Remarks on the radiative corrections of order α2 to muon decay and the determination of Gμ

Remarks on the radiative corrections of order α2 to muon decay and the determination of Gμ

~ N u c l e a r P h y s m s B29 (1971) 296-304. N o r t h - H o l l a n d Publishing Company REMARKS ON THE RADIATIVE CORRECTIONS OF ORDER a 2 TO M...

486KB Sizes 35 Downloads 73 Views

~

N u c l e a r P h y s m s B29 (1971) 296-304.

N o r t h - H o l l a n d Publishing Company

REMARKS ON THE RADIATIVE CORRECTIONS OF ORDER a 2 TO MUON DECAY AND THE DETERMINATION OF G~ Matts ROOS * CERN, Geneva, Switzerland A l b e r t o S I R L I N ** Department of Physics, New York Umvers,ty, New York, USA 1Received 17 M a r c h 1971 A b s t r a c t We d i s c u s s s e v e r a l t h e o r e t m a l a s p e c t s of the study of the r a d i a t i v e c o r r e c t m n s to the total decay p r o b a b i l i t y P in p - d e c a y . On the basis of the t h e o r e m on c a n c e l l a t i o n of m a s s s m g u l a r i t m s , we obtain by a s i m p l e a r g u m e n t , that p a r t of the r a d i a t i v e c o r r e c t i o n s of o r d e r a 2 to P which contains m a s s s i n g u l a r i t i e s (i.e. t e r m s whmh d i v e r g e in the m a t h e m a t m a l l i m i t m e --~ 0) in an expansion m p o w e r s of the r e n o r m a h z e d charge. We also state a t h e o r e m on the effect of the finite e l e c t r o n m a s s on the r a d i a t i v e c o r r e c t i o n s of o r d e r a. We then d i s c u s s an exponentiation method r e c e n t l y a p p h e d to study the c o r r e c t i o n s to P. We show by d i r e c t calculation that the method, as p r e s e n t l y i m p l e m e n t e d , is ambiguous and that it l e a d s , to o r d e r a 2 , to a v i o l a t m n of the conclusions obtained on the basis of the t h e o r e m on m a s s s i n g u l a r i t i e s . Finally we give what we c o n s i d e r to be the best value p r e s e n t l y available for Gtt m the f r a m e w o r k of the l o c a l V-A t h e o r y , and b r m f l y d i s c u s s the e x p e c t e d o r d e r of magnitude of the t h e o r e t m a l e r r o r .

1. ~ T R O D U C T I O N A s i s w e l l k n o w n , in t h e f r a m e w o r k of t h e l o c a l V - A t h e o r y , t h e w e a k i n t e r a c t i o n c o u p l i n g c o n s t a n t G p i s d e t e r m i n e d f r o m t h e k n o w l e d g e of t h e m u o n l i f e t i m e rt~ b y m e a n s of t h e f o r m u l a 1 rtz

192~ 3

P

rn/~

where m p and m e stand for the muon and electron masses and 6 is the rad i a t i v e c o r r e c t i o n t o t h e t o t a l d e c a y p r o b a b i l i t y . In eq. (1) w e h a v e n o t i n c l u d e d n e g l i g i b l e c o n t r i b u t i o n s of o r d e r [ ( m e / m p)4 In (rn t z / r n e ) ] a n d h i g h e r . * On leave of absence f r o m the D e p a r t m e n t of N u c l e a r P h y s i c s , U m v e r s i t y of H e l sink1, Helsinki, Finland. ** R e s e a r c h s u p p o r t e d in p a r t by the National Science Foundation.

297

M.Roos, A. S~rlm, Muon decay

In u n i t s of ~ = c = 1, t h e m o s t r e c e n t v a l u e s of Tp [1], mp [2] a n d t h e f u n d a m e n t a l c o n s t a n t s [2] d e t e r m i n e 1

G ~ = (1.4324 4- 0 . 0 0 0 3 ) ( 1 + 5 ) - ~ x 10 . 4 9 e r g . c m 3 1

= (1.1635 4- 0.0002)(1 + 5 ) - ~ x 10 - 5 G e V - 2 .

(2)

T o f i r s t o r d e r in a, a n d n e g l e c t i n g s m a l l c o n t r i b u t i o n s w h i c h v a n i s h in t h e m a t h e m a t i c a l l i m i t m e / m ~ ~ 0, 5 i s g i v e n b y [3, 4] 5 = 51-

~

(~r2

~-4.2x10

.3

(3)

w h e r e t h e s u b s c r i p t 1 i n d i c a t e s t h a t we h a v e o n l y i n c l u d e d t h e c o r r e c t i o n s of f i r s t o r d e r in a. U s i n g t h i s v a l u e t h e c o r r e c t e d G/z b e c o m e s G # = 1.4354 x 10 . 4 9 e r g . c m 3 = 1.1660 X 10 "5 G e V - 2 .

(4)

A q u e s t i o n of c o n s i d e r a b l e t h e o r e t i c a l a n d p r a c t i c a l i n t e r e s t i s t h e f o l l o w i n g : w h a t i s t h e o r d e r of m a g n i t u d e of t h e c o r r e c t i o n s of o r d e r a 2 to t h e t o t a l d e c a y p r o b a b i l i t y P in ~ - d e c a y ? W e n o t e t h a t t h e o n l y l a r g e p a r a m e t e r l i k e l y to a p p e a r in t h e c a l c u l a t i o n i s ¢o -= l n ( m ~ / m e) ~ 5.332. B a r r i n g e x c e p t i o n a l l y l a r g e n u m e r i c a l c o e f f i c i e n t s one e x p e c t s t h e c o r r e c t i o n s of o r d e r a 2 t o P to b e q u i t e s m a l l , s a y , of r e l a t i v e o r d e r <~ 10 . 4 u n l e s s t h e r e e x i s t c o n t r i b u t i o n s o r o r d e r a2w n w i t h a r e l a t i v e l y l a r g e e x p o n e n t n. T h e s e t e r m s e x h i b i t a n i n t e r e s t i n g f e a t u r e : t h e y d i v e r g e in t h e m a t h e m a t i c a l l i m i t m e ~ 0. T h r o u g h o u t t h i s p a p e r w e w i l l r e f e r to t h e s e t e r m s a s mass singularities, a l t h o u g h t h e y a r e c e r t a i n l y f i n i t e in t h e r e a l w o r l d ! It i s w e l l k n o w n t h a t t e r m s of o r d e r aw e x i s t in t h e r a d i a t i v e c o r r e c t i o n s to t h e e l e c t r o n s p e c t r u m in p - d e c a y . M o r e o v e r , one k n o w s t h a t s u c h m a s s s i n g u l a r i t i e s of o r d e r a c a n c e l e x a c t l y a f t e r i n t e g r a t i o n o v e r a l l e l e c t r o n e n e r g i e s * T h i s i s c l e a r l y e x h i b i t e d in eq. (3), w h e r e t h e a n a l y t i c a l e x p r e s s i o n f o r 51 d o e s not c o n t a i n m a s s s i n g u l a r i t i e s . O b s e r v e t h a t t h e e x i s t e n c e of t e r m s of o r d e r a2¢0n w i t h n = 4, s a y , w o u l d m a k e t h e c o r r e c t i o n s of o r d e r a 2 to P p o t e n t i a l l y a s l a r g e a s t h e c o r r e c t i o n s of o r d e r a g i v e n in eq. (3)! F o r t u n a t e l y , n a t u r e d o e s not a p p e a r to b e s o m a l i c i o u s . On t h e b a s i s of t h e t h e o r e m on c a n c e l l a t i o n of m a s s s i n g u l a r i t i e s d e r i v e d t o a l l o r d e r s in ( u n r e n o r m a l i z e d ) p e r t u r b a t i o n t h e o r y b y K i n o s h i t a [5] a n d b y L e e a n d N a u e n b e r g [6], we o b t a i n in s e c t . 2, b y m e a n s of a s i m p l e a r g u m e n t , t h a t p a r t of t h e r a d i a t i v e c o r r e c t i o n s of o r d e r a2 t o P w h i c h c o n t a i n m a s s s i n g u l a r i t i e s in an e x p a n s i o n in p o w e r s of t h e r e normalized (i.e. physical) charge. The result is: a w51 = __~co ( ~ ) 2 (Tr2 - ~ ) ~ - 3 . 5 x 10 - 5 52m . s . - 237r where the superscript

m . s . a n d t h e s u b s c r i p t 2 i n d i c a t e t h a t we h a v e only

* Mass singularities and their cancellations in the radiative c o r r e c t i o n s of o r d e r a r e d i s c u s s e d m sect. 3 of ref. [4].

(5)

298

M.Roos, A. S~rlin, Muon decay

t h e c o n t r i b u t i o n s of o r d e r a2 c o n t a i n i n g m a s s s i n g u l a r i t i e s . T h e f a c t t h a t 5~n ' s " i n v o l v e s only co r a i s e d to t h e f i r s t p o w e r and t h e o b s e r v a t i o n t h a t eq. (5) in i n d e e d v e r y s m a l l f o r t h e a c t u a l v a l u e s of rnp a n d m e a r e p a r t i c u l a r l y c o m f o r t i n g . It s h o u l d be c l e a r l y u n d e r s t o o d t h a t t h i s r e s u l t a p p l i e s only to t h e t o t a l d e c a y p r o b a b i l i t y , i . e . t h e c o r r e c t i o n s to the i n v e r s e l i f e t i m e T~ 1. T h i s i n c l u d e s a s u m m a t i o n o v e r a l l f i n a l s t a t e s a c c e s s i b l e to o r d e r a2, 1.e. p - ~ e - ~ e V p , p - ~ e - ~ e V p y , p ~ e - ~ e V p y y and p - --" e - ~ e v t ~ e + e - . F o r p a r t i a l d e c a y r a t e s , f o r t h e c o r r e c t i o n s t o t h e e l e c t r o n s p e c t r u m in p - d e c a y , e t c . , t h e t h e o r e m on c a n c e l l a t i o n of m a s s s i n g u l a r i t i e s i s not a p p l i c a b l e and we e x p e c t t e r m s of o r d e r a2o:n w i t h n > 1. We e m p h a s i z e t h a t t h e s u b t l e c a n c e l l a t i o n s i m p l i e d by t h i s t h e o r e m i n v o l v e h a r d a s w e l l a s s o f t p h o t o n s and e+e - p a i r s * A n o t h e r q u e s t i o n one m a y l i k e to a s k i s : w h a t i s t h e e r r o r a r i s i n g f r o m th e n e g l e c t of t h e f i n i t e e l e c t r o n m a s s in eq. (3) ? T h i s q u e s t i o n i s c l e a r l y not on t h e s a m e f o o t i n g a s t h e p r e v i o u s one, b e c a u s e t h e r a d i a t i v e c o r r e c t i o n s of o r d e r a h a v e b e e n c o m p u t e d e x a c t l y and, t h e r e f o r e , c a n b e c o m p l e t e l y c o n t r o l l e d at p r e s e n t * * . We s t a t e o u r r e s u l t in t h e f o r m of t h e f o l l o w i n g t h e o r e m : in th e V - A t h e o r y , a n d to f i r s t o r d e r in a, t h e c o n t r i b u t i o n s to 51 a r i s i n g f r o m t h e f i n i t e e l e c t r o n m a s s a r e of o r d e r of m a g n i t u d e (a/n)(rne/mp)2~, (a/~)(rne/mp)2 a n d s m a l l e r $. B e c a u s e of t h e s m a l l n e s s of ( m e ~ m 9 2 we s e e t h a t t h e e f f e c t of t h e f i n i t e e l e c t r o n m a s s in t h e c a l c u l a t i o n of 61 can be s a f e l y n e g l e c t e d . T h e s e d i s c u s s i o n s l e a d u s to t h e c o n c l u s i o n t h a t eq. (3) i s v e r y l i k e l y a g o o d a p p r o x i m a t i o n to t h e r a d i a t i v e c o r r e c t i o n s to t h e t o t a l d e c a y p r o b a b i l ity an d t h a t , t h e r e f o r e , eq. (4) is t h e b e s t v a l u e at p r e s e n t f o r G p , in t h e f r a m e w o r k of t h e l o c a l V - A t h e o r y . In t h e l i g h t of t h e p r e v i o u s d i s c u s s i o n ,

* F o r example an approximate calculation for the total rate of /~- --*e-~eVtte+eusing the method of Eckstem and P r a t t [7] suggests that this partial decay rate contains t e r m s of o r d e r oL2w3. According to the theorem on mass smgulamtms these t e r m s must cancel s l m d a r contributions of o r d er oL2 to the total decay rate amsmg, for example, from the w r t u a l radmtlve corrections. Th~s is not s u r prosing on the basis of expem~nce gathered in the study of c o r r e c t i o n s of o r d e r ~. for example, to o r d e r ~ the virtual radiative c o r r e c t m n s plus soft photons contain t e r m s of o rd er qo) 2 which are cancelled by the contributions from hard real photons. ** See Behrends et al. [8] and Grotch [9]. The function D m eq. (19) of ref. [8] must be replaced by D+C where C is given in eq. (C.4) of ref. [4]. $ The mare point of theoretmal interest in this theorem is the following: m the charge retention order, the radmtlve e o r r e e t m n s to the a x i a l - v e c t o r amphtude m //-decay are obtained from the c o r r e c t i o n s to the vector amplitude by changing the sign of the electron mass. The general argument that leads to this conclusion was given m sect. 3 of Berman and Slrhn [10]. Since m the charge retention order there is no interference between the V and A interactmn in the calculatmn of the decay spectrum of unpolamzed muons, it follows that m the V-A theory the t e r m s odd m m e cancel m the c o r r e c t m n s to the spectrum. It is still n e c e s s a r y to check that the further integration over the electron momentum to obtain the c o r r e c t m n s to the integrated probablhty does not introduce contmbutions of o r d er C~(me/rntt)n with n < 2. This we have done by studying the exphclt expressions for the c o r r e c tmns to the spectrum as given m ref. [8].

M. Roos, A. Sirhn, Muon decay

299

we expect the t h e o r e t i c a l e r r o r in eq. (4) to be roughly of r e l a t i v e m a g n i tude £ 10-4, which s e e m s to be a r e a s o n a b l e e s t i m a t e of the neglected contributions of o r d e r a 2. Recently, 5 has been r e - e v a l u a t e d [ 11] by m e a n s of an exponentiation m e t h o d which includes s o m e contributions of o r d e r ~2 and higher and the c l a i m has been made that 5 ~ -2 × 10-3 r a t h e r than the value given in eq. (3). In sect. 3 we show by d i r e c t calculation that the exponentiation method as i m p l e m e n t e d in ref. [11] is ambiguous (i.e. the s a m e g e n e r a l a r g u m e n t s m a y be used to d e r i v e v e r y different a n s w e r s ) . F u r t h e r m o r e , we point out that this method leads, in its p r e s e n t f o r m , to contributions to the total decay r a t e of o r d e r ~2wn, 0 ~< n ~<4, in s h a r p d i s a g r e e m e n t with the conclusions obtained in sect. 2 f r o m the t h e o r e m on cancellation of m a s s singularities.

2. DETERMINATION O F 5~n's" Suppose that the total decay p r o b a b i l i t y for y - d e c a y is expanded in the form M2(A ) + . . . ] ,

(6)

w h e r e / 5 is the u n c o r r e c t e d decay probability, e o is the b a r e c h a r g e and A is an u l t r a v i o l e t c u t - o f f which will be r e m o v e d at a l a t e r stage of the a r g u ment. The r e a s o n why a cut-off is n e c e s s a r y in M 2 when the expansion is done in t e r m s of the b a r e c h a r g e is that in the contributions of fourth o r d e r t h e r e a r e many g r a p h s involving v a c u u m polarization. In the p u r e e l e c t r o d y n a m i c s of e l e c t r o n s and photons, as is well known, the d i v e r g e n c e s a s s o c i a t e d with the e l e c t r o n loops a r e , in effect, ' a b s o r b e d ' in the c h a r g e r e n o r m a l i z a t i o n of l o w e r - o r d e r d i a g r a m s . The s a m e is true in the case of p decay (see fig. 1). As we have not yet p e r f o r m e d the c h a r g e r e n o r m a l i z a tion in eq. (6) and M 1 is finite, a c u t - o f f is c l e a r l y needed in M 2. The t h e o r e m on the cancellation of m a s s s i n g u l a r i t i e s as applied to ~decay, a s s e r t s that each t e r m in the ' u n r e n o r m a l i z e d ' p e r t u r b a t i o n expan-

O.

Fig. 1. Two related diagrams of second and fourth order. The divergences associated with the e- and /~-loops in diagram {b) are 'absorbed' m the charge renormahzation of diagram (a}.

300

M.Roos, A. Sirlin, Muon decay

s i o n of eq. (6) f o r the total d e c a y p r o b a b i l i t y is f r e e f r o m e l e c t r o n m a s s s i n g u l a r i t i e s [5, 6]. In p a r t i c u l a r , this is the c a s e f o r M2(A ). L e t us p e r f o r m now the c o n v e n t i o n a l c h a r g e r e n o r m a l i z a t i o n : e2

e2

2~

A

2a

A +

1

In eq. (7) we have only r e t a i n e d t h o s e t e r m s of o r d e r a 2 which exhibit the u l t r a v i o l e t d i v e r g e n c e and the m a s s s i n g u l a r i t y . I n s e r t i n g eq. (7) into eq. (6): P =/5{l+aM1

2a 2 + 3~ [ 2 1 n ( 3rn)

+ ¢ o l M I + a 2 M 2 ( A ) + "" "t "

(8)

It is well known that the p e r t u r b a t i o n e x p a n s i o n f o r p - d e c a y in p o w e r s of the r e n o r m a l i z e d c h a r g e is finite to all o r d e r s [10, 12]. T h e r e f o r e the t e r m (4a2/3~) In (A/rn 9 c a n c e l s the c u t - o f f d e p e n d e n c e of M2(A). Eq. (8) now b e comes 2a 2 p =/5 [ l + a M 1 + ~ _ WMl+C~2Mf+. " .] ,

(9)

where M f =M2(A) +~-ln

~

.

(10)

Note that M f is f r e e f r o m u l t r a v i o l e t d i v e r g e n c e and m a s s s i n g u l a r i t i e s . T h u s the only c o n t r i b u t i o n of o r d e r c~2 with m a s s s i n g u l a r i t y in eq. (9) is 5~n.s.

2a 2 wM 1 2a = 3~ =~-wS1

"

(11)

C o m b i n i n g eqs. (3) and (11) we obtain the r e s u l t of eq. (5). T h e following o b s e r v a t i o n s a r e in o r d e r : (i) Note that the m a s s s i n g u l a r i t y is i n t r o d u c e d b e c a u s e of our u s e of c o n v e n t i o n a l c h a r g e r e n o r m a l i z a t i o n (see eq. (7)). As p o i n t e d out in r e f . [6] it is p o s s i b l e , f o r t h e o r e t i c a l p u r p o s e s , to obtain a r e n o r m a l i z e d p e r t u r b a tion e x p a n s i o n f r e e f r o m m a s s s i n g u l a r i t y if one r e n o r m a l i z e s the p h o t o n p r o p a g a t o r by c h o o s i n g a s u b t r a c t i o n point q2 = M2 ¢ 0. In our c a s e , howe v e r , it is m o s t c o n v e n i e n t to p e r f o r m the c o n v e n t i o n a l c h a r g e r e n o r m a l i z a t i o n b e c a u s e we w i s h to identify a with the u s u a l f i n e - s t r u c t u r e c o n s t a n t . (ii) In e v a l u a t i n g eq. (11) we have a s s u m e d that the weak v e r t e x is not r e n o r m a l i z e d in the c a l c u l a t i o n . Such a p r o c e d u r e is the a p p r o p r i a t e one when Gp in eq. (1) s t a n d s f o r the ' b a r e ' c o u p l i n g of the weak i n t e r a c t i o n s , ' u n r e n o r m a l i z e d ' with r e s p e c t to e l e c t r o m a g n e t i s m . As is well known, a r e n o r m a l i z a t i o n of the weak v e r t e x is not n e c e s s a r y to obtain finite a n s w e r s , b e c a u s e the c o r r e s p o n d i n g d i v e r g e n c e s a r e a u t o m a t i c a l l y c a n c e l l e d by t h o s e a r i s i n g f r o m the wave f u n c t i o n r e n o r m a l i z a t i o n of the e l e c t r o n and m u o n fields [10, 12]. (iii) T h e m e t h o d u s e d in this s e c t i o n to d e t e r m i n e 5~n ' s " is, to a c o n s i d e r a b l e extent, a n a l o g o u s to K i n o s h i t a ' s d i s c u s s i o n of the c o n t r i b u t i o n s of o r d e r a2 and h i g h e r in the c a l c u l a t i o n of the p m a g n e t i c m o m e n t [13].

301

M . R o o s , A . S i r l i n , Muon decay

3. REMARKS

ON T H E E X P O N E N T I A T I O N M E T H O D

T o f i r s t o r d e r in a, t h e e l e c t r o n s p e c t r u m in t h e d e c a y of an u n p o l a r i z e d muon can be written as d P = d/5

1 + ~~r- C 2 ( E ) + ~- C I ( E ) i n

,

(12)

w h e r e d/5 i s t h e u n c o r r e c t e d s p e c t r u m , E i s t h e e l e c t r o n e n e r g y a n d q2 = ( p p _ P e ) 2 = m 2 + m2e - 2 r a p E. T h e f u n c t i o n C I ( E ) i s g i v e n b y 1 (1+/3" I Cl(E ) = ~ in - 2 \1 - fl/

w h e r e fl = v / c i s t h e e l e c t r o n v e l o c i t y in u n i t s of c, a n d C2(E) i s a v e r y c o m p l i c a t e d f u n c t i o n * w h i c h s i m p l y c o n s i s t s of a l l t h e c o r r e c t i o n s of o r d e r a ( a r i s i n g f r o m b o t h v i r t u a l a n d r e a l p h o t o n s ) w h i c h a r e not c o n t a i n e d in t h e l a s t t e r m of eq. (12). It h a s b e e n k n o w n f o r a l o n g t i m e t h a t t h e l a s t t e r m in eq. (12) s h o w s a n a n o m a l o u s b e h a v i o u r in t h e i m m e d i a t e v i c i n i t y of t h e p o i n t q2 = 0, i . e . a t t h e v e r y t i p of t h e e l e c t r o n s p e c t r u m . A s q2 a p p r o a c h e s zero, this term becomes very large and negative and it clearly leads to a b r e a k d o w n of p e r t u r b a t i o n t h e o r y **. It h a s b e e n p o i n t e d out [4] t h a t , in p r a c t i c e , t h i s d o e s not c a u s e p r o b l e m s b e c a u s e t h e i n t e r v a l in w h i c h t h e unphysical behaviour occurs is enormously smaller than the present exp e r i m e n t a l r e s o l u t i o n **. If one i s i n t e r e s t e d in t h e s t u d y of t h e e l e c t r o n s p e c t r u m one m u s t c o n s i d e r t h e c o n v o l u t i o n of eq. (12) w i t h t h e r e s o l u t i o n d i s t r i b u t i o n a n d no p r o b l e m a r i s e s , a t l e a s t a t p r e s e n t . If one m e a s u r e s t h e l i f e t i m e w i t h o u t d e t e r m i n i n g t h e e l e c t r o n s p e c t r u m one c a n s i m p l y i n t e g r a t e eq. (12) o v e r a l l e l e c t r o n e n e r g i e s , a s t h e s i n g u l a r i t y of t h e l a s t t e r m i s of a l o g a r i t h m i c a n d , t h e r e f o r e , m i l d a n d i n t e g r a b l e c h a r a c t e r . T h u s , to o r d e r a, t h e c o r r e c t i o n s 61 to t h e t o t a l d e c a y p r o b a b i l i t y , o b t a i n e d b y i n t e g r a t i n g eq. (12) o v e r t h e e l e c t r o n e n e r g y , a r e f i n i t e a n d w e l l d e f i n e d . It i s s t i l l i n t e r e s t i n g to i n q u i r e w h a t i s t h e m e c h a n i s m t h a t r e m o v e s t h e a n o m a l o u s b e h a v i o u r a s q2 _~ 0 in t h e e l e c t r o n s p e c t r u m , in t h e i d e a l c a s e of p e r f e c t e l e c t r o n r e s o l u t i o n . A s p e r t u r b a t i o n t h e o r y b r e a k s down in t h i s l i m i t a n d a s t h e p h e n o m e n o n in q u e s t i o n i s c l e a r l y r e l a t e d to i n f r a r e d b e h a v i o u r , it i s e x t r e m e l y p l a u s i b l e t h a t t h e s o l u t i o n to t h i s p r o b l e m i n v o l v e s c o n s i d e r a t i o n of m u l t i p l e s o f t - p h o t o n e m i s s i o n in t h o s e c o n f i g u r a t i o n s in w h i c h t h e e l e c t r o n e n e r g y i s v e r y c l o s e to t h e t i p of t h e e l e c t r o n s p e c t r u m . In o r d e r t o i m p l e m e n t t h i s i d e a t h e f o l l o w i n g p r o c e d u r e w a s p r o p o s e d in r e f . [11]: one r e w r i t e s eq. (12) a s * The function C2(E) can be determined, for example, by comparing eq. (12) with the e x p r e s s i o n s of ref. [4]. ** The region of the s p e c t r u m m whmh this happens is, however, e x t r e m e l y small. F o r example the c o r r e c t i o n s of o r d e r ~ become of magnitude 2~ 1 roughly in the interval (Ema x - E ) / E m a x <~e -50, where Ema x ~ !2 m ;/ is the maximum posmble energy for the electron. The reason for the occurrence of the In q2 t e r m is that at q2 = 0 the e m i s s i o n of r e a l photons becomes impossible and, therefore, the infrared divergence associated with the virtual quanta is not cancelled.

M.Roos, A. Szrlm, Muon decay

302

dP=d/5

1 +~-CI(E ) in

m~me

~

,

a n d e x p o n e n t i a t e s t h e f i r s t f a c t o r , s o t h a t eq. (13) i s r e p l a c e d b y

mpme/Jl T h e u n p h y s i c a l b e h a v i o u r a s q2 __. 0 h a s b e e n r e m o v e d in eq. (14) and, in f a c t , t h e s p e c t r u m t e n d s now to z e r o a s q2 __. 0, a t h e o r e t i c a l l y d e s i r a b l e r e s u l t . H o w e v e r , n u m e r i c a l e v a l u a t i o n s u s i n g eq. (14) l e a d to r e s u l t s f o r 5 v e r y d i f f e r e n t f r o m eq. (3). A s t h e s e t w o e x p r e s s i o n s c o i n c i d e to o r d e r a, one m u s t c o n c l u d e t h a t eq. (14) l e a d s t o c o n t r i b u t i o n s of o r d e r a 2, s a y , of t h e s a m e m a g n i t u d e a s t h o s e of o r d e r a. T h i s a p p a r e n t l y m y s t e r i o u s a n d r e m a r k a b l e p h e n o m e n o n c a n r e a d i l y b e u n d e r s t o o d if one s t u d i e s t h e c o n t r i b u t i o n s of o r d e r a 2 a r i s i n g f r o m eq. (14) a s a n e x p a n s i o n in p o w e r s of w. After performing the integration over the electron energies using the exp l i c i t e x p r e s s i o n f o r C2(E ) we f i n d t h a t eq. (14) l e a d s to c o n t r i b u t i o n s t o P of o r d e r (a/~)2w n w i t h 0 --< n ~< 4. (Note t h a t w4 ~ 8.4 × 10 2, w h i c h i s c l o s e to 27r/a.) T h e s e o b s e r v a t i o n s e x p l a i n q u a l i t a t i v e l y why eq. (14) g i v e s r i s e to s u c h l a r g e c o r r e c t i o n s of o r d e r ( a / 2 ~ ) 2 . C l e a r l y t h i s b e h a v i o u r i s in s h a r p d i s a g r e e m e n t w i t h t h e c o n c l u s i o n s o b t a i n e d f r o m t h e t h e o r e m on m a s s s i n g u l a r i t i e s ( s e e s e c t . 2). I n d e p e n d e n t l y of t h i s t h e o r e m it i s not d i f f i c u l t to s h o w t h a t t h e e x p o n e n t i a t i o n m e t h o d a s i m p l e m e n t e d in r e f . [11] i s a m b i g u o u s . F o r e x a m p l e , we c a n r e w r i t e eq. (12) a s dP=d/5

f I + ~ Ca2 ( E ) +~. C I ( E )

ln

( m 2 +q2m 2)] '

(15)

with =

and exponentiate as follows: dP(2 ) = d/~ e x p

CI(E ) in

+y)~

1

77

C2(E)

.

(16)

E q . (16) a l s o r e m o v e s t h e a n o m a l o u s b e h a v i o u r of t h e s p e c t r u m a s q2 ~ 0 a n d i s i d e n t i c a l to eq. (14) to ~ r d e r a. H o w e v e r , d e t a i l e d e x a m i n a t i o n s h o w s t h a t e q s . (14) a n d (16) g i v e r i s e t o v e r y d i f f e r e n t c o n t r i b u t i o n s of o r d e r a2 . * In r e f . [11] the c l a i m is m a d e t h a t t h e a m b i g u i t y of the e x p o n e n t i a t i o n m e t h o d is

small, roughly of the o r d e r of 1 p a r t in 1'04. Our detailed result of eq. (17) obviously d i s a g r e e s with that statement. We note that eq. (6.11) of ref. [11], which was used as a rough estimate of the ambiguity, was greatly underestimated n u m e r m a l ly m eqs. (6.12) and (6.14) of that paper. It is easy to see why eqs. (14) and (16) give r i s e to such different c o r r e c t i o n s of o r d e r ~2: both the second and third t e r m s in the square bracket of eq. (12) contain t e r m s of o r d e r ~co2, while their sum contains at most contributions of o r d e r ot¢o; instead the second and third t e r m s of eq. (15) contain only t e r m s of o r d e r aW. When the exponentlatlon is c a r t i e d through, this leads to contributions of o r d e r ~2con with n --<4 in P(1) and n ~< 2 m P(2).

M.Roos, A. Sirlin, Muon decay

303

We find by explicit analytical calculation $ that P(1) p- P(2) = - 2 ( ~ ) 2 (0)4_ 6co3 + 13.8co 2_ 12.1co) + O ( a 3) = - 2 . 4 × 10 - 3 + . . .

(17)

H e r e P(1) a n d P(2) r e f e r to t h e t o t a l d e c a y p r o b a b i l i t y c a l c u l a t e d on t h e b a s i s of e q s . (14) a n d (16), r e s p e c t i v e l y , a n d we h a v e n e g l e c t e d t e r m s t h a t v a n i s h a s r n e / m ~ ~ O. W e n o t e t h a t t h e a m b i g u i t y in t h e a 2 t e r m s , a s m e a s u r e d b y eq. (17), i s of t h e s a m e o r d e r of m a g n i t u d e a s t h e c o r r e c t i o n s of o r d e r a in eq. (3)! $ A l t h o u g h we h a v e c h o s e n to i l l u s t r a t e t h e a m b i g u i t y b y m e a n s of a s i m p l e e x a m p l e , i t i s c l e a r t h a t t h e a r b i t r a r i n e s s of t h e m e t h o d , a s a p p l i e d to g - d e c a y , i s of a m o r e g e n e r a l k i n d . O b s e r v e , f o r i n s t a n c e , t h a t e x p o n e n t i a t i o n s s u c h a s g i v e n in e q s . (14) a n d (16) a f f e c t to s o m e e x t e n t t h e e n t i r e e n e r g y s p e c t r u m f r o m q2 = 0 to q2 = (rn~z_ me)2 a n d t h a t in t h e r e g i o n w h e r e q2 i s s i g n i f i c a n t l y d i f f e r e n t f r o m z e r o , t h e y i n v o l v e h a r d a s w e l l a s s o f t p h o t o n s . W e n o t e i n p a s s i n g t h a t c o n t r a r y t o eq. (14), eq. (16) l e a d s to c o n t r i b u t i o n s of o r d e r a Z t o P s i g n i f i c a n t l y s m a l l e r t h a n t h e t e r m s of o r d e r a, a p r o p e r t y w h i c h c o n f o r m s m o r e c l o s e l y to i n t u i t i v e e x p e c t a t i o n s $. In o u r o p i n i o n , h o w e v e r , n e i t h e r e q s . (14) n o r (16) s h o u l d be u s e d to c o m p u t e t h e c o r r e c t i o n s to P b e c a u s e b o t h c o n t r a d i c t in o r d e r a 2 t h e c o n c l u s i o n s o b t a i n e d f r o m t h e t h e o r e m on m a s s s i n g u l a r i t i e s . It i s i n d e e d v e r y p l a u s i b l e t h a t s o m e k i n d of e x p o n e n t i a t i o n i n v o l v i n g (a/~r)Cl(E) in q2 a c t u a l l y o c c u r s , b u t if t h i s i s s o t h e r e s h o u l d e x i s t a d d i t i o n a l c o n t r i b u t i o n s of o r d e r a 2 w h i c h c a n c e l t h e a n o m a l o u s m a s s s i n g u l a r i t i e s g e n e r a t e d to t h i s o r d e r b y t h e e x p o n e n t i a l . It s h o u l d b e c l e a r f r o m t h e a b o v e d i s c u s s i o n t h a t t h e i n c l u s i o n of a n a r b i t r a r i l y s e l e c t e d a n d p a r t i a l s e t of t e r m s of o r d e r a 2 a n d h i g h e r , i n v o l v i n g l a r g e p o w e r s of w a s in e q s . (14) a n d (16) i s h i g h l y m i s l e a d i n g in t h e e v a l u a t i o n of t h e c o r r e c t i o n s to P in / ~ - d e c a y . If one w i s h e s to i n c l u d e t e r m s of h i g h e r o r d e r it s e e m s n e c e s s a r y in t h i s c a s e e i t h e r t o u s e a g e n e r a l t h e o r e m s u c h a s t h e t h e o r e m on m a s s s i n g u l a r i t i e s , w h i c h a p p l i e s to t h e s u m t o t a l of a l l t h e c o n t r i b u t i o n s of a g i v e n o r d e r , o r o t h e r w i s e t o do a f a i r l y c o m p l e t e c a l c u l a t i o n of t h e s e c o r r e c t i o n s . T h e s e o b s e r v a t i o n s s u g g e s t a l s o t h e i m p o r t a n c e of e x p a n s i o n s of t h e f o r m ( a / ~ ) 2 Z n Cn con in t h e e v a l u a t i o n of t h e c o r r e c t i o n s of o r d e r a 2. C o r r e c t i o n s of s u c h o r d e r t o t h e e n e r g y a n g l e d i s t r i b u t i o n in ~ - d e c a y m a y b e i n d e e d v e r y u s e f u l f o r p r a c t i c a l a s well as theoretical reasons. In computing P ( 1 ) - P ( 2 ) we have included both the contributions of o r d e r ~2 in eqs. (14) and (16) which obtain in the Taylor expansion of the exponentials and the c r o s s t e r m s between the t e r m s of o r d e r ~ in the exponentials and the t e r m s (Ot/~)C2(E) and (q/Tr)C2(E). These c r o s s t e r m s a r e negative and large and dominate the p o s i tive contmbutions of the f i r s t type. This explains the negative sign in eq. (17). Should we a r b i t r a m l y d i s m i s s the c r o s s t e r m s , the eontmbutmns of o r d e r OL2 to either P(1) or P(2) a r e n e c e s s a r i l y positive: we find that the ambiguity in this case is still very large-but of opposite sign to that given m eq. (17).

304

M . R o o s , A . Sirhn, Muon decay

We s h o u l d l i k e to t h a n k P r o f e s s o r T . K i n o s h i t a f o r h i s c o m m e n t s and int e r e s t in t h i s p r o b l e m .

REFERENCES [1] M.Roos et al., P a r t m l e Data Group, Phys. L e t t e r s 33B (1970) 1. [2] B. Taylor, W. P a r k e r and D. Langenberg, Revs. Mod. Phys. 41 (1969) 375; J. F. Hague, J . E . Rothberg, A. Schenk, D. L. Wllhams, R.W. Wllhams, K.K. Young and K . M . C r o w e , Phys. Rev. L e t t e r s 25 {1970) 628; R. De Voe, P . M . McIntyre, A. Magnon, D.Y. Stowell, R . A . Swanson and V. L. Telegdl, Phys. Rev. L e tt e r s 25 {1970) 1779; 26 (1971) 213, e r r a t a . [3] S . M . B e r m a n , Phys. Rev. 112 (1958) 267. [4] T.Klnoshlta and A . S l r h n , Phys. Rev. 113 (1959) 1652. [5] T.Kmoshlta, J. Math. Phys. 3 (1962) 650; Lectures in theoretmal physics, Umv ers l t y of Colorado (Interscience P u b h s h e r s , New York, 1961). [6] T.D. Lee and M. Nauenberg, Phys. Rev. 133B {1964) 1549. [7] S . G . E c k s t e m and R . H . P r a t t , Ann. of Phys. 8 (1959) 297. [8] R . E . B e h r e n d s , R . J . F m k e l s t e i n and A . S ir l i n , Phys. Rev. 101 (1955) 866. [9] H.Grotch, Phys. Rev. 168 (1968) 1872. [10] S.M. Berman and A. S~rhn, Ann. of Phys. 20 (1962) 20. [11] L.Matsson, Nucl. Phys. B12 (1969) 647. [12] Y a . A . S m o r o d l n s k n and Ho T s o - H s m , Zh. Eksper. Teor. Flz. 38 (1960} 1007; J E T P (Sov. Phys.) 11 (1960) 724; G. P r e p a r a t a and W . W e l s b e r g e r , Phys. Rev. 175 (1968) 1965; S . L . A d l e r , Phys. Rev. 177 (1969) 2426. [13] T.Kmoshlta, Nuovo Clmento 51B (1967) 140.