Spectrochimioa Aota,1061,vol.17,pp.113’7to 1172. Pergamon Press Ltd. Printed inNorthern Ireland
Relative intensities for the arc spectra of seventy elements WILLIAM F. MECGERS, CHARLES H. CORLISS and I~OURDON F. NationalBureauof Standards,Washington,D.C. (Received 30 ~~~~~
SCRIBNER
1961)
Abstract-The relative intensities, or radiant powers, of 39,000 spectral lines with wavelengths between 2000 and 9000 A have been determined on a uniform energy scale for seventy chemical elements. This was done by mixing 0.1 at. per cent of each element in powderedcopper, pressing the powder mixture to form solid electrodes which were burned in a IO-A, 220-V d.c. arc, and photographing the spectra with a stigmatic concave grating while a step-sector was rotating in front of the slit. The sectoredspectrogramsfacilitated the estimation of inanities of all element lines relative to copper lines which were then calibrated on an energy scale provided by standardized lamps, and all estimated line intensities were finally adjusted to fit this calibration. Comparisonswith other intensity measurementsin individual spectra indicate that the spectralline intensit,iesmay have errors of 20 per cent, but they first of all provide uniform quantitative values for the seventy chemical elements commonly determined by spectrochemists. The complete data are being publishedas a National Bureau of StandardsMonograph. About 1100 of the lines are presented in this paper as a list of the strong lin s of each element. Energy levels and term combinations are given for each classiiledline.
1.
Introduction
SPECTROCHEMISTRY was born a century ago when KIRCHHOFF and BUNSEN [I] definitely demonstrated that chemical elements were uniquely identified by spectral radiations, or lines as seen in a spectroscope provided with a slit. This led immediately to the identification of many chemical elements in the sun and to the discovery of several new elements, but no quantitative chemical analyses were made until much later. In 1874, LOCKYER [2] stated that “while the qualitative spectrum analysis depends upon the positions of the lines, the quantitative analysis depends not upon their position but upon their length, brightness, thickness and number as compared with the number visible in the spectrum of
[l] C.K~~ca~omand [2] J. N. LOCKYER,
1
R. BUNSEN, Ann. Physik 186, 161 (1860). Phil. Trans. Roy. Sm. London 164, 479 (1874).
1137
WILLIAM F. MENDERS,CHARLES H. CORLISSand BOVRDONF. SCRIBNER
assigning uniform quantitative intensity values to spectral radiations. The great bulk of spectral observations have been made photographically because photographic emulsions provide detailed, permanent records of spectra not only in the visible but also in the invisible ultraviolet and infrared regions. But even if the light source is reproducible and standardized, it is not easy to evaluate the spectral efficiencies of spectrographs and photographic emulsions. The usual procedure has been to make subjective visual estimates of relative intensities of spectral lines on an arbitrary scale based on the relative blackness and/or width of spectral line images appearing on a developed photographic plate. Consequently, in thousands of individual papers and in numerous comprehensive compilations of spectral data we find only qualitative data on intensities which may have some meaning for adjacent lines in a given spectrum but none at all when comparing widely spaced lines, or lines emitted by the neutral atom or ion of the same element or by different chemical elements. In the beginning, most intensity data were reported on an arbitrary scale of ten steps, weak lines being assigned an intensity of 1, and the strongest line intensity 10. Even as late as 1945 extensive new spectral tables prepared by GATTERER and JUNKES [3] displayed estimated intensities on this limited 1 to 10 scale. Since 1910 some spectroscopists have arbitrarily expanded this arbitrarily compressed scale. For example, in the very extensive spectral tables published by EXNER and HASCHEK [4] the estimated intensities range from 1 to 1000. In wavelength tables compiled by TWYMAN and SMITH [5] the maximum intensity is 20, in the compilation of KAYSER and RITSCHL [S] estimated intensities rise to 4000, and in the well-known M.I.T. Wavelength Tables [7] they soar to 9000. The most recent compilation of Tables of Spectrum Lines by ZA~DEL et al. [8] quotes data from the M.I.T. Tables and more modern sources but adds nothing new on spectral line intensities. In or about the year 1925, microdensitometers were developed for the purpose of quantitative measurement of relative intensities among related lines in multiplets to test the sum rules derived from the quantum theory of spectral structure, but no general applications were made. Since then thousands of spectrochemists have applied microdensitometers to quantitative chemical analyses by calibrating intensity ratios of analysis- and internal-standard lines, but such measurements have contributed nothing to the basic data on spectral line intensities. Likewise, with few exceptions, the modern substitution of electronic photodetectors for photographic emulsions has added nothing to our knowledge of true line intensities over long ranges of different spectra of many chemical elements. How may one hope to obtain, with a reasonable amount of labor, quantitative r31 A. GATTERERand J. JUNIXES,Spektren der Seltenen Erden. Vatican City (1945). Druck. Vols. l-3. Franz [41 F. EXNER and E. HASCHEK, Die Spektren der Elemente bei nodena Deuticke, Leipzig und Vienna (1911). [61 F. TWYBUN and D. M. SWTH, Wavelength Tables for Spectrum Analysis (2nd Ed.) Adam Hilger, London (1931). WI H. KAYSER and R. RITSCEL, Tab&e der Hauptlinien der Liniempektren aller EZemente (2nd Ed.) Julius Springer, Berlin (1939). PI G. R. HARRISON, Masaachusetta Institute of Techndogy Wavelength Tables. Wiley, New York (1939). A. N. ZA~DEL, V. K. PROKOF'EV and S. M. RAISKII, TabZes of Spectmm Line-s. VEB Verlag Technik, [81 Berlin (1955). 1138
Relative intensities for the arc spectra of seventy elements
intensity data on the same scale for thousands of spectral lines representing practically all of the metallic elements? A hint was given in 1874 by LOCKYER [2] who observed that “the lines of any constituent of a mechanical mixture disa,ppeared from the spectrum as its percentage was reduced.” Acting on this suggestion, HARTLEY [9], in 1884, began to study the spark spectra of metals in solutions with concentrations of 1 per cent, O-1 per cent, 0.01 per cent, and O*OOl per cent, and proposed a method of quantitative spectrochemical analysis based on the lines that could be detected at each dilution. Similar studies were later made by POLLOK and LEONARD [lo], by DE GRAMONT [ 1l] and by LOWE [12] all showing that with progressive dilution of an element its spectral lines weakened and vanished until only the most sensitive line remained to reveal its presence. In all these works the principle of quantitative spectrochemistry appeared to rest on the number of lines detectable rather than on their individual intensities. Casual observation must have shown lines of equal strength in spectra of solutions differing a thousand-fold in concentration but no one mentioned it. It is difficult to understand why these early studies of residual spectra in quantitatively prepared mixtures or solutions did not suggest a method for obtaining physical intensities, but it is a fact that before our work had. begun no one had attempted to express spectral line intensities as directly proportional to the number of radiating atoms The present monograph reports such an or concentration of the element. attempt [13]. Our method of deriving line intensities from arc spectra of elements diluted in copper was recently adopted by ALLEN [14, 151 to obtain oscillator strengths of some radiations from 3200 to 5400 A representing nine elements. At various times since 1932 we have photographed the arc spectra of seventy chemical elements diluted in silver or in copper, and determined the line intensities of the diluted elements relative to selected lines of the matrix. An energy calibration of the latter finally led to physical intensities of 39,000 spectral lines representing seventy elements, all on the same energy scale. These experiments and results are based on the following propositions, regarded as fundamental for the quantitative description of residual spectra of diluted elements excited in ordinary d.c. arcs. 1. The limiting detectability of any line is defined as the atomic concentration ensures positive detection of the line
that
This limit is determined mainly by unavoidable background on a fully exposed spectrogram. The spectrum of an arc burning in air consists of discrete lines due to atoms, and of more or less extensive band systems from transient compounds (usually monoxides), all superposed on a continuous background arising from thermal radiation of incandescent oxides, from transitions in the continuum, and [Q] W. N. HARTLEY, Phil. Trans. Roy. Sot. London 175,49, 325(1884). [lo] J. POLLOK and A. H. LEONARD, Proc. Roy. Sot. Dublin (2) 11, 217,229,257,270,331(1908). [ll] A. DE GRAMONT,Compt. rend: 147,307(A90.8). [12] EQti)~, Atlas der Zetzten Lznzen der wochtzgsten Elemente. T. STEINKOPFF,Dresden und Leipzig [13] W. F.*MEQOERS,C. H. CORLISSand B. F. SCRIBNER,Science 121,624 (1955). [14] C. W. ALLEN and A. S. ASAAD, Monthly Notices Roy. A&on. Sot. 117, 36 (1957). [15] C. W. ALLEN, Monthly Noticea Roy. A&on. Sot. 117, 622 (1957).
1139
possibly from scattered light. This background sets a limit to the exposure for faint lines that may be given by any actual photograph. If this were not true, the exposure could be increased indefinitely to compensate for unlimited reduction in concentration, and detectability would always be infinite. Faint lines are not recorded by underexposure, and they cannot be recognized on a very dense backIn order to guarantee positive recognition and ground produced by overexposure. unambiguous chemical identification a spectral line should be sufficiently well defined to permit accurate wavelength measurement. Experience shows that the minimum photographic density that meets this requirement is of the order of 0.05 above that of the background. 2. The limiting detectability of any element in an arc depends on the matrix in which the element is found There is no doubt that in the conventional arc, relative volatilities of the chemical elements as well as relative ionization potentials affect the relative strengths of their mixed spectra. In general, the elements with high vapor pressure and/or low ionization potential will be favored in spectral excitation, but elements with either high or low volatility may be underestimated if not uniformly present during the exposure, and easily ionized elements may appear less sensitive because In this connection it must be noted that large of more complete ionization. differences in apparent detectability are possible if concentrations are expressed in relative weights instead of numbers of atoms. Thus, 0.01 at. per cent of boron in uranium is equal to < 0.0005 wt. per cent since the uranium atom is twenty-two times heavier than the boron atom. 3. The primary
qf
substance (matrix) has no important effect on the relative intensities lines due to a secondary substance
It is conceded that the relative intensities of analogous spectra of different elements, and of spectra of successive stages of ionization of the same element, may vary with the composition of the samples and/or with the type, or portion, of light source from which radiation is taken, but there is no evidence that the relative intensities of lines in any particular spectrum of a given element are thereby It may be expected, therefore, that the relative intensities of greatly changed. lines observed in one metallic arc will remain valid in any other metallic arc, provided the arcs are at approximately the same excitation temperature. The absolute intensities and the relative strengths of neutral atom and ion spectra may be For example, silicon may be more sensitive in altered by excitation conditions. carbon than in calcium, and it is well known that when easily ionized alkalies are present in sufficient quantity to influence discharge conditions they reduce the intensity of other spectra, especially those characteristic of ionized atoms. 4. The order of lines arranged according to decreasing detectability in progressive dilution is the same as the order of decreasing intensity in the spectrum of the pure element
In other words, emission line intensities in residual arc spectra absorption) are proportional to the number of radiating atoms, 1140
(barring selfand relative
Relative intensities for the arc spectra of seventy elements
intensities may therefore be derived from concentrations at which different lines show the same intensity or limiting detectability. Arc spectra usually exhibit a variety of lines, sharp or narrow ones, diffuse or wide ones (including band heads), strong ones accompanied by photographic spreading of developed images, others wide on account of hyperfine structure, and some partially reversed. All of these types, except the last, appear in residual arc spectra at low concentrations, and it may be questioned if it is possible to place them on a uniform intensity scale. It may be assumed that if total blackening integrated over the width of the line when recorded at a moderate level of density be considered in estimating relative intensities, these will be on a uniform scale within the limits of precision in making such estimates on lines of different types. 5. The order of spectral lines arranged according to decreasing intensity is the same when the intensities are decreased by rotating stepped sectors as when the intensity reduction is produced by successive dilution of the element in a matrix This was recognized by Lijw~ [ 121 who published an atlas of spark spectra of forty-four elements diluted from 1 per cent to 0.001 per cent and later obtained practically the same results by observing spectra with stepped exposure times [ 161. In our experiments the labor of preparing samples of seventy elements in four or more dilutions was greatly reduced by adopting only one dilution (O-1 at. per cent) and then producing further reductions of spectral-line intensities by means of rotating step sectors. 6. Limiting intensities
detectability
(as de$ned in (1)) may be adopted as a physical
scale of
Such intensities may be fixed as follows: In a fully exposed spectrogram of copper containing, 0.1 at. per cent of another element any faint but unmistakable line at a given wavelength is assigned unit intensity. Any similar line appearing with unit intensity in a spectrogram when the energy, or concentration, is reduced to one-fifth is said to be five times as strong. Thus, all lines can be assigned relative intensities proportional to their limiting detectabilities by determining either the energy reduction or the concentration reduction at which the stronger lines finally show unit intensity. The atomic per cent concentration at which any line will show unit intensity then results from dividing O-1 by its required energy For example, a line of intensity 10 should show plainly or concentration reduction. at 0.01 at. per cent, while one of intensity 1000 should be easily seen at 0.0001 at. to be conper cent (one in a million). Assuming the ratio concentration/intensity stant, the maximum intensity at 100 per cent is easily obtained. Thus, a line with intensity 1000 at 0.1 at. per cent will have an intensity value of 1000 x lOO/O*l = l,OOO,OOOat 100 per cent. This indicates a much larger range of spectral intensities than mentioned heretofore, but it is not unrealistic. II.
Experiments
Whereas all earlier experiments on residual spectra of diluted elements involved spark excitation of solutions or fused salts, we decided to employ d.c. arc excitation [I61 F. LOWE, Atlas der Analysenlinien (1936).
der wichtigsten Elemente.
1141
T. STEINKOPFF, Dresden und Leipzig
WILLUM F. MECJGERS, CHARLESH. CORLISSand BOURDON F. SCRIBNER
for the following reasons. It has been shown [ 171 that the first ionization potentials of some seventy metallic elements range from 4 to 11 V and the strongest spectral lines of most of these elements have wavelengths between 2000 and 9000 A, which is the spectral region covered by the present investigations. Furthermore, it is known [18] that the second ionization potential of these elements ranges from 10 to 75 V and that the strongest lines of singly ionized atoms generally have shorter wavelengths than those of neutral atoms, nearly half of them being shorter than 2000 A so that they can be detected only in vacuum spectrographs. Because low-voltage arcs have less ionizing action than high-voltage sparks more atoms will remain in the neutral state and, in general, therefore, arc spectra will exhibit stronger lines and higher sensitivity than spark spectra. The use of arc spectra in these experiments threatened to introduce errors on account of self-absorption of radiated energy in the arc aura or envelope which consists largely of unexcited neutral vapor atoms. In all spectra of arcs between metal electrodes this is the cause of conspicuous self-reversal of all lines involving the ground state of the atom. However, self-absorption is a function of vapor density surrounding the arc and if this is reduced to 0.001, self-reversal is usually with negligible (see Fig. 1). This is our reason for making these experiments individual elements diluted in copper in the ratio 1 to 1000. When ground-state lines of extraordinary intensity were suspected of some self-absorption, intensity ratios were checked or corrected by examining our earlier spectrograms made with this element diluted to 0.0002 at. per cent in silver. 1. Dilution in silver Our preliminary experiments, begun in 1932, can be described briefly as follows: solutions of known strength of the elements under investigation were prepared and proper amounts added to pure silver oxide, which was then reduced to metal by heating to make samples containing eight definite atomic ratios extending from 0.05 to 0*0002 at. per cent of the element added to silver, with a factor of about 2 between seven successive dilutions. In order to save time and labor, each series of silver samples incorporated from three to six chemical elements, in addition to zinc which supplied internal standard lines. These samples were burned on pure copper electrodes of a 220-V d.c. arc with 10 A. An image of the arc was projected onto the slit of a stigmatic concave grating spectrograph by means of a fused-quartz lens. Each series of excited samples was exposed on successive segments of the slit, and was photographed in four spectral regions ranging from 2000 to 9000 A. A comparator was employed to measure wavelengths (relative to silver and copper lines) for the identification of the added elements, and relative intensities of all lines belonging to residual spectra of diluted substances were estimated and related to concentration. These results were not satisfactory for the following reasons: the use of silver as a matrix and of copper for arc electrodes precluded the possibility of getting any data for these two elements or for any lines masked by silver and copper lines. Also the inclusion of three or more [17] W. F. MEOQERS,J. Opt. Sot. Am. 81,39 (1941). [la] W. F. MEGQERS,J. Opt. Sot. Am. al,605 (1941).
1142
Fig. 1. Arc spectra of pure manganese (center), and of copper containing 0.1 per cent Mn (above and below), all through a rotating step sector. Spectral range from 3960 to 4105 8.
1142
spectrum of copper through Fig. 2. Energy calibration of copper lines. (Above)-Arc rotating step-sector. Spectral range from 3400 to 3680 A. (Below)-Standard-lamp spectrum at 50 A intervals through same step.sector.
Relative intensities for the arc spectra of seventy elements
elements in each series of samples resulted in the blending of many lines, especially in complex spectra, so that it was not possible to assign proper intensities in these cases. Furthermore, the method of sample preparation and observing appeared to be unsuited to very volatile elements, or compounds, because no residual spectra could be recorded for them even at concentrations of O-1 at. per cent. 2. Dilution
in copper
In 1941 these preliminary experiments were abandoned in favor of a modified procedure which led to satisfactory results. The chief changes in procedure came with the availability and use of pure metal powders, and a hydraulic press to form Instead of reducing spectral line intensities to solid electrodes of mixed powders. the limit of detectability by successive dilutions of the element in different samples only one dilution (0.1 at. per cent) was prepared and line intensities were reduced by observing through rotating step sectors. The successful procedure may be outAn element under investigation was mixed with pure copper lined as follows: powder in the atomic ratio of one to one thousand. These mixtures were pressed into solid electrodes, and burned in a 220-V, 10-A d.c. arc which was imaged entirely on the collimator of a stigmatic grating spectrograph by a lens at the slit. A rotating step sector in front of the slit reduced the spectral intensities to one-fifth in each of four steps (see Fig. 1). Spectral intensities of the element added to copper were estimated relative to those of selected copper lines, and this was done separately for each of seventy elements throughout the range of spectrum from 2000 to 9000 A. The true intensities of the selected copper lines above 3300 A that served as internal intensity standards were then measured, by photographic photometry, relative to the known energy distribution in the spectrum of an incandescent tungsten-strip filament at a certain temperature (see Fig. 2). Between 2000 and 3300 A a calibrated hydrogen lamp was used to determine the relative intensities of copper lines. Finally the apparent intensities of 39,000 spectral lines of seventy elements, relative to copper, were adjusted to fit the copper calibrations. These experiments thus provide empirically determined lists of the principal lines of all elements actually detectable under average conditions in arc spectra when their concentrations are 0.1 at. per cent, and the individual lines bear intensity numbers approximately proportional to their detectability or their relative energy. That these intensity numbers really represent physical intensities was proved by comparing them with earlier, accurately measured relative intensities of lines in multiplets and with published relative f-values or oscillator strengths of lines in different multiplets extending over a wide range of spectrum (see below). In order to provide intensity data for spectral lines that are partially or wholly obscured by copper lines, a sectored spectrogram of the pure element excited with self-electrodes, or of a metallic compound or salt excited in a carbon arc, was photographed on every plate so that any lines blended with copper could be interpolated with proper estimates of their relative intensities. Comparison of relative intensities in copper and in carbon matrices also supplied new information on successive spectra, I and II, especially of rare-earth spectra. Similar data for copper itself were obtained by using pressed electrodes of pure silver powder to 1143
WILLIAM
F.MEQQERS,CHARLESH.CORLISS
end BOUEDON
F.SCRIBNER
which 0.1 at. per cent of copper was added, plus the same quantities of gold and zinc to serve as internal standards. Further details of experimental materials, apparatus, and procedure are given in the following paragraphs. 3. Arc electrodes For this investigation materials of high purity were acquired, preferably in the form of metal powders, although some elements, not available in pure powdered metal form, were obtained as oxides. In every case the proper amount was added to powdered copper to produce a mixture in which there was one atom of the added These mixtures were homogenized by element to each 1000 atoms of copper. mechanical shaking and then compressed into solid cylindrical pellets in an hydraulic press at 5000 lb/in2. The pellets were 6.4 mm in diameter, 6.4 mm in length, and weighed about I.5 g. Two of a kind were mounted in massive watercooled clamps in an arc stand and a direct current of 10 A passed between them from a 220-V line with ballast resistance. A 3 mm gap was maintained between the electrodes during the exposures, which varied in duration from 1 set to 5 min, depending on spectrographic efficiency and sensitivity of photographic plates in different spectral regions. The arc was imaged on the collimator of a concave-grating spectrograph by means of a quartz lens immediately in front of the slit to obtain uniform illumination along its length and collect light from all parts of the arc. Rotating ste$ sectors were operated immediately in front of the collecting lens. A 5 to 1 ratio was used for all line-intensity spectrograms, and a 2 to 1 ratio was used for the energy calibration of copper lines. 4. Spectrograph The dispersing apparatus was a 15-cm grating with 600 lines per mm and 6.7 m radius of curvature in a Wadsworth-type mounting to give stigmatic images on photographic plates. All observations were made in the first-order spectrum in which the reciprocal dispersion was 5 A per mm, and the practical resolving power about 50,000 with a slit width of 30 p. 5. Photographic
plates
In order to determine, relative to copper, the intensities of all lines of seventy chemical elements diluted lOOO-fold it was necessary to make many hundreds of spectrograms, and to employ four varieties of photographic plates to cover the wavelength range 2006-9000 A. The spectral range 2000-3000 A was recorded on Eastman 103-O ultraviolet sensitive plates, 2600-4900 A on Eastman 33 plates, 4600-6900 A on Eastman II-F plates, and 6600-9000 A on Eastman I-N plates. Each plate was developed for 4 min in a rocking tray containing D-19 developer at 70°F. The exposure times in each spectral range were chosen by trial to obtain a suitable continuous background in the first step of the rotating step sector. Because of variations in spectral sensitivity of photographic materials and in spectrographic efficiency, two exposures of the contaminated-copper arcs were usually 1144
Relative intensities for the arc spectra of seventy elements
made on each plate, with exposure durations in the ratio 2 to 1, and the sectored comparison spectrum of the contaminant was placed between them. Measurements were usually confined to the exposures which showed the optimum background in the first step of the rotating sector. 6. Energy calibration of copper lines In order to determine the factors necessary to convert the estimates of apparent intensities of the lines of seventy elements relative to copper into true relative intensities, it was necessary to determine the true relative intensities of selected reference lines in the spectrum of copper. The energy calibration of copper lines was performed as follows. A General Electric tungsten ribbon filament lamp (type F339-85, 30 A., 6 V) equipped with a fused quartz window served as the reference standard of spectral energy distribution in the wavelength range 3300-9000 A. The brightness temperature of the filament at 6500 A was measured at two values of filament current by Henry Shenker in the National Bureau of Standards Pyrometry Laboratory. The true temperature T of the filament was determined from the brightness temperature by means of the following equation obtained from Wien’s law 1 -=_ T
1 TI3
+klnA 2
where C, = 1.438 cm-deg. and A is the product of the emissivity of tungsten (0.427) and the transmittance of the quartz window (0.916) at 6500 8. Table 1. Temperature of tungsten lamp
38.00 40.00
2492 2567
2787 2881
The energy distribution from black bodies operated at these temperatures was taken from tables prepared by STAIR and SMITH [19] in the 2300-3500 A range, by SKOGLAND [20] in the 3200-7600 A range and by LOWAN and BLANCH [21] in the 7200-10,000 A range. The data from these tables were adjusted to a common basis and multiplied by the emissivity of tungsten and the transmittance of fused quartz at intervals increasing from 50 A in the ultraviolet to 200 A in the infrared. The emissivity of tungsten was taken from a weighted mean curve of published values to which reference is made by STAIR and SMITH [19]. The transmittance of fused quartz was calculated from data on its index of refraction published by R. STAIRand W. 0. SMITH, J. Research Nat. BUT. Stand. 30, 449 (1943). [20] J. F. SPOOLAND, Tables of Spectral Energy Distribution and Luminosity for me in [19]
!kwwmi88ions and Relative Brightnesses from Spectrophotometric No. 86 (1929). [21] A. N. LOWAN and G. BLANCH, J. Opt. Sot. Am. 30, 70 (1940).
1145
Data.
Computing Light Misc. Publ. Bur. Stand.,
WILLIAM
F. MEGGERS, CHARLES H. CORLISS and BO~DONF. SCRIBNER
SOSMAN [22]. The final product, representing the relative energy distribution of the radiation emerging from the quartz window of the lamp, was plotted on a convenient scale to permit interpolation to any wavelength in the range 2300-10,000 A. Spectrograms of the pure copper arc and of the tungsten lamp were made under conditions identical with those described above except that for these a 2 to 1 step sector with eight steps was used for closer calibration (Fig. 2). Microphotometer measurements of transmittance were made in each step of the standard-lamp spectrum at intervals of 50 A and a family of calibration curves of transmittance vs. log exposure (hereafter referred to as log J) was drawn up for each plate. The exposure of the standard-lamp J, is read from the calibration curve for each wavelength at a transmittance of 40 per cent (where the curve is linear) and then divided by the calculated intensity I, at that wavelength. I, is the calculated intensity emitted by the standard-lamp. A standardization curve of log J,/I, vs. A was plotted for each plate. Calibration curves of transmittance vs. log J were then drawn from measurements on each of the selected copper lines and the log exposure (log Jcu) of each copper line at a transmittance of 40 per cent was read from each curve. Log J,/I, was then subtracted from the average of numerous values of log J,, to give log I,, which is the log of the true relative intensity of the copper line. The values of log Icu from plates in adjacent wavelength regions were adjusted to a common basis by means of lines common to both plates. The plot of log J,/Is vs. A is the relative response function of the plate-spectrograph combination and as such was itself useful in the infrared where the copper spectrum lacks lines suitable for use as an intensity reference. From two to twenty-four determinations were made on each of 202 lines of Cu I between 2800 and 8100 A with an average of about nine determinations per line. The values of Icu obtained by this procedure below 3300 A were systematically low because of the rapid decline in intensity from the standard lamp in the direction of short wavelengths. The intensity from the lamp at 5500 A is about forty times the intensity at 3300 A and about 300 times the intensity at 2800 A. This fact introduces possible errors from scattered light of the intense visible radiation which tends to raise J, and consequently depress I,,. The spectrum of copper is composed of sharp lines and diffuse lines. Since the microphotometer measurements were made at the peaks of the lines rather than integrated over their widths, the measured intensities of the two groups of lines are on different relative scales, the scale of the diffuse lines being smaller than that of the sharp lines. The reference lines selected for calibration of the estimates of apparent intensity are all sharp lines. The random error of the photometric procedure, including microphotometer error and irregularities of response of the N plates was determined from ninety-two measurements of apparent relative intensities in spectra of the standard lamp on two plates. The standard deviation of individual measurements from the mean was found to be about I.5 per cent. It is probable, therefore, that the uncertainties in these intensity measurements of the copper lines lie entirely in the systematic errors discussed above and in the random fluctuations of the arc under study. [22] R. B. SOSMAN, Propertiesof Silica. Chemical Catalog Company, New York (1927). 1146
Relative intensities for the carespectra of seventy elements
Since the ribbon filament lamp was too faint in the region from 2000 to 3300 A to serve as a standard, recourse was taken to a Hanovia hydrogen arc lamp. Output from this lamp was compared by R. STAIR in the Radiometry Section of this Bureau with a standard tungsten-in-quartz lamp and a standard mercury arc in the region from 2500 to 3800 A; this provided an independent overlapping calibration which carried us down to 2500 A. The intensity numbers below 2500 A become less accurate as the short wavelength limit is approached. Lacking any reliable energy calibration for shorter waves, the intensity estimates from 2500 to 2000 A were necessarily adjusted by judicious extrapolation, guided by the declining densities of background in the spectrograms, caused by the increasing absorption in the apparatus and in the air at shorter wavelengths. Because these relative intensities of 39,000 lines of seventy elements are based on empirical detectability they will be generally applicable to spectrochemical analysis provided that proper corrections are made on account of different excitation in different matrices. Chemical elements differ in volatility, electron emission, spectral excitation and spectral background, and consequently their spectral detectability in different mixtures or matrices depends on certain controlling factors. One of the most important factors is the atomic ionization potential which ranges from 3.9 V for Cs to 11.3 for C, and for the investigated seventy elements has an average value of 7.3 V. By mixing these seventy elements with copper, which has an ionization potential of 7.7 V, we obtained excitation conditions very near the average for all. To convert our intensity numbers from copper to any other matrix would require the empirical determination of the proper conversion factor for each element. It should be pointed out that sensitivity of detection in spectrochemical analysis is commonly given in per cent by weight. In order to find the weight per cent from the atomic per cent, the following simple relation applies: c,
=Q$ CU
where C, is the concentration in per cent by weight, C, is the atomic per cent (0.1 in this case), A,, is the atomic weight of copper, and A, is the atomic weight of the element X. Although our original intention was to determine the relative strengths of many spectral lines from different chemical elements for purposes of quantitative spectrochemical analysis, we believe that the results may also interest theoretical spectroscopists and astrophysicists. For instance, if our intensity numbers, based on concentration detectability and relative energy calibration, actually express relative energies then all may be converted to oscillator strengths, or to relative gf-values, or even to absolute f-values, if the proper conversion factors can be found. Because of the low concentration of each element in the copper arc from which the spectra were observed, the lines were extraordinarily free from self-absorption. This fact suggests that these emission intensities could be converted into relative 1147
WILLIAMF.MEGGERS,
CHARLES H. CORLISS and BOURDONF.SCRIBNER
gf-values, provided that a valid excitation temperature can be assigned to the copper arc. The temperature of the copper arc can be determined by comparing the observed relative intensities of the lines of an element with the relative gf-values of those lines [23], provided that the arc can be shown to be in local thermodynamic equilibrium for the energy states under consideration. A preliminary investigation I
I
I
I
I
1.5
1.0
l-4 5 1 CII 3
m
0.5
0.0
9.5
9.0
8.5 20
2.5
SD
3.5 4.0 Upper e.p. in Volts
4.5
5.0
Fig. 3. Plot of log intensity times A3 over gf vs. upper excitation potential of Ti I lines. The temperatureof the am is derived from the slope of the line which best fits the points.
of this sort has been carried out by using relative gf-values determined by R. B. and his co-workers for Ti I [24], Ti II [25], V I [26], Cr I [27], Fe I [2S], [29] and Ni I[301 in the region above 3000 A. Fig. 3 is a typical example of the correlation of intensities and gf-values indicating the temperature of the copper arc. The comparison shows that our copper arc is sufficiently in equilibrium to yield a temperature which may be useful in calculating approximate gf-values of some
KING
231 24] 251 .26]
H. R. R. R.
HEMMENDINQER,J. Opt.Soc. Am. 31,150 (1941). B. KING and A. S. KING, ~48kO$Ly8.J. 87, 24 (1938). B. KINQ, Astro@ys. J. 94, 27 (1941). B. KINa, htTO&/8.J. 105, 376 (1947). .27]A.J. HILL and R. B. KINQ,J. Opt.Soc. Am. 41, 315 (1951). 281 R. B. KINO and A. S. KINQ, Astrophys. J. 82, 377 (1935). ‘291 W. W. CARTER, Phy.9. Rev.76,962 (1949). 1301 R. B. KING Astro@ys. J. 108, 87 (1948).
1148
Rel&ive intensities for the &ICspectra of seventy elements
A preliminary value of 5000” + 300°K has utility from our intensity numbers. been obtained as the average temperature of the 10-A, 220-V, copper arc. Because our intensity data represent single (sometimes two) personal subjective estimates of photographic densities in sectored spectrograms there is no possibility of deriving statistically any probable errors or standard deviations for individual values. However, an estimate of the accuracy or reliability of our data may be obtained by comparing them with quantitative results published by other investigators. For example, Fig. 3 shows the ratios of our intensities to the relative gf-values reported by KING and KING [24] who measured the total absorptiona of they stated [28] that “The average Ti I lines in furnace absorption spectra; deviations of the individual intensity measures from the mean values vary from 4 to 15 per cent for different lines” measured between four and sixteen times on different plates. Each small circle plotted in Fig. 3 represents a Ti I multiplet of from one to twelve lines. The average of fifty-nine deviations from the mean of all is 25 per cent. A second indication of the reliability of our intensities is obtained by comparing our values with the relative intensities of lines in multiplets of five elements (Cr, Fe, Mn, Ti, V) measured with photographic densitometry by FRERICHS [31] to test the sum rules. Such a comparison in twenty-one different multiplets indicates deviations ranging from 5 to 22 per cent, with an overall average of 14 per cent. A third estimate of the errors in our data results from their comparison with photoelectric intensity measurements in the iron arc by CROSSWHITE [32], who claims an accuracy of the order of 1 per cent. The average difference between intensities of 330 iron lines (from 3175 to 5658 A) common to these two sets of observations is 527 per cent, but some of this difference may be due to temperature, if this is not the same in both arcs. Other comparisons could be made but the above three are different and typical; they suggest that the average error of our spectral-line intensities within a spectrum of each element is probably between 15 and 25 per cent. The uniformity of the intensity scale between the spectra of the various elements is more difficult to assess. Considerable care was taken to obtain spectrograms under comparable conditions for all of the elements; however, differences in volatilities of the elements or their oxides, and differences in ease of excitation may possibly result in shifts of intensity scales between elements. An inspection of the intensities of the strongest lines of the elements indicates that the values are generally in the same order as sensitivity of detection of the elements where these are known. Although no high precision was expected in our mass production of intensities, it is emphasized that reasonably uniform, quantitative values are now available for 39,000 lines emitted by seventy elements. The complete tables of spectral line intensities resulting from this investigation are published elsewhere in two separately bound parts [33]. From these data some 1100 principal lines of seventy elements were selected and are given here in Table 2. [31] R. FRERICHS,Ann. Physik 386, 807 (1926). [32] H. M. CROSSWHITE, Spectrochim. Acta 4, 122 (1960). [33] W. F. MEQCJERS, C. H. CORLISSand B. F. SCRIBNER,Tables of Spectral Line Intensities. Part I. Arranged by Elements. Part II. Arranged by Wave lengths. NBS Monograph 32 (1961). U.S. Government Printing Office, Washington, D.C.
1149
WXLLLAXF. MENDERS,CHARLESH.
CORLISS and
BOUFCDO~U
Table 2. The strong lines of scvcntv clemcnts Element Aluminum
Intensity
Arsenic Barium
Beryllium
Bismuth Boron Ccdmium Calcium
Carbcn Ccrium
(A)
spectrum I I I I I I I I I
320 140 140 so 6500 2000 2000 1200 650 480 320 300 3600 400 480 240 1500 360 4200 2200 1100 10 250
3961.53 309271 I3092.84 2598.05 2598~09 2528.52 2877.92 2780.22 2860.44 4554.03 4934.09 6141.72 6496.90 6535.4% 3130.42 3131.07 2348.61 3067.72 2897.9% 2497.73 2496.78 2288.02 3610.51 3933.67 3968.47 4226.73 2478.57 4186.60
220
3952.54
II
200 200 190 190 190 170 160 150 150 140 140 I40 140 130 120 120 120 110 110 110
3801.53 3999.24 3342.78 4012.39 4X33*80 4460.21 3655.85 4040.76 4562.36 3942.15 4137.65 4289.94 4296.67 4073.48 3882.46 4391.66 4628.16 3560.80 3716.37 4075.71
II II II II II II II II II II II II II II II II II II II II
900 650
Antimony
Wavelength
6CO
II II II II I II II I I I I I I I II II I I II
Energy levels (cm-i) I12-25,348 11232,437 112-32,435 8512-46,991 985448,332 985449,391 851243,249 1864%54,605 181%6-53,136 o-21,952 O-20,262 567&21,952 487420,262 o-18,060 O-31,935 O-31,929 O-42,565 632,588 1141%45,915 1640,040 o-40,040 o-43,692 31827-59,516 O-25,414 o-25,192 O-23,652 2164&61,982 696%-36,847 2642-27,935 663%-31,931 7234-33,531 23%2-27,380 691332,269 452329,439 696&31,152 385426,268 286329,909 359428,335 385425,766 o-25,360 4166-28,327 2642-25,945 416627,433 3%54-28,396 250628,345 259625,360 416625,766 596o-34,044 O-26,900 6651-30,180
1150
F. SCRIBNER
Relative
intensities for the MC spectra of seventy elements Table &_(contd.)
I ntensity
Element
?avelength (A)
ipectnlm
-
Energy levels
Term combination
(cm-‘)
_-
wi
Cerium
110
4075.85
II
491 l-29,439
(contd.)
110
4222.60
II
98&24,663
100
3854.19
II
1874-27,812
100
3854.32
II
1874-27,811
100
4151.97
II
551‘G29,592
iLje6s a
100
4471.24
II
5617-27,976
I
95
3577.46
II
3794-31,738
90
3838.54
II
2642-28,686
90
3878.37
II
1410-27,187
90
4165.61
II
7341-31,340
85
3709.29
II
4204-31,156
4H&
85
3709.93
II
988-27,935
4H‘it
85
3808.12
II
2382-28,634
4Hi)
85
3889.99
II
545&31,156
%+
80d
3623.84
II
639@33,977
80
3660.64
II
988-28,298
80
3667.98
II
2880-30,135
4198.67
II
4198.72
II
75
4071.81
II
7.5
4248.68
II
75
4572.28
II
70
3201.71
II
70
3272.25
II
5651-36,202
70
3539.09
II
2581-30,829
70
3786.63
II
1410-27,812
70
3848.60
II
4204-30,180
70
3853.16
II
70
3956.28
II
4911-30,180
70
4123.87
II
691%31,156
70
4127.37
II
551P29,735
70
4149.94
II
5819-29,909
70
4239.91
II
3854-27,433
70
4337.78
II
263%25,682
70
4418.78
II
6968-29,592
1500
8521.10
I
800
8943.50
I
2400
3578.69
2100
3593.49
1700
80
Cesium ChOmiUX
L
4H& 4H&
4H;t 4H5t
Lj26s a eH4+ “Ii, 1% % &jf26sa =H,&
43:t %
%
_
414) 1122%
%t
- 4j”Sp z4H& - 4fz6p z2Hit 4H6t 12ktt 1673t - 4fa6p 2=I;* 4H6t %t l%t 4H6t 1663)
-
%t
7341-31,152
%+ %jf268a 2H5b
4H5) - 4j26p z40&
416&27,976
4f86s a
263527,187 551629,044
%a 4j=6s a ‘H3+
- 4ja6p 2=H& 167,t - 4j26p 2lI&
5514-27,379
4pf”ssa 4H3t
691%38,138
4H&
4H3t
4H;+ % ‘II;&
- 4j26p 2*Iit 2325) 2134t 14% 1% 416t
4Hit
o-25,945
lH:* =Hit
.-
164,t
-
416t
1% 4ja6s a 4H6i
lH6t - 4f”Sp 2W;+ 4H4* - 4j”6p z~H;~ 1% - 4fa6p z~H;+
o-1 1,732
5~366s1 Wet
- 5pe 69
O-11,178
5p6 6s’ W,,)
I
o-27,935
49 a’s,
I
O-27,820
49 a’s,
- 5pB 6p1 BP;t - 4P Y?Pi - 4P Y’Pi
4254.35
I
o-23,499
4s a?S,
1600
3605.33
I
o-27,729
4.3 a’Ss
1300
4274.80
I
o-23,386
48 a’s,
900
5208.44
I
850
4289.72
I
7593-26,788 O--23,305
lHit 4ja6s a &HSt 3% 4f26s a 4H3)
49 aW, 4s a’s,
- 41, 2’Pi - 4P Y’Pi -4p 27p; - 4p 2”Pi - 4p 2’P; - 4p. 26Pi
700
5206.04
I
7593-26,796
48 aW,
440
5204.52
I
759s26,802
4s aW,
- 4p 2=p;
360
3017.57
I
809&41,22E
4a8 aKD,
- 4p ysF;
360
3021.56
I
8308-41,39:
4aa asD,
- 4p y=F;
280
2836.63
240
2986.47
II
12,497-47,75! 8308-41,781
I
-
1161
48 aeD4+
- 4p 2eF;t
4zP a6D,
- 4p y6D;
=P;+
WILLIAM F. ME~UERS, CHARLESH.
Element
Wavelength
Intensity
Chromium
200
(contd.)
Cobalt
Copper Dysprosium
-
3pectrum
‘ k
(A)
--
Table 2-
-
-
-
and BOURDON F. SCRIBNER
CORLISS
contd.) Energy
levels
Term combination
(cm-‘) -
II
2677.16
II
12,304-49,646
4s aeDSk
- 4~ zaD;+
12,497-49,838
4s aaD
- 4p zeD;)
190
2843.25
12,304-47,465
45 aaDs
- 4p zeFig
190
4351.77
I
8308-31,280
4s= aSDq
180
3014.76
I
7811-40,971
4s= a6D1
170
2986.00
I
8095-41,575
4s= a5D3
- 4p 26P; _ 4~ Y “F; -4p y5D;
160
3919.16
I
830%33,816
4s2 aSD
- 4p zSD;
160
3963.69
I
20,520-45,741
160
4344.51
I
809631,106
48=
1300
3453.50
I
700
3405.12
I
49 a$
-4p
y5H;
- 4p z”F;
3483-32,431
4s
a5D 3 b dFlt
3483-32,842
49 b 4F,1
- 4P Y4q) - 4~ Y ‘0;) - 4P Y lG;)
600
3502.28
I
3483-32,028
4s 6 “Fd,,
550
3443.64
I
414%33,173
4s b 4F3h
550
3569.38
I
7442%35,451 O-28,777
48
a2F3i
4.P a “Fdi
- 4P Y 4G;*
- 4~ Y”“& - 4p z&F;)
500
3474.02
I
4690-33,467
4s b aF,i
- 4~ Y ‘Fit
460
3529.81
I
4143-32,465
4s b “F3&
- 4P Y 4G;*
440
3506.32
I
4143-32,654
4s b 4F3)
- 4~ y4D;a
420
3412.34
I
4143-33,440
4s b 4F3t
- 4P YZG&
420
3587.19
I
8461-36,330
4s a 2FzB
400
3526.85
I
483 a 4Fd4)
- 4~ Y=F;~ - 4p z4F;+
340
3894.08
I
8461-34,134
4s a2Fzh
- 4~ y2G;a
320
3462.80
I
5076-33,946
4s 6 4F1)
320
3465.80
I
4s2 a &FaB
- 43, Y ‘Fit - 4p z4G;+
300
3489.40
I
7442-36,092
4s a 2F3k
- 4~ Y’D;~
300
3512.64
I
4690-33,151
4s b pF,+
- 42, y4D;+
300
3518.35
I
8461-36,875
4s a =F,&
- 4~ Y=D;+
300
3845.47
I
7442-33,440
4s a =F,)
- 42, Y’G;,
280
3409.18
I
414%33,467
4s b 4F3k
- 4~ Y 4F;+
280
3433.04
I
5076-34,196
4s b “Flk
5000
3247.54
I
3d’O 49’ %S,+
- 4~ y4F;t - 3d’o 4~1 2Pit
I
o-30,535
3d’O 4s’ “Sot
- 3d’” 4~’ 2P;)
O-28,307
4f1°6.s1 @ISt
- 4f lo6p1 eK;t
,&o-28,346
O-28,845
O-30,784
2500
3273.96
2000
3531.70
1300
4211.72
1100
3968.42
II
o-25,192
4f’O6& BI,g
-
25,192;*
1000
3645.41
II
828-28,252
4f’“6s1 41pt
-
28,252;+
1000
4045.99
I
950
4186.78
I
850
3944.70
II
4f1”6a1 BIst
-
25,343;)
650
4000.48
II
4fro6s1 41,t
-
25.818;&
600
3872.13
II
4f ’06s1 sI,t
-
25,818;)
600
4077.98
828-25,343
4f 1°6s’ 4I,)
-
25,343&
550
4194.85
500
3536.03
500
3898.54
II
4756-30,399
4f’06s1 4Ie)
-
30,399;*
480
3385.03
II o-29,336
4f lo681 El,+
-
29,336&
O-28,885
4f ‘06.s1 BIst
-
28,885;t
4f lO6sl 41,i
-
29,437;)
II I
O-25,818
II I II
II
480
3407.79
460
4167.99
400
3460.97
II
400
3494.49
II
-
O-25,343 828-25,818
I 828-29,437
-
1152
Relative
intensities for the arcspectra of seventy elements
Table2- :ontd.) 1:ntensity
Element
-- _~ 400 Dysprosium 400 (contd.) 400 400 400 400 400 360 360 360 340 340 320 300 300 280 1100 Erbium 850 750 700 650 600 550 420 340 320 300 280 260 260 260 260 240 220 220 220 220 170 170 160 4ooocw Europium 34ooew 2800~~ 2400~~ 22oocw 2ooocw 17oocw 9oocw 750 650
Energylevels Vavelength bpectrum (cm-') (8) 3523.98 3534.96 3538.50 3550.22 3576.25 3694.81 3757.37 3630.25 4218.09 4221.10 3393.59 3445.58 4103.34 3685*08 4215*15 3'786.21 4007.97 3906.34 3372.76 3692.64 3499.11 3862.82 4151.10 3896*25 3892.69 3830.53 3616.58 4087.65 3264.79 3937.02 3944.41 3973.60 4020.52 3230.59 331242 3392.00 3973.04 3385.08 3938.65 3786.84 4205.05 3819.67 3930.48 3907.10 4129.70 3978.96 3724.94 4435.56 4594.03 4627.22
II II II II II II II II
4341-32,710 828-29,109 O-28,252
32,710;+ 29,109& 28,252;&
4756-32,710 828-27,886 828-27,435
32,710;* 27,886;) 27,435&
II II II II
82%30,287 o-29,014 828-25,192 o-27,886
30,287& 29,014& 25,192;) 27,886;)
II II II II
o-29,641: 44s27,514 440-29,011
29,641;+ 27,514;) 29,011;+
II
440-26,099
26,099&
II II
o-26,099 o-27,643
26,099;) 27,643;)
II
C-30,621
30,621&
I I
I II I
I I I
I I I I I II II II
44%30,621
30,621&
440-29,973
29,973;*
I II II II II II II II II II II II
O-23,774 O-26,17: 1669-27,104 1669-27,25( o-24,20( 1669-26,83( o-26,83! 1669-24,201 o-21,76 O-21,60!
I I
- i 2
Term combination
1153
-4j'6p zePs - 4j76p zsPs - 4j'6p, z’P3 - 4f76p z7Pz - 4f’Sp zBPp - 4j'6p z’P, - 4f’6p zvPq - 4j'6p z=P4 -r 4jT6s 6p y8PJb - 4fv68 61,y8Pab
WILLIAM F. MEOOERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER
7Navelength
Intensity
Element
Table 2-(wntd.)
-
-
Spectrum
Energy levels
1
(A)
Term combination
(cm-l)
_-
Lf’6a8 a “S;+
- 4f’68 6p y8P,+
O-36,649
kf’6s a “S;
- 4f”Ss 6d yDP,
O-35,527
Lf’6s a “S;
- 4fa6a 6d ygP4
II
o-34,394
Lf’6s a “S;
- 4ffa68 6d ygP,
4522.57
II
1669-23,774
Lf?Gs a ‘S;
- 4f76p
zDP,
200
2820.78
II
If’68
-
108,
190
2802.84
II
1669-37,337
160
6645.11
II II
3688.42
550
4661.88
420
2727.78
II
340
2813.94
II
320
2906.68
200
Gadolinium
Germanium
1
Gold -
I
O-35,441
a ‘9;
Lf’68 a ‘S3”
- 4f’6da
y’P,
11,128-26,173
Lf’5d a “0;
- 4f’6p
z”Ps
10,643-24,208
lf’5d
120
7370.22
- 4f 76p
z”P4
110
3212.81
I
O-31,116
Lf’6s2 a YJ;+
-
113,)
100
3334.33
I
O-29,982
Cf’6se a “S?&
-
a “D;
106st,at - 4f’Sd 6p zI”F~~
850
3’768.39
II
633-27,162
700
3422.47
II
193%31,146
a’OD;+ -
ZIOF,&
600
3646.19
II
1935-29,353
a’QD& -
GF@
550
3350.47
II
1159-30,997
a’QDi& -
ZIQDst
550
3362.23
II
633-30,367
550
3584.96
II
1159-29,045
a’QD& a’OD;t -
zBD5+ Z’OD4)
500
3796.37
II
262-26,595
&‘D&
500
3850.97
II
440
3358.62
II
262-30,027
440
3545.80
II
1159-29,353
II
1159-27,865
Lf’6s 5d a’oD&
O-25,960
-
Z’QF,&
a’OD& -
2’01” 1)
a’ODi& a’OD& -
zBD4t ZIQFs+
440
3743.47
440
4225.85
420
3852.45
II
26%26,212
400
3549.36
II
1935-30,101
a’OD& -
Z10D6+ z8P,t GF,+
I
1719-25,376
alaD;+ Lf”695d a “0;
-
ZlOFg
- 4j’6s
5d 6p ygF,
kf’68 5d a’OD& - 4f75d 6p
z’~F,+
380
3654.62
II
633-27,988
360
3813.97
II
&26,212
al’JD;t a’QD$ -
320
3850.69
II
633-26,595
LX’OD;~ -
Z’QF,&
300
3100.50
II
193&34,179
Y’“P6) Z1QP6)
300
3656.15
II
115%28,502
a’OD& aloDit
300
3687.74
II
2857-29,966
a 8Di+ -
280
3439.99
II
1935-30,997
a’OD& -
280
3463.98
II
3444-32,304
280
3783.05
260
3664.60
260
3712.70
260
4078.70
I
533-25,044
Lf’625d
240
4053,64
I
999-25,661
kf~6&id a ‘Di
240
4058.22
I
215-24,850
a eDi
240
4098.61
999-27,425
I
if’63
a W&
kff?6se5d a @Di
-
z0D2* ZIQDB&
Y8P4+ - 4f’6s 5d 6p xnP4
II II
4325.57
240 d Gallium
z’P3
if’68
o-21,445
550
(contd.)
a “S;
- 4f’6p
O-27,104
II
Europium
3082-30,009
II
6605-30,997
II
11,067-34,179
Lf76s 5d a 8Dit - 4f75d 6p
tf ‘5da
z”D,t
a “Di - 4f76s 5d 6p ygD, - 4f 16s 5d 6p y =D,
Y’DI alOFik - 4f75d 6p GODS+ Y’PSt -- 4f’68 5d 6p y’F;
4325.69
I
533-23,644
$f76$5d ;‘:z” 4
2000
4172.06
I
826--24,788
is= 4pl ZP;*
- 482 581 as,*
1000
4032.98
I
O-24,788
49 4p’ =P;*
- 4s= 581 “So,
1200
2651.18
I
1410-39,118
452 4pe 8P,
- 482 4p’ 581 “Pi
850
2709.63
I
557-37,452
48 4pe BP,
- 482 4pl5s’
750
3039.06
I
7125-40,020
42 49
- 49 4p’ 581 ‘Pi
‘D,
“P;
650
2754.59
I
1410-37,702
2675.95
I
&37,359
48%4pa SP a 5d’o 6s1 “Sot
- 49 4p’ 591 “P;
340 200
2427.95
I
o-41,174
5d’O 68’ %,,&
- 5d’o 6~’ 2P;t
-
-
1154
- 5d’o 6pp’ “P&
Relative
intensities for the arc spectra of seventy Table 2-(cotid.)
Element
Intensity
IT
Wavelength (A)
Spectrum
Energy
levels
(cm-‘)
I-
Hafnium
Holmium
elements
II
5d’ 6s2 a 2D,b
o-34,877
5d= 6se a “I’; 5da 6s2 a SF2 5da 6s2 a 8F 4 5d2 6.s2 a 3F2 5da 6s= a SF2 5d2 6s2 a 3F, 5da 6s2 a $Fs 5d’ 6sB a 2D,+ 5d’ 6s2 a =Dsh 5dZ 6s2 a aF, 5d= 6~~ a 8F, 5d2 6.9 a IF,* 5da 6sa a sFz 5d2 6s2 a “F4 5d= 6.~2a sF, 5d= 6s2 a “F4 5d’ 6~~ a =D,+ 5d2 6s a ‘Fbi 5d’ 6s2 a 8F, 5da 6sa a =FZ 5d’ 6s= a =Dlt 5d’ 6sa a 2Dlt 5d= 68= a 3F4 5d2 6s a 4F,t
3399.80
240
2866.37
I
240
3072.88
I
220
2916.48
I
220
2940.77
I
220
3682.24
I
200
2898.26
I
160
2964.88
I
150
3561.66
II
140
2820.22
II
140
2904.41
I
140
2950.68
I
140
3505.23
140
3777.64
I
140
3785.46
I
130
3020.53
I
2357-35,454
130
3820.73
I
4568-30,733
120
2638.71
II
120
2641.41
II
120
2954.20
I
120
2980.81
I
120
3012.90
II
120
3016.94
II
120
3057.02
O-32,533 4568-38,845 o-33,995 O-27,150 2357-36,850 2357-36,075
4568-38,988 2357-36,237 O-26,464
o-33,538
II
3456.00
II
1500 c
3891.02
1000 c
3796,75
I
1000 c!
3810.73
I
1000
4103.84
I
900
4053.93
I
900
kl63.03
I
700
3484.84
II
600
3416.46
II
600 c
3474.26
II
600 c
4045.44
480
4127.16
460 c
3515.59
II
360
3453.14
II
360 cw
3748.17
II
340 0
3888.96
II
320
4108.62
300 c
3861.68
300
4040.81
3425.34
220 c
3428.13
220
4227.04
200 c
3854.07
634634,355
II
3398.98
220 c
O-33,136
II
900 0
3494.76
O-33,181 4568-37,270
3569.04
4173.23
O-37,886 8362-46,209 456%38,408
120
280
8362-36,882 4568-30,977
1800 c
280 c
o-28,069 3051-38,499
I
II I
I II I II I II II I II
1155
Term combination
o-29,405
260
II
T
- 5d’ 6~~ 6p1 z4F& - 5d2 6s’ 6~’ y’F; - 5da 6s’ 6~1 ySG; - 5d2 6s’ 6~0’ xSG; - 5d2 6816~1 w’F; - 5d2 68’ 6~’ y$F; - 5d2 6s1 6~1 wSF; - 5d2 6s’ 6p1xaFo4 - 5d’ 6~~ 6~’ zaF;+ - 5d2 6~1 Z4G& - 5d2 68’ 6~’ v3F; - 5d0 6s’ 6p* x’F; - 5d’ 6s’ 6~1 z&D& - 5d’ 6sa 6~’ ZIP; - 5d2 6S 6~’ z8G” - 5d= 6.9’ 6pO’u9F6; - 5d2 6s1 6~’ y8F; - 5d’ 6s’ 6~’ yzD;+ - 5d2 6~’ ZbG;* - 5d= 6s’ 6~1 wsD; - 5d2 6816~’ xaF; - 5d’ 6s’ 6~’ zag;+ - 5d’ 6s’ 6p1 z~P;~ - 5da 6.~~6~’ xsG; - 5d’ 6s’ 6~’ z4Dit
WILLIAN F. MEG~ERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER
Element
Indium
Iridium
Iron
-
T --
:ntensity
Vawlength (A)
Table 2-(contd.)
2Spectrum
Energy levels
T Term cc)mbination
(cm-l)
58’ 5p’ ‘p;&
- 59= 6s’ =S,)
59 5p’ BP&
- 5s2 6s1 %Q
2213-32,916
59 5p1 =p;*
- 5s2 5d’ SD,+
I
632,892
582 5p’ “P;*
3220.78
I
2835-33,874
5ds 6s1 b 4F,t
- 59 5d’ =D 1B - 5d’ 6s’ 6~’ zaF&
380
2543.97
I
2835-42,132
5da 6.~~b 4F,t
- 5ds
340
3133.32
I
6324-38,230
5d7 6s2 a 4F,h
- 5d’ 6s’ 6~’ &Fit - 5d’ 6s’ 613’ z~G;~ - 5d 7 6s’ 6~’ zsFo 6t - 5d 7 6s’ 6pp’ zBDit - 5d’ 6s1 6p1 zaG” 4t _ 5d= 6s2 6p’ BP;+ - 5da 6s2 6p1 BF;b
1800
4511.31
I
1700
4101.76
I
1300
3256.09
I
800
3039.36
500
2213-24,373 O-24,373
6p1 YJ;)
320
2924.79
I
O-34,180
5d’ 6s2 a 4F4t
320
3513.64
I
628,452
5d7 6sa a “Fat
320
3800.12
I
o-26,308
5d’ 6s2 a 4F4t
280
2849.72
I
635,081
5d’ 6sz a 4F44t
220
2694.23
I
2835-39,940
200
2502.98
I
200
2664.79
200
2943.15
170
2639.71
I
o-37,872
5d7 6s2 a 4F4t
160
2475.12
I
o-40,390
5d’ 6s2 a 4F;t
160
3068.89
I
2835-35,411
5ds 6s’ b ‘F4*
130
2661.98
I
2835-40,390
5ds 6s’ b 4F,g
120
2797.70
I
2835-38,568
5da 68’ b 4F,t
120
3573.72
I
7107-35,081
5ds 6s’ b 4F,t
100
2481.18
I
5d’ 6$ a 4F4)
- 5dT 6s’ 6p1 4F;t
700
3734.87
I
6928-33,695
3d7 4s’
- 3d’ 4p1
ysF;
600
3581.20
I
692&34,844
3d’ 4s1 a6F;
600
3719.94
I
- 3d’ 4p1 - 3da 4~~ 4~’
zSF5”
500
3820.43
I
420
3859.91
I
400
3440.61
I
400
3570.10
I
7377-35,379
3d’ 4s’ a5F:
- 3d’ 4p’
400
3749.49
I
7377-34,040
3d’ 4s’ a6F4
340
3737.13
I
416-27,167
3ds 4s2 a&D,
320
3825.88
I
7377-33,507
3d’ 4s’ aSF
300
3758.24
I
7728-34,329
3d7 4s’ asFt
- 3d’ 4p’ y”F; - 3da 4s’ 4p’ 91” 4 - 3d? 4p1 Y’D; - 3dv 4p’ Y’F;
300
4045.82
I
11,976-36,686
3d7 4s1 aSF
280
2483.27
I
O-40,257
3dB 4s2 a 5Di
280
2522.85
I
O-39,626
280
3020.64
I
O-33,096
260
2488.15
I
3da 4sa a6D 4 3d6 4s2 aSD 4
260
2719.02
I
240
3745.56
I
200
2599.40
3da 4s’ a6D4+
- 3d” 4p1
200
3608.86
I
8155-35,856
3d’ 49’ aSF,
- 3d7 4p’
200
3618.77
I
7986-35,612
3d’ 4s’ a6F,
- 3dT 4~’
z%+
200
3631.46
I
772%35,257
3d” 4s’ a6F,
z=cf;
900
3949.10
II
325628,565
6s
- 3d’ 4p’ - 6p z “F; _ 6~ Y ‘D;
5d8 69’ b 4F,i
o-39,940
5d7 6s= a 4F4t
I
637,515
5d’ 6s2 a 4F4hl;
_ 5d? 6s1 6p’ z4D&
I
6324-40,291
5d’ 6a1 a 4F,t
- 5d’ 6s1 6p1 4F;b - 5d’ 6s’ 6~’ z’F” - 5da 6s= 6p1 eF;: - 5d’ 6s’ 6p1 zaG; b
o-40,291
o-26,875 692%33,096
3d= 4s2 a6D4 3d’ 4s1 aSFg
o-25,900
3da 4.P a6D4
O-29,056
3de 4s2 aSD
416-40,594 O-36,767 704-27,395 II
a5F
O-38,459
3da 4.P aSD 3d6 4s2 a6D: 3ds 4a2 a5D,
aSD,
550
4086.72
II
624,463
460
3794.78
11
1971-28,315
5d2 a =F4
460
4333.74
II
139624,463
6s
440
3790.83
II
101627,388
5d2 a 8F,
440
3988.52
II
3250-28,315
68 a sD,
1156
5d2 a sF, a ID,
- 5de 6s= 6~1 “F& - 5dT 6s1 6p’ ID& - 5d 7 6s’ 6p1 zBG&
z5Q;
- 3d7 4~’ y=D; _ 3de 4s’ 4~’ z6D; - 3d6 4s1 433’ z5P” z&
- 3d7 4p1 Y”F; - 3de 49’ 4pl xbF” _ 3de 4s’ 4~’ xsD f - 3d’ 4~’ y5D; - 3ds 4s’ 4~’ x6F” - 3de 4s1 4~’ y6Pp - 3da 4s’ 4~’ z6F;
-6py3Di _ 6~ Y ‘D; -6pySDi _ 6~ Y “D;
;;;i+
Relative
intensities for the arc spectra of seventy Table 2-(contd.)
Wavelength
7
Cntensity
Element
--
-
Energy levels
LSpectrum
(A)
elements
Term combination
(cm-‘)
Lanthanum
440
4123.23
II
2592-26,838
6s
aaD,-6pxaFi
(CO%td.)
360
3995.75
II
1394-26,414
6s
a’D,-6px3F;
340
3871.64
II
1016-26,838
5d2 a sF, - 6p x “Pg
300
4042.91
II
7473-32,201
5d2 a W,
280
3759.08
II
1971-28,565
5da a SF4 - 6p x aFi
280
4031.69
II
2592-27,388
6s
280
4077.35
II
189626,414
68 aaD,-6pxaFi
220
3929.22
II
139P26,838
6s
a’D,
200
3337.49
II
3250-33,204
6s
aaD,-6pxSP;
Lead
Lithium Lutetium
Magnesium
Manganese
Molybdanun
I
aSD,-6pySD; -6pxaF;
200
3380.91
II
2592-32,161
6s
a3D,-6pxSPP
200
4429.90
II
189624,463
6s
aSD,-6pylDi
3400
4057.83
I
10,650-35,287
69 6p2 3P, - 69 6p’ 7~~ “P;
1400
3683.48
I
7819-34,960
6sz 6~9 “PI - 69 6p’ 781 “P;
1000
2801.99
I
10,650-46,329
950
2833.06
I
3600
6707.84
I
320
6103.64
I
1200
2615.42
II
600
2911.39
II
14,199-48,537
5d 6s asDo - 6s 6p z”Fi
500
3077.60
II
12,43644,919
5d 6s a8D,
480 c
3507.39
II
440
3281.74
I
440
3359.56
I
420
2894.84
360
3312.11
I
6s2 6pa aPa - 69 6~1 6d’ 8Fo3 69 6p2 sP, - 69 6p’ 7s’ “P;
O-35,287 o-14,904
1.92291 “So,
14,904-31,283
69 aIS
O-38,223
O-28,503
69 a’s
1994-32,457
5d 6s=
1994-31,751
5d 69
14,199-48,733
II
- 182 2p’ 2PO&]&
ls2 2p’ 2P,h,lt - Is2 3d’ =D,+,2a
- 6s 6p
z8Fz
- 6s 6p
zap;
zD”It 32,457’ =D,+ -5d 6s 6p zF;+
5d 6s a3D,
O-30,184
- 6s 6p ZIP;
- 6s 6p
90;
5d 5d 69 6s2
=D zDlt - 5d 68 6~ =D;t
5d 69
ZD1* - 5
~p6pZ;ft
5d 69
2D;: 15d
6s 6p 2D;it
360
3376.50
I
340 h
3081.47
I
340
4518.57
I
O-22,125
6000
2852.13
I
o-35,051
382 ‘S,
1000
2795.53
IJ
O-35,761
2802.70
II
O-35,669
3s1%s ot -
600 2000
4030.76
I
1400
4033.07
I
1200
2576.10
II
800
2593.73
II
800
2794.82
O-29,608 1994-34,436
I
- 3.9’ 3p’ ‘PO
3s’ =sot -
3p’ ‘P!* 3p’ 2Pit
o-24,802
3d6 49
a W,+
O-24,788
3d6 49
a BSZ+ - 3d6 4s’ 4~1 zaPi+
O-38,807
3d6 4s1
a ‘P,
- 3d6 4~1
z?Pi
O-38,543
3d6 4s’
a ?S3 - 3d5 4p1
z?Pg
O-35,770
3d5 49
a W,) - 3d5 4s’ 4~1 yBP&
- 3d6 4s’ 4p’ zeP;&
800
4034.49
I
o-24,779
3d6 49
a BSZt - 3d6 4s14pl zSPi+
650
2798.27
I
O-35,726
3d” 49
a WZt - 3d6 4s’ 4~’ y’P;+
O-38,366
3d6 4s’
a W3
O-35,690
3d4 49
a %SZt- 3d5 49149
y”P;* Z8Di)
II
- 3d= 4p’
550
2605.69
480
2801.06
I
420
4041.36
I
17,052-41,790
3ds 4s’
a BD,b - 3da 4~’
360
3806.72
I
17,052-43,314
3de 4s1
a eD,g - 3dS 4~1
340
3569.49
I
18,705-46,713
3d6 4s’ 4pVP&-3d6
947s43,370
II
240
2949.20
240
3823.51
I
1500
2536.52
I
17,282-43,429 39,412-62,350
ZeF;* 4s’ 4d’ e8Dst
%dS49
a W,
3de 4s’
a sD3t - 3da 4p1
/5dl”
o-39,412
69
z’P;
- 3d6 4~’
z5P; ZeF;&
‘AS,,- 5d’O 6s’ 6~’ “P;
400
4358.35
I
3200
3798.25
I
o-26,320
4d6 5s’ a’&
- 4d5 5~’
z’ Pi
2800
3864.11
I
O-25,872
4d5 5s’ a’s,
- 4dS 5~’
z’P;
4d5 5s’ a’S,
- 4d4 5s’ 5~’ yTP;
I
3132*59
1800 -
- 6p x lF”
-
-
-I 1157
jdl” 6s1 6p1 “Py - 5dz0 69 7s1 W,
1
o-31,913 -
WILLIAM F. MEGGERS,CHARLESH. CORLISSand BOURDONI?. SCRIBNER
Element
Cntensity
-MolybdenumL (c&d.)
220 220 220 220 220 200 180 170 170 170 160 160 160 160 160 160 150 140 140 140 140 140 d 140 320 280 220 d 220 180 180 150 150 140 140 d 140 -
iVavelength
7
-
Spectrum
(A) 3902.96 3170.35 3193.97 3158.16 5506.49 3447.12 3208.83 5533.05 4143.55 3384.62 4188.32 4411.57 l 4411.70 2775.40 2816.15 2848.23 2871.51 4069.88 3358.12 4381.64 3112.12 3581.89 3624.46 2890.99 2923.39 3344.75 3405.94 3694.94 3833.75 5570.45 2911.92 2930.50 3233.14 3289.02 3680.60 I3680.68 4232.59 4303.58 4061.09 3863.33 (3863.40 4012.25 4040.80 4156.08 3805.36 4109.46 3784.25 3851.66 I3851.74 4177.32
1800 1100 950 750 480 400 380 320 280 240 240 240 d
NeodymiumI
Table 2- 41:ontd.)
-
-
-1
I I I I I I I I I I I I I II II II II I I I I I I II II I I I I I II II I I I I I II II II II II II II II II II II II II
F
1Energy levels (cm-‘)
Term combination 5p’ z 7Pa” 4dd 58’ 5p’ y 7P; 4d4 5a1513’y ‘P; 4d4 5~~5~’ z ‘0; 4d= 5p1 .z “Pi 4d5 5p’ y “Pi 4d4 5s1 5~’ z ‘0; 5p’ z “Pi 4dS
O-25,614 o-31,533 o-31,300 O-31,655 10,768-28,924 12,346-41,348 o-31,155 10,768-28,837
4d5 5.9’ a ‘S, 4d6 58’ a ‘S, 4d6 58’ a ‘S, 4ds 59’ a ‘S, 4d5 59’ a “S, 4d4 592 a 6D, 4d5 58’ a ‘S, 4d6 5s’ a =A’, -
11,859-41,396
4d4 5# a 5D, - 4d5
16,784-39,445 16,785-39,445 13,461-49,481 13,4.61-48,960 12,900-47,999 12,417-47,232 16,784-41,348 11,454-41,224 16,784-39,600 o-32,123 16,785-44,695 16,74&44,330 12,034-46,614 12,417-46,614 11,143-41,032 16,641-43,698 12,346-38,423 10,768-28,715 12,900-47,232 12,034-46,148 16,784-47,705 11,454-41,850 16,784-43,946 16,785-43,946 16,748-40,367 O-23,230 3802-28,419 O-25,877 O-25,876 5086-30,002 1470-26,211 1470-25,524 2585-26,913
-
1470-27,425 513-24,445
1158
4d6
5p’ y “F;
5~1 z ha; 5p’ z “a; 4d4 5p’ z BP;) 5~’ z %F;+ 4d’ 4dA 513’~ “F;& 4d” 5p’ z BF;i 4d5 5p’y 6F; 4d6 5~’ y “F; 4d5 5~’ z 6H; 4da 5s’ 513’ z ‘0; 4dd 5s1 5p’ y 6H; 4dh 58’ 5p’ z “I; 4dp 5p’ z %F;+ 4d4 5~’ z SF;+ 4d6 5p’ y 5F;
4d6 5s’ a V_J,- 4d” 4d6 55’ a %,
- 4d5
4d’ 58l a BD,t4d’ 59’ asD4+4d4 5sl aeDSt4d” 59’ a 6D,t4d6 5s1 a %$ 4d4 5s=a CD2 4d6 59l a “B, 4d6 59’ a ‘S,
-
4d6 58’ a “B, 4d6 58’ a w, 4d’ 58’ a BD,&4d4 5~~a sD,t4d4 582a 6D1 -
4ds 5s1 a VJ, - 4d4 5s’ 5~’ y 6H; 4d4 5s8 a 5D, - 4d4 5s’ 5p’ z “0; 5d= 5s’ a %S, - 4d6 4d4 5s’ a eD,t4d4 5s’ a 6D,i4d6 581 a w,
5p’ z 6P; 5p’ z BF’& 4d4 5p’z BF;t 4d4 58’ 5~’ y “a; 4d6 5~’ y “F; 4d6 5p’ 2 aa; 4dS 5~’ z “a; 4d6 5p’ z “H; 4j”6p z %K;& 4j46p z 6K;t 4d4
-
4d4 5s= a 6D, -
4d6 5s’ a VJs 4d= 59’ a &f3, 4d5 581a 6a4 4jr6s a 813b 4jd6s a “I,& “i* 4j46s a BI,+ 4jf46sa 61s) - 4j46p y sH;+ 4j46s a “Is) - 4j’Bp z %K;& 4j46s a %I,& ‘%a 4j46s a BI,t - 4j46p .z 6K;t
4j46.s a BI,t
- 4j46p .z IK;+
4j468 a B16t 4j468 a BI,t
-
2% - 4j46p z “Kit
Relative
intensities for the axe spectra of seventy elements Table 2-
Element
Neodymium
(co?ztd.)
Intensity
Niobium
(‘Q
Spectrum
Energy levels (cm-‘)
Term combination
II
120
3900.2 1
120
3911.16
II
120
3941.51
II
120
3951.16
II
120
4247.38
II
O-23,537
4f “6s a eI,h
2% - 4fd6p z Vii
100
3838.98
II
O-26,041
4f46a a @Iat
-
3848.24
II
100 d
Nickel
Wavelength
co&L)
513-25,877 147626,772
4j46a a %Iat 4j46s a lI,b
17:t
-
26,041&
1470-27,449
4f46s a BIBt - 4jr6p y ‘Vi*
3802-28,857
4f468 a eI,k
- 4f’Sp y %I;+
4f ‘68 a ‘I,&
-
I 3848.31
II
100
3905.89
II
90
3848.52
II
85
3990.10
II
80
3775.50
II
80
3963.12
II
3802-29,027
80
4109.08
II
613-24,843
80
4451.57
II
3067-25,524
12”6t 4f *6s a 4I6h - 4f*6p .z eK;t
80
5249.59
II
7869-26,913
4f%d a BL8t - 4fh6p z eK;)
75
3889.93
II
75
3890.58
II
i5
3890.94
II
75
3901.84
II
75
4232.38
II
513-24,134
75
5130.60
II
10,517-30,002
75
5293.17
II
6637-25,524
29,027;*
4fp6s a @,Idt -
4f ’16s a “Id+
- 4f46p z @I;+
4f’5d a sLlot - 4f’Sp
z BK;t
4f45d a BL,t - 4f”Sp z BK;t
750
3414.76
I
205-29,481
3ds 4s1 a $Ds - 3d0 4~’
z “F;
750
3524.54
I
205-28,569
3d@ 4s’ a so,
z “P;
600
3515.05
I
88&29,321
600
3619.39
I
3410-31,031
- 3d0 4~’
3d=’ 4~~ a 3Dz - 3dg 4~’
z SF;
3d’ 4s’ a ‘D,
z ‘F;
- 3d0 4~’
500
3492.96
I
880-29,501
3d9 4& a 3Dz - 3d0 4p1
z “P;
460
3458.47
I
1713-30,619
3d0 4s’ a 3D, - 3dD 4pl
z JF;
460
3461.65
I
20529,084
460
3566.37
I
3410-31,442
3do 49’ a 3D, - 3d8 4814~1 .z “F;
440
3446.26
I
88%29,888
3d0 48’ a 3D, - 3ds 4p1
320
3002.49
I
205-33,501
3d@ 4~~ a 3D3 - 3ds 4s’ 4~1 y “0;
300
3012.00
I
341CL36,601
3dg 49’ a ID, - 3d8 4s= 4~’ y ‘0;
300
3380.57
I
3410-32,982
3ds 4s1 a ‘D,
- 3ds 4~’
z ‘Pi
300
3392.99
I
205-29,669
3d8 4s’ a 3Ds - 3d8 4~’
.z “0;
3d8 4s’ a 3D3 - 3de 4814~’
y 3”;
3ds 4s1 a ‘D,
- 3ds 4~’
280
3050.82
I
205-32,973
1700
4058.94
I
1050-25,680
1200
4079.73
I
695-25,200
5s a eD,t - 5p y %F;+
700
4100.92
I
392-24,770
5s a %D,+ - 5p y (Fit
600
3580.27
I
1050-28,973
5s a =Ddt - 5p y BP;t
550
4123.81
I
15624,397
53 a BD,t - 5p y 8F;+
460
4152.58
I
695-24,770
5s a ‘D,& - 5p y &F;+
5s a BD,) - 5p y eF;i
460
4163.66
I
154-24,165
5s a BD,t - 5p y “Pi+
420
4164.66
I
392-24,397
58 a 6D,t - 5p y BF;t
360
3791.21
I
1050-27,420
5s a =D,+ - 5p y (D&
360
4168.13
I
&23,985
340
3713.01
I
1050-27,975
280
3726.24
I
154-26,983
59 a %D1+ - 5p 2: =.D;+
280
3739.80
I
695-27,427
58 a BDst - 5p z aD;+
1159
5aaBDt
-5py81i;
59 a BD4+ - 5p y “D&
z ‘D; .z “0;
WILLIAM F. MEGQERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER Table 2--( contd.)
-
Element
Intensity
(A)
spectrum
(cm+)
Term combination 58 a BD,t - 5~ z BD;a
I
695-26,983
5s a BD,k - 5p z 8D;t
I
1050-25,200
280
3802.92
280
4139.71
240
3535.30
I I
(contd.)
Energy levels
392-26,713
I
280
Palladium
i
3798.12
Niobium
Osmium
Wavelength
O-28,278 I695-28,973 O-24,165
5s a BD4k - 5p y %Fit 5.9 a sDt
- 5p y sP;+
59 a BD,t - 5p y BP;b 5.3 a @Di - 5p y eF;t
240
4137.10
220
3094.18
200
3349.06
I
200
3358.42
I
180
3130.79
180
3575.85
I
180
3742.39
I
626,713
180
3787.06
I
154-26,552
170
2927.81
II
4146-38,291
5sa5F,
-5~250;
170
2950.88
II
4146-38,024
5saSF,
-5p
160
3697.85
150
2697.06
1225-38,291
4d4 a 6D, - 5p z “D;
150
3341.97
I
114%31,057
59 a 4F,t - 5p z 4G;i
150
3343.71
I
1587-31,485
59 a 4F,t-
150
3537.48
I
392-28,653
140
3163.40
140
3790.15
I
900
2909.06
I
O-34,365
5da 69 a 6D, - 5d” 6s’ 69
900
3058.66
I
O-32,685
5da 69 a 6D, - 5d@ 6s’ 6~1
IF;
800
3301.56
I
O-30,280
5d= 6~~ a 6D, - 5da 6.91 6pp’
‘F;
480
2838.63
I
5d’ 6s’ a sF, - 5d6 6s’ 69
“F;
460
3018.04
I
O-33,124
5da 692 a 5D, - 5da 6s’ 69
‘P;
440
4260.85
I
O-23,463
5d= 69 n “D, - 5d’ 6~16~’
z ‘0;
440
4420.47
I
5ds 69 a 6D, - 5da 6s’ 69
z ‘0;
380
2488.55
I
360
2637.13
I
360
3752.52
I
320
3156.25
I
320
3262.29
I
320
3267.94
I
300
3040.90
I
280
2714.64
I
260
2806.91
I
220
2498.41
I
8743-48,756
220
2844.40
I
5144-40,290
5d’ 6s1 a =F, - 5da 6s’ 69
“G;
220
4135.78
I
4159-28,332
5de 6.9 a sD, - 5d6 69 6~0’
‘Pi
200
2513.25
I
5144-44,921
5d’ 6s’ a 6F, - 5d’
“G;
200
2689.82
I
5144-42,310
5d’ 6s’ a 6F, - 5da 6s’ 6pl
“G;
200
2912.33
I
4159-38,486
5de 69 a 6D, - 5d5 69 6p’
“P;
200
2919.79
I
2740-36,980
5d= 69 a 5D, - 5da 6s’ 6pp’
“0;
200
3232.06
I
4159-35,090
5de 69 a 5D, - 5da 69 69
“P;
200
3782.20
I
4159-30,591
5da 69 a =D, - 5ds 6s’ 69
‘Pi
180
2644.11
I
5da 682 a 60, - 5d= 68’ 69
“F;
180
2658.60
I
514642,747
5d’ 6s’ a =P, - 5d’
“Da”
2600
3404.58
I
6564-35,928
4!46-36,455
II
II
2805-32,573
59 a “Fdht - 5p z 4G;+
695-28,653
392-27,427 II
II
- 52, z “G;
5s a eD,+ - 51, y eP;t 59 a BDt - 52, z eD;t 5s a BD,t - 52, z “D;
59 a BD,i-
2 =F;
5p z BD;h
5p z 4G&
59 a sDzg - 5p y %P;& 5s a 5F,
1050-27,427
58 a eD4t - 5p z %D;)
O-22,616 514645,316
- 5p z “G;
5d’ 6s’ a 6F, - 5d’
6~’
SF;
“G;
5da 692 a 6D, - 5de 681 6p’
“0;
2740-29,382
5d6 69 a sD, - 5da 6~16~1’
‘F;
5144-36,818
5d’ 6s’ a sF, - 5d6 6s’ 6231 “F;
4159-34,804
5ds 69 a 6D, - 5da 69 69
o-37,909
“F;
5da 69 a 6D, - 5d’ 6s1 69
‘Pi
5da 6sz a 6D, - 5d” 6s’ 6~1
“P;
o-36,826
5de 6.9 a 5D, - 5da 6s’ 6~’
“0;
o-35,616
5de 69 a 6D, - 5da 6s’ 6~9
“P;
o-30,591 2740-35,616
O-37,809
1160
5s a “Fd
3030-34,632
5144-40,362
-
- 5p z “G;
59 a 4F3+ - 5p z &G;+
3542-35,474
I
59 a SF,
2154-32,005
5d’ 6s’ a SF, -
48,756;
69
5s’ aD, - 5p’ sF”4
6p’
Relative
intensities for the arc spectra of seventy elements Table 2-(contd.)
Element
‘ntensity
Wavelength (A)
3pectrun 1
1Energy levels
Term combination
(cm-‘)
--
Palladium
2200
3609.55
I
7755-35,451
(c&d.)
2200
3634.70
I
656634,069
591 sD, - 5p’ =PO 3 5s’ SD, - 5p1 8Po
1400
3421.24
I
7755-36,976
5S sD, - 5~’ sD;
1300
3516.94
I
7755-36,181
59’ a02 - 5~’ “P;
1300
3553.08
I
11,722-39,858
5G ID, - 5~’ IF0
1200
3242.70
I
6564-37,394
5a1 aD, - 5~’ SD;
1100
3481.15
I
10,094-38,812
60
2535.65
I
L8,748-58,174 L8,722-57,877
Phosphorus Platinum
Potassium Preseodymium
59l sD, - 5p’ “F; 382 3p3 2Pi) - 382 3p2 4s’ 2Plt
38
2553.28
I
320
3064.71
I
632,620
5ds 6s1 a 9D, - 5d8 6~’
1;
280
2659.45
I
o-37,591
a sD, - 5d8 6p’
2702.40
I
7:
200
776-37,769
5de 6s’ 5d0 6s’ 5d8 69’ 5d8 6s’
a 3D, - 5ds 6~’
3;
a SD, -
6; 3;
392 3pa =P;* - 382 3pa 4-81=P,*
180
2733.96
I
776-37,342
180
2997.97
I
776-34,122
170
2929.79
I
160
2705.89
I
140
2830.30
I
130
2719.04
I
824-37,591
110
2628.03
I
776-38,816
1800
7664.91
I
o-13,043
3pa 481 “So* - 3pa 4plzP;t
900
7698.98
I
o-12,985
3pa 491 as@ - 3ps 4p’ “P&
460
4179.42
II
1649-25,569
4f86s a “I; - 4js6p z 6K,
340
4222.98
II
442-24,115
4f86s a “1; - 4js6p .z =K,,
340
4225.33
II
O-23,660
320
3908.43
II
2998%28,578
4fs6s a “I; - 4j36p z 81,
300
4062.82
II
3403-28,010
4fs6.s a “I; - 4fa6p z SK,
260 o
4100.75
II
4437-28,816
240
4143.14
II
2998-27,128
220
4189.52
II
2998-26,861
220 c
4206.74
II
4437-28,202
4fs6s a “I; - 4jS6p z =K, 4jS6a a “I; - 4fs6p z 6K, 4fs68 a “I; - 4fa6p z 51, 4fs6s a “I; - 4fs6p z 61,
200
4054.85
II
174626,398
4fs6s a “I; -
200
4056.54
II
5079-29,724 3403-28,509
4fs6, a “I; - 4f”Sp z SK, 4fs6a a “I; - 4f86p z =H,
a 3D, - 5ds 6~’
5d0 6s’ a sD, - 5d8 6~1
O-34,122
3;
5ds 682 a sP, - 5d@ 6pl
824-37,769
8; 5da 6s’ a $D, - 5d8 681 6~0’ 43”
O-35,322
5da 6.92a “1514- 5dD6~’ 5d0 6s’ a BD, -
7; 10;
4fa6s a “I; - 4fs6p z 61b
/
22,
190 c
3982.06
II
180 c
3877.23
II
170
4008.71
II
5079-30,018
150 c
4118.48
II
442-24,716
4fs6s a “I; - 4ja6p z 61,
150 c
4164.19
II
1649-25,657
4fs6s a “I; - 4fs6p z KI,
150
4408.84
II
140
3816.17
II
140 c
3964.83
II
442-25,657
140
3994.83
II
442-25,468
130 c
3918.86
II
2998-28,509
130 c
4141.26
II
4437-28,578
130
4305.76
II
442-23,660
I
4f s6s a “I; 4j36s a “I; 4f”Ss a “Is”4js6s a “I; -
120 0
3850.83
II
120
3989.72
II
442-25,500
I
4js6s a “I; -
120
4333.91
II
1649-24,716
1
110
4368.33
II
100
3830.72
II
100
3852.81
II
4fs6s a “I; - 4fs6p .z =H,
4f86s a “I; - 4f”Sp z SK,
O-22,675
O-22,886
116i
4f368 a “I; - 4fs6p z 51,
,
1
-
4fs6p z 6H, 4f86p z 6H, 4js6p z sI, 4fx6p z 616
16, 4y6s a “I; - 4f”Sp z 61, 4fS68 a “1; -
5,
WILLIAM
F. MEGQERS, CHARLES H. CORLISS and BO~DON
F. SCRIBNER
Table 2--_(CO&d.)
-
Element
Preseodymium (contd.) Rhenium
Rhodium
Rubidium Ruthenium
Intensity
100
Wavelength (A)
Energy levels
Spectrum
Term combination
(cm-‘)
O-25,468
II
3925.46
100 c
3965.26
II
1649-26,861
100
4297.76
II
o-23,261
100
4351.85
II
1744-24,716
5500 c
3460.46
I
o-28,890
4000 0
3464.73
I
O-28,854
1600 c
3451.88
I
800
3424.62
I
11,754-40,946
500
2999.60
I
11,754-45,083
O-28,962
400
3399.30
I
11,754-41,164
400
3725.76
I
23,632-50,464
360 c
4227.46
I
18,950-42,598
260
2887.68
I
11,754-46,374
260
4513.31
I
20,448-42,598 O-20,448
220 cw
4889.14
I
200
3338.18
I
20,448-50,396
180
4136.45
I
11,754-35,923
160
2428.58
I
O-41,164
160
2992.36
I
o-33,409
160
3067.40
I
160
3342.24
I
O-32,592 20,448-50,359 O-18,950
160 cw
5275.56
I
150 c
2508.99
I
150 c
3691.48
I
16,327-43,409
O-39,845
140
2965.76
I
11,754-45,463
130
5270.95
I
23,632-42,598
120
2715.47
I
11,754-48,570
110
3184.76
I
18,950-50,341
110
3185.57
I
18,95&50,333
11oc
3204.25
I
16,307-47,507
800
3692.36
I
750
3528.02
I
O-27,075 1530-29,866
700
3434.89
I
o-29,105
700
3657.99
I
1530-28,860
650
3700.91
I
1530-28,543
500
3462.04
I
2598-31,474
500
3502.52
I
500
3597.15
I
3310-31,102 5691-31,614
O-28,543
500
3856.52
I
480
3396.85
I
420
3799.31
I
5691-32,004
400
3470.66
I
347%32,277
400
3474.78
I
347%32,243
400
3583.10
I
153629,431
400
3596.19
I
2598-30,397
360
3323.09
I
1530-31,614
360
4374.80
I
5691-28,543
3000
7800.23
I
o-12,817
1500
7947.60
I
o-12,579
1000
3728.03
I
O-29,431
O-26,816
1162
4js6s a “I; - 4f”Sp .z &H, 4js6.s a “1; - 4js6p z 61,
4fs6s a “I; -
7, 4j868 a “1; - 4j*6p z sI,
5dS 682 a 5dS 6s= a 5dS 682 a 5da 681 a 5d’ 681 a 5d’ 68’ a
‘%Y,+ - 5d5 6s’ 6pl z (IP;) %Sz) - 5d” 69’ 6~’ .z BP;t ‘%,k - 5d5 6~~ 6p1 z (P;+
eD,t “Da* sD,+ 5d5 681 6pp’z 8P&5d6 6816~~2 BP;f 5de 6s’ a &D4+5d66816p’z “P;f 5d6 6.92a %‘,+ 5d66s’6p1z 8P;+W? 6s1 a 0D 5d6 688 a “Se4tf1 5dS &seQ W,+ 5d5 682 a %S,+ 5dh6816~‘~ “P&5d6 682 a Vz) 5d6 6.~2a %Yzt 5de 681 a eD,) 5de 6s’ a 6D,t 5d5 6.3’6~‘~ 8P;b5dB681 a %D,+ 5db 68’ 6~0’z “P& 5d”68’6p1zBPi+5d6 682 a 4a,+58 a dFpt 5s a 4F,t58 a aF,+5.9 a 4F,t58 a 4Fs)3t59 a 4Fzi 6s a 4F,t 4d0 e aDzt 58 a =F,&5s a “Fa+ 59 a =F,+ 5s a “F h8 ,.,;;I;;
5d6 6s’ 6p1 y “D;+ 5ds 6~’ Y ‘I”;* 41,164&
5d5 6s’ 6d1 e 5d6 6e1 7.+ e 5d” 6~’ Y 5d6 69’ 79’ e
8D,) %5’,+ ‘Fit “S,
5d= 6~~ 6pp’ .z “Pit 5ds 6s’ 6d’ e sD,t 5d” 6$6pl .z BD;) 41,164&
5d’ 68= 6~’ z (D;+ 5d4 6s8 6~’ z eD;+ 5d5 6s’ 6d’ e 8D,) 5d6 6.~~6~’ z BP;) 5d6 6s1 6p’ z ‘JP& 43,409;* 45,463&
5dS 6s’ 7.+ e “Sst 48,57Oi*
5d6 6g1 6d’ e 8Dzt 5d6 68’ 6d’ e 8Dlt 47,507;* 5p z ‘1D;t 51, z 4F;+ 5p z 4aib 5p z 4D;t 5p z da;i 51, z &Fit 5p z 4a;t 5p z 4a;t 5p .z $a& 5p z 4F;t 5p .z BF;t :;$
bs a hFsb - 5p z “F;+ 58 a 4F,t - 5p z lD;+ 58 a “Fa*- 5p z =a& 58 a =F,&- 51, z Wit 4pa 58’ as,& - 4pa 5p1 aP;) 4p3 58’ w,* - ape 5p’ aP;+ 5s1 a 5F, - 5~’ z “F;
Relative
intensities for the arc spectra of seventy elements Table 2+contd.)
Element
Ruthenium (contd.)
S~mcwimn
-i-
ntensity
Yavelength (A)
lpectrum
-
Energy levels
Term combination
(cm-‘)
58’ a 6F, - 59 z “G;
O-28,572
850
3498.94
I
800
3726.93
I
1191-28,015
59’ a SF4 - 5~1 .z6F0
700
3593.02
I
271%30,537
58’ a 6F, - 59 z ‘Gi
700
3798.90
I
1191-27,507
58l a SF, - 5~’ z “0;
700
3799.35
I
700
4199.90
I
6545-30,348
58l a “Fd - 59 z “F;
650
3436.74
I
1191-30,280
58’ a 6Fa - 59 z “G;
650
3589.22
I
3105-30,959
58l a SF1 - 59 z “G;
650
3596.18
I
2092-29,891
58’ a bps - 5$+ z “(3;
650
3730.43
I
2092-28,891
58’ a EF, -- 59 z “F;
600
3661.35
I
1191-28,495
58l a 6F, - 5~’ z “G;
550
3790.51
I
2092-28,466
58’ a 6F3 - 5~’ z “D;
550
4080.60
I
6545-31,044
500
3428.31
I
500
4212.06
I
6545-30,280
58l a aF4 - 59 z 5Go
500
4554.51
I
6545-28,495
58l a a-F4 - 59 z aGi
360
3786.06
I
271%29,118
58’ a 5F, - 5~’ z “D;
340
4297.71
I
8084-31,346
58’ a SF, - 5~’ z “G;
320
3417.35
I
2092-31,346
58’ a 5F3 - 5~’ z “G;
320
3742.28
I
2713-29,427
58l a SF, - 59 z “F;
300
3634.93
I
2092-29,595
58’ a &F, - 59 z ‘F;
300
3925.92
I
@25,465
58’ a SF, - 59 z ‘D;
260
3745.59
I
12,207-38,898
58’ a 3G, - 59 z =H;
220
4372.21
I
7483-30,348
58’ a =D, - 5p’ z “F;
350
3568.27
II
3910-31,926
4fe68 a aF,a -
&*
350
3592.60
II
305%30,880
4f “6s a sF6b -
8G;*
280
3609.49
II
2238-29,935
4fe68 a sFai -
%Zt
280
3634.29
II
1489-28,997
4fa6s a “F3+ -
280
3885.29
II
3910-29,641
4fa68 a sFBt - 4fa6p
8G& 115;)
3739.12
II
220
58l a 6F, - 59 z “0;
O-26,313
58’ a spa - 5p’y
61””
58’ a 6F, - 59 z ?Ff
O-29,161
327-27,063
4fs68 a 8F,t -
et
4jfa6.sa 8F,t - 4f’Sp
56&
4fa68-a SF,t -
Gt
I 3739.20
II
200
3854.21
II
200
4424.34
II
3910-26,506
180
3661.36
II
327-27,631
180
3670.84
II
838-28,073
4f’68 a 8F2t -
8Git
170
3922.40
II
3053-28,540
160
3731.26
II
838-27,631
150
4280.79
II
391%27,263
4f66s a 8FB+ - 4fa6p
75;)
150
4467.34
II
5318-27,696
4ja6s a (Fbt - 4j”Sp
140
3306.39
II
3910-34,145
4j’6s
a 8FBt -
84:) 162;+
140
3604.28
II
3910-31,646
4fB68 a 8Fsk -
128;)
140
3621.23
II
838-28,445
4fe68 a 8F2) -
3760.69
II
1489-28,072
G,
140
4ja68 a “Fst -
130
3928.28
II
1489-26,938
BGt
4fe68 a “Fs$,
130
4118.55
II
5318-29,591
4fa6s a SFhgt-
130 120
4318.94
II
2238-25,385
4fs68 a “Fdh, - 4j”6p
3728.47
II
5318-32,131
4js68 a sF,+ -
38;t 143;)
120
3735.98
II
2238-28,997
4js68 a sF,t -
120
3793.97
II
838-27,188
“G,
4j’6s
120
3797.73
II
73:a
1163
4fs68 a 8F6+ - 4f”Sp
‘&a
4js6a a 8F,t -
%t
a 8F2t - 4js6p
66& 114;*
WILLIAM F. MENDERS, CHARLES
Table 2--, (cone?.)
-
Element
Samarium (cm&.)
Scandium
Wavelength
Intensity
H. CORLISS and BOURDON F. SCRIBNER
(A)
Energy
spectrum
levels
Tarm combination
(cm-l)
_-
120
3826.20
II
438630,514
4fa6s a “Fdhh-
127;&
120
3843.50
II
3499-29,510
4f6s
113;*
120
3896.98
II
327-25,980
120
4329.02
II
1489-24,583
120
4434.32
II
305325,598
110
3788.12
II
2003-28,394
110
4296.74
110
4390.86
II
1489-24,257
110
4433.88
II
3499-26,046
I
110
4674.60
II
1489922,875
3613.84
II
178-27,841
2100
3911.81
1800
3630.75
1800
3907.49
I
1800
4020.40
I
1800
4023.69
I
168-25,725
I
6%27,602
II
4fa6s a 8Flb - 4fB6p
47;t
4ffa6s a SF,) - 4fa6p
242Ut
4fe6s a SF66 - 4jfB6p
43;)
4f 668 a BF,+ 4fe6s2 a ?Ps 4f O68 a BP,) 4fe68 a %Fzt4fs68 a 8F,t 3d’ 4S1 a sD, 3d’ 48’ a =D,& 3d’ 48’ a sD, 3d’ 48= a 2D 3d’ 4s2 a 2D;; z 3d’ 48’ a 2D 3d’ 4S1a ID;’ 3dl 48’ a $D, 3dl48’ a 8D, 3d’ 4S1 a ‘D, 3d’ 48’ a sD, 3d’ 4S1a sD, 3dl48’ a aD, 3dl 48’ a aD, 3d’ 48’ a =D, -
4021-27,288
2500
a “Fa+ -
o-25,585 O-24,866 168-25,014
9%
4ffa68 6p z ‘G; 4f”Sp 2% 4fe6p 4Qi, 4f”Sp ‘%a 3d’ 4~’ z sF; 3d’ 48’ 4~9~ =F& 3d’ 49 z 3F; 3d’ 48’ 4p’y 2F;t 3d’ 48’ 4p’y 2D;t 3d’ 48’ 4~‘?12;~~+ 3d14$9 3d’ 4~’ z aDi 3d’ 4~’ z ““2” 3dl4p’ z lF; 3d’ 4~’ z “D; 3d’ 49 z “0; 3d1 49 z “P; 3d’ 49 z “D; 3d’ 4~’ z “F;
1400
4246.83
II
2541-26,081
1200
3572.53
II
17%28,161
1200
3642.79
II
900
3353.73
II
2541-32,350
900
3576.35
II
68-28,021
700
3580.94
II
600
3372.15
II
600
3558.55
II
68-28,161
600
3645.31
II
178-27,602
40
2039.85
I
1989-50,997
34
1960.26
I
o-50,997
Silicon
360
2516.11
I
223-39,955
38’ 3p2 ‘P, - 38’ 39 48’ “P;
260
2881.60
I
6299-40,992
Silver
5500
3280.68
I
o-30,473
2800
3382.89
I
O-29,552
38’ 39 ID, - 3S2 3fI’ 48’ ‘P; 4d’o 59’ “A’,,,- 4d’Q 5p1 =P;)& 4d’O 58’ 2S - 4d’O 5p’ =P;;t
Sodium
2000
5889.95
I
O-16,973
1000
5895.92
I
O-16,956
2pa 38’ ‘So* - 2pe 3p’ “Pi+
4600
4077.71
II
O-24,517
4pa 58’ “So, - 4pa 5p
3200
4215.52
II
o-23,715
4$,’ 58’ ‘So) - 4p’ 5p
650
4607.33
I
Selenium
Strontium
Tantalum
300
2653.27
I
300
2714.67
I
280
2647.47
I
240
3012.54
220
2656.61
I
220
2850.98
I
o-27,444
O-27,918 178-29,824
2933.55
I
2661.34
I
180
2685.17
180
2963.32
170
2850.49
160
2608.63
140
2400.63
-
2@ 38’ ‘Si: - 2@ 39 ‘p;+
5dS 682a &Fzb -
O-36,826 937,761
37,761;*
2010-35,746
“Pi 5dS 6s2 a 4F1+ 37,630& 5da 680 a 4F 5d8 6s 6p y “G& 5dS 6s1 b 8F4’ 3 1 49,647; 5da 6s2 a ‘IF,+ 34,07q* 5d8 6s2 a “F4+ 43,185;) 5d2 6s2 a “PO 41,355; 5da 6.+ a 4F,t 35,746;+
2010-40,333
5dS 6sB a 4F,t -
6187-47,830
5dS 6s’ a 6F,
5621-40,686 14,581-49,647 O-34,078 5621-43,185 4125-41,355
II
39,688& 5dS 68 6p y &G;&
5331-38,516 O-37,630
I
2P10)
=f% 4pa 58= ‘S,, - 4pa OS159 ‘P;
2010-39,688
II 180
4p4 ‘P, - 4p3 58’ “S;
O-21,698
II
200
4p4 “PI - 4p8 5S1 ‘S;
II I II
1164
-
-
40,333&
26G;
Relative
intensities for the &PCspectra, of seventy elements Table 2-
tntansity 140 140 140 140 140 130 120d
Tellurium
Terbium
120 120 120 100 100 100 90 90 90 90 90 90 70 55 55 600 460 440 400 380 340 340 320 w 280 240 240 220 200 200 d 200 190 190 180 170 170 170 160 160 160 150 140 140
vVavelength (A) 2635.58 2710.13 2748.78 2940.22 3311.16 3626.62 2526.35 i 2526.46 %X9*43 2698*30 2758.31 2636.90 2749.83 3607.41 2675.90 2775.88 2891.84 2965.13 2965.54 3318.84 2385.76 2142.75 2383.25 3509*17 3702.85 3568.51 3324.40 3676.35 3561.74 3848.76 3874.19 4326.47 3650.40 3703.92 3899.20 3658.88 3976.84 4318.85 3776.49 4033.06 4005.57 3568.98 3600.44 3981~89 3293.07 3765.14 4338.45 3901.35 3523.66 3830.29
;pt%tFWl II I I I I I I I I I I I I I II I I II I I I I I
:ontd.) Energy levels (cm-l) 1031-38,962 3964-40,851 3964-40,333 o-34,001 5621-35,813 3964-31,530 2010-41,581 3964-43,533 o-39,060 2010-39,060 2010-38,253 5621-43,533 9705-46,061 20f0-29,723 4416-41,775 o-36,014 %OlO-36,580 O-33,716 2010-35,721 2010-32,132 4751-46,653 O-46,653 4707-46.653
II II II II II II II II I 11 II II II II I II II II II II II II I I I II. II
1165
Term combination
5da 6.9 a &F, 5&=6.98a 4_F,h5cP 6s2 a “Pa, 5cP 6s= a 4P,g SdS 692 a “F4$ 5da 6a= a- &Fsk5ds W a 4F,h 5@ 6.~~a “Fst 5dS 6s2 a 4Flh 5da 6sa a “F%, 5da 6.P a &F,&5da 68%a “Fat 5d3 6s= a YS,+ 5d8 6s2 a “Fzh MS 6.G a “F4 5da 6sz a 3F,h 5d8 68= a pF,b 5d8 69’ a 6F, 5dS 6.sea *F,& 5@ tis2 a 4F,+ _ 5~~ $P1 5p4 SP, 5p4 8P, -
=a; 40,851& 40,333& 34,00$& 35,813& 31,530;) lid&6;~ y "F;* 43,533;* 39,060& 39,060;+ 38,253;+ 43,533;) 46,061& 29,723& 41,775; 5dS 6s 6p z W;+ 5dS6s 6p y ‘Fit 33,715; 35,721& 32,132& 5pS 6s’ “S; 533%6s’ 3s; 5p* 6s’ “S;
WILLIAM F. MEQ~ERS, CHARLES H. CORLISSand BOTJRDON F. SCRIBNER
Element
VVrtvelength
I ntensity _-
-Terbium (c&d.)
Thorium
48 d 48 48 d -
(A)
-
Table 2- -(ClOdd.) I Cnergylevels (cm-‘)
S pectmm
.-
Term combination
.II II II II
3219.95 3218.93 3540.24 3579.20 4061.59 3285.04 3711.74 3755.24 4144.46 3519.24 5350.46 3775.72 3529.43 2767.87 4019.13 2837.30 3469.92 3392.03 3741.19 4381.86 4391.11 3180.20 4116.71 2832.31 3351.23 3402.70 3434.00 3609.44 3256.28 3262.67 3291.74 4069.20 3325.12 3839.74 4108.42 3188.23 3435.98 3721.82 3675.57 4085.04 4086.52 4094.75 4282.04 2870.40 3078.82 3511.56 13511.67 3539.59 3617.02 3617.12
130 120 120 120 120 110 100 d 100 100 2000 1800 1200 cw 500 440 d 300 110 95 90 90 90 80 75 75 70 70 70 70 70 65 65 65 65 60 60 60 55 55 55 50 60 50 50 50 48 48
Thallium
-
-
7
I II II II II I I I I I
4147-32,957 1522-30,994 1522-28,244 6700-29,515 449&27,257 1522-32,957 6168-30,453 4147-39,443 1522-31,353
id27s’ a 4P3+ 8% ia? 79’ a 4F,t73& id=7$ a 4Fz+67i if’ 6d17s’ a 4Hi+ lll,t if’ 78% a BF;h- 5f’ 7s’ 7~’ YJs+ kP 79= a &‘p 6% if’ 6d’79’ a ,H’:r 3 1124) lOS& ida7~~ a pF,+id=7.~~ a 4F,t6d’ 7s’ 7~’ IFit
1860-30,972 4113-31,811
ida 78l
7793-26,478
II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II -
O-26,478 7793-36,118 O-36,118 o-24,874
6s* 6~’ 2P;) 688 6~’ BP;+‘6sa 6~’ 2P;t 6a2 6p1 eP;t 6s2 6~’ =P& id’ 782 a eD,t-
779%36,200
id’ 7$
if’
6a=6d’ 2D,b 6sa 7s1 =Se& 6aa78l %Sob 6s2 6d’ fDlt 6$ 6d1 eD,t 57t
a &Flt a aD,t -
=P;t 77;t
6168-36,809 6214-36,584 6691-31,259 4147-34,212 6700-32,736 4490-28,824 1860-33,216 o-29,095 1860-28,721 1522-28,721 10,189-34,662 O-24,464 O-24,41& 616%29,51E 1860-36,68E 4113-36,584 4490-32,96(
6da 7s' 6dl7s2
a IFIt - 6da 7~’ a =Dat- 6d’ 79 7~’ 4F;i
5f’
a aF;+-
O-28,244 15,305-42,944
6d’ 7s=
a BDlt -
6da
a aH,t-
-
1166
6d’ 7a1a 4H& -
Id2 7s’
a hF4)- 6da 7~’ 5f’ 6d’ 7s’ a 4Fi+ 9d= 7~~ a 4F,k5f 16d’ 7.~~ a IH$ 5f’ 788 a =F;+ - 5f’ 78l 79 t3de7s1 a 4F,t 6d’ 7.sa a =Dla 6d2 7~~ a 4F,t 6dB7.~~ a 4F 5f’ 6d’ 7~~a 4H” 6d’ 7aa a, SD;; : 6d’ 78a a =D 5f~6d’7s1a4H$
79
1433t w;, 1142t 6% l%t 4F2t 6% 6% 4D10t 4D;t l%t
55;t 5%
lll4t %t
1201t 67”2t 6d’ 7~~7~’ 4D;t
Relative
intensities for the arc spectra of seventy Table 2-
Navelength
Spectrum
elements
COMd.)
Energy levels
Term combination
Element
Intensity
Thorium
46
2747.16
II
(c&d.)
46
3752.57
II
9238-35,879
a 2Dlt - 6da 7p’ 4FYt if’ 6dl781 a =G& - 5f 1 7a1 7~’ BGst
44
2565.60
II
1860-40,826
Sd=79’
a pF1+ - 6da 7~’
44
3287.79
II
1522-31,929
Lid2781
a ‘F,*
44
3292.52
II
6700-37,063
44
3334.61
II
621636,194
if’ 6dl 7s’a4Ho 4*1454) !ida79’ a ‘F4* - 6d’ 7~~ 7p1 IF;+
44
3337.87
II
1860-31,811
3dB7a1
44
3358.60
II
1860-31,626
ki? 7s’
44
4178.06
II
7332-31,259
jf16d17s’a~F”
1142t
44
4208.89
II
6700-30,453
if’6d’7s1a~H~~I
42
2692.42
II
1124) ‘D;
42
3238.12
II
42
3719.44
42
3803.07
42
3929.67
II
800
3462.20
II
Thulium
Tin
Titanium
(A)
(cm-l) O-36,390
id’ 7a=
a dFlt -
77i a 4Flt - 6d’ 7s1 7p1 “Di
o-37,130
W 792
I
o-26,878
Sda7+’
a 8F2 -
2687;
I
C&26,287
W ‘isa
2628;
&25,440
jd’ 7sa
a 8F 2a =D,+-
a =D,+ - 6da 7~’
6%
&25,980
4f1*6a1 “F;
O-24,418
4f’=‘6sp aF;t-
I
O-24,349
I
O-26,889
4f IS682 =F”a* - 24,349,) 4f136se BF;t- 26,889,)
O-23,873
4f1s6s8 BF;+-
II
750
3848.02
750
4094.19
700
3131.26
700
4105.84
650
3717.92
650
4187.62
I
600
3425.08
I
- 25,980, 24,418,+
II
23,873,)
II
237-29,425
4fls6a1 “Pi
- 29,425,
600
3795.76
II
237-26,575
4f186tz1“F;
- 26,575,
500
3761.33
II
o-26,579
4f1s6s1 “F;
- 26,579,
500
3883.13
O-25,745
4f=6sp
460
3441.50
460
3453.67
440
4203.73
I
O-23,782
4f=6sa
eF;)-
23.782,
420
3744.07
I
O-26 701
4flr6s= IF;*-
26,701,
400
3700.26
II
400
3761.91
II
400
3887.35
I
aF;h - 25,745,)
II 237-29,183
II
237-27,254
I
4fls681 “F;
- 29,183,
4f186s’ “F;
- 27,254,
O-26,575
4f=6a1 “F;
- 26,575,
&25,717
4f1L68e aF;t - 25,717
O-27,00?
4f=‘6s1 “Pi
II
380
3362.62
320
3701.36
1400
2839.99
I
1000
2863.33
I
o-34,914
850
3034.12
I
1692-34,641
700
2706.51
I
1692-38,629
700
3009.14
I
1000
3349.41
650
3998.64
600
‘Df
- 6d’ 7s1 7~’ =D;*
II
3428-38,629
1692-34,914 II
I
3361.21
II
I3361.26
I
600
3653.50
I
5$0
3234.52
II
- 27,009,
5.~25p= SP, - 5s2 5~’ 681 BP0 : 5sa 5p* SP, - 5s2 5~’ 6s’ 8P 1 5se 5pa BP, - 5se 5~’ 681 sP” % 5sa 5p2 8P, - 58= 5~’ 6s’ 8P 2 5a8 5~2 3P, - 5aa 5~’ 6~~ “P;
393-30,241
48 a 4F4t - 4p z 4G;t
387-25,388
48' a lF,
22529,968
49 a 4FSt-
170-29,912
4se a ‘F,
- 4p w “0;
387-27,750
4sa a ‘F,
- 4p y “0;
393-31,301
49 a “F4+ - 4p z 4F&
- 4p y “F; 4p z 4G&
550
3642.68
I
170-27,615
550
4981.73
I
6843-26,911
4s
500
4305.92
I
684%30,060
48 asF,
-4~~60;
500
4533.24
I
684%28,896
48 asF,
-4p
1167
4sa a =Fs - 4p y “G; a6F,
-4~
y6G; y6Fg
WILLIAM F. MEGGERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER Table 2-(confd.) Element
Tit~ium (co&d.)
Tungsten
Uranium
Intensity
Wavelength (8)
480
3341.88
Spectrum
Energy
I
I
480
3372.80
480
3383.76
480
3989.76
440
3236.57
440
3752.86
I
levels
Term combinetion
(cm-‘) o-29,915
48’ a 8F,
- 4p z “a;
II
4629-34,543
48 a 2F,t - 4~ z %;+
II
94-29,734
48 a &Fzt - 4p z “a;,
II
o-29,544
I II
48 a &Flg - 42, z hQ;t
170-25,227
482 a aF,
225-31,114
48 a 4F,i-
- 42, y “F;
387-27,026
4sa a sF4
-4~
48’ a 8F,
-4~
Q
z “F& z “F;
440
3958.21
I
387-25,644
440
4991.07
I
6743-26,773
400
3635.46
I
o-27,499
48= a SF,
- 4p y “a;
400
3981.76
I
O-25,107
4S2 a SF,
- 4p y “F;
380
3948.67
I
O-25,318
48= a “F2 - 4p y “0;
380
3956.34
I
17%25,439
4e2 a 3F,
- 4~ y “0;
380
4999.51
I
6661-26,657
48 a 5F,
-4p
360
3349.04
4898-34,748
48 a =FBt-
II
48 a “Fd -4~
ysD; y “(I$,
y “a;
41, z =a&
360
3371.45
I
387-30,039
48= a sF4
950
4008.75
I
2951-27,890
5d6 6s’ a ‘5,
- 4p z “Q;
550
4074.36
I
2951-27,488
5d5 6s’ a Y?, - 5d5
6p1 z ‘P;
450
4294.61
I
2951-26,230
5d= 6a1 a ‘S,
6p1 z ?P;
- 5dS - 5d5
6p1 z ‘Pi
320
2724.35
I
2951-39,646
5d5 6s’ a iS’s, -
39,646;
300
2944.40
I
2951-36,904
5d5 6s’ a ?S, -
36,904;
300
2946.98
I
2951-36,874
5d6 6s’ a YJ, -
36,874;
280
2551.35
I
260
2681.41
I
260
2718.90
240
3617.52
240 200 200
5da 6s= a =D, -
39,183;
2951-40,234
5d= 6s’a
40,234;
I
2951-39,720
5d6 6s’ a %,
-
I
2951-30,587
5d6 6s’ a ‘S,
- 5d4 6s’ 6~1 z SP;
4302.11
I
2951-26,189
5d5 681 a ?Y, - 5d4 6s’ 6~1 z ?D;
2656.54
I
2951-40,583
5d6 6s’ a %“s, -
2831.38
I
2951-38,259
200
3867.98
I
2951-28,797
5dS 681 a ‘S, 5d5 6s’ a ‘S,
190
2896.45
I
2951-37,466
5d5 681 a ‘S’S, -
37,466;
160
2435.96
I
4830-45,869
5d4 69= a 5D, -
45,869;
160
2481.44
I
6219-46,506
5d4 692 a 6D4 -
46,506;
160
3817.48
I
2951-29,139
5d6 69’ a ‘S8 - 5d4 6s’ 6~’ z “F;
O-39,183
YY, -
39,720;
40,583;
38,259; - 5d4 68’ 6~’ z ‘0;
150
4269.39
I
2951-26,367
5d= 6s’ a ‘S,
-
26,367;
140
2466.85
I
3326-43,851
5d4 6s= a 5D, -
43,851;
130
3215.56
I
6219-37,309
5dP 6s= a 6D, -
37,309;
120
2474.15
I
6219-46,625
5d4 6$ a =D, -
46,625;
120
2547.14
I
3326-42,573
5d4 682 a sD, -
42,573;
120
3768.45
I
1670-28,199
5dP 6s2 a 6D, - 5d4 6s’ 6~’ z “P;
120
3780.77
I
2951-29,393
5d= 681 a ‘5,
120
3835.05
I
3326-29,393
5d4 6s= a =D, - 5d4 6s’ 6~’ z “P;
110
2459.30
I
3326-43,975
5dd 68= a sDz -
110
4102.70
I
6219-30,587
5d4 69%a &D, - 5d’ 681 6p’ z “P;
360
3859.58
II
180
3854.66
II
160
3670.07
160
3890.36
160 150
- 5d4 6s’ 6~’ z “P;
289-26,191
5fs6d’
78l
L&
II
915-28,154
- 281,*
289-25,986
L&
- 260,g
4090.14
II
1749-26,191
5f86d1 7s1 5fa6d1 79’ 5fa6d178’
K&
II
Lit
- 261,&
3831.46
II
1168
- 261,t
43,975;
Relative intensities for the arc spectra of seventy elements Table 2-(co&d.) Element Uranium (co7&&)
Intensity
3
(A)
cSpectrum
_
140 140
3782.84 3812~00
140
3865-92
130 120 110 100 95
3584.88 4050.04 3871.04 4171.59 3566.60
I
3839.62 3943.82 3985.80 3701.52 3881.46 4042-76 4241.67 3748.68 3489.37 3514.61 4062.55 4153.97 4116*10 2941.92 3659.16 3826.51 2889.63 3746.41 4341.69 3550.82 3561.80 3638.20 3854.22 3874.04 3878.09 3892.68 3899.78 4543.63 4379.24
I I
90 90 85 80 75 75 75 70 65 65 65 65 60 55 55 56 50 50 50
Vanadium
Wavelength
48 48 48 46 46 46 46 46 46 950 700
3183.98
700 550 500 500 420 400 400 380
4111~78 4384.72 3093.11 3185.40 3183.41 3102.30 3703.58 4389.97
360
4408.51
340
3110.71
Energy levels (em-l) -.
Term combination
289-26,717 O-26,226 2295-28,154
II I II
O-27,887 O-24,684 o-25,826 1749+25,714 620-28,650
II I II I
3801-29,838 O-25,349 5260&30,342 5527-32,535 4585-30,342 620-25,349 4585-28,154
II II II I II II I I II I II II I II II II II II I I
I I II I I II I I II I I I 1I
_!_II 1169
79 4I& - 247,+
!p 6d’ 7%2JL;
- 258,
ifs 6dl 7%’ Lia_ - 257s+ ifa 6dl 7%=“Ki - 287, if” 6dl7%~ SL; jlf”6dl 7se $Lg 5fa6dl 7s’ LG) T.ff” 6d’ 791 Kig jf 36d2 792 i::” jf8
6dl
if8 6cP
- 299, - 253, - 303,t - 32Sa4 I liz:”
6M& - 281,h
jfs 6dl 79 SLg - 287,
O-28,650 o-28,444 O-24,608 O-24,067 O-24,288 5527-39,508 620-27,941 289-26,415 289-34,886 5527-32,211 289-23,315 O-28,154
ifa 6d* 7%”SLG 78%41& jP jp 6d’ 78%“Lg jfB 7%=4I;a jf” 6d’ 781 K& jja 6d’ 7sa *K” ifa 6# 7%’ Lii 5fs6d’ 791 Lgi
-
5fS
- 281,g
3801-31,279 O-25,938
Sf*6d’ 7%=5fi; - 312, 5f36d’ 7%25L;; - 259,
5260-30,942 2295-27,930 91622,917 242s25,254 32%31,722 o-31,398 2425-26,738 2311-25,112 3163-35,483 583-31,937 137-31,541 2968-35,193 2425-29,418 222&24,993 2153-24,830 2112-24,789 2809-34,947
II II II
ifs
792 “Iit
284, 2465$ 2407 243,g 395? 278, 2648+ 349,~
WILLIAM
F. MENDERS, CHARLES H. CORLISS and BOURBON F. SCRIBNER Table 2
Element
Vanadium (c&d.)
Ytterbium
Yttrium
Zinc
Intensity
Wavelengtk (A)
340
4115.18
spectrum
contd.) Energy
levels
Term combination
(cm-‘)
____ I
2311-26,605
49’ a 6D,t - 4p1 y sD;t
320
2908.82
II
316%37,531
481 a “Ffj - 4p1 z “0;
320
2924.02
II
3163-37,352
4s’ a SF,
320
3066.38
I
55%33,155
4Sa a 4F,t
320
3855.84
I
55%26,480
4s2 a ‘F,+
280
3840.75
I
323-26,353
4e= a 4F,t
280
4395.23
I
215%24,899
4s’ a BD,i
280
4408.20
I
2220-24,899
49’ a 6D,t
260
3118.38
2687-34,746
4&a
240
4128.07
I
240
4132.02
I
220
2924.64
220
4099.80
220 220
II
SF, 4s’ a 6D,g 49’ 4*1 aa 6D $t 49’ a 6D;1 4s’ a 6Dlg 4s’ a 6D,i -
2220-26,438 231 l-26,506 2968-37,151
II I
2220-26,605
4105.17
I
2153-26,506
4407.64
I
231 l-24,993
- 4pl - 4p’ - 4~’ - 4~’ - 4p1 - 4~’ -4~’ - 4p’
.z “Pi
4~’
y =D&
4p’ y “F;*
II
O-27,062
4ff” 6a1
%S,,* - 6p1
II
o-30,392
4jll 6a1
%S& - 6p1
1900
3987.98
500
2891.38
340
3464.36
280
2970.56
II
180
2750.48
II
21,418-57,765
4ff’” 682
140
2653.74
II
21,418-59,090
4ff’” 682
140
5556.48
130
3031.11
75
7699.49
70
3454.07
II
70
3476.31
II
70
3478.84
II
65
2464.49
1500
3710.30
II
1300
3600.73
II
1200
3774.33
II
1045%27,532
1200
4374.94
II
3296-26,147
1000
3611.05
II
104628,730
1000
3633.12
II
1000
4102.38
I
530-24,900
950
4077.38
I
o-24,519
900
4128.31
I
530-24,747
850
3788.70
II
840-27,227
800
3242.28
II
1450-32,284
800
3601.92
II
84%28,595
II
3296-27,227
800
4177.54
750
4142.85
600
3327.89
4flk682 4flk6s’
%SOt -
34,57@
O-28,857
4ff1*6~2
‘S,
28,857;
O-33,654
4f’a 6s’
%‘fJ z$+ 3) -
57,765;&
=F;+ -
59,090,*
o-17,992
IAS,, - 69’ 6p1 ‘P;
4f14 6s2
19,710-32,695
%,+
-
58,961,+
‘So
-
40,564;
1450-28,394
4d’ 5S1 a 8D,
1450-29,214
4d’ 591 a SDS 4d’ 59’ a sD2 4d’ 581 a ‘D, 4d’ 59’ a 8D2
-
v’”
O-24,131 3296-33,337 530-28,140
I
550
3620.94
500
3216.69
II
1045-32,124
II
1045-29,214
500
3549.01
1000
2138.56
I
O-46,745
140
3345.02
I
%2,890-62,777
1170
6~~
582 a ‘So
O-27,517
II
2 - 6s’ 7~~ 8S 1 26,759;& 55,702,+
30,224;+
O-40,564
I
- 6~~ 6~’ “P;
,5pl:3
4ff1*681
30,22&58,961
I
33,654;*
32,982;+
;;:: ;;:
26,759-55,702 O-28,758
-
‘SO
O-32,982
II
2Gt 2p;t
o-34,575
O-25,068
I
z “~2; y @D;*
y eD;t
3289.37
I
y BP;t
4~’
3694.19
I
y “Fit
4~’
3200
II
y 1D;t y 4D;b
4P’ y @Dit
2600
I
z “Pi w 4F;t
-
4d’ 5s= a =D
ii;
5i;
g -
4d’ 5s1 a sD: 4d’ 581 a aD, 4d’ 58’ a ‘D, 4d’ 5s2 a 2D 4d’ 581 a 1Dz
28,758;)
4d1 5p’
4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’
z IF:
5p’
z llD;
5p’
z 8F;
5p1
z ID;
5p1
z aD;
5~’
z lP1”
5s’ 5p’y
BF;t eF;t 5s1 5p’ y BD;t 5~’ .z “F; 5s’ 5p’y
5~’ 5p’
Y “Pi z “0;
5p’
z =F;
I ;;:
z?
;=f$++
4d’ 5s2 a =D 4d’ 58’ a ,D:+ I,“;:
$?’
“v’z[
4d’ 581 a 8D2 - 4d’ 5p’
z aD3 ‘So - 3d10 4G 4~’ ‘PI 3d’o 4~~ 3d’Q 4s’ 4331=P” - 3d’o 4S1 4d’ sD3 2
Relative
-
-
T-
I Navelength
1ntensity
Element
intensities for the arc spectra of seventy elements
Elpectrum
(A) -I-
Table 2-(c&d.)
Zinc
140
(d.) Zirconium
900
3391.98
II
750
3438.23
II
650
3496.21
550
3601.19
340
3556.60
II
340
3572.47
II
-
Term combination
(cm-‘)
3IdlO4s’ 4p’ “P; - 3d’O 4s1 5s’ a~,
12,890-53,672
I
4810.53
-
Energy levels
4da 5~~ a ‘Fdht - 4da
5pi z aa;,
763-29,840
4dZ 59’ a ‘Fsst - 4dB
5pi z da;*
315-28,909
4da 5s’ a ‘F,& - 4#
5~1 z
132330,796
II I
124L29,002
4s
375831,866
4dJ
58%a “Fd - 4da 5s’ 5p’ z b aFaa-
4da
aa;,
aa;
5p’ z 4F;i
4da 5a1 a 4F 4d2 58a o ,j$:z:
5$ z:
570-28,750
4ds 5s= a SF,
- 4da 58’ 5~’ z “a;
76328,909
4da 5s’ a ‘Psi
- 4da
4d= 5sa a “F,
- 4de 58’ 5~’ z “F;
4d= 5s= a SF,
- 4d= 5s1 5~’ z “F;
O-27,984 O-28,404
; :;t
320
3519.60
I
280
3547.68
I
280
3551.95
280
3835.96
I
260
3863.87
I
570-26,444
260
3890.32
I
1241-26,938
4d= 58s a 3F4 - 4d3 5s’ 5p’ z “F;
200
2678.63
II
1323-38,644
4d= 5s’ a “Fpf - 4d’ 5a1 5~’ y &Fit
200
3279.26
II
76331,249
4dz 5s’ a aFFst- 4da
200
3481.15
II
6468-35,186
4da 58’ a 2Fzt - 4d2
5~1 2
200
3576.85
II
330631,249
4d3
5p1 z ‘F&
200
4687.80
5889-27,215
4d3 5s’ a 5F6
- 4d3
5pi Y
190
3479.39
II
5753-34,485
4d= 5s’ a zF,+ - 4dS
5pi 2
180
3613.10
II
315-27,984
4d= 5s’ a ‘IF’,* - 4d2
5~1 2
180
3614.77
II
2895-30,551
180
3623.86
I
180 -
3891.38
180
4012.70
II
O-26,062
I
4d3
b 4F,t-
4da
b 4Fzi - 4dB
5pi 2 4a&
5p’ z 4F;*
=a;&
“a; =a& aa;,
5p’ z OF;+
570-28,157
4d= 5s= a SF,
- 4dz 59’ 5~’ w “F;
I
1241-26,931
4da 5s= a 3F,
- 4de 5si 5~’
I
5541-30,087
4d” 5~~ a “Fd
- 4d3
.z ‘0;
5~’ z “D;
180
4081.22
I
5889-30,385
4d3 5s’ a SF5 -
180
4227.76
I
5889-29,535
4d3 5a1 a SF5 - 4d3
5~’ y “FE
180
4239.31
I
5541-29,123
4d3 58i a 6F,
5~’ y “F;
-L
4d3
- 4dJ
5~’ z “D;
-
-
Here are listed the relative intensities, the wavelength in air, the spectrum (I or II), the values of the energy levels, and the term combinations. Symbols used in the intensity column have the following significance: c, complex, d, unresolved double line, h, hazy, w, wide. In this table (as well as in the complete tables) all energy levels are given in vacuum wavenumber units (cm-l), for which the name Kayser has been proposed [34]. For all spectral lines explained as transitions between energy levels, this serves as a mutual check since the wavelengths in normal air, when converted to vacuum wavenumbers by a conversion table [35], will coincide within one unit with the difference between two energy levels. Furthermore, these numbers serve as an index to the term designation in Atomic Energy Levels [36] where electron configurations, quantum numbers, and magnetic splitting factors are given. A comparison of the excitation energies of any two classified lines may be made [34] W. F. ME~QERS, J. Opt. Sot. Am. 41,1064 (1951). [35] C. D. COLEBXAN,W. R. BOZMAN and W. F. MENDERS, Table of ~avenumbers. NBS. Monograph 3, 2 volumes (1960). U.S. Government Printing Office, Washington, D.C. [36] C. E. MOORE, Atomic Energy Levels. NBS Circular 467, vol. 1 (1949); vol. 2 (1952); vol. 3 (1958). U.S. Government Printing Office, Washington, D.C.
1171
WILLIAM F. MEOGERS,CHARLESH. CORLISSand BOURDONF. SCRIBNER
by directly comparing their larger energy levels in Kaysers, and adding the ionization potentials in the case of lines from II and III spectra. This direct and simple procedure avoids the labor of converting all energy levels from Kaysers to electronvolts by means of the relation: 1 eV = 8067 K. Electron configurations and spectral term designations of quantum numbers are of unusual interest in the production of the strongest lines, or r&s ultimes. According to well-known rules governing the relative intensities of lines in multiplets, the strongest line arises from transitions between levels having the largest J- and L-values when AJ = AL = 1. A rule relating to raies ultimes was expressed [37] a quarter of a century ago as follows: “A raie ultime in any spectrum originates with a simple interchange of a single electron between s and p states, usually preferring configurations in which only one electron occurs in such states”. The above simple rules for the strongest lines appear to be valid for all spectra. In this paper, the lists of strong lines arranged in order of decreasing intensity for each element are given in Table 2. The complete lists are given in NBS Monograph 32 [33]. Acknowledgements-This investigation has extended over a period of 28 years, and represents a very considerable amount of intermittent labor contributed mainly by a relatively small number of individuals. The program was initiated by MEGGERS and SCRIBNER, the latter prepared diluted-element mixtures, electrodes and spectrograms, while the former identified wavelengths, supplied many line classifications, and estimated relative intensities of some 50,000 lines. In the production of the mixtures and the copper electrodes and spectrograms, valuable assistance was given by HARRIET E. BROWN. CORLISS contributed the copper calibration, the conversion of apparent intensities to radiant powers, and prepared the final tables. _ [37] W. F. MEGGERSand B. F. SCRIBNER,J. ResearchNatl.
1172
Bur. Stw.dnrds
13, 657 (1934).