Relative intensities for the arc spectra of seventy elements

Relative intensities for the arc spectra of seventy elements

Spectrochimioa Aota,1061,vol.17,pp.113’7to 1172. Pergamon Press Ltd. Printed inNorthern Ireland Relative intensities for the arc spectra of seventy e...

3MB Sizes 2 Downloads 105 Views

Spectrochimioa Aota,1061,vol.17,pp.113’7to 1172. Pergamon Press Ltd. Printed inNorthern Ireland

Relative intensities for the arc spectra of seventy elements WILLIAM F. MECGERS, CHARLES H. CORLISS and I~OURDON F. NationalBureauof Standards,Washington,D.C. (Received 30 ~~~~~

SCRIBNER

1961)

Abstract-The relative intensities, or radiant powers, of 39,000 spectral lines with wavelengths between 2000 and 9000 A have been determined on a uniform energy scale for seventy chemical elements. This was done by mixing 0.1 at. per cent of each element in powderedcopper, pressing the powder mixture to form solid electrodes which were burned in a IO-A, 220-V d.c. arc, and photographing the spectra with a stigmatic concave grating while a step-sector was rotating in front of the slit. The sectoredspectrogramsfacilitated the estimation of inanities of all element lines relative to copper lines which were then calibrated on an energy scale provided by standardized lamps, and all estimated line intensities were finally adjusted to fit this calibration. Comparisonswith other intensity measurementsin individual spectra indicate that the spectralline intensit,iesmay have errors of 20 per cent, but they first of all provide uniform quantitative values for the seventy chemical elements commonly determined by spectrochemists. The complete data are being publishedas a National Bureau of StandardsMonograph. About 1100 of the lines are presented in this paper as a list of the strong lin s of each element. Energy levels and term combinations are given for each classiiledline.

1.

Introduction

SPECTROCHEMISTRY was born a century ago when KIRCHHOFF and BUNSEN [I] definitely demonstrated that chemical elements were uniquely identified by spectral radiations, or lines as seen in a spectroscope provided with a slit. This led immediately to the identification of many chemical elements in the sun and to the discovery of several new elements, but no quantitative chemical analyses were made until much later. In 1874, LOCKYER [2] stated that “while the qualitative spectrum analysis depends upon the positions of the lines, the quantitative analysis depends not upon their position but upon their length, brightness, thickness and number as compared with the number visible in the spectrum of

[l] C.K~~ca~omand [2] J. N. LOCKYER,

1

R. BUNSEN, Ann. Physik 186, 161 (1860). Phil. Trans. Roy. Sm. London 164, 479 (1874).

1137

WILLIAM F. MENDERS,CHARLES H. CORLISSand BOVRDONF. SCRIBNER

assigning uniform quantitative intensity values to spectral radiations. The great bulk of spectral observations have been made photographically because photographic emulsions provide detailed, permanent records of spectra not only in the visible but also in the invisible ultraviolet and infrared regions. But even if the light source is reproducible and standardized, it is not easy to evaluate the spectral efficiencies of spectrographs and photographic emulsions. The usual procedure has been to make subjective visual estimates of relative intensities of spectral lines on an arbitrary scale based on the relative blackness and/or width of spectral line images appearing on a developed photographic plate. Consequently, in thousands of individual papers and in numerous comprehensive compilations of spectral data we find only qualitative data on intensities which may have some meaning for adjacent lines in a given spectrum but none at all when comparing widely spaced lines, or lines emitted by the neutral atom or ion of the same element or by different chemical elements. In the beginning, most intensity data were reported on an arbitrary scale of ten steps, weak lines being assigned an intensity of 1, and the strongest line intensity 10. Even as late as 1945 extensive new spectral tables prepared by GATTERER and JUNKES [3] displayed estimated intensities on this limited 1 to 10 scale. Since 1910 some spectroscopists have arbitrarily expanded this arbitrarily compressed scale. For example, in the very extensive spectral tables published by EXNER and HASCHEK [4] the estimated intensities range from 1 to 1000. In wavelength tables compiled by TWYMAN and SMITH [5] the maximum intensity is 20, in the compilation of KAYSER and RITSCHL [S] estimated intensities rise to 4000, and in the well-known M.I.T. Wavelength Tables [7] they soar to 9000. The most recent compilation of Tables of Spectrum Lines by ZA~DEL et al. [8] quotes data from the M.I.T. Tables and more modern sources but adds nothing new on spectral line intensities. In or about the year 1925, microdensitometers were developed for the purpose of quantitative measurement of relative intensities among related lines in multiplets to test the sum rules derived from the quantum theory of spectral structure, but no general applications were made. Since then thousands of spectrochemists have applied microdensitometers to quantitative chemical analyses by calibrating intensity ratios of analysis- and internal-standard lines, but such measurements have contributed nothing to the basic data on spectral line intensities. Likewise, with few exceptions, the modern substitution of electronic photodetectors for photographic emulsions has added nothing to our knowledge of true line intensities over long ranges of different spectra of many chemical elements. How may one hope to obtain, with a reasonable amount of labor, quantitative r31 A. GATTERERand J. JUNIXES,Spektren der Seltenen Erden. Vatican City (1945). Druck. Vols. l-3. Franz [41 F. EXNER and E. HASCHEK, Die Spektren der Elemente bei nodena Deuticke, Leipzig und Vienna (1911). [61 F. TWYBUN and D. M. SWTH, Wavelength Tables for Spectrum Analysis (2nd Ed.) Adam Hilger, London (1931). WI H. KAYSER and R. RITSCEL, Tab&e der Hauptlinien der Liniempektren aller EZemente (2nd Ed.) Julius Springer, Berlin (1939). PI G. R. HARRISON, Masaachusetta Institute of Techndogy Wavelength Tables. Wiley, New York (1939). A. N. ZA~DEL, V. K. PROKOF'EV and S. M. RAISKII, TabZes of Spectmm Line-s. VEB Verlag Technik, [81 Berlin (1955). 1138

Relative intensities for the arc spectra of seventy elements

intensity data on the same scale for thousands of spectral lines representing practically all of the metallic elements? A hint was given in 1874 by LOCKYER [2] who observed that “the lines of any constituent of a mechanical mixture disa,ppeared from the spectrum as its percentage was reduced.” Acting on this suggestion, HARTLEY [9], in 1884, began to study the spark spectra of metals in solutions with concentrations of 1 per cent, O-1 per cent, 0.01 per cent, and O*OOl per cent, and proposed a method of quantitative spectrochemical analysis based on the lines that could be detected at each dilution. Similar studies were later made by POLLOK and LEONARD [lo], by DE GRAMONT [ 1l] and by LOWE [12] all showing that with progressive dilution of an element its spectral lines weakened and vanished until only the most sensitive line remained to reveal its presence. In all these works the principle of quantitative spectrochemistry appeared to rest on the number of lines detectable rather than on their individual intensities. Casual observation must have shown lines of equal strength in spectra of solutions differing a thousand-fold in concentration but no one mentioned it. It is difficult to understand why these early studies of residual spectra in quantitatively prepared mixtures or solutions did not suggest a method for obtaining physical intensities, but it is a fact that before our work had. begun no one had attempted to express spectral line intensities as directly proportional to the number of radiating atoms The present monograph reports such an or concentration of the element. attempt [13]. Our method of deriving line intensities from arc spectra of elements diluted in copper was recently adopted by ALLEN [14, 151 to obtain oscillator strengths of some radiations from 3200 to 5400 A representing nine elements. At various times since 1932 we have photographed the arc spectra of seventy chemical elements diluted in silver or in copper, and determined the line intensities of the diluted elements relative to selected lines of the matrix. An energy calibration of the latter finally led to physical intensities of 39,000 spectral lines representing seventy elements, all on the same energy scale. These experiments and results are based on the following propositions, regarded as fundamental for the quantitative description of residual spectra of diluted elements excited in ordinary d.c. arcs. 1. The limiting detectability of any line is defined as the atomic concentration ensures positive detection of the line

that

This limit is determined mainly by unavoidable background on a fully exposed spectrogram. The spectrum of an arc burning in air consists of discrete lines due to atoms, and of more or less extensive band systems from transient compounds (usually monoxides), all superposed on a continuous background arising from thermal radiation of incandescent oxides, from transitions in the continuum, and [Q] W. N. HARTLEY, Phil. Trans. Roy. Sot. London 175,49, 325(1884). [lo] J. POLLOK and A. H. LEONARD, Proc. Roy. Sot. Dublin (2) 11, 217,229,257,270,331(1908). [ll] A. DE GRAMONT,Compt. rend: 147,307(A90.8). [12] EQti)~, Atlas der Zetzten Lznzen der wochtzgsten Elemente. T. STEINKOPFF,Dresden und Leipzig [13] W. F.*MEQOERS,C. H. CORLISSand B. F. SCRIBNER,Science 121,624 (1955). [14] C. W. ALLEN and A. S. ASAAD, Monthly Notices Roy. A&on. Sot. 117, 36 (1957). [15] C. W. ALLEN, Monthly Noticea Roy. A&on. Sot. 117, 622 (1957).

1139

possibly from scattered light. This background sets a limit to the exposure for faint lines that may be given by any actual photograph. If this were not true, the exposure could be increased indefinitely to compensate for unlimited reduction in concentration, and detectability would always be infinite. Faint lines are not recorded by underexposure, and they cannot be recognized on a very dense backIn order to guarantee positive recognition and ground produced by overexposure. unambiguous chemical identification a spectral line should be sufficiently well defined to permit accurate wavelength measurement. Experience shows that the minimum photographic density that meets this requirement is of the order of 0.05 above that of the background. 2. The limiting detectability of any element in an arc depends on the matrix in which the element is found There is no doubt that in the conventional arc, relative volatilities of the chemical elements as well as relative ionization potentials affect the relative strengths of their mixed spectra. In general, the elements with high vapor pressure and/or low ionization potential will be favored in spectral excitation, but elements with either high or low volatility may be underestimated if not uniformly present during the exposure, and easily ionized elements may appear less sensitive because In this connection it must be noted that large of more complete ionization. differences in apparent detectability are possible if concentrations are expressed in relative weights instead of numbers of atoms. Thus, 0.01 at. per cent of boron in uranium is equal to < 0.0005 wt. per cent since the uranium atom is twenty-two times heavier than the boron atom. 3. The primary

qf

substance (matrix) has no important effect on the relative intensities lines due to a secondary substance

It is conceded that the relative intensities of analogous spectra of different elements, and of spectra of successive stages of ionization of the same element, may vary with the composition of the samples and/or with the type, or portion, of light source from which radiation is taken, but there is no evidence that the relative intensities of lines in any particular spectrum of a given element are thereby It may be expected, therefore, that the relative intensities of greatly changed. lines observed in one metallic arc will remain valid in any other metallic arc, provided the arcs are at approximately the same excitation temperature. The absolute intensities and the relative strengths of neutral atom and ion spectra may be For example, silicon may be more sensitive in altered by excitation conditions. carbon than in calcium, and it is well known that when easily ionized alkalies are present in sufficient quantity to influence discharge conditions they reduce the intensity of other spectra, especially those characteristic of ionized atoms. 4. The order of lines arranged according to decreasing detectability in progressive dilution is the same as the order of decreasing intensity in the spectrum of the pure element

In other words, emission line intensities in residual arc spectra absorption) are proportional to the number of radiating atoms, 1140

(barring selfand relative

Relative intensities for the arc spectra of seventy elements

intensities may therefore be derived from concentrations at which different lines show the same intensity or limiting detectability. Arc spectra usually exhibit a variety of lines, sharp or narrow ones, diffuse or wide ones (including band heads), strong ones accompanied by photographic spreading of developed images, others wide on account of hyperfine structure, and some partially reversed. All of these types, except the last, appear in residual arc spectra at low concentrations, and it may be questioned if it is possible to place them on a uniform intensity scale. It may be assumed that if total blackening integrated over the width of the line when recorded at a moderate level of density be considered in estimating relative intensities, these will be on a uniform scale within the limits of precision in making such estimates on lines of different types. 5. The order of spectral lines arranged according to decreasing intensity is the same when the intensities are decreased by rotating stepped sectors as when the intensity reduction is produced by successive dilution of the element in a matrix This was recognized by Lijw~ [ 121 who published an atlas of spark spectra of forty-four elements diluted from 1 per cent to 0.001 per cent and later obtained practically the same results by observing spectra with stepped exposure times [ 161. In our experiments the labor of preparing samples of seventy elements in four or more dilutions was greatly reduced by adopting only one dilution (O-1 at. per cent) and then producing further reductions of spectral-line intensities by means of rotating step sectors. 6. Limiting intensities

detectability

(as de$ned in (1)) may be adopted as a physical

scale of

Such intensities may be fixed as follows: In a fully exposed spectrogram of copper containing, 0.1 at. per cent of another element any faint but unmistakable line at a given wavelength is assigned unit intensity. Any similar line appearing with unit intensity in a spectrogram when the energy, or concentration, is reduced to one-fifth is said to be five times as strong. Thus, all lines can be assigned relative intensities proportional to their limiting detectabilities by determining either the energy reduction or the concentration reduction at which the stronger lines finally show unit intensity. The atomic per cent concentration at which any line will show unit intensity then results from dividing O-1 by its required energy For example, a line of intensity 10 should show plainly or concentration reduction. at 0.01 at. per cent, while one of intensity 1000 should be easily seen at 0.0001 at. to be conper cent (one in a million). Assuming the ratio concentration/intensity stant, the maximum intensity at 100 per cent is easily obtained. Thus, a line with intensity 1000 at 0.1 at. per cent will have an intensity value of 1000 x lOO/O*l = l,OOO,OOOat 100 per cent. This indicates a much larger range of spectral intensities than mentioned heretofore, but it is not unrealistic. II.

Experiments

Whereas all earlier experiments on residual spectra of diluted elements involved spark excitation of solutions or fused salts, we decided to employ d.c. arc excitation [I61 F. LOWE, Atlas der Analysenlinien (1936).

der wichtigsten Elemente.

1141

T. STEINKOPFF, Dresden und Leipzig

WILLUM F. MECJGERS, CHARLESH. CORLISSand BOURDON F. SCRIBNER

for the following reasons. It has been shown [ 171 that the first ionization potentials of some seventy metallic elements range from 4 to 11 V and the strongest spectral lines of most of these elements have wavelengths between 2000 and 9000 A, which is the spectral region covered by the present investigations. Furthermore, it is known [18] that the second ionization potential of these elements ranges from 10 to 75 V and that the strongest lines of singly ionized atoms generally have shorter wavelengths than those of neutral atoms, nearly half of them being shorter than 2000 A so that they can be detected only in vacuum spectrographs. Because low-voltage arcs have less ionizing action than high-voltage sparks more atoms will remain in the neutral state and, in general, therefore, arc spectra will exhibit stronger lines and higher sensitivity than spark spectra. The use of arc spectra in these experiments threatened to introduce errors on account of self-absorption of radiated energy in the arc aura or envelope which consists largely of unexcited neutral vapor atoms. In all spectra of arcs between metal electrodes this is the cause of conspicuous self-reversal of all lines involving the ground state of the atom. However, self-absorption is a function of vapor density surrounding the arc and if this is reduced to 0.001, self-reversal is usually with negligible (see Fig. 1). This is our reason for making these experiments individual elements diluted in copper in the ratio 1 to 1000. When ground-state lines of extraordinary intensity were suspected of some self-absorption, intensity ratios were checked or corrected by examining our earlier spectrograms made with this element diluted to 0.0002 at. per cent in silver. 1. Dilution in silver Our preliminary experiments, begun in 1932, can be described briefly as follows: solutions of known strength of the elements under investigation were prepared and proper amounts added to pure silver oxide, which was then reduced to metal by heating to make samples containing eight definite atomic ratios extending from 0.05 to 0*0002 at. per cent of the element added to silver, with a factor of about 2 between seven successive dilutions. In order to save time and labor, each series of silver samples incorporated from three to six chemical elements, in addition to zinc which supplied internal standard lines. These samples were burned on pure copper electrodes of a 220-V d.c. arc with 10 A. An image of the arc was projected onto the slit of a stigmatic concave grating spectrograph by means of a fused-quartz lens. Each series of excited samples was exposed on successive segments of the slit, and was photographed in four spectral regions ranging from 2000 to 9000 A. A comparator was employed to measure wavelengths (relative to silver and copper lines) for the identification of the added elements, and relative intensities of all lines belonging to residual spectra of diluted substances were estimated and related to concentration. These results were not satisfactory for the following reasons: the use of silver as a matrix and of copper for arc electrodes precluded the possibility of getting any data for these two elements or for any lines masked by silver and copper lines. Also the inclusion of three or more [17] W. F. MEOQERS,J. Opt. Sot. Am. 81,39 (1941). [la] W. F. MEGQERS,J. Opt. Sot. Am. al,605 (1941).

1142

Fig. 1. Arc spectra of pure manganese (center), and of copper containing 0.1 per cent Mn (above and below), all through a rotating step sector. Spectral range from 3960 to 4105 8.

1142

spectrum of copper through Fig. 2. Energy calibration of copper lines. (Above)-Arc rotating step-sector. Spectral range from 3400 to 3680 A. (Below)-Standard-lamp spectrum at 50 A intervals through same step.sector.

Relative intensities for the arc spectra of seventy elements

elements in each series of samples resulted in the blending of many lines, especially in complex spectra, so that it was not possible to assign proper intensities in these cases. Furthermore, the method of sample preparation and observing appeared to be unsuited to very volatile elements, or compounds, because no residual spectra could be recorded for them even at concentrations of O-1 at. per cent. 2. Dilution

in copper

In 1941 these preliminary experiments were abandoned in favor of a modified procedure which led to satisfactory results. The chief changes in procedure came with the availability and use of pure metal powders, and a hydraulic press to form Instead of reducing spectral line intensities to solid electrodes of mixed powders. the limit of detectability by successive dilutions of the element in different samples only one dilution (0.1 at. per cent) was prepared and line intensities were reduced by observing through rotating step sectors. The successful procedure may be outAn element under investigation was mixed with pure copper lined as follows: powder in the atomic ratio of one to one thousand. These mixtures were pressed into solid electrodes, and burned in a 220-V, 10-A d.c. arc which was imaged entirely on the collimator of a stigmatic grating spectrograph by a lens at the slit. A rotating step sector in front of the slit reduced the spectral intensities to one-fifth in each of four steps (see Fig. 1). Spectral intensities of the element added to copper were estimated relative to those of selected copper lines, and this was done separately for each of seventy elements throughout the range of spectrum from 2000 to 9000 A. The true intensities of the selected copper lines above 3300 A that served as internal intensity standards were then measured, by photographic photometry, relative to the known energy distribution in the spectrum of an incandescent tungsten-strip filament at a certain temperature (see Fig. 2). Between 2000 and 3300 A a calibrated hydrogen lamp was used to determine the relative intensities of copper lines. Finally the apparent intensities of 39,000 spectral lines of seventy elements, relative to copper, were adjusted to fit the copper calibrations. These experiments thus provide empirically determined lists of the principal lines of all elements actually detectable under average conditions in arc spectra when their concentrations are 0.1 at. per cent, and the individual lines bear intensity numbers approximately proportional to their detectability or their relative energy. That these intensity numbers really represent physical intensities was proved by comparing them with earlier, accurately measured relative intensities of lines in multiplets and with published relative f-values or oscillator strengths of lines in different multiplets extending over a wide range of spectrum (see below). In order to provide intensity data for spectral lines that are partially or wholly obscured by copper lines, a sectored spectrogram of the pure element excited with self-electrodes, or of a metallic compound or salt excited in a carbon arc, was photographed on every plate so that any lines blended with copper could be interpolated with proper estimates of their relative intensities. Comparison of relative intensities in copper and in carbon matrices also supplied new information on successive spectra, I and II, especially of rare-earth spectra. Similar data for copper itself were obtained by using pressed electrodes of pure silver powder to 1143

WILLIAM

F.MEQQERS,CHARLESH.CORLISS

end BOUEDON

F.SCRIBNER

which 0.1 at. per cent of copper was added, plus the same quantities of gold and zinc to serve as internal standards. Further details of experimental materials, apparatus, and procedure are given in the following paragraphs. 3. Arc electrodes For this investigation materials of high purity were acquired, preferably in the form of metal powders, although some elements, not available in pure powdered metal form, were obtained as oxides. In every case the proper amount was added to powdered copper to produce a mixture in which there was one atom of the added These mixtures were homogenized by element to each 1000 atoms of copper. mechanical shaking and then compressed into solid cylindrical pellets in an hydraulic press at 5000 lb/in2. The pellets were 6.4 mm in diameter, 6.4 mm in length, and weighed about I.5 g. Two of a kind were mounted in massive watercooled clamps in an arc stand and a direct current of 10 A passed between them from a 220-V line with ballast resistance. A 3 mm gap was maintained between the electrodes during the exposures, which varied in duration from 1 set to 5 min, depending on spectrographic efficiency and sensitivity of photographic plates in different spectral regions. The arc was imaged on the collimator of a concave-grating spectrograph by means of a quartz lens immediately in front of the slit to obtain uniform illumination along its length and collect light from all parts of the arc. Rotating ste$ sectors were operated immediately in front of the collecting lens. A 5 to 1 ratio was used for all line-intensity spectrograms, and a 2 to 1 ratio was used for the energy calibration of copper lines. 4. Spectrograph The dispersing apparatus was a 15-cm grating with 600 lines per mm and 6.7 m radius of curvature in a Wadsworth-type mounting to give stigmatic images on photographic plates. All observations were made in the first-order spectrum in which the reciprocal dispersion was 5 A per mm, and the practical resolving power about 50,000 with a slit width of 30 p. 5. Photographic

plates

In order to determine, relative to copper, the intensities of all lines of seventy chemical elements diluted lOOO-fold it was necessary to make many hundreds of spectrograms, and to employ four varieties of photographic plates to cover the wavelength range 2006-9000 A. The spectral range 2000-3000 A was recorded on Eastman 103-O ultraviolet sensitive plates, 2600-4900 A on Eastman 33 plates, 4600-6900 A on Eastman II-F plates, and 6600-9000 A on Eastman I-N plates. Each plate was developed for 4 min in a rocking tray containing D-19 developer at 70°F. The exposure times in each spectral range were chosen by trial to obtain a suitable continuous background in the first step of the rotating step sector. Because of variations in spectral sensitivity of photographic materials and in spectrographic efficiency, two exposures of the contaminated-copper arcs were usually 1144

Relative intensities for the arc spectra of seventy elements

made on each plate, with exposure durations in the ratio 2 to 1, and the sectored comparison spectrum of the contaminant was placed between them. Measurements were usually confined to the exposures which showed the optimum background in the first step of the rotating sector. 6. Energy calibration of copper lines In order to determine the factors necessary to convert the estimates of apparent intensities of the lines of seventy elements relative to copper into true relative intensities, it was necessary to determine the true relative intensities of selected reference lines in the spectrum of copper. The energy calibration of copper lines was performed as follows. A General Electric tungsten ribbon filament lamp (type F339-85, 30 A., 6 V) equipped with a fused quartz window served as the reference standard of spectral energy distribution in the wavelength range 3300-9000 A. The brightness temperature of the filament at 6500 A was measured at two values of filament current by Henry Shenker in the National Bureau of Standards Pyrometry Laboratory. The true temperature T of the filament was determined from the brightness temperature by means of the following equation obtained from Wien’s law 1 -=_ T

1 TI3

+klnA 2

where C, = 1.438 cm-deg. and A is the product of the emissivity of tungsten (0.427) and the transmittance of the quartz window (0.916) at 6500 8. Table 1. Temperature of tungsten lamp

38.00 40.00

2492 2567

2787 2881

The energy distribution from black bodies operated at these temperatures was taken from tables prepared by STAIR and SMITH [19] in the 2300-3500 A range, by SKOGLAND [20] in the 3200-7600 A range and by LOWAN and BLANCH [21] in the 7200-10,000 A range. The data from these tables were adjusted to a common basis and multiplied by the emissivity of tungsten and the transmittance of fused quartz at intervals increasing from 50 A in the ultraviolet to 200 A in the infrared. The emissivity of tungsten was taken from a weighted mean curve of published values to which reference is made by STAIR and SMITH [19]. The transmittance of fused quartz was calculated from data on its index of refraction published by R. STAIRand W. 0. SMITH, J. Research Nat. BUT. Stand. 30, 449 (1943). [20] J. F. SPOOLAND, Tables of Spectral Energy Distribution and Luminosity for me in [19]

!kwwmi88ions and Relative Brightnesses from Spectrophotometric No. 86 (1929). [21] A. N. LOWAN and G. BLANCH, J. Opt. Sot. Am. 30, 70 (1940).

1145

Data.

Computing Light Misc. Publ. Bur. Stand.,

WILLIAM

F. MEGGERS, CHARLES H. CORLISS and BO~DONF. SCRIBNER

SOSMAN [22]. The final product, representing the relative energy distribution of the radiation emerging from the quartz window of the lamp, was plotted on a convenient scale to permit interpolation to any wavelength in the range 2300-10,000 A. Spectrograms of the pure copper arc and of the tungsten lamp were made under conditions identical with those described above except that for these a 2 to 1 step sector with eight steps was used for closer calibration (Fig. 2). Microphotometer measurements of transmittance were made in each step of the standard-lamp spectrum at intervals of 50 A and a family of calibration curves of transmittance vs. log exposure (hereafter referred to as log J) was drawn up for each plate. The exposure of the standard-lamp J, is read from the calibration curve for each wavelength at a transmittance of 40 per cent (where the curve is linear) and then divided by the calculated intensity I, at that wavelength. I, is the calculated intensity emitted by the standard-lamp. A standardization curve of log J,/I, vs. A was plotted for each plate. Calibration curves of transmittance vs. log J were then drawn from measurements on each of the selected copper lines and the log exposure (log Jcu) of each copper line at a transmittance of 40 per cent was read from each curve. Log J,/I, was then subtracted from the average of numerous values of log J,, to give log I,, which is the log of the true relative intensity of the copper line. The values of log Icu from plates in adjacent wavelength regions were adjusted to a common basis by means of lines common to both plates. The plot of log J,/Is vs. A is the relative response function of the plate-spectrograph combination and as such was itself useful in the infrared where the copper spectrum lacks lines suitable for use as an intensity reference. From two to twenty-four determinations were made on each of 202 lines of Cu I between 2800 and 8100 A with an average of about nine determinations per line. The values of Icu obtained by this procedure below 3300 A were systematically low because of the rapid decline in intensity from the standard lamp in the direction of short wavelengths. The intensity from the lamp at 5500 A is about forty times the intensity at 3300 A and about 300 times the intensity at 2800 A. This fact introduces possible errors from scattered light of the intense visible radiation which tends to raise J, and consequently depress I,,. The spectrum of copper is composed of sharp lines and diffuse lines. Since the microphotometer measurements were made at the peaks of the lines rather than integrated over their widths, the measured intensities of the two groups of lines are on different relative scales, the scale of the diffuse lines being smaller than that of the sharp lines. The reference lines selected for calibration of the estimates of apparent intensity are all sharp lines. The random error of the photometric procedure, including microphotometer error and irregularities of response of the N plates was determined from ninety-two measurements of apparent relative intensities in spectra of the standard lamp on two plates. The standard deviation of individual measurements from the mean was found to be about I.5 per cent. It is probable, therefore, that the uncertainties in these intensity measurements of the copper lines lie entirely in the systematic errors discussed above and in the random fluctuations of the arc under study. [22] R. B. SOSMAN, Propertiesof Silica. Chemical Catalog Company, New York (1927). 1146

Relative intensities for the carespectra of seventy elements

Since the ribbon filament lamp was too faint in the region from 2000 to 3300 A to serve as a standard, recourse was taken to a Hanovia hydrogen arc lamp. Output from this lamp was compared by R. STAIR in the Radiometry Section of this Bureau with a standard tungsten-in-quartz lamp and a standard mercury arc in the region from 2500 to 3800 A; this provided an independent overlapping calibration which carried us down to 2500 A. The intensity numbers below 2500 A become less accurate as the short wavelength limit is approached. Lacking any reliable energy calibration for shorter waves, the intensity estimates from 2500 to 2000 A were necessarily adjusted by judicious extrapolation, guided by the declining densities of background in the spectrograms, caused by the increasing absorption in the apparatus and in the air at shorter wavelengths. Because these relative intensities of 39,000 lines of seventy elements are based on empirical detectability they will be generally applicable to spectrochemical analysis provided that proper corrections are made on account of different excitation in different matrices. Chemical elements differ in volatility, electron emission, spectral excitation and spectral background, and consequently their spectral detectability in different mixtures or matrices depends on certain controlling factors. One of the most important factors is the atomic ionization potential which ranges from 3.9 V for Cs to 11.3 for C, and for the investigated seventy elements has an average value of 7.3 V. By mixing these seventy elements with copper, which has an ionization potential of 7.7 V, we obtained excitation conditions very near the average for all. To convert our intensity numbers from copper to any other matrix would require the empirical determination of the proper conversion factor for each element. It should be pointed out that sensitivity of detection in spectrochemical analysis is commonly given in per cent by weight. In order to find the weight per cent from the atomic per cent, the following simple relation applies: c,

=Q$ CU

where C, is the concentration in per cent by weight, C, is the atomic per cent (0.1 in this case), A,, is the atomic weight of copper, and A, is the atomic weight of the element X. Although our original intention was to determine the relative strengths of many spectral lines from different chemical elements for purposes of quantitative spectrochemical analysis, we believe that the results may also interest theoretical spectroscopists and astrophysicists. For instance, if our intensity numbers, based on concentration detectability and relative energy calibration, actually express relative energies then all may be converted to oscillator strengths, or to relative gf-values, or even to absolute f-values, if the proper conversion factors can be found. Because of the low concentration of each element in the copper arc from which the spectra were observed, the lines were extraordinarily free from self-absorption. This fact suggests that these emission intensities could be converted into relative 1147

WILLIAMF.MEGGERS,

CHARLES H. CORLISS and BOURDONF.SCRIBNER

gf-values, provided that a valid excitation temperature can be assigned to the copper arc. The temperature of the copper arc can be determined by comparing the observed relative intensities of the lines of an element with the relative gf-values of those lines [23], provided that the arc can be shown to be in local thermodynamic equilibrium for the energy states under consideration. A preliminary investigation I

I

I

I

I

1.5

1.0

l-4 5 1 CII 3

m

0.5

0.0

9.5

9.0

8.5 20

2.5

SD

3.5 4.0 Upper e.p. in Volts

4.5

5.0

Fig. 3. Plot of log intensity times A3 over gf vs. upper excitation potential of Ti I lines. The temperatureof the am is derived from the slope of the line which best fits the points.

of this sort has been carried out by using relative gf-values determined by R. B. and his co-workers for Ti I [24], Ti II [25], V I [26], Cr I [27], Fe I [2S], [29] and Ni I[301 in the region above 3000 A. Fig. 3 is a typical example of the correlation of intensities and gf-values indicating the temperature of the copper arc. The comparison shows that our copper arc is sufficiently in equilibrium to yield a temperature which may be useful in calculating approximate gf-values of some

KING

231 24] 251 .26]

H. R. R. R.

HEMMENDINQER,J. Opt.Soc. Am. 31,150 (1941). B. KING and A. S. KING, ~48kO$Ly8.J. 87, 24 (1938). B. KINQ, Astro@ys. J. 94, 27 (1941). B. KINa, htTO&/8.J. 105, 376 (1947). .27]A.J. HILL and R. B. KINQ,J. Opt.Soc. Am. 41, 315 (1951). 281 R. B. KINO and A. S. KINQ, Astrophys. J. 82, 377 (1935). ‘291 W. W. CARTER, Phy.9. Rev.76,962 (1949). 1301 R. B. KING Astro@ys. J. 108, 87 (1948).

1148

Rel&ive intensities for the &ICspectra of seventy elements

A preliminary value of 5000” + 300°K has utility from our intensity numbers. been obtained as the average temperature of the 10-A, 220-V, copper arc. Because our intensity data represent single (sometimes two) personal subjective estimates of photographic densities in sectored spectrograms there is no possibility of deriving statistically any probable errors or standard deviations for individual values. However, an estimate of the accuracy or reliability of our data may be obtained by comparing them with quantitative results published by other investigators. For example, Fig. 3 shows the ratios of our intensities to the relative gf-values reported by KING and KING [24] who measured the total absorptiona of they stated [28] that “The average Ti I lines in furnace absorption spectra; deviations of the individual intensity measures from the mean values vary from 4 to 15 per cent for different lines” measured between four and sixteen times on different plates. Each small circle plotted in Fig. 3 represents a Ti I multiplet of from one to twelve lines. The average of fifty-nine deviations from the mean of all is 25 per cent. A second indication of the reliability of our intensities is obtained by comparing our values with the relative intensities of lines in multiplets of five elements (Cr, Fe, Mn, Ti, V) measured with photographic densitometry by FRERICHS [31] to test the sum rules. Such a comparison in twenty-one different multiplets indicates deviations ranging from 5 to 22 per cent, with an overall average of 14 per cent. A third estimate of the errors in our data results from their comparison with photoelectric intensity measurements in the iron arc by CROSSWHITE [32], who claims an accuracy of the order of 1 per cent. The average difference between intensities of 330 iron lines (from 3175 to 5658 A) common to these two sets of observations is 527 per cent, but some of this difference may be due to temperature, if this is not the same in both arcs. Other comparisons could be made but the above three are different and typical; they suggest that the average error of our spectral-line intensities within a spectrum of each element is probably between 15 and 25 per cent. The uniformity of the intensity scale between the spectra of the various elements is more difficult to assess. Considerable care was taken to obtain spectrograms under comparable conditions for all of the elements; however, differences in volatilities of the elements or their oxides, and differences in ease of excitation may possibly result in shifts of intensity scales between elements. An inspection of the intensities of the strongest lines of the elements indicates that the values are generally in the same order as sensitivity of detection of the elements where these are known. Although no high precision was expected in our mass production of intensities, it is emphasized that reasonably uniform, quantitative values are now available for 39,000 lines emitted by seventy elements. The complete tables of spectral line intensities resulting from this investigation are published elsewhere in two separately bound parts [33]. From these data some 1100 principal lines of seventy elements were selected and are given here in Table 2. [31] R. FRERICHS,Ann. Physik 386, 807 (1926). [32] H. M. CROSSWHITE, Spectrochim. Acta 4, 122 (1960). [33] W. F. MEQCJERS, C. H. CORLISSand B. F. SCRIBNER,Tables of Spectral Line Intensities. Part I. Arranged by Elements. Part II. Arranged by Wave lengths. NBS Monograph 32 (1961). U.S. Government Printing Office, Washington, D.C.

1149

WXLLLAXF. MENDERS,CHARLESH.

CORLISS and

BOUFCDO~U

Table 2. The strong lines of scvcntv clemcnts Element Aluminum

Intensity

Arsenic Barium

Beryllium

Bismuth Boron Ccdmium Calcium

Carbcn Ccrium

(A)

spectrum I I I I I I I I I

320 140 140 so 6500 2000 2000 1200 650 480 320 300 3600 400 480 240 1500 360 4200 2200 1100 10 250

3961.53 309271 I3092.84 2598.05 2598~09 2528.52 2877.92 2780.22 2860.44 4554.03 4934.09 6141.72 6496.90 6535.4% 3130.42 3131.07 2348.61 3067.72 2897.9% 2497.73 2496.78 2288.02 3610.51 3933.67 3968.47 4226.73 2478.57 4186.60

220

3952.54

II

200 200 190 190 190 170 160 150 150 140 140 I40 140 130 120 120 120 110 110 110

3801.53 3999.24 3342.78 4012.39 4X33*80 4460.21 3655.85 4040.76 4562.36 3942.15 4137.65 4289.94 4296.67 4073.48 3882.46 4391.66 4628.16 3560.80 3716.37 4075.71

II II II II II II II II II II II II II II II II II II II II

900 650

Antimony

Wavelength

6CO

II II II II I II II I I I I I I I II II I I II

Energy levels (cm-i) I12-25,348 11232,437 112-32,435 8512-46,991 985448,332 985449,391 851243,249 1864%54,605 181%6-53,136 o-21,952 O-20,262 567&21,952 487420,262 o-18,060 O-31,935 O-31,929 O-42,565 632,588 1141%45,915 1640,040 o-40,040 o-43,692 31827-59,516 O-25,414 o-25,192 O-23,652 2164&61,982 696%-36,847 2642-27,935 663%-31,931 7234-33,531 23%2-27,380 691332,269 452329,439 696&31,152 385426,268 286329,909 359428,335 385425,766 o-25,360 4166-28,327 2642-25,945 416627,433 3%54-28,396 250628,345 259625,360 416625,766 596o-34,044 O-26,900 6651-30,180

1150

F. SCRIBNER

Relative

intensities for the MC spectra of seventy elements Table &_(contd.)

I ntensity

Element

?avelength (A)

ipectnlm

-

Energy levels

Term combination

(cm-‘)

_-

wi

Cerium

110

4075.85

II

491 l-29,439

(contd.)

110

4222.60

II

98&24,663

100

3854.19

II

1874-27,812

100

3854.32

II

1874-27,811

100

4151.97

II

551‘G29,592

iLje6s a

100

4471.24

II

5617-27,976

I

95

3577.46

II

3794-31,738

90

3838.54

II

2642-28,686

90

3878.37

II

1410-27,187

90

4165.61

II

7341-31,340

85

3709.29

II

4204-31,156

4H&

85

3709.93

II

988-27,935

4H‘it

85

3808.12

II

2382-28,634

4Hi)

85

3889.99

II

545&31,156

%+

80d

3623.84

II

639@33,977

80

3660.64

II

988-28,298

80

3667.98

II

2880-30,135

4198.67

II

4198.72

II

75

4071.81

II

7.5

4248.68

II

75

4572.28

II

70

3201.71

II

70

3272.25

II

5651-36,202

70

3539.09

II

2581-30,829

70

3786.63

II

1410-27,812

70

3848.60

II

4204-30,180

70

3853.16

II

70

3956.28

II

4911-30,180

70

4123.87

II

691%31,156

70

4127.37

II

551P29,735

70

4149.94

II

5819-29,909

70

4239.91

II

3854-27,433

70

4337.78

II

263%25,682

70

4418.78

II

6968-29,592

1500

8521.10

I

800

8943.50

I

2400

3578.69

2100

3593.49

1700

80

Cesium ChOmiUX

L

4H& 4H&

4H;t 4H5t

Lj26s a eH4+ “Ii, 1% % &jf26sa =H,&

43:t %

%

_

414) 1122%

%t

- 4j”Sp z4H& - 4fz6p z2Hit 4H6t 12ktt 1673t - 4fa6p 2=I;* 4H6t %t l%t 4H6t 1663)

-

%t

7341-31,152

%+ %jf268a 2H5b

4H5) - 4j26p z40&

416&27,976

4f86s a

263527,187 551629,044

%a 4j=6s a ‘H3+

- 4ja6p 2=H& 167,t - 4j26p 2lI&

5514-27,379

4pf”ssa 4H3t

691%38,138

4H&

4H3t

4H;+ % ‘II;&

- 4j26p 2*Iit 2325) 2134t 14% 1% 416t

4Hit

o-25,945

lH:* =Hit

.-

164,t

-

416t

1% 4ja6s a 4H6i

lH6t - 4f”Sp 2W;+ 4H4* - 4j”6p z~H;~ 1% - 4fa6p z~H;+

o-1 1,732

5~366s1 Wet

- 5pe 69

O-11,178

5p6 6s’ W,,)

I

o-27,935

49 a’s,

I

O-27,820

49 a’s,

- 5pB 6p1 BP;t - 4P Y?Pi - 4P Y’Pi

4254.35

I

o-23,499

4s a?S,

1600

3605.33

I

o-27,729

4.3 a’Ss

1300

4274.80

I

o-23,386

48 a’s,

900

5208.44

I

850

4289.72

I

7593-26,788 O--23,305

lHit 4ja6s a &HSt 3% 4f26s a 4H3)

49 aW, 4s a’s,

- 41, 2’Pi - 4P Y’Pi -4p 27p; - 4p 2”Pi - 4p 2’P; - 4p. 26Pi

700

5206.04

I

7593-26,796

48 aW,

440

5204.52

I

759s26,802

4s aW,

- 4p 2=p;

360

3017.57

I

809&41,22E

4a8 aKD,

- 4p ysF;

360

3021.56

I

8308-41,39:

4aa asD,

- 4p y=F;

280

2836.63

240

2986.47

II

12,497-47,75! 8308-41,781

I

-

1161

48 aeD4+

- 4p 2eF;t

4zP a6D,

- 4p y6D;

=P;+

WILLIAM F. ME~UERS, CHARLESH.

Element

Wavelength

Intensity

Chromium

200

(contd.)

Cobalt

Copper Dysprosium

-

3pectrum

‘ k

(A)

--

Table 2-

-

-

-

and BOURDON F. SCRIBNER

CORLISS

contd.) Energy

levels

Term combination

(cm-‘) -

II

2677.16

II

12,304-49,646

4s aeDSk

- 4~ zaD;+

12,497-49,838

4s aaD

- 4p zeD;)

190

2843.25

12,304-47,465

45 aaDs

- 4p zeFig

190

4351.77

I

8308-31,280

4s= aSDq

180

3014.76

I

7811-40,971

4s= a6D1

170

2986.00

I

8095-41,575

4s= a5D3

- 4p 26P; _ 4~ Y “F; -4p y5D;

160

3919.16

I

830%33,816

4s2 aSD

- 4p zSD;

160

3963.69

I

20,520-45,741

160

4344.51

I

809631,106

48=

1300

3453.50

I

700

3405.12

I

49 a$

-4p

y5H;

- 4p z”F;

3483-32,431

4s

a5D 3 b dFlt

3483-32,842

49 b 4F,1

- 4P Y4q) - 4~ Y ‘0;) - 4P Y lG;)

600

3502.28

I

3483-32,028

4s 6 “Fd,,

550

3443.64

I

414%33,173

4s b 4F3h

550

3569.38

I

7442%35,451 O-28,777

48

a2F3i

4.P a “Fdi

- 4P Y 4G;*

- 4~ Y”“& - 4p z&F;)

500

3474.02

I

4690-33,467

4s b aF,i

- 4~ Y ‘Fit

460

3529.81

I

4143-32,465

4s b “F3&

- 4P Y 4G;*

440

3506.32

I

4143-32,654

4s b 4F3)

- 4~ y4D;a

420

3412.34

I

4143-33,440

4s b 4F3t

- 4P YZG&

420

3587.19

I

8461-36,330

4s a 2FzB

400

3526.85

I

483 a 4Fd4)

- 4~ Y=F;~ - 4p z4F;+

340

3894.08

I

8461-34,134

4s a2Fzh

- 4~ y2G;a

320

3462.80

I

5076-33,946

4s 6 4F1)

320

3465.80

I

4s2 a &FaB

- 43, Y ‘Fit - 4p z4G;+

300

3489.40

I

7442-36,092

4s a 2F3k

- 4~ Y’D;~

300

3512.64

I

4690-33,151

4s b pF,+

- 42, y4D;+

300

3518.35

I

8461-36,875

4s a =F,&

- 4~ Y=D;+

300

3845.47

I

7442-33,440

4s a =F,)

- 42, Y’G;,

280

3409.18

I

414%33,467

4s b 4F3k

- 4~ Y 4F;+

280

3433.04

I

5076-34,196

4s b “Flk

5000

3247.54

I

3d’O 49’ %S,+

- 4~ y4F;t - 3d’o 4~1 2Pit

I

o-30,535

3d’O 4s’ “Sot

- 3d’” 4~’ 2P;)

O-28,307

4f1°6.s1 @ISt

- 4f lo6p1 eK;t

,&o-28,346

O-28,845

O-30,784

2500

3273.96

2000

3531.70

1300

4211.72

1100

3968.42

II

o-25,192

4f’O6& BI,g

-

25,192;*

1000

3645.41

II

828-28,252

4f’“6s1 41pt

-

28,252;+

1000

4045.99

I

950

4186.78

I

850

3944.70

II

4f1”6a1 BIst

-

25,343;)

650

4000.48

II

4fro6s1 41,t

-

25.818;&

600

3872.13

II

4f ’06s1 sI,t

-

25,818;)

600

4077.98

828-25,343

4f 1°6s’ 4I,)

-

25,343&

550

4194.85

500

3536.03

500

3898.54

II

4756-30,399

4f’06s1 4Ie)

-

30,399;*

480

3385.03

II o-29,336

4f lo681 El,+

-

29,336&

O-28,885

4f ‘06.s1 BIst

-

28,885;t

4f lO6sl 41,i

-

29,437;)

II I

O-25,818

II I II

II

480

3407.79

460

4167.99

400

3460.97

II

400

3494.49

II

-

O-25,343 828-25,818

I 828-29,437

-

1152

Relative

intensities for the arcspectra of seventy elements

Table2- :ontd.) 1:ntensity

Element

-- _~ 400 Dysprosium 400 (contd.) 400 400 400 400 400 360 360 360 340 340 320 300 300 280 1100 Erbium 850 750 700 650 600 550 420 340 320 300 280 260 260 260 260 240 220 220 220 220 170 170 160 4ooocw Europium 34ooew 2800~~ 2400~~ 22oocw 2ooocw 17oocw 9oocw 750 650

Energylevels Vavelength bpectrum (cm-') (8) 3523.98 3534.96 3538.50 3550.22 3576.25 3694.81 3757.37 3630.25 4218.09 4221.10 3393.59 3445.58 4103.34 3685*08 4215*15 3'786.21 4007.97 3906.34 3372.76 3692.64 3499.11 3862.82 4151.10 3896*25 3892.69 3830.53 3616.58 4087.65 3264.79 3937.02 3944.41 3973.60 4020.52 3230.59 331242 3392.00 3973.04 3385.08 3938.65 3786.84 4205.05 3819.67 3930.48 3907.10 4129.70 3978.96 3724.94 4435.56 4594.03 4627.22

II II II II II II II II

4341-32,710 828-29,109 O-28,252

32,710;+ 29,109& 28,252;&

4756-32,710 828-27,886 828-27,435

32,710;* 27,886;) 27,435&

II II II II

82%30,287 o-29,014 828-25,192 o-27,886

30,287& 29,014& 25,192;) 27,886;)

II II II II

o-29,641: 44s27,514 440-29,011

29,641;+ 27,514;) 29,011;+

II

440-26,099

26,099&

II II

o-26,099 o-27,643

26,099;) 27,643;)

II

C-30,621

30,621&

I I

I II I

I I I

I I I I I II II II

44%30,621

30,621&

440-29,973

29,973;*

I II II II II II II II II II II II

O-23,774 O-26,17: 1669-27,104 1669-27,25( o-24,20( 1669-26,83( o-26,83! 1669-24,201 o-21,76 O-21,60!

I I

- i 2

Term combination

1153

-4j'6p zePs - 4j76p zsPs - 4j'6p, z’P3 - 4f76p z7Pz - 4f’Sp zBPp - 4j'6p z’P, - 4f’6p zvPq - 4j'6p z=P4 -r 4jT6s 6p y8PJb - 4fv68 61,y8Pab

WILLIAM F. MEOOERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER

7Navelength

Intensity

Element

Table 2-(wntd.)

-

-

Spectrum

Energy levels

1

(A)

Term combination

(cm-l)

_-

Lf’6a8 a “S;+

- 4f’68 6p y8P,+

O-36,649

kf’6s a “S;

- 4f”Ss 6d yDP,

O-35,527

Lf’6s a “S;

- 4fa6a 6d ygP4

II

o-34,394

Lf’6s a “S;

- 4ffa68 6d ygP,

4522.57

II

1669-23,774

Lf?Gs a ‘S;

- 4f76p

zDP,

200

2820.78

II

If’68

-

108,

190

2802.84

II

1669-37,337

160

6645.11

II II

3688.42

550

4661.88

420

2727.78

II

340

2813.94

II

320

2906.68

200

Gadolinium

Germanium

1

Gold -

I

O-35,441

a ‘9;

Lf’68 a ‘S3”

- 4f’6da

y’P,

11,128-26,173

Lf’5d a “0;

- 4f’6p

z”Ps

10,643-24,208

lf’5d

120

7370.22

- 4f 76p

z”P4

110

3212.81

I

O-31,116

Lf’6s2 a YJ;+

-

113,)

100

3334.33

I

O-29,982

Cf’6se a “S?&

-

a “D;

106st,at - 4f’Sd 6p zI”F~~

850

3’768.39

II

633-27,162

700

3422.47

II

193%31,146

a’OD;+ -

ZIOF,&

600

3646.19

II

1935-29,353

a’QD& -

GF@

550

3350.47

II

1159-30,997

a’QDi& -

ZIQDst

550

3362.23

II

633-30,367

550

3584.96

II

1159-29,045

a’QD& a’OD;t -

zBD5+ Z’OD4)

500

3796.37

II

262-26,595

&‘D&

500

3850.97

II

440

3358.62

II

262-30,027

440

3545.80

II

1159-29,353

II

1159-27,865

Lf’6s 5d a’oD&

O-25,960

-

Z’QF,&

a’OD& -

2’01” 1)

a’ODi& a’OD& -

zBD4t ZIQFs+

440

3743.47

440

4225.85

420

3852.45

II

26%26,212

400

3549.36

II

1935-30,101

a’OD& -

Z10D6+ z8P,t GF,+

I

1719-25,376

alaD;+ Lf”695d a “0;

-

ZlOFg

- 4j’6s

5d 6p ygF,

kf’68 5d a’OD& - 4f75d 6p

z’~F,+

380

3654.62

II

633-27,988

360

3813.97

II

&26,212

al’JD;t a’QD$ -

320

3850.69

II

633-26,595

LX’OD;~ -

Z’QF,&

300

3100.50

II

193&34,179

Y’“P6) Z1QP6)

300

3656.15

II

115%28,502

a’OD& aloDit

300

3687.74

II

2857-29,966

a 8Di+ -

280

3439.99

II

1935-30,997

a’OD& -

280

3463.98

II

3444-32,304

280

3783.05

260

3664.60

260

3712.70

260

4078.70

I

533-25,044

Lf’625d

240

4053,64

I

999-25,661

kf~6&id a ‘Di

240

4058.22

I

215-24,850

a eDi

240

4098.61

999-27,425

I

if’63

a W&

kff?6se5d a @Di

-

z0D2* ZIQDB&

Y8P4+ - 4f’6s 5d 6p xnP4

II II

4325.57

240 d Gallium

z’P3

if’68

o-21,445

550

(contd.)

a “S;

- 4f’6p

O-27,104

II

Europium

3082-30,009

II

6605-30,997

II

11,067-34,179

Lf76s 5d a 8Dit - 4f75d 6p

tf ‘5da

z”D,t

a “Di - 4f76s 5d 6p ygD, - 4f 16s 5d 6p y =D,

Y’DI alOFik - 4f75d 6p GODS+ Y’PSt -- 4f’68 5d 6p y’F;

4325.69

I

533-23,644

$f76$5d ;‘:z” 4

2000

4172.06

I

826--24,788

is= 4pl ZP;*

- 482 581 as,*

1000

4032.98

I

O-24,788

49 4p’ =P;*

- 4s= 581 “So,

1200

2651.18

I

1410-39,118

452 4pe 8P,

- 482 4p’ 581 “Pi

850

2709.63

I

557-37,452

48 4pe BP,

- 482 4pl5s’

750

3039.06

I

7125-40,020

42 49

- 49 4p’ 581 ‘Pi

‘D,

“P;

650

2754.59

I

1410-37,702

2675.95

I

&37,359

48%4pa SP a 5d’o 6s1 “Sot

- 49 4p’ 591 “P;

340 200

2427.95

I

o-41,174

5d’O 68’ %,,&

- 5d’o 6~’ 2P;t

-

-

1154

- 5d’o 6pp’ “P&

Relative

intensities for the arc spectra of seventy Table 2-(cotid.)

Element

Intensity

IT

Wavelength (A)

Spectrum

Energy

levels

(cm-‘)

I-

Hafnium

Holmium

elements

II

5d’ 6s2 a 2D,b

o-34,877

5d= 6se a “I’; 5da 6s2 a SF2 5da 6s2 a 8F 4 5d2 6.s2 a 3F2 5da 6s= a SF2 5d2 6s2 a 3F, 5da 6s2 a $Fs 5d’ 6sB a 2D,+ 5d’ 6s2 a =Dsh 5dZ 6s2 a aF, 5d= 6~~ a 8F, 5d2 6.9 a IF,* 5da 6sa a sFz 5d2 6s2 a “F4 5d= 6.~2a sF, 5d= 6s2 a “F4 5d’ 6~~ a =D,+ 5d2 6s a ‘Fbi 5d’ 6s2 a 8F, 5da 6sa a =FZ 5d’ 6s= a =Dlt 5d’ 6sa a 2Dlt 5d= 68= a 3F4 5d2 6s a 4F,t

3399.80

240

2866.37

I

240

3072.88

I

220

2916.48

I

220

2940.77

I

220

3682.24

I

200

2898.26

I

160

2964.88

I

150

3561.66

II

140

2820.22

II

140

2904.41

I

140

2950.68

I

140

3505.23

140

3777.64

I

140

3785.46

I

130

3020.53

I

2357-35,454

130

3820.73

I

4568-30,733

120

2638.71

II

120

2641.41

II

120

2954.20

I

120

2980.81

I

120

3012.90

II

120

3016.94

II

120

3057.02

O-32,533 4568-38,845 o-33,995 O-27,150 2357-36,850 2357-36,075

4568-38,988 2357-36,237 O-26,464

o-33,538

II

3456.00

II

1500 c

3891.02

1000 c

3796,75

I

1000 c!

3810.73

I

1000

4103.84

I

900

4053.93

I

900

kl63.03

I

700

3484.84

II

600

3416.46

II

600 c

3474.26

II

600 c

4045.44

480

4127.16

460 c

3515.59

II

360

3453.14

II

360 cw

3748.17

II

340 0

3888.96

II

320

4108.62

300 c

3861.68

300

4040.81

3425.34

220 c

3428.13

220

4227.04

200 c

3854.07

634634,355

II

3398.98

220 c

O-33,136

II

900 0

3494.76

O-33,181 4568-37,270

3569.04

4173.23

O-37,886 8362-46,209 456%38,408

120

280

8362-36,882 4568-30,977

1800 c

280 c

o-28,069 3051-38,499

I

II I

I II I II I II II I II

1155

Term combination

o-29,405

260

II

T

- 5d’ 6~~ 6p1 z4F& - 5d2 6s’ 6~’ y’F; - 5da 6s’ 6~1 ySG; - 5d2 6s’ 6~0’ xSG; - 5d2 6816~1 w’F; - 5d2 68’ 6~’ y$F; - 5d2 6s1 6~1 wSF; - 5d2 6s’ 6p1xaFo4 - 5d’ 6~~ 6~’ zaF;+ - 5d2 6~1 Z4G& - 5d2 68’ 6~’ v3F; - 5d0 6s’ 6p* x’F; - 5d’ 6s’ 6~1 z&D& - 5d’ 6sa 6~’ ZIP; - 5d2 6S 6~’ z8G” - 5d= 6.9’ 6pO’u9F6; - 5d2 6s1 6~’ y8F; - 5d’ 6s’ 6~’ yzD;+ - 5d2 6~’ ZbG;* - 5d= 6s’ 6~1 wsD; - 5d2 6816~’ xaF; - 5d’ 6s’ 6~’ zag;+ - 5d’ 6s’ 6p1 z~P;~ - 5da 6.~~6~’ xsG; - 5d’ 6s’ 6~’ z4Dit

WILLIAN F. MEG~ERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER

Element

Indium

Iridium

Iron

-

T --

:ntensity

Vawlength (A)

Table 2-(contd.)

2Spectrum

Energy levels

T Term cc)mbination

(cm-l)

58’ 5p’ ‘p;&

- 59= 6s’ =S,)

59 5p’ BP&

- 5s2 6s1 %Q

2213-32,916

59 5p1 =p;*

- 5s2 5d’ SD,+

I

632,892

582 5p’ “P;*

3220.78

I

2835-33,874

5ds 6s1 b 4F,t

- 59 5d’ =D 1B - 5d’ 6s’ 6~’ zaF&

380

2543.97

I

2835-42,132

5da 6.~~b 4F,t

- 5ds

340

3133.32

I

6324-38,230

5d7 6s2 a 4F,h

- 5d’ 6s’ 6~’ &Fit - 5d’ 6s’ 613’ z~G;~ - 5d 7 6s’ 6~’ zsFo 6t - 5d 7 6s’ 6pp’ zBDit - 5d’ 6s1 6p1 zaG” 4t _ 5d= 6s2 6p’ BP;+ - 5da 6s2 6p1 BF;b

1800

4511.31

I

1700

4101.76

I

1300

3256.09

I

800

3039.36

500

2213-24,373 O-24,373

6p1 YJ;)

320

2924.79

I

O-34,180

5d’ 6s2 a 4F4t

320

3513.64

I

628,452

5d7 6sa a “Fat

320

3800.12

I

o-26,308

5d’ 6s2 a 4F4t

280

2849.72

I

635,081

5d’ 6sz a 4F44t

220

2694.23

I

2835-39,940

200

2502.98

I

200

2664.79

200

2943.15

170

2639.71

I

o-37,872

5d7 6s2 a 4F4t

160

2475.12

I

o-40,390

5d’ 6s2 a 4F;t

160

3068.89

I

2835-35,411

5ds 6s’ b ‘F4*

130

2661.98

I

2835-40,390

5ds 6s’ b 4F,g

120

2797.70

I

2835-38,568

5da 68’ b 4F,t

120

3573.72

I

7107-35,081

5ds 6s’ b 4F,t

100

2481.18

I

5d’ 6$ a 4F4)

- 5dT 6s’ 6p1 4F;t

700

3734.87

I

6928-33,695

3d7 4s’

- 3d’ 4p1

ysF;

600

3581.20

I

692&34,844

3d’ 4s1 a6F;

600

3719.94

I

- 3d’ 4p1 - 3da 4~~ 4~’

zSF5”

500

3820.43

I

420

3859.91

I

400

3440.61

I

400

3570.10

I

7377-35,379

3d’ 4s’ a5F:

- 3d’ 4p’

400

3749.49

I

7377-34,040

3d’ 4s’ a6F4

340

3737.13

I

416-27,167

3ds 4s2 a&D,

320

3825.88

I

7377-33,507

3d’ 4s’ aSF

300

3758.24

I

7728-34,329

3d7 4s’ asFt

- 3d’ 4p’ y”F; - 3da 4s’ 4p’ 91” 4 - 3d? 4p1 Y’D; - 3dv 4p’ Y’F;

300

4045.82

I

11,976-36,686

3d7 4s1 aSF

280

2483.27

I

O-40,257

3dB 4s2 a 5Di

280

2522.85

I

O-39,626

280

3020.64

I

O-33,096

260

2488.15

I

3da 4sa a6D 4 3d6 4s2 aSD 4

260

2719.02

I

240

3745.56

I

200

2599.40

3da 4s’ a6D4+

- 3d” 4p1

200

3608.86

I

8155-35,856

3d’ 49’ aSF,

- 3d7 4p’

200

3618.77

I

7986-35,612

3d’ 4s’ a6F,

- 3dT 4~’

z%+

200

3631.46

I

772%35,257

3d” 4s’ a6F,

z=cf;

900

3949.10

II

325628,565

6s

- 3d’ 4p’ - 6p z “F; _ 6~ Y ‘D;

5d8 69’ b 4F,i

o-39,940

5d7 6s= a 4F4t

I

637,515

5d’ 6s2 a 4F4hl;

_ 5d? 6s1 6p’ z4D&

I

6324-40,291

5d’ 6a1 a 4F,t

- 5d’ 6s1 6p1 4F;b - 5d’ 6s’ 6~’ z’F” - 5da 6s= 6p1 eF;: - 5d’ 6s’ 6p1 zaG; b

o-40,291

o-26,875 692%33,096

3d= 4s2 a6D4 3d’ 4s1 aSFg

o-25,900

3da 4.P a6D4

O-29,056

3de 4s2 aSD

416-40,594 O-36,767 704-27,395 II

a5F

O-38,459

3da 4.P aSD 3d6 4s2 a6D: 3ds 4a2 a5D,

aSD,

550

4086.72

II

624,463

460

3794.78

11

1971-28,315

5d2 a =F4

460

4333.74

II

139624,463

6s

440

3790.83

II

101627,388

5d2 a 8F,

440

3988.52

II

3250-28,315

68 a sD,

1156

5d2 a sF, a ID,

- 5de 6s= 6~1 “F& - 5dT 6s1 6p’ ID& - 5d 7 6s’ 6p1 zBG&

z5Q;

- 3d7 4~’ y=D; _ 3de 4s’ 4~’ z6D; - 3d6 4s1 433’ z5P” z&

- 3d7 4p1 Y”F; - 3de 49’ 4pl xbF” _ 3de 4s’ 4~’ xsD f - 3d’ 4~’ y5D; - 3ds 4s’ 4~’ x6F” - 3de 4s1 4~’ y6Pp - 3da 4s’ 4~’ z6F;

-6py3Di _ 6~ Y ‘D; -6pySDi _ 6~ Y “D;

;;;i+

Relative

intensities for the arc spectra of seventy Table 2-(contd.)

Wavelength

7

Cntensity

Element

--

-

Energy levels

LSpectrum

(A)

elements

Term combination

(cm-‘)

Lanthanum

440

4123.23

II

2592-26,838

6s

aaD,-6pxaFi

(CO%td.)

360

3995.75

II

1394-26,414

6s

a’D,-6px3F;

340

3871.64

II

1016-26,838

5d2 a sF, - 6p x “Pg

300

4042.91

II

7473-32,201

5d2 a W,

280

3759.08

II

1971-28,565

5da a SF4 - 6p x aFi

280

4031.69

II

2592-27,388

6s

280

4077.35

II

189626,414

68 aaD,-6pxaFi

220

3929.22

II

139P26,838

6s

a’D,

200

3337.49

II

3250-33,204

6s

aaD,-6pxSP;

Lead

Lithium Lutetium

Magnesium

Manganese

Molybdanun

I

aSD,-6pySD; -6pxaF;

200

3380.91

II

2592-32,161

6s

a3D,-6pxSPP

200

4429.90

II

189624,463

6s

aSD,-6pylDi

3400

4057.83

I

10,650-35,287

69 6p2 3P, - 69 6p’ 7~~ “P;

1400

3683.48

I

7819-34,960

6sz 6~9 “PI - 69 6p’ 781 “P;

1000

2801.99

I

10,650-46,329

950

2833.06

I

3600

6707.84

I

320

6103.64

I

1200

2615.42

II

600

2911.39

II

14,199-48,537

5d 6s asDo - 6s 6p z”Fi

500

3077.60

II

12,43644,919

5d 6s a8D,

480 c

3507.39

II

440

3281.74

I

440

3359.56

I

420

2894.84

360

3312.11

I

6s2 6pa aPa - 69 6~1 6d’ 8Fo3 69 6p2 sP, - 69 6p’ 7s’ “P;

O-35,287 o-14,904

1.92291 “So,

14,904-31,283

69 aIS

O-38,223

O-28,503

69 a’s

1994-32,457

5d 6s=

1994-31,751

5d 69

14,199-48,733

II

- 182 2p’ 2PO&]&

ls2 2p’ 2P,h,lt - Is2 3d’ =D,+,2a

- 6s 6p

z8Fz

- 6s 6p

zap;

zD”It 32,457’ =D,+ -5d 6s 6p zF;+

5d 6s a3D,

O-30,184

- 6s 6p ZIP;

- 6s 6p

90;

5d 5d 69 6s2

=D zDlt - 5d 68 6~ =D;t

5d 69

ZD1* - 5

~p6pZ;ft

5d 69

2D;: 15d

6s 6p 2D;it

360

3376.50

I

340 h

3081.47

I

340

4518.57

I

O-22,125

6000

2852.13

I

o-35,051

382 ‘S,

1000

2795.53

IJ

O-35,761

2802.70

II

O-35,669

3s1%s ot -

600 2000

4030.76

I

1400

4033.07

I

1200

2576.10

II

800

2593.73

II

800

2794.82

O-29,608 1994-34,436

I

- 3.9’ 3p’ ‘PO

3s’ =sot -

3p’ ‘P!* 3p’ 2Pit

o-24,802

3d6 49

a W,+

O-24,788

3d6 49

a BSZ+ - 3d6 4s’ 4~1 zaPi+

O-38,807

3d6 4s1

a ‘P,

- 3d6 4~1

z?Pi

O-38,543

3d6 4s’

a ?S3 - 3d5 4p1

z?Pg

O-35,770

3d5 49

a W,) - 3d5 4s’ 4~1 yBP&

- 3d6 4s’ 4p’ zeP;&

800

4034.49

I

o-24,779

3d6 49

a BSZt - 3d6 4s14pl zSPi+

650

2798.27

I

O-35,726

3d” 49

a WZt - 3d6 4s’ 4~’ y’P;+

O-38,366

3d6 4s’

a W3

O-35,690

3d4 49

a %SZt- 3d5 49149

y”P;* Z8Di)

II

- 3d= 4p’

550

2605.69

480

2801.06

I

420

4041.36

I

17,052-41,790

3ds 4s’

a BD,b - 3da 4~’

360

3806.72

I

17,052-43,314

3de 4s1

a eD,g - 3dS 4~1

340

3569.49

I

18,705-46,713

3d6 4s’ 4pVP&-3d6

947s43,370

II

240

2949.20

240

3823.51

I

1500

2536.52

I

17,282-43,429 39,412-62,350

ZeF;* 4s’ 4d’ e8Dst

%dS49

a W,

3de 4s’

a sD3t - 3da 4p1

/5dl”

o-39,412

69

z’P;

- 3d6 4~’

z5P; ZeF;&

‘AS,,- 5d’O 6s’ 6~’ “P;

400

4358.35

I

3200

3798.25

I

o-26,320

4d6 5s’ a’&

- 4d5 5~’

z’ Pi

2800

3864.11

I

O-25,872

4d5 5s’ a’s,

- 4dS 5~’

z’P;

4d5 5s’ a’S,

- 4d4 5s’ 5~’ yTP;

I

3132*59

1800 -

- 6p x lF”

-

-

-I 1157

jdl” 6s1 6p1 “Py - 5dz0 69 7s1 W,

1

o-31,913 -

WILLIAM F. MEGGERS,CHARLESH. CORLISSand BOURDONI?. SCRIBNER

Element

Cntensity

-MolybdenumL (c&d.)

220 220 220 220 220 200 180 170 170 170 160 160 160 160 160 160 150 140 140 140 140 140 d 140 320 280 220 d 220 180 180 150 150 140 140 d 140 -

iVavelength

7

-

Spectrum

(A) 3902.96 3170.35 3193.97 3158.16 5506.49 3447.12 3208.83 5533.05 4143.55 3384.62 4188.32 4411.57 l 4411.70 2775.40 2816.15 2848.23 2871.51 4069.88 3358.12 4381.64 3112.12 3581.89 3624.46 2890.99 2923.39 3344.75 3405.94 3694.94 3833.75 5570.45 2911.92 2930.50 3233.14 3289.02 3680.60 I3680.68 4232.59 4303.58 4061.09 3863.33 (3863.40 4012.25 4040.80 4156.08 3805.36 4109.46 3784.25 3851.66 I3851.74 4177.32

1800 1100 950 750 480 400 380 320 280 240 240 240 d

NeodymiumI

Table 2- 41:ontd.)

-

-

-1

I I I I I I I I I I I I I II II II II I I I I I I II II I I I I I II II I I I I I II II II II II II II II II II II II II

F

1Energy levels (cm-‘)

Term combination 5p’ z 7Pa” 4dd 58’ 5p’ y 7P; 4d4 5a1513’y ‘P; 4d4 5~~5~’ z ‘0; 4d= 5p1 .z “Pi 4d5 5p’ y “Pi 4d4 5s1 5~’ z ‘0; 5p’ z “Pi 4dS

O-25,614 o-31,533 o-31,300 O-31,655 10,768-28,924 12,346-41,348 o-31,155 10,768-28,837

4d5 5.9’ a ‘S, 4d6 58’ a ‘S, 4d6 58’ a ‘S, 4ds 59’ a ‘S, 4d5 59’ a “S, 4d4 592 a 6D, 4d5 58’ a ‘S, 4d6 5s’ a =A’, -

11,859-41,396

4d4 5# a 5D, - 4d5

16,784-39,445 16,785-39,445 13,461-49,481 13,4.61-48,960 12,900-47,999 12,417-47,232 16,784-41,348 11,454-41,224 16,784-39,600 o-32,123 16,785-44,695 16,74&44,330 12,034-46,614 12,417-46,614 11,143-41,032 16,641-43,698 12,346-38,423 10,768-28,715 12,900-47,232 12,034-46,148 16,784-47,705 11,454-41,850 16,784-43,946 16,785-43,946 16,748-40,367 O-23,230 3802-28,419 O-25,877 O-25,876 5086-30,002 1470-26,211 1470-25,524 2585-26,913

-

1470-27,425 513-24,445

1158

4d6

5p’ y “F;

5~1 z ha; 5p’ z “a; 4d4 5p’ z BP;) 5~’ z %F;+ 4d’ 4dA 513’~ “F;& 4d” 5p’ z BF;i 4d5 5p’y 6F; 4d6 5~’ y “F; 4d5 5~’ z 6H; 4da 5s’ 513’ z ‘0; 4dd 5s1 5p’ y 6H; 4dh 58’ 5p’ z “I; 4dp 5p’ z %F;+ 4d4 5~’ z SF;+ 4d6 5p’ y 5F;

4d6 5s’ a V_J,- 4d” 4d6 55’ a %,

- 4d5

4d’ 58l a BD,t4d’ 59’ asD4+4d4 5sl aeDSt4d” 59’ a 6D,t4d6 5s1 a %$ 4d4 5s=a CD2 4d6 59l a “B, 4d6 59’ a ‘S,

-

4d6 58’ a “B, 4d6 58’ a w, 4d’ 58’ a BD,&4d4 5~~a sD,t4d4 582a 6D1 -

4ds 5s1 a VJ, - 4d4 5s’ 5~’ y 6H; 4d4 5s8 a 5D, - 4d4 5s’ 5p’ z “0; 5d= 5s’ a %S, - 4d6 4d4 5s’ a eD,t4d4 5s’ a 6D,i4d6 581 a w,

5p’ z 6P; 5p’ z BF’& 4d4 5p’z BF;t 4d4 58’ 5~’ y “a; 4d6 5~’ y “F; 4d6 5p’ 2 aa; 4dS 5~’ z “a; 4d6 5p’ z “H; 4j”6p z %K;& 4j46p z 6K;t 4d4

-

4d4 5s= a 6D, -

4d6 5s’ a VJs 4d= 59’ a &f3, 4d5 581a 6a4 4jr6s a 813b 4jd6s a “I,& “i* 4j46s a BI,+ 4jf46sa 61s) - 4j46p y sH;+ 4j46s a “Is) - 4j’Bp z %K;& 4j46s a %I,& ‘%a 4j46s a BI,t - 4j46p .z 6K;t

4j46.s a BI,t

- 4j46p .z IK;+

4j468 a B16t 4j468 a BI,t

-

2% - 4j46p z “Kit

Relative

intensities for the axe spectra of seventy elements Table 2-

Element

Neodymium

(co?ztd.)

Intensity

Niobium

(‘Q

Spectrum

Energy levels (cm-‘)

Term combination

II

120

3900.2 1

120

3911.16

II

120

3941.51

II

120

3951.16

II

120

4247.38

II

O-23,537

4f “6s a eI,h

2% - 4fd6p z Vii

100

3838.98

II

O-26,041

4f46a a @Iat

-

3848.24

II

100 d

Nickel

Wavelength

co&L)

513-25,877 147626,772

4j46a a %Iat 4j46s a lI,b

17:t

-

26,041&

1470-27,449

4f46s a BIBt - 4jr6p y ‘Vi*

3802-28,857

4f468 a eI,k

- 4f’Sp y %I;+

4f ‘68 a ‘I,&

-

I 3848.31

II

100

3905.89

II

90

3848.52

II

85

3990.10

II

80

3775.50

II

80

3963.12

II

3802-29,027

80

4109.08

II

613-24,843

80

4451.57

II

3067-25,524

12”6t 4f *6s a 4I6h - 4f*6p .z eK;t

80

5249.59

II

7869-26,913

4f%d a BL8t - 4fh6p z eK;)

75

3889.93

II

75

3890.58

II

i5

3890.94

II

75

3901.84

II

75

4232.38

II

513-24,134

75

5130.60

II

10,517-30,002

75

5293.17

II

6637-25,524

29,027;*

4fp6s a @,Idt -

4f ’16s a “Id+

- 4f46p z @I;+

4f’5d a sLlot - 4f’Sp

z BK;t

4f45d a BL,t - 4f”Sp z BK;t

750

3414.76

I

205-29,481

3ds 4s1 a $Ds - 3d0 4~’

z “F;

750

3524.54

I

205-28,569

3d@ 4s’ a so,

z “P;

600

3515.05

I

88&29,321

600

3619.39

I

3410-31,031

- 3d0 4~’

3d=’ 4~~ a 3Dz - 3dg 4~’

z SF;

3d’ 4s’ a ‘D,

z ‘F;

- 3d0 4~’

500

3492.96

I

880-29,501

3d9 4& a 3Dz - 3d0 4p1

z “P;

460

3458.47

I

1713-30,619

3d0 4s’ a 3D, - 3dD 4pl

z JF;

460

3461.65

I

20529,084

460

3566.37

I

3410-31,442

3do 49’ a 3D, - 3d8 4814~1 .z “F;

440

3446.26

I

88%29,888

3d0 48’ a 3D, - 3ds 4p1

320

3002.49

I

205-33,501

3d@ 4~~ a 3D3 - 3ds 4s’ 4~1 y “0;

300

3012.00

I

341CL36,601

3dg 49’ a ID, - 3d8 4s= 4~’ y ‘0;

300

3380.57

I

3410-32,982

3ds 4s1 a ‘D,

- 3ds 4~’

z ‘Pi

300

3392.99

I

205-29,669

3d8 4s’ a 3Ds - 3d8 4~’

.z “0;

3d8 4s’ a 3D3 - 3de 4814~’

y 3”;

3ds 4s1 a ‘D,

- 3ds 4~’

280

3050.82

I

205-32,973

1700

4058.94

I

1050-25,680

1200

4079.73

I

695-25,200

5s a eD,t - 5p y %F;+

700

4100.92

I

392-24,770

5s a %D,+ - 5p y (Fit

600

3580.27

I

1050-28,973

5s a =Ddt - 5p y BP;t

550

4123.81

I

15624,397

53 a BD,t - 5p y 8F;+

460

4152.58

I

695-24,770

5s a ‘D,& - 5p y &F;+

5s a BD,) - 5p y eF;i

460

4163.66

I

154-24,165

5s a BD,t - 5p y “Pi+

420

4164.66

I

392-24,397

58 a 6D,t - 5p y BF;t

360

3791.21

I

1050-27,420

5s a =D,+ - 5p y (D&

360

4168.13

I

&23,985

340

3713.01

I

1050-27,975

280

3726.24

I

154-26,983

59 a %D1+ - 5p 2: =.D;+

280

3739.80

I

695-27,427

58 a BDst - 5p z aD;+

1159

5aaBDt

-5py81i;

59 a BD4+ - 5p y “D&

z ‘D; .z “0;

WILLIAM F. MEGQERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER Table 2--( contd.)

-

Element

Intensity

(A)

spectrum

(cm+)

Term combination 58 a BD,t - 5~ z BD;a

I

695-26,983

5s a BD,k - 5p z 8D;t

I

1050-25,200

280

3802.92

280

4139.71

240

3535.30

I I

(contd.)

Energy levels

392-26,713

I

280

Palladium

i

3798.12

Niobium

Osmium

Wavelength

O-28,278 I695-28,973 O-24,165

5s a BD4k - 5p y %Fit 5.9 a sDt

- 5p y sP;+

59 a BD,t - 5p y BP;b 5.3 a @Di - 5p y eF;t

240

4137.10

220

3094.18

200

3349.06

I

200

3358.42

I

180

3130.79

180

3575.85

I

180

3742.39

I

626,713

180

3787.06

I

154-26,552

170

2927.81

II

4146-38,291

5sa5F,

-5~250;

170

2950.88

II

4146-38,024

5saSF,

-5p

160

3697.85

150

2697.06

1225-38,291

4d4 a 6D, - 5p z “D;

150

3341.97

I

114%31,057

59 a 4F,t - 5p z 4G;i

150

3343.71

I

1587-31,485

59 a 4F,t-

150

3537.48

I

392-28,653

140

3163.40

140

3790.15

I

900

2909.06

I

O-34,365

5da 69 a 6D, - 5d” 6s’ 69

900

3058.66

I

O-32,685

5da 69 a 6D, - 5d@ 6s’ 6~1

IF;

800

3301.56

I

O-30,280

5d= 6~~ a 6D, - 5da 6.91 6pp’

‘F;

480

2838.63

I

5d’ 6s’ a sF, - 5d6 6s’ 69

“F;

460

3018.04

I

O-33,124

5da 692 a 5D, - 5da 6s’ 69

‘P;

440

4260.85

I

O-23,463

5d= 69 n “D, - 5d’ 6~16~’

z ‘0;

440

4420.47

I

5ds 69 a 6D, - 5da 6s’ 69

z ‘0;

380

2488.55

I

360

2637.13

I

360

3752.52

I

320

3156.25

I

320

3262.29

I

320

3267.94

I

300

3040.90

I

280

2714.64

I

260

2806.91

I

220

2498.41

I

8743-48,756

220

2844.40

I

5144-40,290

5d’ 6s1 a =F, - 5da 6s’ 69

“G;

220

4135.78

I

4159-28,332

5de 6.9 a sD, - 5d6 69 6~0’

‘Pi

200

2513.25

I

5144-44,921

5d’ 6s’ a 6F, - 5d’

“G;

200

2689.82

I

5144-42,310

5d’ 6s’ a 6F, - 5da 6s’ 6pl

“G;

200

2912.33

I

4159-38,486

5de 69 a 6D, - 5d5 69 6p’

“P;

200

2919.79

I

2740-36,980

5d= 69 a 5D, - 5da 6s’ 6pp’

“0;

200

3232.06

I

4159-35,090

5de 69 a 5D, - 5da 69 69

“P;

200

3782.20

I

4159-30,591

5da 69 a =D, - 5ds 6s’ 69

‘Pi

180

2644.11

I

5da 682 a 60, - 5d= 68’ 69

“F;

180

2658.60

I

514642,747

5d’ 6s’ a =P, - 5d’

“Da”

2600

3404.58

I

6564-35,928

4!46-36,455

II

II

2805-32,573

59 a “Fdht - 5p z 4G;+

695-28,653

392-27,427 II

II

- 52, z “G;

5s a eD,+ - 51, y eP;t 59 a BDt - 52, z eD;t 5s a BD,t - 52, z “D;

59 a BD,i-

2 =F;

5p z BD;h

5p z 4G&

59 a sDzg - 5p y %P;& 5s a 5F,

1050-27,427

58 a eD4t - 5p z %D;)

O-22,616 514645,316

- 5p z “G;

5d’ 6s’ a 6F, - 5d’

6~’

SF;

“G;

5da 692 a 6D, - 5de 681 6p’

“0;

2740-29,382

5d6 69 a sD, - 5da 6~16~1’

‘F;

5144-36,818

5d’ 6s’ a sF, - 5d6 6s’ 6231 “F;

4159-34,804

5ds 69 a 6D, - 5da 69 69

o-37,909

“F;

5da 69 a 6D, - 5d’ 6s1 69

‘Pi

5da 6sz a 6D, - 5d” 6s’ 6~1

“P;

o-36,826

5de 6.9 a 5D, - 5da 6s’ 6~’

“0;

o-35,616

5de 69 a 6D, - 5da 6s’ 6~9

“P;

o-30,591 2740-35,616

O-37,809

1160

5s a “Fd

3030-34,632

5144-40,362

-

- 5p z “G;

59 a 4F3+ - 5p z &G;+

3542-35,474

I

59 a SF,

2154-32,005

5d’ 6s’ a SF, -

48,756;

69

5s’ aD, - 5p’ sF”4

6p’

Relative

intensities for the arc spectra of seventy elements Table 2-(contd.)

Element

‘ntensity

Wavelength (A)

3pectrun 1

1Energy levels

Term combination

(cm-‘)

--

Palladium

2200

3609.55

I

7755-35,451

(c&d.)

2200

3634.70

I

656634,069

591 sD, - 5p’ =PO 3 5s’ SD, - 5p1 8Po

1400

3421.24

I

7755-36,976

5S sD, - 5~’ sD;

1300

3516.94

I

7755-36,181

59’ a02 - 5~’ “P;

1300

3553.08

I

11,722-39,858

5G ID, - 5~’ IF0

1200

3242.70

I

6564-37,394

5a1 aD, - 5~’ SD;

1100

3481.15

I

10,094-38,812

60

2535.65

I

L8,748-58,174 L8,722-57,877

Phosphorus Platinum

Potassium Preseodymium

59l sD, - 5p’ “F; 382 3p3 2Pi) - 382 3p2 4s’ 2Plt

38

2553.28

I

320

3064.71

I

632,620

5ds 6s1 a 9D, - 5d8 6~’

1;

280

2659.45

I

o-37,591

a sD, - 5d8 6p’

2702.40

I

7:

200

776-37,769

5de 6s’ 5d0 6s’ 5d8 69’ 5d8 6s’

a 3D, - 5ds 6~’

3;

a SD, -

6; 3;

392 3pa =P;* - 382 3pa 4-81=P,*

180

2733.96

I

776-37,342

180

2997.97

I

776-34,122

170

2929.79

I

160

2705.89

I

140

2830.30

I

130

2719.04

I

824-37,591

110

2628.03

I

776-38,816

1800

7664.91

I

o-13,043

3pa 481 “So* - 3pa 4plzP;t

900

7698.98

I

o-12,985

3pa 491 as@ - 3ps 4p’ “P&

460

4179.42

II

1649-25,569

4f86s a “I; - 4js6p z 6K,

340

4222.98

II

442-24,115

4f86s a “1; - 4js6p .z =K,,

340

4225.33

II

O-23,660

320

3908.43

II

2998%28,578

4fs6s a “I; - 4j36p z 81,

300

4062.82

II

3403-28,010

4fs6.s a “I; - 4fa6p z SK,

260 o

4100.75

II

4437-28,816

240

4143.14

II

2998-27,128

220

4189.52

II

2998-26,861

220 c

4206.74

II

4437-28,202

4fs6s a “I; - 4jS6p z =K, 4jS6a a “I; - 4fs6p z 6K, 4fs68 a “I; - 4fa6p z 51, 4fs6s a “I; - 4fs6p z 61,

200

4054.85

II

174626,398

4fs6s a “I; -

200

4056.54

II

5079-29,724 3403-28,509

4fs6, a “I; - 4f”Sp z SK, 4fs6a a “I; - 4f86p z =H,

a 3D, - 5ds 6~’

5d0 6s’ a sD, - 5d8 6~1

O-34,122

3;

5ds 682 a sP, - 5d@ 6pl

824-37,769

8; 5da 6s’ a $D, - 5d8 681 6~0’ 43”

O-35,322

5da 6.92a “1514- 5dD6~’ 5d0 6s’ a BD, -

7; 10;

4fa6s a “I; - 4fs6p z 61b

/

22,

190 c

3982.06

II

180 c

3877.23

II

170

4008.71

II

5079-30,018

150 c

4118.48

II

442-24,716

4fs6s a “I; - 4ja6p z 61,

150 c

4164.19

II

1649-25,657

4fs6s a “I; - 4fs6p z KI,

150

4408.84

II

140

3816.17

II

140 c

3964.83

II

442-25,657

140

3994.83

II

442-25,468

130 c

3918.86

II

2998-28,509

130 c

4141.26

II

4437-28,578

130

4305.76

II

442-23,660

I

4f s6s a “I; 4j36s a “I; 4f”Ss a “Is”4js6s a “I; -

120 0

3850.83

II

120

3989.72

II

442-25,500

I

4js6s a “I; -

120

4333.91

II

1649-24,716

1

110

4368.33

II

100

3830.72

II

100

3852.81

II

4fs6s a “I; - 4fs6p .z =H,

4f86s a “I; - 4f”Sp z SK,

O-22,675

O-22,886

116i

4f368 a “I; - 4fs6p z 51,

,

1

-

4fs6p z 6H, 4f86p z 6H, 4js6p z sI, 4fx6p z 616

16, 4y6s a “I; - 4f”Sp z 61, 4fS68 a “1; -

5,

WILLIAM

F. MEGQERS, CHARLES H. CORLISS and BO~DON

F. SCRIBNER

Table 2--_(CO&d.)

-

Element

Preseodymium (contd.) Rhenium

Rhodium

Rubidium Ruthenium

Intensity

100

Wavelength (A)

Energy levels

Spectrum

Term combination

(cm-‘)

O-25,468

II

3925.46

100 c

3965.26

II

1649-26,861

100

4297.76

II

o-23,261

100

4351.85

II

1744-24,716

5500 c

3460.46

I

o-28,890

4000 0

3464.73

I

O-28,854

1600 c

3451.88

I

800

3424.62

I

11,754-40,946

500

2999.60

I

11,754-45,083

O-28,962

400

3399.30

I

11,754-41,164

400

3725.76

I

23,632-50,464

360 c

4227.46

I

18,950-42,598

260

2887.68

I

11,754-46,374

260

4513.31

I

20,448-42,598 O-20,448

220 cw

4889.14

I

200

3338.18

I

20,448-50,396

180

4136.45

I

11,754-35,923

160

2428.58

I

O-41,164

160

2992.36

I

o-33,409

160

3067.40

I

160

3342.24

I

O-32,592 20,448-50,359 O-18,950

160 cw

5275.56

I

150 c

2508.99

I

150 c

3691.48

I

16,327-43,409

O-39,845

140

2965.76

I

11,754-45,463

130

5270.95

I

23,632-42,598

120

2715.47

I

11,754-48,570

110

3184.76

I

18,950-50,341

110

3185.57

I

18,95&50,333

11oc

3204.25

I

16,307-47,507

800

3692.36

I

750

3528.02

I

O-27,075 1530-29,866

700

3434.89

I

o-29,105

700

3657.99

I

1530-28,860

650

3700.91

I

1530-28,543

500

3462.04

I

2598-31,474

500

3502.52

I

500

3597.15

I

3310-31,102 5691-31,614

O-28,543

500

3856.52

I

480

3396.85

I

420

3799.31

I

5691-32,004

400

3470.66

I

347%32,277

400

3474.78

I

347%32,243

400

3583.10

I

153629,431

400

3596.19

I

2598-30,397

360

3323.09

I

1530-31,614

360

4374.80

I

5691-28,543

3000

7800.23

I

o-12,817

1500

7947.60

I

o-12,579

1000

3728.03

I

O-29,431

O-26,816

1162

4js6s a “I; - 4f”Sp .z &H, 4js6.s a “1; - 4js6p z 61,

4fs6s a “I; -

7, 4j868 a “1; - 4j*6p z sI,

5dS 682 a 5dS 6s= a 5dS 682 a 5da 681 a 5d’ 681 a 5d’ 68’ a

‘%Y,+ - 5d5 6s’ 6pl z (IP;) %Sz) - 5d” 69’ 6~’ .z BP;t ‘%,k - 5d5 6~~ 6p1 z (P;+

eD,t “Da* sD,+ 5d5 681 6pp’z 8P&5d6 6816~~2 BP;f 5de 6s’ a &D4+5d66816p’z “P;f 5d6 6.92a %‘,+ 5d66s’6p1z 8P;+W? 6s1 a 0D 5d6 688 a “Se4tf1 5dS &seQ W,+ 5d5 682 a %S,+ 5dh6816~‘~ “P&5d6 682 a Vz) 5d6 6.~2a %Yzt 5de 681 a eD,) 5de 6s’ a 6D,t 5d5 6.3’6~‘~ 8P;b5dB681 a %D,+ 5db 68’ 6~0’z “P& 5d”68’6p1zBPi+5d6 682 a 4a,+58 a dFpt 5s a 4F,t58 a aF,+5.9 a 4F,t58 a 4Fs)3t59 a 4Fzi 6s a 4F,t 4d0 e aDzt 58 a =F,&5s a “Fa+ 59 a =F,+ 5s a “F h8 ,.,;;I;;

5d6 6s’ 6p1 y “D;+ 5ds 6~’ Y ‘I”;* 41,164&

5d5 6s’ 6d1 e 5d6 6e1 7.+ e 5d” 6~’ Y 5d6 69’ 79’ e

8D,) %5’,+ ‘Fit “S,

5d= 6~~ 6pp’ .z “Pit 5ds 6s’ 6d’ e sD,t 5d” 6$6pl .z BD;) 41,164&

5d’ 68= 6~’ z (D;+ 5d4 6s8 6~’ z eD;+ 5d5 6s’ 6d’ e 8D,) 5d6 6.~~6~’ z BP;) 5d6 6s1 6p’ z ‘JP& 43,409;* 45,463&

5dS 6s’ 7.+ e “Sst 48,57Oi*

5d6 6g1 6d’ e 8Dzt 5d6 68’ 6d’ e 8Dlt 47,507;* 5p z ‘1D;t 51, z 4F;+ 5p z 4aib 5p z 4D;t 5p z da;i 51, z &Fit 5p z 4a;t 5p z 4a;t 5p .z $a& 5p z 4F;t 5p .z BF;t :;$

bs a hFsb - 5p z “F;+ 58 a 4F,t - 5p z lD;+ 58 a “Fa*- 5p z =a& 58 a =F,&- 51, z Wit 4pa 58’ as,& - 4pa 5p1 aP;) 4p3 58’ w,* - ape 5p’ aP;+ 5s1 a 5F, - 5~’ z “F;

Relative

intensities for the arc spectra of seventy elements Table 2+contd.)

Element

Ruthenium (contd.)

S~mcwimn

-i-

ntensity

Yavelength (A)

lpectrum

-

Energy levels

Term combination

(cm-‘)

58’ a 6F, - 59 z “G;

O-28,572

850

3498.94

I

800

3726.93

I

1191-28,015

59’ a SF4 - 5~1 .z6F0

700

3593.02

I

271%30,537

58’ a 6F, - 59 z ‘Gi

700

3798.90

I

1191-27,507

58l a SF, - 5~’ z “0;

700

3799.35

I

700

4199.90

I

6545-30,348

58l a “Fd - 59 z “F;

650

3436.74

I

1191-30,280

58’ a 6Fa - 59 z “G;

650

3589.22

I

3105-30,959

58l a SF1 - 59 z “G;

650

3596.18

I

2092-29,891

58’ a bps - 5$+ z “(3;

650

3730.43

I

2092-28,891

58’ a EF, -- 59 z “F;

600

3661.35

I

1191-28,495

58l a 6F, - 5~’ z “G;

550

3790.51

I

2092-28,466

58’ a 6F3 - 5~’ z “D;

550

4080.60

I

6545-31,044

500

3428.31

I

500

4212.06

I

6545-30,280

58l a aF4 - 59 z 5Go

500

4554.51

I

6545-28,495

58l a a-F4 - 59 z aGi

360

3786.06

I

271%29,118

58’ a 5F, - 5~’ z “D;

340

4297.71

I

8084-31,346

58’ a SF, - 5~’ z “G;

320

3417.35

I

2092-31,346

58’ a 5F3 - 5~’ z “G;

320

3742.28

I

2713-29,427

58l a SF, - 59 z “F;

300

3634.93

I

2092-29,595

58’ a &F, - 59 z ‘F;

300

3925.92

I

@25,465

58’ a SF, - 59 z ‘D;

260

3745.59

I

12,207-38,898

58’ a 3G, - 59 z =H;

220

4372.21

I

7483-30,348

58’ a =D, - 5p’ z “F;

350

3568.27

II

3910-31,926

4fe68 a aF,a -

&*

350

3592.60

II

305%30,880

4f “6s a sF6b -

8G;*

280

3609.49

II

2238-29,935

4fe68 a sFai -

%Zt

280

3634.29

II

1489-28,997

4fa6s a “F3+ -

280

3885.29

II

3910-29,641

4fa68 a sFBt - 4fa6p

8G& 115;)

3739.12

II

220

58l a 6F, - 59 z “0;

O-26,313

58’ a spa - 5p’y

61””

58’ a 6F, - 59 z ?Ff

O-29,161

327-27,063

4fs68 a 8F,t -

et

4jfa6.sa 8F,t - 4f’Sp

56&

4fa68-a SF,t -

Gt

I 3739.20

II

200

3854.21

II

200

4424.34

II

3910-26,506

180

3661.36

II

327-27,631

180

3670.84

II

838-28,073

4f’68 a 8F2t -

8Git

170

3922.40

II

3053-28,540

160

3731.26

II

838-27,631

150

4280.79

II

391%27,263

4f66s a 8FB+ - 4fa6p

75;)

150

4467.34

II

5318-27,696

4ja6s a (Fbt - 4j”Sp

140

3306.39

II

3910-34,145

4j’6s

a 8FBt -

84:) 162;+

140

3604.28

II

3910-31,646

4fB68 a 8Fsk -

128;)

140

3621.23

II

838-28,445

4fe68 a 8F2) -

3760.69

II

1489-28,072

G,

140

4ja68 a “Fst -

130

3928.28

II

1489-26,938

BGt

4fe68 a “Fs$,

130

4118.55

II

5318-29,591

4fa6s a SFhgt-

130 120

4318.94

II

2238-25,385

4fs68 a “Fdh, - 4j”6p

3728.47

II

5318-32,131

4js68 a sF,+ -

38;t 143;)

120

3735.98

II

2238-28,997

4js68 a sF,t -

120

3793.97

II

838-27,188

“G,

4j’6s

120

3797.73

II

73:a

1163

4fs68 a 8F6+ - 4f”Sp

‘&a

4js6a a 8F,t -

%t

a 8F2t - 4js6p

66& 114;*

WILLIAM F. MENDERS, CHARLES

Table 2--, (cone?.)

-

Element

Samarium (cm&.)

Scandium

Wavelength

Intensity

H. CORLISS and BOURDON F. SCRIBNER

(A)

Energy

spectrum

levels

Tarm combination

(cm-l)

_-

120

3826.20

II

438630,514

4fa6s a “Fdhh-

127;&

120

3843.50

II

3499-29,510

4f6s

113;*

120

3896.98

II

327-25,980

120

4329.02

II

1489-24,583

120

4434.32

II

305325,598

110

3788.12

II

2003-28,394

110

4296.74

110

4390.86

II

1489-24,257

110

4433.88

II

3499-26,046

I

110

4674.60

II

1489922,875

3613.84

II

178-27,841

2100

3911.81

1800

3630.75

1800

3907.49

I

1800

4020.40

I

1800

4023.69

I

168-25,725

I

6%27,602

II

4fa6s a 8Flb - 4fB6p

47;t

4ffa6s a SF,) - 4fa6p

242Ut

4fe6s a SF66 - 4jfB6p

43;)

4f 668 a BF,+ 4fe6s2 a ?Ps 4f O68 a BP,) 4fe68 a %Fzt4fs68 a 8F,t 3d’ 4S1 a sD, 3d’ 48’ a =D,& 3d’ 48’ a sD, 3d’ 48= a 2D 3d’ 4s2 a 2D;; z 3d’ 48’ a 2D 3d’ 4S1a ID;’ 3dl 48’ a $D, 3dl48’ a 8D, 3d’ 4S1 a ‘D, 3d’ 48’ a sD, 3d’ 4S1a sD, 3dl48’ a aD, 3dl 48’ a aD, 3d’ 48’ a =D, -

4021-27,288

2500

a “Fa+ -

o-25,585 O-24,866 168-25,014

9%

4ffa68 6p z ‘G; 4f”Sp 2% 4fe6p 4Qi, 4f”Sp ‘%a 3d’ 4~’ z sF; 3d’ 48’ 4~9~ =F& 3d’ 49 z 3F; 3d’ 48’ 4p’y 2F;t 3d’ 48’ 4p’y 2D;t 3d’ 48’ 4~‘?12;~~+ 3d14$9 3d’ 4~’ z aDi 3d’ 4~’ z ““2” 3dl4p’ z lF; 3d’ 4~’ z “D; 3d’ 49 z “0; 3d1 49 z “P; 3d’ 49 z “D; 3d’ 4~’ z “F;

1400

4246.83

II

2541-26,081

1200

3572.53

II

17%28,161

1200

3642.79

II

900

3353.73

II

2541-32,350

900

3576.35

II

68-28,021

700

3580.94

II

600

3372.15

II

600

3558.55

II

68-28,161

600

3645.31

II

178-27,602

40

2039.85

I

1989-50,997

34

1960.26

I

o-50,997

Silicon

360

2516.11

I

223-39,955

38’ 3p2 ‘P, - 38’ 39 48’ “P;

260

2881.60

I

6299-40,992

Silver

5500

3280.68

I

o-30,473

2800

3382.89

I

O-29,552

38’ 39 ID, - 3S2 3fI’ 48’ ‘P; 4d’o 59’ “A’,,,- 4d’Q 5p1 =P;)& 4d’O 58’ 2S - 4d’O 5p’ =P;;t

Sodium

2000

5889.95

I

O-16,973

1000

5895.92

I

O-16,956

2pa 38’ ‘So* - 2pe 3p’ “Pi+

4600

4077.71

II

O-24,517

4pa 58’ “So, - 4pa 5p

3200

4215.52

II

o-23,715

4$,’ 58’ ‘So) - 4p’ 5p

650

4607.33

I

Selenium

Strontium

Tantalum

300

2653.27

I

300

2714.67

I

280

2647.47

I

240

3012.54

220

2656.61

I

220

2850.98

I

o-27,444

O-27,918 178-29,824

2933.55

I

2661.34

I

180

2685.17

180

2963.32

170

2850.49

160

2608.63

140

2400.63

-

2@ 38’ ‘Si: - 2@ 39 ‘p;+

5dS 682a &Fzb -

O-36,826 937,761

37,761;*

2010-35,746

“Pi 5dS 6s2 a 4F1+ 37,630& 5da 680 a 4F 5d8 6s 6p y “G& 5dS 6s1 b 8F4’ 3 1 49,647; 5da 6s2 a ‘IF,+ 34,07q* 5d8 6s2 a “F4+ 43,185;) 5d2 6s2 a “PO 41,355; 5da 6.+ a 4F,t 35,746;+

2010-40,333

5dS 6sB a 4F,t -

6187-47,830

5dS 6s’ a 6F,

5621-40,686 14,581-49,647 O-34,078 5621-43,185 4125-41,355

II

39,688& 5dS 68 6p y &G;&

5331-38,516 O-37,630

I

2P10)

=f% 4pa 58= ‘S,, - 4pa OS159 ‘P;

2010-39,688

II 180

4p4 ‘P, - 4p3 58’ “S;

O-21,698

II

200

4p4 “PI - 4p8 5S1 ‘S;

II I II

1164

-

-

40,333&

26G;

Relative

intensities for the &PCspectra, of seventy elements Table 2-

tntansity 140 140 140 140 140 130 120d

Tellurium

Terbium

120 120 120 100 100 100 90 90 90 90 90 90 70 55 55 600 460 440 400 380 340 340 320 w 280 240 240 220 200 200 d 200 190 190 180 170 170 170 160 160 160 150 140 140

vVavelength (A) 2635.58 2710.13 2748.78 2940.22 3311.16 3626.62 2526.35 i 2526.46 %X9*43 2698*30 2758.31 2636.90 2749.83 3607.41 2675.90 2775.88 2891.84 2965.13 2965.54 3318.84 2385.76 2142.75 2383.25 3509*17 3702.85 3568.51 3324.40 3676.35 3561.74 3848.76 3874.19 4326.47 3650.40 3703.92 3899.20 3658.88 3976.84 4318.85 3776.49 4033.06 4005.57 3568.98 3600.44 3981~89 3293.07 3765.14 4338.45 3901.35 3523.66 3830.29

;pt%tFWl II I I I I I I I I I I I I I II I I II I I I I I

:ontd.) Energy levels (cm-l) 1031-38,962 3964-40,851 3964-40,333 o-34,001 5621-35,813 3964-31,530 2010-41,581 3964-43,533 o-39,060 2010-39,060 2010-38,253 5621-43,533 9705-46,061 20f0-29,723 4416-41,775 o-36,014 %OlO-36,580 O-33,716 2010-35,721 2010-32,132 4751-46,653 O-46,653 4707-46.653

II II II II II II II II I 11 II II II II I II II II II II II II I I I II. II

1165

Term combination

5da 6.9 a &F, 5&=6.98a 4_F,h5cP 6s2 a “Pa, 5cP 6s= a 4P,g SdS 692 a “F4$ 5da 6a= a- &Fsk5ds W a 4F,h 5@ 6.~~a “Fst 5dS 6s2 a 4Flh 5da 6sa a “F%, 5da 6.P a &F,&5da 68%a “Fat 5d3 6s= a YS,+ 5d8 6s2 a “Fzh MS 6.G a “F4 5da 6sz a 3F,h 5d8 68= a pF,b 5d8 69’ a 6F, 5dS 6.sea *F,& 5@ tis2 a 4F,+ _ 5~~ $P1 5p4 SP, 5p4 8P, -

=a; 40,851& 40,333& 34,00$& 35,813& 31,530;) lid&6;~ y "F;* 43,533;* 39,060& 39,060;+ 38,253;+ 43,533;) 46,061& 29,723& 41,775; 5dS 6s 6p z W;+ 5dS6s 6p y ‘Fit 33,715; 35,721& 32,132& 5pS 6s’ “S; 533%6s’ 3s; 5p* 6s’ “S;

WILLIAM F. MEQ~ERS, CHARLES H. CORLISSand BOTJRDON F. SCRIBNER

Element

VVrtvelength

I ntensity _-

-Terbium (c&d.)

Thorium

48 d 48 48 d -

(A)

-

Table 2- -(ClOdd.) I Cnergylevels (cm-‘)

S pectmm

.-

Term combination

.II II II II

3219.95 3218.93 3540.24 3579.20 4061.59 3285.04 3711.74 3755.24 4144.46 3519.24 5350.46 3775.72 3529.43 2767.87 4019.13 2837.30 3469.92 3392.03 3741.19 4381.86 4391.11 3180.20 4116.71 2832.31 3351.23 3402.70 3434.00 3609.44 3256.28 3262.67 3291.74 4069.20 3325.12 3839.74 4108.42 3188.23 3435.98 3721.82 3675.57 4085.04 4086.52 4094.75 4282.04 2870.40 3078.82 3511.56 13511.67 3539.59 3617.02 3617.12

130 120 120 120 120 110 100 d 100 100 2000 1800 1200 cw 500 440 d 300 110 95 90 90 90 80 75 75 70 70 70 70 70 65 65 65 65 60 60 60 55 55 55 50 60 50 50 50 48 48

Thallium

-

-

7

I II II II II I I I I I

4147-32,957 1522-30,994 1522-28,244 6700-29,515 449&27,257 1522-32,957 6168-30,453 4147-39,443 1522-31,353

id27s’ a 4P3+ 8% ia? 79’ a 4F,t73& id=7$ a 4Fz+67i if’ 6d17s’ a 4Hi+ lll,t if’ 78% a BF;h- 5f’ 7s’ 7~’ YJs+ kP 79= a &‘p 6% if’ 6d’79’ a ,H’:r 3 1124) lOS& ida7~~ a pF,+id=7.~~ a 4F,t6d’ 7s’ 7~’ IFit

1860-30,972 4113-31,811

ida 78l

7793-26,478

II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II -

O-26,478 7793-36,118 O-36,118 o-24,874

6s* 6~’ 2P;) 688 6~’ BP;+‘6sa 6~’ 2P;t 6a2 6p1 eP;t 6s2 6~’ =P& id’ 782 a eD,t-

779%36,200

id’ 7$

if’

6a=6d’ 2D,b 6sa 7s1 =Se& 6aa78l %Sob 6s2 6d’ fDlt 6$ 6d1 eD,t 57t

a &Flt a aD,t -

=P;t 77;t

6168-36,809 6214-36,584 6691-31,259 4147-34,212 6700-32,736 4490-28,824 1860-33,216 o-29,095 1860-28,721 1522-28,721 10,189-34,662 O-24,464 O-24,41& 616%29,51E 1860-36,68E 4113-36,584 4490-32,96(

6da 7s' 6dl7s2

a IFIt - 6da 7~’ a =Dat- 6d’ 79 7~’ 4F;i

5f’

a aF;+-

O-28,244 15,305-42,944

6d’ 7s=

a BDlt -

6da

a aH,t-

-

1166

6d’ 7a1a 4H& -

Id2 7s’

a hF4)- 6da 7~’ 5f’ 6d’ 7s’ a 4Fi+ 9d= 7~~ a 4F,k5f 16d’ 7.~~ a IH$ 5f’ 788 a =F;+ - 5f’ 78l 79 t3de7s1 a 4F,t 6d’ 7.sa a =Dla 6d2 7~~ a 4F,t 6dB7.~~ a 4F 5f’ 6d’ 7~~a 4H” 6d’ 7aa a, SD;; : 6d’ 78a a =D 5f~6d’7s1a4H$

79

1433t w;, 1142t 6% l%t 4F2t 6% 6% 4D10t 4D;t l%t

55;t 5%

lll4t %t

1201t 67”2t 6d’ 7~~7~’ 4D;t

Relative

intensities for the arc spectra of seventy Table 2-

Navelength

Spectrum

elements

COMd.)

Energy levels

Term combination

Element

Intensity

Thorium

46

2747.16

II

(c&d.)

46

3752.57

II

9238-35,879

a 2Dlt - 6da 7p’ 4FYt if’ 6dl781 a =G& - 5f 1 7a1 7~’ BGst

44

2565.60

II

1860-40,826

Sd=79’

a pF1+ - 6da 7~’

44

3287.79

II

1522-31,929

Lid2781

a ‘F,*

44

3292.52

II

6700-37,063

44

3334.61

II

621636,194

if’ 6dl 7s’a4Ho 4*1454) !ida79’ a ‘F4* - 6d’ 7~~ 7p1 IF;+

44

3337.87

II

1860-31,811

3dB7a1

44

3358.60

II

1860-31,626

ki? 7s’

44

4178.06

II

7332-31,259

jf16d17s’a~F”

1142t

44

4208.89

II

6700-30,453

if’6d’7s1a~H~~I

42

2692.42

II

1124) ‘D;

42

3238.12

II

42

3719.44

42

3803.07

42

3929.67

II

800

3462.20

II

Thulium

Tin

Titanium

(A)

(cm-l) O-36,390

id’ 7a=

a dFlt -

77i a 4Flt - 6d’ 7s1 7p1 “Di

o-37,130

W 792

I

o-26,878

Sda7+’

a 8F2 -

2687;

I

C&26,287

W ‘isa

2628;

&25,440

jd’ 7sa

a 8F 2a =D,+-

a =D,+ - 6da 7~’

6%

&25,980

4f1*6a1 “F;

O-24,418

4f’=‘6sp aF;t-

I

O-24,349

I

O-26,889

4f IS682 =F”a* - 24,349,) 4f136se BF;t- 26,889,)

O-23,873

4f1s6s8 BF;+-

II

750

3848.02

750

4094.19

700

3131.26

700

4105.84

650

3717.92

650

4187.62

I

600

3425.08

I

- 25,980, 24,418,+

II

23,873,)

II

237-29,425

4fls6a1 “Pi

- 29,425,

600

3795.76

II

237-26,575

4f186tz1“F;

- 26,575,

500

3761.33

II

o-26,579

4f1s6s1 “F;

- 26,579,

500

3883.13

O-25,745

4f=6sp

460

3441.50

460

3453.67

440

4203.73

I

O-23,782

4f=6sa

eF;)-

23.782,

420

3744.07

I

O-26 701

4flr6s= IF;*-

26,701,

400

3700.26

II

400

3761.91

II

400

3887.35

I

aF;h - 25,745,)

II 237-29,183

II

237-27,254

I

4fls681 “F;

- 29,183,

4f186s’ “F;

- 27,254,

O-26,575

4f=6a1 “F;

- 26,575,

&25,717

4f1L68e aF;t - 25,717

O-27,00?

4f=‘6s1 “Pi

II

380

3362.62

320

3701.36

1400

2839.99

I

1000

2863.33

I

o-34,914

850

3034.12

I

1692-34,641

700

2706.51

I

1692-38,629

700

3009.14

I

1000

3349.41

650

3998.64

600

‘Df

- 6d’ 7s1 7~’ =D;*

II

3428-38,629

1692-34,914 II

I

3361.21

II

I3361.26

I

600

3653.50

I

5$0

3234.52

II

- 27,009,

5.~25p= SP, - 5s2 5~’ 681 BP0 : 5sa 5p* SP, - 5s2 5~’ 6s’ 8P 1 5se 5pa BP, - 5se 5~’ 681 sP” % 5sa 5p2 8P, - 58= 5~’ 6s’ 8P 2 5a8 5~2 3P, - 5aa 5~’ 6~~ “P;

393-30,241

48 a 4F4t - 4p z 4G;t

387-25,388

48' a lF,

22529,968

49 a 4FSt-

170-29,912

4se a ‘F,

- 4p w “0;

387-27,750

4sa a ‘F,

- 4p y “0;

393-31,301

49 a “F4+ - 4p z 4F&

- 4p y “F; 4p z 4G&

550

3642.68

I

170-27,615

550

4981.73

I

6843-26,911

4s

500

4305.92

I

684%30,060

48 asF,

-4~~60;

500

4533.24

I

684%28,896

48 asF,

-4p

1167

4sa a =Fs - 4p y “G; a6F,

-4~

y6G; y6Fg

WILLIAM F. MEGGERS, CHARLES H. CORLISS and BOURDON F. SCRIBNER Table 2-(confd.) Element

Tit~ium (co&d.)

Tungsten

Uranium

Intensity

Wavelength (8)

480

3341.88

Spectrum

Energy

I

I

480

3372.80

480

3383.76

480

3989.76

440

3236.57

440

3752.86

I

levels

Term combinetion

(cm-‘) o-29,915

48’ a 8F,

- 4p z “a;

II

4629-34,543

48 a 2F,t - 4~ z %;+

II

94-29,734

48 a &Fzt - 4p z “a;,

II

o-29,544

I II

48 a &Flg - 42, z hQ;t

170-25,227

482 a aF,

225-31,114

48 a 4F,i-

- 42, y “F;

387-27,026

4sa a sF4

-4~

48’ a 8F,

-4~

Q

z “F& z “F;

440

3958.21

I

387-25,644

440

4991.07

I

6743-26,773

400

3635.46

I

o-27,499

48= a SF,

- 4p y “a;

400

3981.76

I

O-25,107

4S2 a SF,

- 4p y “F;

380

3948.67

I

O-25,318

48= a “F2 - 4p y “0;

380

3956.34

I

17%25,439

4e2 a 3F,

- 4~ y “0;

380

4999.51

I

6661-26,657

48 a 5F,

-4p

360

3349.04

4898-34,748

48 a =FBt-

II

48 a “Fd -4~

ysD; y “(I$,

y “a;

41, z =a&

360

3371.45

I

387-30,039

48= a sF4

950

4008.75

I

2951-27,890

5d6 6s’ a ‘5,

- 4p z “Q;

550

4074.36

I

2951-27,488

5d5 6s’ a Y?, - 5d5

6p1 z ‘P;

450

4294.61

I

2951-26,230

5d= 6a1 a ‘S,

6p1 z ?P;

- 5dS - 5d5

6p1 z ‘Pi

320

2724.35

I

2951-39,646

5d5 6s’ a iS’s, -

39,646;

300

2944.40

I

2951-36,904

5d5 6s’ a ?S, -

36,904;

300

2946.98

I

2951-36,874

5d6 6s’ a YJ, -

36,874;

280

2551.35

I

260

2681.41

I

260

2718.90

240

3617.52

240 200 200

5da 6s= a =D, -

39,183;

2951-40,234

5d= 6s’a

40,234;

I

2951-39,720

5d6 6s’ a %,

-

I

2951-30,587

5d6 6s’ a ‘S,

- 5d4 6s’ 6~1 z SP;

4302.11

I

2951-26,189

5d5 681 a ?Y, - 5d4 6s’ 6~1 z ?D;

2656.54

I

2951-40,583

5d6 6s’ a %“s, -

2831.38

I

2951-38,259

200

3867.98

I

2951-28,797

5dS 681 a ‘S, 5d5 6s’ a ‘S,

190

2896.45

I

2951-37,466

5d5 681 a ‘S’S, -

37,466;

160

2435.96

I

4830-45,869

5d4 69= a 5D, -

45,869;

160

2481.44

I

6219-46,506

5d4 692 a 6D4 -

46,506;

160

3817.48

I

2951-29,139

5d6 69’ a ‘S8 - 5d4 6s’ 6~’ z “F;

O-39,183

YY, -

39,720;

40,583;

38,259; - 5d4 68’ 6~’ z ‘0;

150

4269.39

I

2951-26,367

5d= 6s’ a ‘S,

-

26,367;

140

2466.85

I

3326-43,851

5d4 6s= a 5D, -

43,851;

130

3215.56

I

6219-37,309

5dP 6s= a 6D, -

37,309;

120

2474.15

I

6219-46,625

5d4 6$ a =D, -

46,625;

120

2547.14

I

3326-42,573

5d4 682 a sD, -

42,573;

120

3768.45

I

1670-28,199

5dP 6s2 a 6D, - 5d4 6s’ 6~’ z “P;

120

3780.77

I

2951-29,393

5d= 681 a ‘5,

120

3835.05

I

3326-29,393

5d4 6s= a =D, - 5d4 6s’ 6~’ z “P;

110

2459.30

I

3326-43,975

5dd 68= a sDz -

110

4102.70

I

6219-30,587

5d4 69%a &D, - 5d’ 681 6p’ z “P;

360

3859.58

II

180

3854.66

II

160

3670.07

160

3890.36

160 150

- 5d4 6s’ 6~’ z “P;

289-26,191

5fs6d’

78l

L&

II

915-28,154

- 281,*

289-25,986

L&

- 260,g

4090.14

II

1749-26,191

5f86d1 7s1 5fa6d1 79’ 5fa6d178’

K&

II

Lit

- 261,&

3831.46

II

1168

- 261,t

43,975;

Relative intensities for the arc spectra of seventy elements Table 2-(co&d.) Element Uranium (co7&&)

Intensity

3

(A)

cSpectrum

_

140 140

3782.84 3812~00

140

3865-92

130 120 110 100 95

3584.88 4050.04 3871.04 4171.59 3566.60

I

3839.62 3943.82 3985.80 3701.52 3881.46 4042-76 4241.67 3748.68 3489.37 3514.61 4062.55 4153.97 4116*10 2941.92 3659.16 3826.51 2889.63 3746.41 4341.69 3550.82 3561.80 3638.20 3854.22 3874.04 3878.09 3892.68 3899.78 4543.63 4379.24

I I

90 90 85 80 75 75 75 70 65 65 65 65 60 55 55 56 50 50 50

Vanadium

Wavelength

48 48 48 46 46 46 46 46 46 950 700

3183.98

700 550 500 500 420 400 400 380

4111~78 4384.72 3093.11 3185.40 3183.41 3102.30 3703.58 4389.97

360

4408.51

340

3110.71

Energy levels (em-l) -.

Term combination

289-26,717 O-26,226 2295-28,154

II I II

O-27,887 O-24,684 o-25,826 1749+25,714 620-28,650

II I II I

3801-29,838 O-25,349 5260&30,342 5527-32,535 4585-30,342 620-25,349 4585-28,154

II II II I II II I I II I II II I II II II II II I I

I I II I I II I I II I I I 1I

_!_II 1169

79 4I& - 247,+

!p 6d’ 7%2JL;

- 258,

ifs 6dl 7%’ Lia_ - 257s+ ifa 6dl 7%=“Ki - 287, if” 6dl7%~ SL; jlf”6dl 7se $Lg 5fa6dl 7s’ LG) T.ff” 6d’ 791 Kig jf 36d2 792 i::” jf8

6dl

if8 6cP

- 299, - 253, - 303,t - 32Sa4 I liz:”

6M& - 281,h

jfs 6dl 79 SLg - 287,

O-28,650 o-28,444 O-24,608 O-24,067 O-24,288 5527-39,508 620-27,941 289-26,415 289-34,886 5527-32,211 289-23,315 O-28,154

ifa 6d* 7%”SLG 78%41& jP jp 6d’ 78%“Lg jfB 7%=4I;a jf” 6d’ 781 K& jja 6d’ 7sa *K” ifa 6# 7%’ Lii 5fs6d’ 791 Lgi

-

5fS

- 281,g

3801-31,279 O-25,938

Sf*6d’ 7%=5fi; - 312, 5f36d’ 7%25L;; - 259,

5260-30,942 2295-27,930 91622,917 242s25,254 32%31,722 o-31,398 2425-26,738 2311-25,112 3163-35,483 583-31,937 137-31,541 2968-35,193 2425-29,418 222&24,993 2153-24,830 2112-24,789 2809-34,947

II II II

ifs

792 “Iit

284, 2465$ 2407 243,g 395? 278, 2648+ 349,~

WILLIAM

F. MENDERS, CHARLES H. CORLISS and BOURBON F. SCRIBNER Table 2

Element

Vanadium (c&d.)

Ytterbium

Yttrium

Zinc

Intensity

Wavelengtk (A)

340

4115.18

spectrum

contd.) Energy

levels

Term combination

(cm-‘)

____ I

2311-26,605

49’ a 6D,t - 4p1 y sD;t

320

2908.82

II

316%37,531

481 a “Ffj - 4p1 z “0;

320

2924.02

II

3163-37,352

4s’ a SF,

320

3066.38

I

55%33,155

4Sa a 4F,t

320

3855.84

I

55%26,480

4s2 a ‘F,+

280

3840.75

I

323-26,353

4e= a 4F,t

280

4395.23

I

215%24,899

4s’ a BD,i

280

4408.20

I

2220-24,899

49’ a 6D,t

260

3118.38

2687-34,746

4&a

240

4128.07

I

240

4132.02

I

220

2924.64

220

4099.80

220 220

II

SF, 4s’ a 6D,g 49’ 4*1 aa 6D $t 49’ a 6D;1 4s’ a 6Dlg 4s’ a 6D,i -

2220-26,438 231 l-26,506 2968-37,151

II I

2220-26,605

4105.17

I

2153-26,506

4407.64

I

231 l-24,993

- 4pl - 4p’ - 4~’ - 4~’ - 4p1 - 4~’ -4~’ - 4p’

.z “Pi

4~’

y =D&

4p’ y “F;*

II

O-27,062

4ff” 6a1

%S,,* - 6p1

II

o-30,392

4jll 6a1

%S& - 6p1

1900

3987.98

500

2891.38

340

3464.36

280

2970.56

II

180

2750.48

II

21,418-57,765

4ff’” 682

140

2653.74

II

21,418-59,090

4ff’” 682

140

5556.48

130

3031.11

75

7699.49

70

3454.07

II

70

3476.31

II

70

3478.84

II

65

2464.49

1500

3710.30

II

1300

3600.73

II

1200

3774.33

II

1045%27,532

1200

4374.94

II

3296-26,147

1000

3611.05

II

104628,730

1000

3633.12

II

1000

4102.38

I

530-24,900

950

4077.38

I

o-24,519

900

4128.31

I

530-24,747

850

3788.70

II

840-27,227

800

3242.28

II

1450-32,284

800

3601.92

II

84%28,595

II

3296-27,227

800

4177.54

750

4142.85

600

3327.89

4flk682 4flk6s’

%SOt -

34,57@

O-28,857

4ff1*6~2

‘S,

28,857;

O-33,654

4f’a 6s’

%‘fJ z$+ 3) -

57,765;&

=F;+ -

59,090,*

o-17,992

IAS,, - 69’ 6p1 ‘P;

4f14 6s2

19,710-32,695

%,+

-

58,961,+

‘So

-

40,564;

1450-28,394

4d’ 5S1 a 8D,

1450-29,214

4d’ 591 a SDS 4d’ 59’ a sD2 4d’ 581 a ‘D, 4d’ 59’ a 8D2

-

v’”

O-24,131 3296-33,337 530-28,140

I

550

3620.94

500

3216.69

II

1045-32,124

II

1045-29,214

500

3549.01

1000

2138.56

I

O-46,745

140

3345.02

I

%2,890-62,777

1170

6~~

582 a ‘So

O-27,517

II

2 - 6s’ 7~~ 8S 1 26,759;& 55,702,+

30,224;+

O-40,564

I

- 6~~ 6~’ “P;

,5pl:3

4ff1*681

30,22&58,961

I

33,654;*

32,982;+

;;:: ;;:

26,759-55,702 O-28,758

-

‘SO

O-32,982

II

2Gt 2p;t

o-34,575

O-25,068

I

z “~2; y @D;*

y eD;t

3289.37

I

y BP;t

4~’

3694.19

I

y “Fit

4~’

3200

II

y 1D;t y 4D;b

4P’ y @Dit

2600

I

z “Pi w 4F;t

-

4d’ 5s= a =D

ii;

5i;

g -

4d’ 5s1 a sD: 4d’ 581 a aD, 4d’ 58’ a ‘D, 4d’ 5s2 a 2D 4d’ 581 a 1Dz

28,758;)

4d1 5p’

4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’ 4d’

z IF:

5p’

z llD;

5p’

z 8F;

5p1

z ID;

5p1

z aD;

5~’

z lP1”

5s’ 5p’y

BF;t eF;t 5s1 5p’ y BD;t 5~’ .z “F; 5s’ 5p’y

5~’ 5p’

Y “Pi z “0;

5p’

z =F;

I ;;:

z?

;=f$++

4d’ 5s2 a =D 4d’ 58’ a ,D:+ I,“;:

$?’

“v’z[

4d’ 581 a 8D2 - 4d’ 5p’

z aD3 ‘So - 3d10 4G 4~’ ‘PI 3d’o 4~~ 3d’Q 4s’ 4331=P” - 3d’o 4S1 4d’ sD3 2

Relative

-

-

T-

I Navelength

1ntensity

Element

intensities for the arc spectra of seventy elements

Elpectrum

(A) -I-

Table 2-(c&d.)

Zinc

140

(d.) Zirconium

900

3391.98

II

750

3438.23

II

650

3496.21

550

3601.19

340

3556.60

II

340

3572.47

II

-

Term combination

(cm-‘)

3IdlO4s’ 4p’ “P; - 3d’O 4s1 5s’ a~,

12,890-53,672

I

4810.53

-

Energy levels

4da 5~~ a ‘Fdht - 4da

5pi z aa;,

763-29,840

4dZ 59’ a ‘Fsst - 4dB

5pi z da;*

315-28,909

4da 5s’ a ‘F,& - 4#

5~1 z

132330,796

II I

124L29,002

4s

375831,866

4dJ

58%a “Fd - 4da 5s’ 5p’ z b aFaa-

4da

aa;,

aa;

5p’ z 4F;i

4da 5a1 a 4F 4d2 58a o ,j$:z:

5$ z:

570-28,750

4ds 5s= a SF,

- 4da 58’ 5~’ z “a;

76328,909

4da 5s’ a ‘Psi

- 4da

4d= 5sa a “F,

- 4de 58’ 5~’ z “F;

4d= 5s= a SF,

- 4d= 5s1 5~’ z “F;

O-27,984 O-28,404

; :;t

320

3519.60

I

280

3547.68

I

280

3551.95

280

3835.96

I

260

3863.87

I

570-26,444

260

3890.32

I

1241-26,938

4d= 58s a 3F4 - 4d3 5s’ 5p’ z “F;

200

2678.63

II

1323-38,644

4d= 5s’ a “Fpf - 4d’ 5a1 5~’ y &Fit

200

3279.26

II

76331,249

4dz 5s’ a aFFst- 4da

200

3481.15

II

6468-35,186

4da 58’ a 2Fzt - 4d2

5~1 2

200

3576.85

II

330631,249

4d3

5p1 z ‘F&

200

4687.80

5889-27,215

4d3 5s’ a 5F6

- 4d3

5pi Y

190

3479.39

II

5753-34,485

4d= 5s’ a zF,+ - 4dS

5pi 2

180

3613.10

II

315-27,984

4d= 5s’ a ‘IF’,* - 4d2

5~1 2

180

3614.77

II

2895-30,551

180

3623.86

I

180 -

3891.38

180

4012.70

II

O-26,062

I

4d3

b 4F,t-

4da

b 4Fzi - 4dB

5pi 2 4a&

5p’ z 4F;*

=a;&

“a; =a& aa;,

5p’ z OF;+

570-28,157

4d= 5s= a SF,

- 4dz 59’ 5~’ w “F;

I

1241-26,931

4da 5s= a 3F,

- 4de 5si 5~’

I

5541-30,087

4d” 5~~ a “Fd

- 4d3

.z ‘0;

5~’ z “D;

180

4081.22

I

5889-30,385

4d3 5s’ a SF5 -

180

4227.76

I

5889-29,535

4d3 5a1 a SF5 - 4d3

5~’ y “FE

180

4239.31

I

5541-29,123

4d3 58i a 6F,

5~’ y “F;

-L

4d3

- 4dJ

5~’ z “D;

-

-

Here are listed the relative intensities, the wavelength in air, the spectrum (I or II), the values of the energy levels, and the term combinations. Symbols used in the intensity column have the following significance: c, complex, d, unresolved double line, h, hazy, w, wide. In this table (as well as in the complete tables) all energy levels are given in vacuum wavenumber units (cm-l), for which the name Kayser has been proposed [34]. For all spectral lines explained as transitions between energy levels, this serves as a mutual check since the wavelengths in normal air, when converted to vacuum wavenumbers by a conversion table [35], will coincide within one unit with the difference between two energy levels. Furthermore, these numbers serve as an index to the term designation in Atomic Energy Levels [36] where electron configurations, quantum numbers, and magnetic splitting factors are given. A comparison of the excitation energies of any two classified lines may be made [34] W. F. ME~QERS, J. Opt. Sot. Am. 41,1064 (1951). [35] C. D. COLEBXAN,W. R. BOZMAN and W. F. MENDERS, Table of ~avenumbers. NBS. Monograph 3, 2 volumes (1960). U.S. Government Printing Office, Washington, D.C. [36] C. E. MOORE, Atomic Energy Levels. NBS Circular 467, vol. 1 (1949); vol. 2 (1952); vol. 3 (1958). U.S. Government Printing Office, Washington, D.C.

1171

WILLIAM F. MEOGERS,CHARLESH. CORLISSand BOURDONF. SCRIBNER

by directly comparing their larger energy levels in Kaysers, and adding the ionization potentials in the case of lines from II and III spectra. This direct and simple procedure avoids the labor of converting all energy levels from Kaysers to electronvolts by means of the relation: 1 eV = 8067 K. Electron configurations and spectral term designations of quantum numbers are of unusual interest in the production of the strongest lines, or r&s ultimes. According to well-known rules governing the relative intensities of lines in multiplets, the strongest line arises from transitions between levels having the largest J- and L-values when AJ = AL = 1. A rule relating to raies ultimes was expressed [37] a quarter of a century ago as follows: “A raie ultime in any spectrum originates with a simple interchange of a single electron between s and p states, usually preferring configurations in which only one electron occurs in such states”. The above simple rules for the strongest lines appear to be valid for all spectra. In this paper, the lists of strong lines arranged in order of decreasing intensity for each element are given in Table 2. The complete lists are given in NBS Monograph 32 [33]. Acknowledgements-This investigation has extended over a period of 28 years, and represents a very considerable amount of intermittent labor contributed mainly by a relatively small number of individuals. The program was initiated by MEGGERS and SCRIBNER, the latter prepared diluted-element mixtures, electrodes and spectrograms, while the former identified wavelengths, supplied many line classifications, and estimated relative intensities of some 50,000 lines. In the production of the mixtures and the copper electrodes and spectrograms, valuable assistance was given by HARRIET E. BROWN. CORLISS contributed the copper calibration, the conversion of apparent intensities to radiant powers, and prepared the final tables. _ [37] W. F. MEGGERSand B. F. SCRIBNER,J. ResearchNatl.

1172

Bur. Stw.dnrds

13, 657 (1934).