Relative intensity calculations for carbon dioxide

Relative intensity calculations for carbon dioxide

J. Quon?. Spectrosc. Radial. Pcrgamon PressLtd., 1965.Printedin GreatBritain Transfer. Vol. 5, pp. 291-301. RELATIVE INTENSITY CALCULATIONS CARBON...

678KB Sizes 34 Downloads 60 Views

J. Quon?. Spectrosc.

Radial.

Pcrgamon PressLtd., 1965.Printedin GreatBritain

Transfer. Vol. 5, pp. 291-301.

RELATIVE INTENSITY CALCULATIONS CARBON DIOXIDE L. D. Jet Propulsion

Laboratory,

GRAY

JUDITH E. SELVIDGE

and

California

FOR

Institute

of Technology,

Pasadena,

California

(Received 6 August 1964) Abstract-Internal and vibrational partition functions of WYOZ are tabulated for the temperature range 150-1200°K at 10°K intervals. Rotational line intensities, relative to the total intensity of the band at 3OO”K, are presented for transitions arising from the state 0000 and from the state 0110.

Part I. Internal Partition Function I. INTRODUCTION

To INTERPRET the results of experimental studies of carbon dioxide absorption in the infrared, it is necessary to know how the intensity of each rotational line varies with temperature. This variation requires a knowledge of the internal and vibrational partition functions. The internal partition function of carbon dioxide has already been calculated at many temperatures in order to obtain the corresponding thermodynamic functions(r*s), but the only explicit tabulation of the partition function is that of TOURIN and HENRY(~) which considers six temperatures ranging from 298 to 1273°K. The values which we present were calculated for the temperature range from 150 to 1200°K in increments of 10°K. II.

THE

INTERNAL

PARTITION

FUNCTION

The internal partition function, qint, is given by qint = C,gV exp[ -4Wk

Cl zJg7 exp[ -44

Q/k Tl

(1)

where r,(z$ is the vibrational energy above the zero point vibrational energy of the molecule, EJ(.~,vt) the rotational energy, g, the degeneracy of the vibrational level (without rotation), and gJ the degeneracy of the rotational sublevel (without vibration). The summation is over all rotational levels for each vibrational level. If the interaction between vibration and rotation is neglected, so that EJ(J, Q) = lJ(a, then the internal partition function can be written as the product of two factors: the vibrational and the rotational partition functions, qVib and qrot; i.e. qint =

qvibqrot

(2)

where qvib =

&;t+

exP[-+(U#)/kT]

291

(3)

292

L. D.

and

GRAY

and qrot =

c

.gJ

JUDITH

E.

SELVIDGE

exp[-dJ)/kT].

In the present calculations, the internal partition function was evaluated directly from equation (1) and the vibrational partition function was obtained from equation (3). For comparison, the partition function for a harmonic-oscillator rigid-rotator was also calculated. The results are given in Table 1. TABLE 1. VIBRATIONAL AND STERNAL

Temperature (“K)

Internal

PARTI~ON

Partition

Function

~LJNCTIONS OF lzC’BOz

Vibrational

Partition

Function

FOR THE TBMPERATURE RANCE 150 to 1200°K

Harmonic

Oscillator

Vibrational

Partition

Function

Rigid-rotor Oscillator Partition

Harmonic Internal Function

150.0

0.13421232E

03

0.1003329lE

01

0.10033275E

01

0.1335442lE

160.0

0.14338238E

03

0.10049753E

01

0.10049720E

01

0.14268064E

03

170.0

0.15265334E

03

0.10070969E

01

0~10070908E

01

0.151917796

03

180.0

0.16204501E

03

0.10097385E

01

0~1009728lE

01

0.161275368

03

190.0

0.171577336

03

0.10129359E

01

0.101291928

01

0.170773llE

03

ZOO.0

0.1812702SE

03

0.1016719lE

01

0~101669dEE

01

0.180430526

03

210.0

0.191142756

03

0.10211056E

01

0.102106226

01

0.190266625

03

220.0

0.201213636

03

0.10261085E

01

0.1026046lE

01

0~20029987E

03

230.0

0~21150100E

03

0.103173668

01

0.10316496E

01

0.210548038

03

240.0

0.22202230E

03

0.103799338

01

0.103787596

01

0.221028236

03

250.0

0.232794408

03

0.10448799E

01

0.1044724lE

01

0.231756926

03

260.0

0.2438333lE

03

0.10523920E

01

0.105219llE

01

0.242749916

03

270.0

0.25515532E

03

0.106052878

01

0.106027208

01

0.25402249E03

280.0

0.26677556E

03

0.10692839E

01

0~106896038

01

0.26558938E

03

290.0

0.27870768E

03

0.10786462E

01

0~10782486.E

01

0.277464888

03

300.0

0.29096700E

03

0~1088613l.E

01

0.10881294E

01

0.289662908

03

310.0

0.30356683E

03

0.10991734E

01

0.109859448

01

0~302197008

03

320.0

0.3165213X

03

0.111032208

01

0.110963568

01

0.31508047E

03

330.0

0.32984382E

03

0.11220509E

01

0.11212455E

01

0.32832636B

03

340.0

0.34354800E

03

0.11343542E

01

0.113341648

01

0.341947568

03

350.0

0.35764652E

03

0.11472240I.S

01

0.11461412E

01

0.35595680E

03

360.0

0.37215216E

03

0.11606517E

01

0.11594135E

01

0.37036672E

03

370.0

0.38707808E

03

0.11746328E

01

0.11732270E

01

0~38518988E

03

380.0

0.402438066

03

0.11891649E

01

0.118757626

01

0~400438826

03 03

03

390.0

0.41824380.E

03

0.120423908

01

0.1202456lE

01

0.41612607E

400.0

0.43450981E

03

0.12198558E

01

0~1217862lE

01

0.43226414E

03

410.0

0.45124673E

03

0.12360040E

01

0.123379048

01

0.4488656lE

03

420.0

0.468470428

03

0.12526892E

01

0.125023758

01

0.46594314E

03

430.0

0.48619244E

03

0.12699039E

01

0.12672006E

01

0.4835094lE

03

440.0

0.504427098

03

0.1287648lE

01

0.12846772B

01

0.50157722E

03

450.0

0,52318493/Z

03

0.13059137E

01

0.130266553

01

0.52015947E

03

460.0

0.54248147E

03

0.132470448

01

0.132116386

01

0.53926921E

03

470.0

0$6232926E

03

0~1344017lE

01

0~13401713E

01

0.55891953E

03

480.0

0$8274207E

03

0.136385086

01

0.13596873E

01

0.57912376E

03

01

490.0

0.60373640E

03

0.13842125E

0.13797115E

01

0.59989530E

03

500.0

0.62532185E

03

0.14050912E

01

0~1400244lE

01

0.621247788

03

510.0

0~64751808E

03

0.142650086

01

0.142128558

01

520.0

0.67033339E

03

0.14484283E

01

0.14428366E

01

530.0

0.69378683E

03

0.147088496

01

0.14648985E

01

0.64319490E03 0.66575065803 0.68892908E03 0.71274449E03 O-73721135E03 0.76234433E03 0~78815828E03 0.81466828603 0~8418896lE03 0.86983770E03 0.89852829E03 0.92797727E03 0.95820077E03

540.0

0.7178906lE

03

0.149386708

01

0.14874727E

01

550.0

0.74266212E

03

0.15173817E

01

0.151056088

01

560.0

0.76811563E

03

0.15414290B

01

0.153416493

01

570.0

0.79426213E

03

0.1566002lE

01

0.1558287lE

01

580.0

0.82112707E

03

0.159112478

01

0.158293008

01

590.0

0.848713993

03

0.16167739E

01

0.16080962E

01

600.0

0.877051208

03

0.16429783E

01

0.16337886E

01

610.0

0.90614243E

03

0.16697159E

01

0.16600104E

01

620.0

0*93601304E

03

0.1697008lB

01

0.168676498

01

630.0

0.96667497E

03

0.17248496E

01

0.17140555E

01

293

Relative intensity calculations for carbon dioxide TABLE

1-contd.

Internal Partition Function

Harmonic Oscillator Vibrational Partition Function

Rigid-rotor Oscillator Partition

Harmonic Internal Function

640.0

0.998150938

03

0.175325518

01

0.174188588

01

0.98921511/Z

03

650.0

0.10304554E

04

0.178222368

01

0.177025976

01

0~10210369E

04

660.0

0.10635983E

04

0.181174578

01

0.17991812E

01

670.0

0.10976071E

04

0.184184348

01

0.18286544E

01

680.0

0.11324990E

04

0.18725199E

01

0.185868368

01

690.0

0.11682893E

04

0.19037753E

01

0.1889273lE

01

0.105368298 0~10871702E 0.11215160E 0.11567378E

04 04 04 04

700.0

0.12049899E

04

0.19356032E

01

0.19204275E

01

0.119285348

04

710.0

0.12426347E

04

0.19680346E

01

0.195215168

01

0.12298807/I

04

720.0

0.128122998

04

0.200105226

01

0~198444986

01

0.12678378E

04

730.0

0.13208006E

04

0.203467218

01

0.20173273E

01

0.13067434.Y

04

740.0

0.13613568&Y

04

0.206888528

01

0~20507891E

01

0.1346616lE

04

750.0

0.14029364.E

04

0.21037245E

01

0.20848400E

01

0.138747486

04

760.0

0.14455457E

04

0.21391750E

01

0.21194855E

01

0.14293387E

04

770.0

0.148920158

04

0.217523698

01

0.21547309E

01

0.14722273E

04

780.0

0.153393816

04

0.22119372E

01

0.21905813E

01

0.1516160lE

04

790.0

0.15797585E

04

0.224925476

01

0.22270425E

01

0.15611574E

04

800.0

0.16267072E

04

0.22872297E

01

0.22641198E

01

0.16072391E

03

810.0

0.167478858

04

0.23258446E

01

0.16544258E

04

820.0

0.17240296E

04

0.23651124E

01

0~23018190E 01 0.234014606 01

0.17027383E

04

830.0

0.177444108

04

0.24050236E

01

0.23791063E

01

0.17521974E

04

840.0

0.18260676E

04

0.244561718

01

0.24187059E

01

0’18028244E

04

850.0

0.187890788

04

0.248686546

01

0.24589508E

01

0.185464lOE

04

860.0

0~19330015E

04

0.252879878

01

0.24998470E

01

0.19076688E

04

870.0

0.198837238

04

0,25714234/Z

01

0.25414006E

01

0.19619299B

04

880.0

0.20450184E

04

0.26147141E

01

0.25836179E

01

0.20174466E

04

890.0

0.210299478

04

0.26587201E

01

0.26265050E

01

0.20742416E

04

900.0

0.21623026E

04

0.2703414lE

01

0.26700684E

01

0.21323377E

04

910.0

0.22229873E

04

0.27488339E

01

0.27143142E

01

0.219175806

04

920.0

0.228505298

04

0.279495878

01

0.275924906

01

0,22525260&Z

04

930.0

0.23485445E

04

0.28418223E

01

0.28048792E

01

0.231466538

04

940.0

0.241347038

04

0.28894090E

01

0.28512116E

01

0.2378200lE

04

950.0

0.24798582E

04

0.29377305E

01

0.28982525E

01

0.24431545E

04

960.0

0.25477374E

04

0.29867982E

01

0.29460088E

01

0.25095530E

04

970.0

0.26171415E

04

0.30366269E

01

0.299448728

01

0.25774206B

04

980.0

0.26880939,X?

04

0.3087222lE

01

01

0.26467824E

04

990.0

0.27605897E

04

01

01

0.27176637E

04

1000~0

0.28347041E

04

01

0.314432318

01

0.27900903E

04

1010.0

0.291042958

04

0.31385539E 0.319068538 0.32435838E

0.30436946E 0.30936375E

01

0.31957584E

01

0.28640883E

04

1020.0

0.29878139.E

04

0.329728078

01

0.32479502E

01

0.293968386

04

1030.0

0.30668955E

04

0.33517949E

01

0.33009056E

01

0.30169035E

04

10400

0.31476676E

04

0.3407094lE

01

0.33546319E

01

0.30957744E

04

1050~0

O-32301845E

04

0.34632155E

01

0.34091360E

01

0.31763234E

04

1060.0

0.3314447OE

04

0.352013598

01

0.34644254E

01

0.325857838

04

1070.0

0.34005164E

04

O-35778982/?

01

0.3520507lE

01

0.33425668E

04

1080.0

0.348842178

04

0.36365096E

01

0.357738866

01

0.34283170E

04

1090.0

0.357815646

04

0.36959396E

01

0.36350773E

01

0.35158572E

04

1100.0

04

0.375624548

01

0.36935804E

01

0.36052164E

04

1110~0

0.36697980E 0.37633492E

04

0.38174061E

01

0.375290558

01

0.369642328

04

1120.0

0~385885808

04

0.38794477E

01

0.38130602E

01

04

1130.0

0.39563326E

04

0.39423546E

01

0~38740519E

01

0.378950768 0.388449866

1140.0

0.40558112E

04

0.400613658

01

0.39358882E

01

0.398142658

04

1150.0

0.415732118

04

0.40708125E

01

0.39985769E

01

0.40803216E

04

1160.0

0.426092598

04

0.41364083E

01

0.40621256E

01

0.41812144E

04

1170.0

0.43666232E

0.420290216

01

0.41265421E

01

0.42841358E

04

1180.0

044744692E

04

0.42703234E

01

0.419183418

01

0.43891173E

04

1190.0

0.45844820E

04

0.433866688

01

0.42580095E

01

17.00~0

0.46967071E

04

044079517fi

01

0.43250762E

01

044961902E @46053867E

04 04

04

04

The vibrational energies observed by COURTOY@)for Wl‘302 were used where available, otherwise the values calculated by PLASS et ai.(5) from Courtoy’sconstants were employed.

294

L. D. GRAYand Jumrn E. SELVIDGE

When calculating the value of the partition function for a given temperature, one must obviously include all the vibrational levels that are significantly populated at that temperature. To insure that all possible levels were included, the following scheme was employed: for C02, the energy +(ui, ~2~,us) of level ZQUZ~U~ can be regarded as corresponding to some integral multiple of l ,(0110), i.e. E~(v~,z$, us) 21 (2~+ va+4us) Ed (0110). The vibrational levels with the coefficient K = (2s + aa + 4~s) the same were grouped together. Thus, group 4 consisted of the seven levels 0440, 0420, 1220,0400, 1200, 2000, and 0001. The number of vibrational levels in the Kth group is given by the sum of the binomial coefficients

(K*2’2)+ (y)+ (K*y2)+. . . -I (2)or

(32)

(5)

where K* = K/2 for K even and K* = (K- 1)/2 for K odd. The total number of levels K*+4 included in groups 0 through K (for even K only) is Thus, group 10 contains ( 4 )34 levels and 126 levels are included in groups 0 through 10. The number of vibrational levels which must be included in calculating the partition function at high temperatures makes the evaluation by direct summation impractical. For example, at 1200”K, 277 rotational levels were summed for each of 652 vibrational states. It required 1.5 min in IBM 7090 to compute the total partition function at this temperature. The rotational energy levels for the vth vibrational state are given by EJ = hc[&J(J+

1) --&J2(.7+

1)2]

where

Bv = Bo-

(6)

xaruc+ Cytprvj. rcj B

Values of the rotational constants were obtained either from COURTOY@)or calculated from equation (7) using Courtoy’s constants. The Bv values obtained from equation (7) should in many cases be corrected for Fermi resonance and, for states with I # 0, for Z-doubling. To check the effect of neglecting the Fermi resonance correction to the rotational constants, the sum S sl = {exp[-E,(lO’O)/kT]

c(u+

1) eXp[-CJ(loOO)/kT]

+ exp[ - ev(0200)/k T’j c(W+

1) exp [ -e&0200)/k T]}

was evaluated at 300°K using both the perturbed and the unperturbed values of the rotational constants. The results are given in Table 2a. The superscript 0 denotes unTABLE2a. THE PARTIAL SUM Sl AT 300’K Sl

(% Q) (e, vO)

(C”O,vO)

0.904998 0.904357

0.878434

perturbed values. The error introduced by neglecting the Fermi resonance in the rotational constants is 0.06 per cent, while the error amounts to 3 per cent if the resonance is

Relative intensity calculations for carbon dioxide

295

completely neglected as in column 3 of Table 2a. In the present calculation, the rotational partition function for each vibrational level was evaluated for states with 2 # 0 by summing over all J 2 I, i.e. the Z-splitting was neglected?. To estimate the effect of this approximation, the sum Sa, S2 = Jsddexp[ -~-(Ol~o)/kT]+ 2 exp[ -~+(Ol~o)/kT], J even

where the superscripts + and - denote the rotational energy computed for the even and odd J levels using the appropriate rotational constants, was compared with the similar sum over all lines using the average value of the rotational constant at 300°K. The results are given in Table 2b. The error in neglecting Z-doubling is seen to be 0.008 per cent. TABLE 2b. THE ROTATIONALPARlTTIONFUNCTIONFORTHEIXvEL(01’0) AT 300°K sz


#

III.

lJ-

532.747 532.706

RESULTS

The internal and vibrational partition functions are given in columns 1 and 2 of Table 1 for WrsOe as a function of temperature. Columns 3 and 4 show the corresponding values of the harmonic oscillator vibrational partition function and the classical internal partition function. At 12OO”K, both the internal and the vibrational partition functions are seen to be about 2 per cent larger than the values obtained using the harmonic oscillator approximation, while at 300°K they are approximately 0.5 and 0.05 per cent larger, respectively. The numerical values shown in Table 1 have the exponent of the power 10 indicated to the right of the number. Thus, qrnt(280”K) = 266.775. REFERENCES 1. H. W. WOOLLEY,Thermodynamic functions for carbon dioxide in the ideal gas state, J. Res. Nat. Bur. Stand. Wash. 52, 289-292 (1954). 2. National Bureau of Standards Circulars No. 500 (1952) and No. 564 (1955). 3. R. H. TOURINand P. M. HENRY. Infrared snectral emissivities and internal enerxv distribution of carbon dioxide at high temperatures. Part I. Internal energy calculations, Scientific-Report No. 2 on Contract AF 19(604)-2223, Warner and Swasey, Flushing, New York (1958). 4. C. P. COURTOY,Spectres de vibration-rotation de molecules simples diatomiques ou polyatomiques avec long parcours d’absorption, Canad. J. Phys. 35, 608-648 (1957); C. P. COURTOY,Spectre infrarouge a grande dispersion et constants moleculaires du COZ, Ann. Sac. Sci. Bruxelles, 75,5-230 (1959). 5. V. R. STULL,P. J. WYATTand G. N. PLASS,Vibrational energies of the COa molecule, J. Chem. Phys. 37, 1442-1445, (1962); see also V. R. STULL, P. J. WYATTand G. N. PLASS. Infrared transmission studies, Final Report, Volume III, The infrared absorption of carbon dioxide, Report SSD-TDR62-127-Volume III, Aeronutronic Division, Ford Motor Company, Newport Beach, California (31 January, 1963). t Average values of the rotational constants were used.

L. D. GRAY

296

Part II. Relative Intensity of Carbon Dioxide Lines in VibrationRotation Bands arising from Transitions from the Ground State and from the First Excited State L. D. GRAY Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (Received

6 August 1964)

I. INTRODUCTION INTENSITIES of rotational lines, relative to the integrated intensity of a vibration-rotation band, depend primarily upon the rotational constants of the lower vibrational state. For temperatures of interest in planetary atmospheres many of the strong absorbing bands of carbon dioxide have either the (OOOO)or (0110) state as the lower vibrational state. As an aid in interpreting observed spectra, we have tabulated the relative intensities for X-E,, X-Il, Il-Xi, II-II, and II-A transitions at 300°K. II.

THEORY

The integrated intensity SW,>,J”, 1” -+ v’, J', I', of a rotational line (J” +J’) vibrational band (a”, I” + v’, 1’) is given by-j-

S u”,

in the

87~~Nv~<,J" J”,Z”

~

.$,

J’,l’

=

3hc

-(I+)”

x (l?:::+y]/32[1

J” p

.

-exps]

,l”,v’,J’,l’

(1)

where NW!), Jr//p is the number of molecules per unit volume per unit pressure in the lower state with the vibrational quantum numbers denoted by v” and the rotational quantum number J”, I is the quantum number of the angular momentum associated with the doubly degenerate vibration ~2, /3 = fl(v” -+ v’) is the matrix element for the vibrational transition, wvu”, J,', lo, + 2)f,J,, 2' is the wave number of the transition (v”, J”, I” 1” -91’ is the rotational matrix element. In terms of the integrated -+ v’, J’, I’) and R ( J"+J, > intensity Q,,, 1rp+vj,l~ for the band, 8~3 N,y dcz)~‘,J”-t v’,l’ = --wv”,l”,v’,l 3hc p equation (1) may be written as

(2)

(3) t Ref. 1, equation

(7-128a).

Relative intensity calculations

297

for carbon dioxide

It is apparent from equation (2) and the ideal gas law that the temperature of the band intensity is given by

[l -exp( -hcw/kT)]

(4)

-h~wpcroj]

x [l -exp(

dependence

In terms of the band intensity at To, the integrated intensity of a line can be written as

[l

-exp(-hcWf,J-,

~/kT$j

“&,J’

(5)

where SOv’t,J,,(T)

ToQv( To) EZ

TQv(

T>

x gJexpt - wJ,,hc/kT] &Y(T)

here Qv is the vibrational partition function, QR is the rotational partition function C&L”‘, is the energy (in cm-i) of the lower vibrational state, WJ” is the energy of the lower rotational state and is given by WJ” = &J”(J”

+ 1) - Dv#“(J”

+ 1)]2.

(7)

The quantity Sov I ,, J, JT) is given in Table 3 as a function of J” for transitions from the ground state (i.e. C -+ X and X +II) and for transitions from the first excited state (i.e. Il -+ Z, Il. -+ lT, and II-+ A) for a temperature of 300°K. To obtain the intensity of a line in any particular band, the constants of the upper vibrational state which appear in equation (5) must be used. As a first approximation, however, equation (5) can be replaced by &“,Js’~“+

,,‘,J,‘l’

2:

&,“,l”

+

v’

v(

To)~“v~~,J*,(

T).

(8)

The reference temperature chosen was To = 300°K. Equation (4) may be used to obtain the band intensity at this temperature from measurements made at other temperatures. It should be noted that many investigators choose 273°K as a reference temperature in reporting band intensities. REFERENCE 1. S. S. PENNER,Quantitative Molecular Spectroscopy and Gas Emissivities, Addison (1959).

Wesley, Reading,

L. D. GRAY

298

PI-PI

J

R-branch

Q-branch

PI-DELTA P-branch

R-branch

Q-branch

P-branch

1

0~2805OE-02

0~28OSOE-02

0.

0~561OlE-02

0.

2

0.49495E-02

0.15467E-02

0.27841E-02

0.61868Eo2

0.30934E-02

0.

3

0.68823E-02

0.10706E-02

0~48941E-02

0.68823E-02

0.53529E-02

0.61176E-03

4

0~86783E-02

0~81359E-03

0.67799-2

0.75935m2

0.73223E-02

0~1356OE-02

5

0~10351E-O1

0.6506lE-03

0.8517lE-02

0~82805E-02

0.91085E-02

0.21293E-02

6

O~11897B-Ol

0~537OOE-03

0~10120E-01

0.89224E-02

0~1074OE-01

0.28915E-02

7

0~13309E-01

0.45267E-03

0~11588E-01

0.95061B-02

0.12222E-01

0.36214%02

0.

8

0.14578E-01

0.38723E-03

0.12915E-01

0~10022E-01

0.13553E-01

0~43051E-02

9

0~15698E-01

0.33474M3

0~14094E-01

0~10465E-01

0.14729E-01

0.4933OE-02

10

0~16661E-01

0.29157E-03

0~15120E-01

0~10830&01

0.15745E-01

0.54981E-02

11

0.17464E-01

0.25536E-03

0~15988E-01

0~11114E-01

0~16598Gol

0.59954E-02

12

0~18106E-O1

0.22453E-03

0.16696E-01

0~11316E-01

0~17289E-01

0.64216E-02

13

0~18587E-01

0.19796E-03

0.17245E-01

0~114383-01

0~17817E-01

0.67747&02

14

0~18908E-01

0.17485%03

0.176363-01

0~11480E-01

0~18185E-01

0.70544E-02

15

0.19076E-01

0~1546OE-03

0.17874E-01

0.11446E-01

0~18398601

0.72614E-02

16

0~19097E-01

0.13676E-03

0~179663-01

0~11339&01

0.18463E-01

0.73976E-02

17

0.18979E-01

0.12097E-03

0~17918E-01

0~11164E-01

0.18388&01

0.74657E-02

18

0~18732E-01

0.10696E-03

0~17740601

0~10927E-01

0~18183E-01

0.74697E-02

19

0~18367E-01

0.9448913-04

0~17444E~l

0~10634E-01

0~17858E-01

0.74138E-02

20

0.17897E-61

0~83382E-04

0~1704OE-01

0,10291E-01

0.17427s01

0~73031E-02

21

0.17333E-01

0.7348lE-04

0.16542E-01

0.99046602

0~169OlE-01

0.71431E-02

22

0~16689E-01

0.64654E-04

0.15961E-01

0.94826E-02

0.16293E-01

23

0.15979E-01

0.56787E-04

0~15311E-O1

0.90316E-02

0~15617E-01

24

0~15215E-01

0.49782E-04

0~14604E-01

0~85584E-02

0~14885E-01

0.69396E-02 0.66985E-02 0.64259E-02

2.5

0~14410&01

0.4355OE-04

0~13854E-01

0.80695E-02

0~14110&01

0.61277E-02

26

0.13576Ml

0.38014E-04

0.13072&01

0.75713E-02

0~13305E-01

27

0.12725%01

0.33106E-04

0.1227OE-01

0~12481E-01

0.58097E-02 0.54775E-02

28

0~11868E-01

0~28761E-04

0~11458E-01

0.70696E-02 0.65697E-02

0~11648E-01

0.51361E-02

29

0~11014E-01

0.2492413-04

0.10646E-01

0.607641342

0~10817E-01

0.47905E-02

30

0~10171E-01

0.21543E-04

0.98424E-02

0.55942E-02

0.9996lEXt2

0.444501342

31

0.93484E-02

0~1857lE-04

0.90557E-02

051266&02

0.91928E-02

0.41034E32

32

0.85517E-02

0.15966E-04

0.82921602

0.4676713102

0.84139E-02

0.37691Ea2

33

0.77865E-02

0.13687&04

0~75571E-02

0.42472E-02

34

0.7057

0~11701E-04

0.68551E-02

0.38399E-02

0.76649E-02 0.69503E-02

0.31338E-02 0.2837OE-02 0.25563E-02

lE-02

0.34451Ea2

35

0.63669E-02

0.99736ZXl5

0~61898E-02

0.34563E-02

0.62734E-02

36

O-57184E-02

0.84763605

0.55636E-02

0.30975E-02

0.56368602

37

0~5113OE-02

0.71824E-05

0.49782EO2

0.27638B-02

0.5042OE-02

0.22926E-02

38

0.45514E-02

0.60675E-05

0.44346E-02

0.24554Ea2

0~449OOE-02

0.20467E-02

39

0.40338E-02

0~51101E-05

0.39328E-02

0.2172OE-02

0.39808E-02

0~18189E-02

40

0.35594E-02

0.42904E-05

0.34725E-02

0.19132&02

0.35138E-02

0.16092E-02

41

0.31273E-02

0.359lOE-05

0.30527E-02

0.1678lE-02

0.30882E-02

0.14173E-02

42

0~27358E-02

0.2996lE-05

0.267213-02

0~14656E-02

0~27025E-02

0~12428B.02

43

0.23831E-02

0.24918Ea5

0.23289E-02

0.12747E-02

0.23548E-02

0.10851E-02

44

0.20671E-02

0~20658E-05

0~2021lE~2

0~1104OE-02

0.2043OE-02

0.94317E-03

45

0.17854E-02

O.l7071E-05

0.1746513-02

0.9522OC03

0.17651E-02

0.81631E-03

46

0~15356E-02

O.l4061E-05

0.15029E-02

0~81787E--o3

0~15185E-02

0,70348E-03

47

0.13152E-02

0.11543E-05

0~12878E-02

0.6996OE-03

0.13009Ea2

0.60366E-03

48

0~11218E-02

0.59597E-03

0~11099&02

0.51581E-03

0.95288E-03

0,94459E-06 0.77039E-06

0.10989E-02

49

0.9338lE-03

0.50561E-03

0.94296E-03

0~43889E-03

50

0~80605E-03

0.62624E-06

0.79023E-03

0.42721E-03

0.79783%03

0~37187E-03

51

0.67904Ea3

0.50736E-06

0.35949E-03

0.67225E-03

0.31378E-03

52

0.56971E-03

0.40968E-06

0.66597E-03 0.55895E-03

0~30129E-03

0.56412603

0.26366E-03

53

0~47603E-03

0.32969E-06

0.46721E-03

0.25149E-03

0.47145603

0.22062E-03

54

0.39614E-03

0.26442E-06

0.38893E-03

0,20907E-03

0,3924OE-03

0~18386E-03

55

0.32832E-03

0~21136E-06

0.32245E-03

0.1731lE-03

0.32528E-03

0.15259E-03

56

0.271OlE-03

0.16837E-06

0.26625E-03

0.14276E-03

0~26855E-03

0.12612E-03

57

0.2228lE-03

0.13367B-06

0.21896E-03

0.11727E-03

0.22082E-03

0.10382E-03

58

O.l8244E-03

0.10575E-06

0.17935E-03

0.95939E-04

0~18084cO3

0~85114E-04

59

0.14879E-03

0.83385E-07

0.14631E-03

0.78178E-04

O.l4751E-03

0.69497E-04

60

0.12086SO3

0.6552lE-07

0~11888Eo3

0.63452E-04

0.11984E-03

0.5651613-04

Relative intensity calculations for carbon dioxide Tmm

3-contd. PI-DELTA

PI-PI

R-branch

J

299

Q-branch

P-branch

R-branch

Q-branch

P-branch

61

0.9778SE-04

0.51307E-07

0.96207E-04

0.51297E-04

0.96970%04

0.45776604

62

0~78800%04

0~40038E-07

0.77548E-04

0.41306E-04

0.78154E-04

0~36928E-04

63

0.63249E-04

0.31136607

0.62260604

0.3313OE+t

0.627393104

0.29671E-04

64

0~50566E-04

0.24129&07

0.49788E-04

0.26468604

0~50165E-04

0.23745E-04

65

0.40267E-04

0.18635&07

0.39657E-04

0~21063E-04

0~39952GO4

0.18927E-04

66

0.31939E-04

0~14341E-07

0.31462604

0.16696E-04

0.31694E-04

O.l5027E-04

67

0.25234604

0.10998&07

0.24863E-04

0~13182E-04

0.25043E-04

0~11883E-04

68

0~19859E-04

0~84053E-08

0~19571&04

0.10367E-04

0~1971OE-04

0.93599E-05

69

0~15567E-04

0%4012&08

0.15344E-04

0.81219E-05

0.15452E-04

0.73434-5

70

0~121SSE-04

0~48579E-08

0.11984Eo4

0~6338OE-05

0.12067E-04

0.57387E-05

71

0~94539E-05

0.36737E-08

0.93225605

0.49267E-05

0.93864E-05

0.44670E-05

72

0.73244E-05

0.2768SE-08

0.7224OE-05

0.38148E-OS

0.72728E-05

0.346363-05

73

056525E-05

0~2079OE-08

0~55761&05

0.29424E-05

0.56132E-05

0.2675OCOS

74

0.43453605

0~15557E-08

0.42873Ea5

0.22607B-05

0~43155605

0~20579E-05

75

0~33274E-05

0~116OOE-08

0.32836E-05

0~17303E-05

0~33049E-05

0~15770%05

76

0.25381E-05

0.8619SE-09

0~25052E-05

0.13 192E-05

0.25212E-05

0~12038E-05

77

0.19286&05

0.63821609

0~19038EX5

0~10019E-O5

0~19159&05

0.91531E-06

78

0~14598E-05

0.47087-

0.14413E-05

0.75795&06

0~14503&05

0.69327E-06

79

0~11007E-05

0~34618E-09

0~10869E-05

0.57122E-06

0.10936E-05

0.52306E-06

80

0.82669606

0.25361E-09

0.81648E~36

0~42884E-06

0.82146E-06

0.39312E-06

81

0~61853E-06

0~18514E-09

0,61098&06

0.32072606

0.61466E-06

0.29432E-06

82

0.461OlE-06

0.13467M9

0.4554SE-06

0,23894E-06

0.45816M6

0.219SOE-06 0.16307E-06

83

0.34229&06

0.97618610

0.33821&06

0.17733E-06

0.3402OE-06

84

0~25316E-06

0~70507610

0.25018E-06

0~1311OE-06

0.25164E-06

0.12068M6

85

0~18653E-06

0~50745610

0.18436E-06

0.96557%07

0.18542E-06

0.8896SE-07

86

0.13691E-06

0.36392610

0.13534&06

0.70843E-07

0~13611E-06

0.6533SE-07

87

O~lOOllE-06

0.26006E-10

0.98969E-07

0.51779E-07

0.99524%07

0.47797607

88

0.72917E-07

0~18518E-10

0.72097E-07

0~37701&07

0.72498&07

0.34834E-07

89

0.5291oE-07

0.13139IC10

0.52322E-07

0.27347E-07

0.52609M7

0.25289E-07

90

0.38247E-07

0,92896E-11

0,37826&07

0.19761E-07

0.38032E-07

0~1829OE-07

91

0.27542&07

0.65445611

0.27242607

0.1422SE07

0.27389E-07

0.13177607

92

0.19758607

0.45942611

0.1954SM7

O.l0201E-07

0.19649E-07

0~9457SE-08

93

0.1412OE-07

0.32136611

0.1397OE-07

0~72879E-08

0~140443-07

0.67621E-08

94

0~10053&07

0,22399&l

0.99471E-08

0~51869E-08

0,99989&4l8

0~4816SE-08

9s

0~71302E-08

0~15557E-11

0.70559E-08

0.36777E-08

0.70922&08

0.34177E-08

96

0.5038OE-08

O.l0766E-11

0.49861608

0.25977E-08

0.501 lSE-08

0.24159E-08

97

0.35463=8

0.742393-12

0~35101&08

0~1828OE-08

0.35278E-08

0~17013E-08

98

0.24869E-08

0~51011612

0.24617E-08

0~12815E-08

0~2474OE-08

0.11936E-08

99

0.17373E-08

0,34926E-12

0~17200608

0,89499&09

0~1728SE-08

0.83418E-09

100

0.12092608

0.23827612

O.l1972E-08

0.62271E-09

0~1203OE-08

0.58081E-09

101

0~83838E-09

0.16198612

0.83016609

0.43164609

0.83419E-09

0.40287E-09

102

0.5791 lE-09

O.l0972E-12

0.573493-09

0.29807E-09

0.5762SE-09

0~27839E-09

103

0.3985X-09

0.74056613

0.39469E-09

0~20507609

0.39657E-09

SUM

0~51379E-Oa

0~10995E-O1

0~47519?&00

0.31868&00

0~48914C-00

1

0.1916SE-09

L. D. GRAY

300

TABLE PI-SIGMA R-branch

.I

3-conrd. Transitions Q-branch

P-branch

1

0~187OOE-02

0~56101E-02

3

0~55059E-02

0.12847E-01

0,3740OE-02 0.73412E-02

5

0~88719JG02

0,19518E-01

0.10646E-01

I

0~11830&01

0,2535OE-01

0,1352OE-01

9

0.1427OE-01

0,30127E-01

O.l5856E-01

11

O.l612lE-01

0.33708E-01

0~17587E-01

13

0~17347E-01

0,36029E-01

0.18682E-01

15

O.l7954E-01

0.37105E-01

0~1915lE-01

17

0’1798OE-01

0,37018E-01

O.l9038E-01

19

0.17493E-01

0.35906E-01

0.18413601

21

0,16579E-01

0~33948&01

0.17369E-01

23

0~1534OE-01

0.31347s01

0~16007E-01

25

O.l387bE-01

0,28307E-01

0~14431&01

27

0,12286E-01

0~25028E-01

0.1274lE-01

29

0~10658E-01

0.21684E-01

O.l1026E-01

31

0.906528-02

O.l8423E-01

33

0~7564OE4l2

O.l5357E-01

35

0,61949E-02

0~12567E-01

37

0.49819E-02

0~10098E-01

39

0,39354E-02

0.79717E-02

41

0.30546E-02

0,61836E-02

43

0.23302E-02

0.47145E-02

45

0~17474E-02

0.35336E-02

47

O.l2884E-02

0.26042E-02

49

0.9342OE-03

0.18875E-02

51

0.66623E-03

0.13455E-02

53

0.46737E-03

0.94356E-03

55

0.32256E-03

0.65098E-03

57

0.21903E-03

0.44190603

59

O.l4635E-03

0.29518E-03

61

0.96233E-04

O.l9404E-03

63

0.62276E-04

0.12554E-03

65 67 69

0.396bbE-04

0.79942604

0,24869E-04

0,50108E-04

0,15348E-04

0.30918E-04

71

0.93244E-05

0~1878Ofi~04

0.9357bE-02 0~77932E-02 0.63719E-02 0.51165E-02 0.40363E-02 0.3129lE-02 0,23843E-02 0~17862E-02 0~13158E-02 0.9532bE-03 0.67929E-03 0.47619E-03 0,32842E-03 0.22287E-03 O.l4883E-03 0.978lOE-04 0.63264E-04 0.40276M4 0~2524OE-04 0,1557OE-04 0.94557605

73

0,5577lE-05

O.l1231E-04

0.56535E-05

75

0.32842E-05

0.66122E-05

0,3328OE-05

77

0.19042E-05

0.3833lE-05

0,19289E-05

79

0~1087lE-05

0.21879E-05

0~11008E-05

81

0~61108E-06

0,12297E-05

0.71862E36

83

0.3382bE-06

0.68059E-06

0.34233E-06

85

0.18439E-06

0.37094E-06

0.18656E-06

87

0.98982607

0~199lOE-06

0~10012E-06

89

0.52329E-07

0.10525E-06

0,52917E-07

91

0.2724bE-07

0.54791E-07

0,27545E-07

93

0~13972fi-07

0.28093E-07

0.14122E-07

95

0~7056bE-08

0.14188607

0.61309&08

97

0.35105s08

0~7057lE-08

0.35467E-08

99

0~172OlE-08

0.34577E-08

0.1737SE-08

0.83024E-09

0.16687E-08

0.83846E-09

101 SUM

0.241 lbE-00

0.2599lE-00

Relative intensity calculations TABLE

for carbon dioxide

3-conrd. SIGMA-PI

SIGMA-SIGMA

Transitions

Transitions P-branch

R-branch

J

301

R-branch

Q-branch

P-branch

0.

0.

0’18942E-02 0.54042&02 0,86436E-02

0

0,37402E-02

0.

2

0~11095E-01

0.73968E-02

0,37402E-02 0.73968E-02

4

O.l8014E-01

0~14411E-01

0~10808E4ll

6

0.24202E-01

0~20745E-01

0.1383OE-01

8

0~29418E-01

0.2165OE-01

0~16343E-01

0.9246OE-02 0~16212E-01 0.22473E-01 0.27784E-01

10

0~33488E-01

0~30443E-01

O.l8266E-01

0,31965E-01

0,13699E-01

12

0.36312E-01

0~33519E-01

0.19553E-01

0,34916E-01

O.l5363E-01

14

0.37872E-01

0.35347E-01

0,20198E-01

0,36609E-01

0~16411E-01

16

0~3822OE-01

0.35972E-01

0.20234E-01

0.37096E-01

O.l6862E-01

18

0.37473E-01

0.35JOlE-01

0.19723E-01

0.36487E-01

O.l6764E-01

20

0.35793E-01

0.34089E-01

O.l8749E-01

0,34941E-01

O.l6192E-01

22

0.33376E-01

0~31925E-01

O.l7414E-01

0,32651E-01

0.15237E-01

24

0.30428E-01

0~29211E-01

O.l5823E-01

0,2982OE-01

0.13997E-01

26

0,27154E-01

0,26149E-01

0’1408OE-01

0.26652E-01

0.12571E-01

28

0.23742E-01

0.22923E-01

O.l228OE-01

0,23333E-01

O.l1052E-01

30

0.20353E-01

0.19697E-01

0~10505E-01

0.20025G01

0.952OlE-02

32

0~17118E-01

0.16599E-01

0,88183E-02

0~16859601

0.80402E-02

34

0~14131E-01

0.13728E-01

0.72675E-02

0.13929E-01

0.66619&L02

36

0~11455E-01

0~11146E-01

0.58824E-02

O.l13OOE-01

0.5418OE-02

38

0.91216E-02

0.88877E-02

0,46778E-02

0.90047E-02

0.43269E-02

40

0.7137OE-02

0,69629E-02

0.36555E-02

0.705OOE-02

0.33944E-02

42

0.54884E-02

0.53607E-02

0.2808OE-02

0.54246E-02

0.26166E-02

44

0.41491E-02

0.40569E-02

0.21207E-02

0.4103OE-02

0,19823E-02

46

0~30841E-02

0.30185E-02

0.15749E-02

0~30513E-02

O.l4764E-02

48

0.22545E-02

0.22085E-02

0.11502E-02

0.22315E-02

0,10812E-02

50

0~16209E-02

0.15892E-02

0.82636E-03

0~16051E-02

0,77869E-03

52

0’11464E-02

0.11248E-02

0.58404E-03

0,11356E-02

0.55159E-03

54

0.79773E-03

0.78323E-03

040612E-03

0.79048E-03

56

0.54616%03

0.53658E-03

0.27787%03

0~54137E-03 0.36484E-03

0.38436E-03 0,2635OE-03 0,17774E-03

O.l144OE-01

58

0.36795E-03

0,36172E-03

0.1871OE-03

60

0,24396E-03

0,23996E-03

0.12398E-03

0.24196E-03

0,11798E-03

62

0~15919E-03

O.l5666E-03

0~80857E-04

0.15792E-03

0,77067E-04

0~51906fi-04

O.l0145E-03

0,49547x%04

0.32800%04

0,64153E-04

0.31353E-04

0~20404E--o4

0.39933E-04

0.19529E-04

0.12496&L04

0,2447OE-04

0.11975E-04

0.7534lE-05

0,14763E-04

0.72286E-05

044725E-05

0.87685E-05

0.4296OE-05

0.26143E-05

0.5128OE-05

0.25137605

0.15047605 0.85279E-06 0.47595E-06 0.2616OE-06 0.1416OE-06 0.75486E-07 0.39633E-07 0.20495E-07 0.10439E-07 052373E-08 0,25882E-08 0~12599E-08

0.29529E-05 0.16744E-05 0.93491E-06

0.14482E-05

64

0.10224E-03

66

0.64635E-04

68

040225E-04

76

0.51615E-05

0~10067E-03 0.6367OE-04 0.39642E-04 0.24297E-04 0.14661E-04 0,87097E-05 0~50945E-05

78

0,29717E-05

0.29341E-05

80

0.16848E-05

O.l664OE-05

82

0~94058E-06

0.92924E-06

84

0.51711E-06

0~51103fi-06

86

0~27998E-06

0,27676E-06

88

0.14929E-06

0~14762E-06

90

0.78405E-07

0.77543E-07

92

0~40555E-07

0.40118E-07

94

0.20661E-07

0~20443E-07

96

0.10368E-07

0~10261E-07

98

0.51246608

0.50728E-08

0.24951E-08

0.24704E-08

70

0.24644E-04

72

0,14864E-04

74

0.88274E-05

100 SUM

0.27952E-00

0.82159E-06 0.45896E-06

0.51407E-06

0.25247E-06

0.27837E-06

0.13677E-06

0.14846E-06

0.7297OE-07

0.77974Ea7

0,38341E-07

040337E-07

O.l9841E-07

0.20552E-07

0,10113E-07

0~10314E-07

0.5077OE-08

0,50987E-08

0.25105E-08

0.24827E-08

O.l2228E-08