Microelectro,. Reliah., Vol. 22. No. 6. pp. 1135-1153. 1982.
0026-2714/82/061135-191;03.00/0 Pergamon PressLtd.
Printed in Great Britain.
RELIABILITY
AND MAINTAINABILITY SYSTEM
OF A MULTICOMPONENT
UNDER SEVERAL
REPAIR
SERIES-PARALLEL
DISCIPLINES
MASANOR I KODAMA Faculty
of E c o n o m i c s ,
Kyushu
University,
FUKUOKA, JAPAN ISAO
SAWA
F a c u l t y of Engineering, Kansai
University, OSAKA, JAPAN
( R e c e i v e d for publication Ist M a r c h
198Z)
ABSTRACT This paper considers
a system consisting
series with a single repair facility. consisting connected
of two subsystems
One subsystem is K-out-of-N:G
of N identical units, while the other consists in series.
having simultaneous distributed
The life-tlmes
connected in system
of M different units
of the active units depend on each other in
failure of all the operating units and repair times are
quite generally.
Initially
all the units are operating.
The
system breaks down if more than (N-K+1) units in the parallel group are simultaneously group.
in the failed states or if any failure occures in the series
The availability
repair disciplines to deduce
and reliability
are obtained simultaneously.
the reliability
for the steady-state
of the steady-state
We use a suitable
from the availability
availability
availability
function.
transformation
Explict expressions
of the system and the mean time to system
failure under several repair disciplines
I.
function of the system under several
are obtained.
Finally some properties
for each repair discipline
are given.
INTRODUCTION In this paper we consider a multicomponent
S O and S 1 in series.
Subsystem
S o is K-out-of
system composed of two subsystem -N:G system
(more than N-K+1 must
fail for S O to fail), while subsystem S 1 consists of M different units connected in series
(the failure of any one cause S 1 to fail ).
units depend on each other in having simultaneous and repair times are distributed
quite generally. 1135
The llfe-times
of the active
failure of all the operating units Kulshrestha
[1,2] has studied
1136
MASANORI KODAMAand ISAO SAWA
the model for K=I under the assumption only when the system stops operating mutually independent.
Nakamichi
for K=I with exponential
that the repair of any unit is possible
and the life-times
et al. [3] and Kodama
failure distribution
For system presented here we derive Laplace
(see Section 2).
for each repair discipline
2.
DEFINITION
[4] have studied
availability
Finally some properties
availability,
under several repair
of steady-state
availability
are given.
OF MODELS AND NOTATIONS
Independent Poisson processes and Z(t;%*) govern the occurence with a parameter
%).
Zl(t;%o),..-,ZN(t;%o),Zl(t;ll),-..,ZM(t;%
of shock.
Zi(t;lj)
(I~j~M), and events in the process Z(t;%*)
are shocks
o
to unit i only in
to unit j only in S 1
are shocks to all operating units.
Each unit results in failure after receiving only one "shock". down if all the units in S
M)
(By Z(t;%), we meana Poisson process
Events in the process Zi(t;% o) are shocks
S o (l~i~N), and events in the process
in S 1 occurs.
the model
under the different repair policies.
transform of pointwise
mean time to system failure and steady-state disciplines
of the active units are
are simultaneously
The system breaks
in a failed state or if any failure
The repair of any unit is possible at a single service channel only
when the system stops operating,
and then we consider
the following
three repair
policies
and call the repair policies model i, model 2 and model 3, respectively:
Model 1
When the system stops operating by the stop of S , (N-K+1) units in S are o o
repaired in the batch, and when the system stops operating
by the failure of the
jth unit in S I, only the jth unit is repaired. Model 2
This model differs from model 1 in fact that only one unit is repaired
when the system stops operating by the stop of S immediately
o
and the system begin to operate
after its repair and the repair of residual failed units in S
o
is
interrupted until the next system failure by the stop of S . o Model 3
This model differs from model 1 in fact that the failed unit in S 1 and
all the units under failure in S
o
are repaired in the batch when the system stops
operating by the stop of S I. Through these models,
(N-K+I) units in S
o
and all the units in SI, one unit in S o
and all the units in S I and N units in S o and all the units in S I are repaired in model 1,model 2 and model 3, respectively when the system stops operating by the simultaneous
failure.
The repaired unit is assumed
and repair times are distributed
quite generally.
the residual operating units do not fail.
to behave like new after repair When the system stops operating,
The system is always in one of the
Reliability repair analysis
following states
I 137
: EM--- all the units in S o and S I are operative; E.-- i units in 1
S o and a l l
the units
in S1 a r e o p e r a t i v e ,
l~i~N-1;
FK_ 1 -
(N-K+I) u n i t s
i n S o have
failed and the system is undergoing repair; F..-- i units in S are operative, ij o the system s t o p s
operating
by t h e f a i l u r e
of the jth
repair,K~i~N,l~j~M; . . . .
Fo--all
undergoing repair.
We n o t e t h a t E. means t h a t
that the system is failed. Through t h i s ~=
unit
and
i n S 1 and i s u n d e r g o i n g
the units in So and S I have failed and the system is
Initially,
the system is operating
and F
means
all the units are operating.
p a p e r we u s e t h e f o l l o w i n g
notations;
M ~X. j=l 3
f(t)
is
the density
function
of repair
t f (t)=p(t)exp[-f0~(x)dx] fj(t)
is
the density
is
the density
when t h e s y s t e m s t o p s
i n So,
;
function
of repair
t fj(t)=~j(t)exp[-f0~j(x)dx], gi+M(t)
t i m e o f (N-K+I) u n i t s
time of jth
unit
i n S1,
M K~j~M, f * ( t ) = j ~ l X j f j ( t l / X . =
function operating
of repair
time o f i u n i t s
by t h e s i m u l t a n e o u s
failure
; i n S o and M u n i t s
in S1
,
t
gi+M(t)=~i+M(t)exp [-f0Ui+M(X)dx] , K
t fij(t)=Dij(t)exp[-f0~ij(x)dx]
K ,Kj,Li+ M ,K°
and Kij are the first moment
gi+M(t),fo(t) Pi(t)=P{
and fij(t) respectively
(mean repair time ) of f(t),fj(t),
;
the system is in state E i at time t }, K~i~N;
PK_I(t)=P{
the system is in state FK_ I at time t };
PK_l(t,x)dx=P{
the system is in state FK_ I at time t.and elapsed repair time lies
between x and x+dx }7
P..(t)=P{ z3
, 0~i~N-K, ljj~M ;
t PK_l(t)=f0PK_l(t,x)dx;
the system is in state F.. at time t }; 10
P..(t,x)dx=P{ the system iN in state F.. at time t and elapsed repair time lies 13 13 between x and x+dx },
Qo(t)=P{
the system is in state F ° at time t and elapsed repair time lies
between x and x+dx }, F
K~i~N, I~j~M ;
the system is in state F ° at time t };
Qo(t,x)dx=P{
MR 22:6.
t Pij(t)=f0Pij(t,x)dx,
, Qo(t)=* f0tQ°(t'x)dx;
1138
MASANORI KODAMA and ISAO SAWA
M(s) is the Laplace transform of M(t), M(s)=f0 e-StM(t)dt; Pi = lim Pi(t) ; t'-~ Qo = lira Q o ( t ) t_~-,
;
P (t)
is point-wise
PA j
is steady-state
RJ(t)
is system reliability
i
availability availability
(l__
*
of m o d e l j (l_
of m o d e l j (l=
NTSF j i s mean t i m e t o t h e f i r s t
3.
of m o d e l j
system failure
of model j (l~j_<3 j = 2 * ) ;
Model i The analysis crucially depends on the method of supplementary variables,and
the supplementary variable x denotes the elapsed time that a unit has been undergoing repair.
Viewing the nature of this model, we obtain the following set of
differential-difference equations: ,
t
M
t
t
,
,
[d/dt+N%o+~+~ ]PN (t)= /0~(X)PK-I (t'x)dx + j=l[/0~j(x)PNj(t'x)dx +]0~N+M(X)Qo(t,x)dx, (3.1) ,
M t [d/dt+i~o+~+~ ]Pi(t)=(i+l)~oPi+l(t) + ~ f U.(x)Pij(t,x)dx, K
(3.2)
[~/~t+~/~x+~(x)]PK_l(t,x)= 0,
(3.3)
[8/~t+~/~x+uj(x)]Pij(t,x)= 0,
K~i~N, I~j~M,
(3.4)
[~/~t+~/~X+~N+M(X)]Qo(t,x)= 0. Equations
(3.1)-(3.5)
are
to s o l v e d
(3.5) subject
to the following
b o u n d a r y and i n i t i a l
conditions: PK_I(t,0)=KXoPK(t),
(3.6)
Pij (t,0)=%jP i(t), , , N Qo(t,0)=X [ ei(t), i=K
(3.7)
PN(0)= i.
(3.8) (3.9)
Taking the Laplace transform of equations (3.1)-(3.8) under the initial condition (3.9), we obtain after some manipulation and simplification: x PK_I (s ,x) =KloPK(S) exp [-sx-f 0~ (t) dt ] ,
(3.10)
x , Pij (s ,x) =%jPi (s) exp [-sx-f 0~N+M (t) dt],
(3.11)
_. , N X , Qo(S,X) =l i~KPi (s) exp [-sx-J0 DN+M(t) d t] ,
(3.12)
Reliability repair analysis
1139
, , N [N+r(s)]loPN(S)=Klog(S)PK(S) + X gN+M(S)i~KPi(s ) + i,
(3.13)
[i+r (s) ]loP i (s)= (i+l) loPi+ I (s),
(3.14)
where r(s)=[s+l(l-f*(s))+l*]/I °
(3.15)
From (3.14) we have
Pi(s)= [(i+l) / (i+r (s)) ] [(i+2) / (i+l+r (s)) ] ''' [N/(N-l+r(s)) ]PN(S) = [N/(ih(s ;i,N-1)) ]PN(S)= [N/h(s ;K,N-1) ] [h(s ;K,i-1)/i]PN(S),
(3.16)
where
J h(s;i,j)= H [m+r(s)]/m, K
(3.17)
Next ,we shall use Lemma 1 to obtain the Laplace transform pl(s) of pointwise availability PAl(t). 4 l+r(s) ~ h(s;i,m-1)/m m=i The proof i s given by i n d u c t i o n on the number j .
Lemma 1
h(s;i,j)=
(3.18)
By Lemma 1 and (3.15), we have loh(0;i'J)=Xo+l* i h(O;i,m-l)/m m=i
,
M
* J
(3.19)
~oh(0;i,J)=(l+m~llmK)m~ih(0;i,m-l)/m+I*
i
h
'
(0;i,m-l)/m ,
m=i where h (0;i,j)=[
(3.20)
(s;i,J)]s=0 .
Using (3.10)-(3.13),(3.16) and Lemma i, we have PN(S) = [r(s)h(s;K,N)/(N+r(s))]{lor(s)[h(s;K,N)-f(s)]-I gN+M(S)[N(s;K,N)-I]}-I (3.21) FK_I(S)=/0FK_I(S,x)dx=KXo(I-[(s))/s =NXo[(I-f(s))/S]PN(S)/h(s;K,N-I) ,
(3.22)
Pij(s)=/0Pij(s,x)dx=ljPi(s)(l-fj(s))/s =NIj[(I-fj(s))/s][h(s;K,i-I)/i]PN(S)/N(s;K,N-I),
(3.23)
_, ~_, , N _ _, Qo(s)=f0Qo(S,x)dx=l m~KPm(S)(l-gN+M(S))/s , _, N =NI [(l-gN+M(S)/S][ ~ h(s;K,m-l)/m]PN(S)/h(s;K,N ) m=K =NI [(l-gN+M(S)/s][h(s;K,N)-l)/r(s)]PN(S)/h(s;K,N), gN+M(S)[h(s;K,N)-l]} -i . A$1(S)=m~KPi(s)=[h (s;K,N)-l]{lor(s)[h(s;K,N)-f(s)]-I *-*
(3.24) (3.25)
Using Tauberian theorem, L'Hospital's rule, Lemma 1,(3.19)-(3.24) and (3.25), we have PN =
lim SPN(S)= lim [h(s;K,N)/(N+r(s))]{S[Xo(h(s;K,N)-f(s)) s÷O s-TO
1140
MASANOR[ KODAMA and ISAO SAWA
,_, N -I gN+M(S) [ h(s;K,m-ll/m] -I) m=K , , , M , , , =I h(0;K,N)(Io(N+r(0))[K I +(l+j=l [ I.K.j 3 +I L N+M )(h(0;K,N)-I)]} -I, PK-I= s+01imSPK_I(S)=[NIoK
/h(0;K,N-I)]PN,
(3.27)
Pij = lira sPij (s)=[NIjKj/h(0;K,N-1)] [h(O;K,i-l)/i]p N , s-+0 N
M
,
M
(3,26)
(3.28)
,
~ P..=N(I /I ) ~ X.K.[h(O;K,N)-l)/h(0;K,N-1)]p N o j=l j j i=K j=l lj
(3.29)
Qo = lim SQo(S)=NIo~+M[h(0;K,N)-I)/h(0;K)N-I)]PN, s-+0 1 -I N * PA = lim SPA(S)= ~ pm=lo(N+r(0)){[h(0;K,N)-l]/[l h(0;K,N)]}pN s÷0 m=K
(3.30)
=[h(0;K,N)-I)][K
M* * * * * -i X +(i+ ~ X.K.+I ~.+.)(h(0;K,N)-I)] . i=l j 3 m m N
It is easily seen that
(3.31)
M
[ ~IPiJ+Q; +PK_I+PI = 1. i=K j
The Laplace transform of reliability function Rl(s) can be obtain from P~(s) by _, -* making suitable transformations. Putting f (s)=0)f(s)=O and gN+M(S)=0 in (3.25) yields Rl(s) since the substitution is equivalent
to the assertion that the
probability of the system moving from down state to up state is zero. if we set s=0 in Rl(s), we obtain MTSF I.
Hence we have
N N , N N RI(s)= [ (i/iX o) n.[mlo/(S+mXo+X+A )1= [ [ [Ajm/(S+Jlo+l+l i=K m=l m=K j--m N
,
N
N N ~ ~ AjmeXp[-(jlo+X+X m=K j--m N
Ajm =
)] ,
(3.32)
,
MTSF I= [ [i/(iko+X+X ) H.[mXo/(mlo+X+l i=K m=1 Rl(t) =
Horeover,
(3.33)
)] ,
(3.34)
)t],
N
H r/ H (r-j). r--m+l r--m+l
Remark i.
Noting that lim, [h(0;K,j)-l]/l* =[d---,h(0;K,j)]l*_0 X ÷0 dl
= i [i/i~ o] ) we
i=K
obtain the following results when I =0. * Pi=MN { [i+
M * * * -i _~lljKj+~lo K ] } , K_
(3.35)
, , M P K _ I = ~ K IO[i+ j=l I I.K*. M~I* *] -i j j +--l°K N
M
M =
i=K j
j
(3.36)
M [i+ ~ I.K.+M..I K ]
j=l 3 J m
M 1 * * * -i PA = [l+j__llXjKj+MNXoK ] '
o
,
(3.37)
(3.38)
Reliability repair analysis
4.
1141
Qo = O,
(3.39)
N where 1 / ~ = [ i/i. i=K
(3.40)
Model 2 Viewing the nature of this model, we obtain the following set of differential-
difference equations: M t [d/dt+N~ +~+~ ]P_(t)= ~ f ~.(x)e_.(t,x)dx, o m j=l 0 3 m3 M t [d/dt+i~ +~+X*]Pi(t)=(i+l)~oPi+l(t) + ~ f ~.(x)Po.(t,x)dx, K+I
(4.1) (4.2)
, t [d/dt+KXo+~+~ ]PK(t)=(K+I)XoPK+I(t) + f0~o(X)PK_l(t,x)dx M
t
,t
,
,
+ j~i/0~j(X)PK_l(t,x)dx + ]0~K+M(X)Qo(t,x)dx,
(4.4)
[3/~t+~/~X+Uo(X)]PK_l(t,x) = 0, [~/~t+~/~x+~j(x)]Pij(t,x) = 0,
(4.3)
K~i~N , I~j~M,
(4.5)
[3/~t+~/~X+~K+M(X)]Qo(t,x) = 0,
(4.6)
PK_I(t,0) = KloPK(t),
(4.7)
Pij(t'0) = AjPi(t), Qo(t,0) = ~
K
(4.8)
N ~ Pi(t), i=K
(4.9)
PN(0) = i.
(4.10)
Taking the Laplace transform of equations (4.1)-(4.9) under the initial condition (4.10) and solvinE them, we obtain from (3.15) x PK_l (s ,x)=K~oPK (s) exp [-sx-/0~o (t) at ] ,
(4.11)
x Pij (s,x)=ljP i(s)exp [-sx-f0~ j (z)dt] ,
(4.12)
_, , N x, Qo(S,X)=% [ Pi (s) exp [-sx-/0~K+M(t) dt], i=K
(4.13)
~N(S ) = i/[N+r(S)lo] '
(4.14)
[i+r(s)]lo~i(s ) = (i+l)loPi+l(S), _ [K+r(s)]~oPK(S)
(4.15)
K+I
_
,_,
N
_
= (K+l)~oeK+l(S)+K~ofo(S)PK(S)+~ gK+M (s) ~ Pi(s) • i=K
(4.16)
From (4.15) we have Pi(s) = NPN(S)/[ih(s;i,N-l)]=[N/h(s;K,N-l)][h(s;K,i-l)/i]PN (s) =h(s;K,i-l)/[i%oh(S;K,N)] ,
K+I~i~N-I,
(4.17)
1142
MASANORIKODAMAand ISAOSAWA
PK(s)={r(s)[r~(s)+K%~f~(s)]+K%*{~+M(s)[h(s;K~N)-~]}{r(s)[K%~h(s;K,N)r~(s)]}-~(4.~8) where rl(s)
=
s+K%o[l-fo(S)]+%[l-f*(s)]+%*
[ l - g-* K+M(S)],
(4.19)
Using (4.11)-(4.13),(4.17) and (4.18), we have =o
PK-I(S) =f0 P(s,x)dx = K%oPK(S)(I-fo(S))/s ,
(4.20)
Pij(s) = %jPi(s)(l-fj(s))/s = [%j(l-fj(s))/s]h(s;K,i-l)[iloh(S;K,N)],
(4.21)
-* k* N _, Qo(S) = [ Pi(sl(l-gN+M(S))/s i=K ,
_,
N
= ~ [(I-gN+M(S))/s]{PK(S)+
P~(s) =
[ {h(s;K,i-l)/[iloh(S;K,N)]}} i=K+l
N N [ Pi(s) = PK(S)+ ~ {h(s;K,i-ll/[iloh(S;K,N)l} i=K i=K+l
,
(4.22)
•
(4.23)
Using Tauberian theorem , L'Hospital'rule,(3.19) and (3.20), we obtain the steadystate probabilities N [K~o+ KI* [ h(0;K,i-l)/i]/[Kloh(0;K,N)] i=K , M * * * -i =[l+K~ K + ~ %.K.+I e_._] , o o j=l ] 3 ~
eK = lim SPK(S)= s+0
--
lim[s/rl(s)] s~0 (424)
*
PK-I = s÷01imSPK_I(S)= K~oKoPK,
(4.25)
Pi = lim sPi(s) = 0 , K+I
Qo = lim SQo(S) = I ~ + ~ K s-~0 It is e a s i l y seen that
(4.26)
K+I
(4.27)
(4.28)
"
(4.29)
M
~IPKJ + Qo + PK-1 + PK
=
1.
f Putting fo(s)=O,-*
(s)=0
J and gK+M(S)=0 in (4.23) yields R2(s) . Moreover , if we set s=0 in R2(s), we have MTSF 2.
Hence we have
2(s) =
N N ~. [I/i% o] H.[m%o/(S+m%o+%+l*)], i=K m=l
This formula coincides with the formula of Rl(s).
(4.30) Hence we have
R2(t) = Rl(t), MTSF 2 = MTSF I, Remark 2.
(4.31)
The model i coincides with the model 2 in the case when K=N holds.
Hence, if we put K =K
o
and N=K in model i and model 2, we obtain the solution.
Next we shall consider a middle model of the model i and model 2.
When the
system stops operating by the stop of So, (m-K+l) units in So(K~m~N) are repaired
Reliability repair analysis
1143
in the batch and when the system stops operating by simultaneous failure, n units in S o (K~n~N) and all the units in S 1 are repaired in the batch.
If we m=n=N and m=n =
K, we get the model 1 and the model 2, respectively. We shall call this model model * 2 and analyze this model for K+l~m,n~N-l. We introduce the following notations here. f(m)(t) is the density function of repair time of (m-K+l) units in So, f(m) (t)=~ (m) (t)exp[- /iV (m)(x)dx], K~m~N, f(K)(t)=fo(t), f(N)(t)=f(t); K
*(m)
is the first moment of f(m)(t) .
Viewing the nature of this model ,we obtain the following set of differentialdifference equations: (i )
N-l_>_m>n__>K+l
M t [d/dt+N~o+~+X ]PN(t) = j~if0~ j.= (X)PNj(t,x)dx,
(4.32)
t t)'m" M t [d/dt+m~o+~+X ]Pm(t) = (m+l)~oPm+l(t)+ /0 ~ (X)PK_l(t,x)dx+j_[if0~ j _
(X)Pmj(t,x)dx,
n
(4.33)
K+l~n
(4.34)
,
,t , , [d/dt+n%o+A+E ]Pn(t)= (n+l)loPn+l(t)+ ]0~n+M(X)Qo(t,x) dx M t +j!if0~ j (X)Pnj (t,x)dx, ,
M
[d/dt+i%o+%+% ]Pi(t) = (i+l)%oPi+l(t) +
t
I / ~.(x)P..(t,x)dx, i~m,n, K
[~/3t+3/~x+u(m)(x)]PK_l(t,x) = 0,
(4.36)
[8/~t+~/~x+Uj(x)]Pij(t,x) = 0,
(4.37)
[~/3t+~/~X+~n+M(X)]Qo(t'x) = 0,
(4.38)
PK_I(t,0) = K%oPK(t),
(4.39)
Pij(t'0) = EjPi(t),
(4.40)
, , N Q°(t'0) = ~ i=IKPi(t)'
(4.41)
PN(0) = i.
(4.42)
Taking the Laplace transform of equations (4.32)-(4.41) under the initial condition (4.42) and solving them, we have PK-I(S'x) = K %oPK(S)exp [-sx-/ O u(m) (y)dy],
(4.43)
x Pij(s,x) = ~jffi(s)exp[-sx-/'0~j(y)dy],
(4.44)
_, , Qo(S,X) =
(4.45)
N
x
,
~ Pi(s)exp[-sx-f0~n+M(Y)dY], i=l
~N(S ) = [(N+r(S)%o]-l,
(4.46)
1144
MASANORI KODAMAand ISAO SAWA
[m+r(s)]loL(S ) = (m+l)loPm+l(S) + Klof(m)(S)PK(S) ,
(4.47)
N ,_, [n+r(s)]loPn(S ) = (n+l)loPn+l(S) + I gn+M(S)i=[KPi(s), K+l
(4.48)
[i+r(s)]Pi(s) = (i+l)Pi+l(S),
(4.49)
i~m,n; K~i~N-I,
From (4,49) we have Pi(s) = [n/h(s;K,n-l)][h(s;K,i-l)/i]Pn(S)
,K~i~n
= [m/h(s;n+l,m-l)][h(s;n+l,i-l)/i]L(s )
,n+l~i~m
[N/h(s;m+l,N-l)][h(s;m+l,i-l)/i]PN(S)
,m+l~i~N
=
(4.50)
Substituting (4.46) and (4.50) into (4.47) and (4.48), and rearranging with respect to Pm(S) and Pn(S) yields [m+r(s)]L(s) = i/[loh(s;m+l,N)] + [nf(m)(s)/h(s;K,n-l)]Pn(S),
(4.51)
n
[n+r(s)_n(l*/lo){*n+M(S)i__[K ~"]~nts)h(s;K'i-l) ) .r..,
m
_~
= [m/h (s ;n+l,m-l) ] [i+ (I /lo)gn+M(S ) [ h(s;n+l,i-l)/i]Pm(S ) i=n+l (I /lo)gn+M(S ) h(s;m+l,N)
+ Io
N [ h(s;m+l,i-l)/i . i--m+l
(4.52)
Using (3.17) and (3.18), we have the following Lermmas n Lemma 2. h(s;K,m)-i = r(s)[h(s;n+l,m) ~ h(s;m+l,i-l)/i i=K m + ~ h(s;n+l,i-l)/i], re>n,
(4.53)
i=n+l N
Lemma 3.
h(s;n+l,N)-i
= r(s)[h(s;n+l,m)
~
h(s;m+l,i-1)/i
i=m+l m
+
[ h(s,n+l,i-l)/i], re>n,
(4.54)
i=n+l
Lemma 4.
h(s;K,n)-i = r(s)[h(s;K,m)
n ~ h(s;m+l,i-l)/i i=m+l m
+ ~ h(s;K,i-l)/i], i=K
m
(4.55)
Hence we have from (4.51)-(4.54) en(S) = h(s;K,n-1)H(s;m,n)/[nloh(s;m+l,N)],
(4.56)
Pm(S) = [l+f (m)(s)H(s;m,n)]/[mloh(s;m,n)],
(4.57)
where H(s;m,n) ={lor(S)+l gn+M(S)[h(s;n+l,N)-l]}{[h(s;K,m)-f(m)(s)][lor(S )- I gn+M(S)] +I gn+M(S)[l-f(m)(s)]h(s;n+l,m)}-l~ Using (4.43)-(4.46),(4.50),(4.56) and (4.57), we have
(4.58)
Reliability repair analysis
1145
N
Pi(s) = {H(s;m,n)[h(s;K,n)+f (m)(s)-l]+h(s;m+l,N)}/[%or(s)h(s;m+l,N)] i=K -[l+f (m) (s)H(s ;m,n) ]/ [%or (s)h (s ;n+l,N) ] ,
(4.59)
PK_I(S) = K%oPK(S)(l-f (m)(s))/s,
(4.60)
Pij(s) = %jPi(s)(l-fj(s))/s = ~j[(l-fj(s))/s][n/h(s;K,n-l)][h(s;K,i-l)/i]Pn(S)
, K__
= ~.[(l-fj(s))/s][m/h(s;n+l,m-l)][h(s;n+l,i-l)/i]Pm(S ) J
, n+l
= %j[(l-fj(s))/s][N/h(s;m+l,N-l)][h(s;m+l,i-l)/i]PN(S)
, m+l_
, _, N Qo (s) = % [(l-gn+M (s))'/s]~ Pi (s) " i=K
(4.62)
From (3.15) [ [h (s ;K,m)-f (m) (s)] [%or (s)-%*gn*+M(S)]+%*g*+M (s)h (s ;n+l,m)(l-f (m) (s)) ]s=0=0,
(4.63)
and [ds [ (h(s ;k,m)-f-(m) (s ))(%or(S)-% *-* gn+M(S))+% *-* gn+M(S)h(s;n+l,m)(l-f(m)(s))]s=0 M
=(i+ j=l ~ %j K.+% j Ln+M) [h(0;K,m)-l]+%*K*(m)h(0;n+l,m). Using Tauberian theorem,L'Hospital's rule, (4.63),(4.64),(4.55)-(4.61)
(4.64) and (4.68),
we have
lim sH(s;m,n) = S÷0
[Xor(O)+X*-* gn+M(O)[h(0;n+l,N)-l]]lim s[[h(s;K,m)-f-(m) (s)] S~0 *-* *-* -(m) -i "[~or(S)-~ gn+M(S)]+~ gn+M(S)(l-f (s))h(s;n+l,m)]
, M , , , =~ h(0;n+l,N)[(l+ ~ ~.K.+~ Ln+M)[h(0;m,n)-l]+~*K*(m)h(0;n+l,m)] -I, j=l J J
(4.65)
P n = lim SPn(S) = h(0;K,n-l)H(m,n)/[n~oh(0;m+l,n)] $40
(4.66)
P m = lim SPm(S ) = H(m,n)/[mloh(0;m,N)] s+0
(4.67)
PN = lim SPN(S) = 0, s-+0
(4.68)
*
PA2
N
M
-i [ ~.K.+~ =i~KPi =[i+ j=l J J Ln+M+~*K*(m)h(0;n+l,m)/(h(0;K,m)-l)]
PK_I = K
*(m)
* *(m) 2 H(m,n)/h(0;m+l,N)=~ K h(0;n+l,m)P A /[h(0;K,m)-l]
Pij = ~jKj[h(0;K'i-l)/i]H(m'n)/[~oh(0;m+l'N)]
(4.7O)
' K--
= ~j.K.j [h(0;n+l,i-l)/i] H(m,n) / [~oh(0;n+l,N) ]
' n+l
=
, m+lfijN,
0
(4.69)
(4.71)
1146
MASANORI K O D A M A and ISAOSAWA
N M M i=K~ j=l~ Pij = J=~I~jK;[h(0;K'm)-I]H( m ,n)/[~ * h(0;n+l,N)] =
-* * * 2 Qo = lim SQo(S ) = ~ L n + ~ A s->0
M * 7. X.K.P. * 2 j'--'l3 J A '
,
(4.72)
(4.73)
where H(m,n) = lim sH(s;m,n) is given by (4.65) s÷0 N M * It is easily seen that ~ ~iPiJ+Q * + 2 = i. + i= K j PK-1 PA The reliability function of this model R 2 (t), its Laplace transform ~2 (s) * and the mean time to the first system failure MTSF 2 coincide with the results of the model i, respectively. Remark 3.
When
=0 , we obtain the following results using the same method as in
Remark i. M " "] -i ' H(m,n) = "~mM*lo[I+ ~~ E . K .*+ M * A K *(m~ j=13 j mo
(4. 74)
Let H(m,n)=H(m) . Pn = H(m)/n%o'
(4.75)
Pm = H(m)/mX o,
(4.76)
2 = H(m)/MmXo, PA
(4.77)
PK_I = K (m)H(m),
(4.78)
N
M M = j~iPiJ j =~l~jKj H (m)/Mm~o ,
i=K
(4.79)
Qo = 0,
(4.80)
where = (ii)
m [ i/i. i=K
(4.si)
K+l
Two new equations are added
t , , [d/dt+nXo+~+~l*]Pn(t)= (n+l)XoPn+l(t) + J ~n+M(X)Qo(t,x)dx M
+
t
[ f ~.(x)P .(t,x)dx, j=l 0 3 n3
[d/dt+ml °+l+X ]Pm(t) = (m+l)XoPm+l(t)+ f t (m) (X)PK_ l(t ,x)dx o M t + ~ / . ~ (X)Pmj (t,x)dx, j=l u J
m
(4.33)'
K+l=
(4.34)'
Taking the Laplace transform of equations of this case and using the same method as in (i), we obtain
Reliability repair analysis
Pi(s)
1147
= [m/h(s;K,m-l)] [h(s;K,i-l)/i]P (s) m
K
= [n/h(s;m+l,n-l)][h(s;m+l,i-l)/i]Pn(S)
, m+l~i~n,
= h(s;n+l,i-l)/[i,loh(s;n+l,N) ]
, n+l=
' (4.50) '
n(S) = [h(s;K,m)-f (m)(s)]H2(s;m,n)/[nEoh(s;n,N)],
(4.56)'
Pm(S) = h(s;K,m-l)H 2(s;m,n)/[mEoh(s;m+l,N)],
(4.57)'
Hg_(s;m,n) = [%or(S)+~ gn+M(S)[h(s;n+l,N)-l]] [h(s;K,m)-f (m)(s)] [%o r(s)-%*-*gn+M(s)] +7*-*gn+M(S)(1-f(m)(s))/h(s;m+l,n)] -I ,
(4.58)'
N
2 PA
i!KPi(s) = H 2(s;m,n)[h(s;m+l,n) [h(s;K,n)-~ (m)(s)]+~(m)(s)-l][%or(s)h(s;m+l,N)] -i +[h(s ;n+l,N) ] [%or(s)h(s ;n+l,N) ]-i ,
(4.59) '
PK_I(S) = KloPK(S)(l-f (m)(s))/s,
(4,60) '
Pij(s) = %j[(l-fj(s))/s] [m/h(s;K,m-])] [h(s;K,i-l)/i]Pm(S )
, K~i~m,
%j [ (l-fj (s))/s] [n/h(s ;m+l,n-1) ] [h (s ;m+l,i-l)/i]Pn(S)
, m+l~i~n,
),j[ (l-fj (s))/s]h(s ;n+l,i-l)/[i%oh(S ;n+l ,N) ]
, n+l~i~N,
_, , _, N Qo(S) = ~ [(l-gn+M(S))/s] [ Pi(s), i=K -
(4.62) '
,
H2(m,n) = lim s H 2 ( s ; m , n ) = % s-+0
(4.61) '
h(0;n+l,N)[(l+
M , , , [ %.K.+% L n + M ) ( h ( 0 ; K , m ) - i )
j=l 3 3 +k*K* (m)/h (0 ;m+l, n) ]-i ,
(4.65)'
Pn = lim SPn(S)= [h(0;K,m)-l]H2(m,n)/[n%oh(0;n,N)] , s~0
(4.66) '
P m = lira sPm (s)= h(0;K,m-l)H2(m,n)/[m%oh(0;m+l,N)] s-~0
(4.67)'
*
N
M
PA2 =i~Kei = [l+jo= . + X *K* (m) / [h(0;m+l,n)(h(0;K,m)-l)]] -I, [K%j K~+%*Ln*+M
(4.69)'
PK-I = K*(m)H 2(m,n)/h(0;m+l,N),
(4.70) '
Pij~ = %'K'[h(0;K'i-l)/i]H2(m'n)/[%oh(0;m+l'N)]3 3
, K
= ~jKj [h (0 ;m+l,i-l)/i] H2 (m,n) [h(0 ;K,m)-l] / [%oh (0 ;m+l,N) ] , m+l__
M
, M
M
[ . = [ %.K.H~(m,n)[h(0;K,m)-l]/[% *h(0,n+l,N) ]=j_~I~jK~ P2 i=K j ~I P i3 j=l 3 3* z _ •
Qo =
N * = ~* * 2 Ln+ M i=~KPi Ln+~A ,
X* *
N
It is easily seen that
M
(4.71) '
n+l__
(4.72)' ' (4.73) '
*
~ ~lPi j + Qo* + PK-I + PA2 = I. The reliability function i=K j of this model, its Laplace transform and the mean time to the first system failure
1148
MASANOR[ KODAMAand ISAO SAWA
coincide with the results of the model l,respectively. Remark 4.
When %* = 0, the steady-state probabilities coincide with the case of
Remark 3. (iii)
K+]
(4.32),(4.35)-(4.41) and (4.42) rema~t~ th,~ ~.~.r~e,one new equation is added *
[d/dt+n%o+%+% ]Pn(t)=(n+l)%oPn+l(t)+f0~
(n)
(X)PK_l(t,x)dx + f0~*+M(X)Q~(t,x)dx
M
+j=[if0~j (X)Pnj (t ,x)dx,
K+I
(4.33)"
Taking the Laplace transform of equations of this case and using the same method as in (i), we obtain (4.46)' '
PN(S) = [(N+r(S)%o]-i , Pi(s) = [n/h(s;K,n-l)][h(s;K,i-l)/i]Pn(S)
, K
= h (s ;n+l,i-l) / [i%oh (s ;n+l ,N) ]
(4.50)"
, n+l
n (s) = h(s;K,n-l)H3(s;n,n)/[n%oh(s;n+l,N)]
(4.56)"
H3(s;n,n ) = [~or(S)+% gn+M(S)[h(s;n+l,N)]][%or(s)[h(s;K,n)-f(n)(s)] +% gn+M(S)(l-h(s;K,n))]-i ,
(4.58)"
Pi(s) = [(h(s;K,n)-l)H 3(s;m,n)+(h(s;n+l,N)-l)][xor(s)h(s;n+l,N)]-I
(4.59)"
N i=K PK_I(S) = [(l-f(n)(s)/s]H3(s;n,n)/h(;n+l,N )
(4.60)"
,
Pij(s) = %j[(l-fj(s))/s][h(s;K,i-l)/i]H3(s;m,n)/[%oh(s;n+l,N)]
, K~i~n
= %j[(l-fj(s))/s][h(s;n+l,i-l)/i][%oh(s;n+l,N)]
, n+l
N _, , -* Qo(S) = % [(l-gn+M(S))/s] ~ Pi(s) , i=K H3(m,n) = lim S÷0
sH3(s;n,n)=%
*
h(0;n+l,N)[%
(4.62)" M ~ * * * ~ %.K.+% L
* *In) K " +(i+
j=l 3 J
Pn = lim SPn(S)=h(0;K,n-l)H3(n,n)/[nloh(0;n+l,N)], s÷0 *
(4.61)"
._)(h(O;m,n)-l)] - I- ' - -"
nl-m
' (4.65)" (4.66)"
N
PA2 = i!KPi =[h(0;K'n)-l]H3(n'n)/[~*h(0;n+l'N)]'
(4.69)"
PK-1 = K*(n)H3(n,n )/ h ( O ; n + l , N ) ,
(4.70)"
N
M
M
j~iPiJ = j~IXjKj[h(0;K,n)-l]H3(n,n)/[~*h(0;n+l,N)],
(4.72)"
i=K Qo =~ Ln+M[h(0;K'n)-I]H3 (n'n)/[% h(0;n+l,N)], It is easily seen that
N M * ~ Qo + PK-I + PA ~iPiJ+ * 2 = i. i=K j-
(4.73)" The reliability function
Reliability repair analysis
of this model R 2 (t) (n=m) , its Laplace transform first system failure MTSF 2 Remark 5.
When ~
1149
~2 (s) and the mean time to the
coincide with the results of the model l,respectively.
= 0 , the steady-state probabilities can be obtain from the results
of Remark 3 by putting n=m. 5.
Model 3 Viewing the nature of this model, we obtain the following set of differential-
difference equations: ,
t
t ,
,
[d/dt+N~o+X+X ]PN(t) = f0 ~(x)PK_l(t,x)dx+f0uN+M(x)Qo(t,x)dx N K
M
t
+i=0 ~ 311 f0~ij'= (X)PN-ij(t'x)dx , [d/dt+i% o +~+~ ]Pi (t) = (i+l)~ oPi+l (t) , [8/~t+~/~x+~(x)]PK_l(t,x)
K__
(5.2)
: 0,
[~/~t+3/~X+~N+M(X)]Qo(t,x) [~/~t+~/~x+uij(x)]PN_ij(t,x)
(5.3)
= 0, : 0,
(5.1)
(5.4) 0
(5.5) (5.6)
PK_I(t,0) = K~oPK(t ), PN-ij(t'0) : %jPN_i(t),
0
(5.7)
, , N Qo(t, 0) = ~ [ Pi(t), i=K
(5.8)
PN(0) = 0.
(5.9)
Taking the Laplace transform of equations (5.1)-(5.8) under the initial condition (5.9) and solving them , we obtain after some manipulation and simplification: Pi(s) : Nh°(s;K,i-I)PN(S)/[ih°(s;K,N-I),
K~i~N
(5.10)
where g°(s)
(5.11)
(s+~+~*)/~o, i h°(s;r,i) = ~ [j+g°(s)]/j, K~r~i~N ; = i, i=r-i j=r N h°(s,K,N) : l+g°(s) [ [h°(s;K,i-l)/i] i=K =
(5.12) (5.13)
N PN(S) = [h°(s;K,N-l)/N]{[h°(s;K,N)_~(s)]lo_l*~+M(S)i~KhO(s;K,i_l)/i N-K
M [ X.f..(s)h°(s;K,N-i-ll/(N-i)]} -I, -i~0 j=l ] 13 PK_I(S)
(5.14)
= N~o(I-f(s))PN(S)/[sh°(s;K,N_I)],
PN_ij(s) = NAj[(l-fij(s))/s][h°(s;K,N-i-l)/(N_i)]~N(S)/h(s;K,N_l)
(5.15) '
(5.16)
I I 50
MASANORI KODAMA a n d ISAO SAWA
_, , _, N Qo(S) =~ [(l-gN+M(S))/s ][n/h°(s;K,N-l)] [ ~ h°(s;K,i-l)/i]PN(S), i=K >3A(S) N N = ~ Pi(s)=[N/h°(s;K,N-l)] ~ [h°(s;K,i-l)/i]PN(S), i=K i=K Pi = lim sPi(s) = [N/h°(0;K,N-l)][h°(0;K,i-l)/i] s÷O
(5.17) (5.1S)
lim SPN(S)=[h°(0;K,i-I)/i]P*(N,K), s÷O (5.19)
PK-I = lim SPK_l(S) =XoK P (N,K), s-+0 --
*
(5.20)
0
*
PN-ij = lim SPN_ij(s) = XjKij[h (0;K,N-i-I)/(N-i)]P (N,K), s+0 N-K M N-K M o ~ PN-ij = [ [ [ X.K..h (0;K,N-i-I)/(N-i)]P*(N,K) , i=0 j=l i=O j=l 3 13 Qo = lim SQo(S) = [x Xo/(X +X)]~+MP s÷0
(5.21) (5.22)
(N,K)[h°(0;K,N)-I],
(5.23)
3 = [Xo/(~*+X)][hO(0;K,N)_I]P*(N,K), PA
(5.24) N-K
P (N,K) = {EoK +Xo(I+% L N+M)[h(0;K,N)-I]/(Xo+%
) +
M
~ ~ X.K..h°(0;K,N-i-I)/(N-i)} -I i=0 j=l j 13 (5.25)
N-K M * 3 It is easily seen that i=0~ j=l[PN-ij + Qo + PK-I + PA = i.
And also
N N N R3(S)= ~ h°(s;K,i-l)/[ikoh°(s;K,N)l = ~ [I/(s+i% o+x+~ )] ~ [m~o/(S+m~o+~+~ )] i=K i=K m=i+l (5.26) N , N , MTSF 3 = ~[i/(i~o+X+~ )] ~.[mXo/(mXo+~+~ )], i=K m=l Remark 6. 6.
(5.27)
If we set K=N, this model coincide with the model i and model 2 (K=N).
Properties of pl p2 and PA2 A' A
when there is no simultaneous failure
i 2 2 In this section we study the properties of PA,PA and PA From immediate c o m p a r i s o n KK o~ > ~ K *
Theorem i. Theorem 2.
between
<
models
l & 2 , we h a v e
the
* when % = 0 is true.
following
theorem;
> PAi <> PA2
(6.1)
An optimum integer m maximizing the steady-state availability of model 2
is determined by the integer m
(K
(l/i). i=K
Proof.
Example
It
is
clear
from
K* (m) = mK* o
.
K(m)=mK * m e a n s o ,
that
and
(4.77).
Uniqueness
time
of each
unit
is
m
g(K+2)>g(K+l)>g(K),
K=I
g(k)>g(K+2)>g(K+l),
K=2
g(K)>g(K+l)>g(K+2),
K~3
of m
is
not
K_=_+2. N
the mean repair
Let g(m)=mKo/i=[K(i/i),
Thus we have
,
(4.74)
we have from immediate calculation
same value.
assured.
Reliability repair analysis
1151
m =K, K=I; m =K+l, K=2; m = K+2, K$3 . We s h a l l
study
2 and PA 3 are PA
the behavior
the function
(6.2)
of steady-state
o f N and K.
availability
For convenience
i (i=1,2,3) throughout this section. o f PA
in p l a c e
1 PA '
for N and K since
we u s e t h e n o t a t i o n
P (N,M)
When the system stops operating ,
by s t o p
o f So, i f
t h e mean r e p a i r
time of each unit
is
t h e same v a l u e
(i.e.,K
=
(N-K+I)Ko) , then we have the following lemma and theorem. N
Lemma 5.
Let
F(N,K)=(N-K+l)Ko/l~K(i/i).=
(I~K~N) , then
(i)
F(N,K) is increasing in K for any fixed N.
(ii)
F(N,K) is increasing in N. for_any fixed K.
Proof. Since
N i/i < (N-K2+I)/[KI+ j ), NsK2>KI$1, K2-KI-ISj$O
i=K 2 it follows that N
K2-Kl-i
K2-1
(K2-K I) [ (i/i)< [ i=K 2 j=0
(N-K2+I)/(KI+J) = (N-K2+l) [ (i/i) i=K 1
Hence we have
K2_I
N N N F (N, K 2 )-F (N, K I) =K~ [(N-K2+1) [ (i/i) - (K2-K I) [ (i/i)]/[ [ (i/i) [ (i/i)] i=K 2 i=K I i=K 2 i=K I K2-1
>Ko[(N-K2 +1)
K 2-I N N (i/i) - (N-K2+1) [ (i/i)][ [ (i/i) [ (i/i)] = 0 i=K 1 i=K 1 i=K I i=K 2
which proves (i). (ii).
Proof is similar to that of (i).
Theorem 3. (ii)
(i)
Each P~(N,K) (i=l,2) is decreasing in K (I~K=
P~(N,K) and P~(N,K) are a decreasing function of N and a constant function of
N for fixed K~I (N~K),respectively.
(iii)
P~(N,K)÷0 as N-~= for any fixed K~I. ,
Proof.
N
,
,
(i) and (ii) are clear from (3.38), i / ~ = i~K(1/i) = , K =(N-K+I)K ° ,(4.24)
and Lemma 5. (iii)
Since N
N
(N-K+I)/ [ (I/i)>(N-K+I)/ f (i/x)dx i=K K = (N-K+I) log (N/K)-~
(6.3)
(N-~)
it follows that (iii) is true. M
,
Let g(1)=j_l'iAjKij , f(m)=h°(0;K,m-1)/m
(K_
and theorem. Lemma 6.
(i)
m for I/lo
f(m) is increasing in m for A/lo>l.
(ii)
f(m) is decreasing in
1152
MASANORI KODAMA and ISAO SAWA
Proof.
We consider n 2 and n I such that NSn2>nl~K .
The Proof is given by induction
on n 2 and we omit the details. Theorem 4.
(i)
if g(m) is decreasing in m for fixed M and I/Io<1 , then P~(N,K) is
decreasing in K (I~K~N) for fixed N$1.
(ii)
if g(m) is increasing in m for any
fixed M and I/Io>i, then P~(N,K) is increasing in K for any fixed N>I.= Proof.
From (5.24) we have
N p3(N,K) = P*(N,K) ~ h°(0;K,m-l)/m m=K N
N
M
={l+(N-K+l)K°~°/[m=K ~ h°(0;K'm-1)/m] + [m--[K(j=[llj~-mj)h°(0;K'm-l)/m] N /[ ~ hO(0;K,m_l)/m] }-i m=K N N N =[l+(N-K+l)Ko*1o/ ~ f(m) + ~ f(m)g(N-m)/ ~ f(m)] -I, m=K m=K m=K N N [ f(m)g(N-m)]/ ~ f(m) ,then we have m=K m=K K2-1 N N N G(N,K2)-G(N,KI)=K~Xo[(N-K2+I ) ~ f(m)-(K2-Kl) ~ f(m)]/[ ~ f(m) ~ f(m)] m=K I m=K 2 m=K I m=K 2 K 2-I N N N + ~ f(m) ~ f(n)[g(N-n)-g(N-m)]/[ ~ f(m) ~ f(m)],N>K2>Kl>l, m=K I n=K 2 m=K I m=K 2
(6.4)
Let G(N,K) = [(N-K+I)Kolo+
(i)
If %/%
o
(6.5)
, then using Lemma 6, we have
N
f (m) < (N-K2+I) h° (0 ;K, El+J-l) / (Kl+J)= (N-K2+I) f (KI+J), m=K 2 Hence we have N (K2-KI) ~ f(m)<(N-K2+l m=K 2 Let numerator of (6.5)
0~J ~K2-KI-I-
K2-KI-I K2-1 ) ~ f(Kl+J) = (N-K2+I) ~ f(m) j=0 m=K I be G (N,K 2) - G (N,KI). Noting that g(m) is decreasing in m
for any fixed M, we have K2-1 N g (N,K2)-G (W,Kl)> ~ f(m) ~ f(n)[g(N-n)-g(N-m)] m=K I n=K 2
$ 0
Hence P~(N,K) is decreasing in K for any fixed N$1 by(6.4) (ii)
Proof is similar to that of (i). REFERENCES
[1]
D.K.Kulshrestha,
" Reliability of a Parallel Redundant Complex System," Opns.
Res. 16,No.i,1968. [2]
D.K.Kulshrestha,
" Reliability of a Repairable Multicomponent System with
Redundancy in Parallel," IEEE.Trans.on Reliability.19,No.2,1970.
Reliability repair analysis
[3]
N.Nakamichi,J.Fukuta,S.Takamatsu,
and M°Kodama, " Reliability Consideration on
a Repairable Muliticomponent System with Redundancy in Parallel," 3.0pns. Res.Soc. of Japan.17,No.l,1974. [4]
M.Kodama, " Probabilistic Analysis of a Multicomponent Series-Parallel System under Preemptive Repeat Repair Discipline," Opns. Res.24,No.3,1976.
1153