 can be found in the same way according to (9). It is natural to ask whether there exist a triple Hermitian matrices ðK 1 ; K 2 ; K 3 Þ of size less than 9, e.g. size 6, satisfying W c ðH1 ; H2 ; H3 Þ ¼ WðK 1 ; K 2 ; K 3 Þ. This problem remains open for further study. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
Y.H. Au-Yeung, N.K. Tsing, An extension of the Hausdorff–Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983) 215–218. W.S. Cheung, C.K. Li, Elementary proofs for some results on the circular symmetry of the numerical range, Linear Multilinear Alg. 61 (2013) 596–602. M.T. Chien, H. Nakazato, Boundary generating curves of the c-numerical range, Linear Algebra Appl. 294 (1999) 67–84. M.T. Chien, H. Nakazaro, The reduction of the c-numerical range to the classical numerical range, Linear Algebra Appl. 434 (2011) 615–624. M.K.H. Fan, A. Tits, m-Form numerical range and the computation of the structured singular value, IEEE Trans. Autom. Control 33 (1988) 284–289. A. Feintuch, A. Markus, The Toeplitz–Hausdorff theorem and robust stability theory, Math. Intelligencer 21 (1999) 33–37. U. Helmke, K. Huper, J.B. Moore, Th. Schulte-Herbruggen, Gradient flows computing the C-numerical range with applications in NMR spectroscopy, J. Global Optim. 23 (2002) 283–308. K.E. Gustafson, D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997. E. Gutkin, E.A. Jonckheere, M. Karow, Convexity of the joint numerical range: topological and differential geometric viewpoints, Linear Algebra Appl. 376 (2004) 143–171. J.W. Helton, V. Vinnikov, Linear matrix inequality representations of sets, Commun. Pure Appl. Math. 60 (2007) 654–674. D. Henrion, Detecting rigid convexity of bivariate polynomials, Linear Algebra Appl. 432 (2010) 1218–1233. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, New York, 1985. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, New York, 1991. L. Knockaert, Stability of linear predictors and numerical range of shift operators in normal spaces, IEEE Trans. Inf. Theory 38 (1992) 1483–1486. A.W. Marshall, I. Olkin, Inequalities: Theory of Majorizations and Its Applications, Academic Press, New York, 1979. I. Pólik, T. Terlaky, A survey of the S-lemma, SIAM Rev. 49 (2007) 371–418. T.Y. Tam, Additive compound matrices and representation of gln ðCÞ, 2001. Available on line at:
. R. Westwick, A theorem on numerical range, Linear Multilinear Alg. 2 (1975) 311–315.