Journal Pre-proof Review of Ga2O3 based optoelectronic devices Daoyou Guo, Qixin Guo, Zhengwei Chen, Zhenping Wu, Peigang Li, Weihua Tang PII:
S2542-5293(19)30137-3
DOI:
https://doi.org/10.1016/j.mtphys.2019.100157
Reference:
MTPHYS 100157
To appear in:
Materials Today Physics
Received Date: 14 September 2019 Revised Date:
28 October 2019
Accepted Date: 28 October 2019
Please cite this article as: D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Review of Ga2O3 based optoelectronic devices, Materials Today Physics, https://doi.org/10.1016/j.mtphys.2019.100157. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Ltd. All rights reserved.
1
Review of Ga2O3 based optoelectronic devices
2
Daoyou Guo,a,b,c Qixin Guo,b,*1 Zhengwei Chen,d Zhenping Wu,d Peigang Li,d and Weihua Tangd,*
3
a
4
Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
5
b
6
Sage 840-8502, Japan.
7
c
State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
8
d
State Key Laboratory of Information Photonics and Optical Communications & Information Functional
9
Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876,
10
Center for Optoelectronics Materials and Devices & Key Laboratory of Optical Field Manipulation of Zhejiang
Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University,
China.
Corresponding authors. E-mail address:
[email protected] (Qixin Guo) and
[email protected] (Weihua Tang)
1
11
Abstract: Gallium oxide (Ga2O3), with a ultrawide-bandgap of ~ 4.9 eV, has attracted
12
recently much scientific and technological attention due to its extensive future
13
applications in power electronics (field effect transistors, Schottky barrier diodes),
14
optoelectronics [phosphors and electroluminescent (EL) devices, solar-blind
15
photodetectors], memory (spintronic devices, resistance random access memory
16
devices), sensing systems (gas sensors, nuclear radiation detectors), and so on. Ga2O3
17
has six different polymorphs, known as α, β, γ, δ, ε, and κ. These various polymorphs
18
each have unique physical properties and can be widely used in various fields of
19
devices. Among them, β-Ga2O3 has been the most widely studied and utilized due to
20
its excellent chemical and thermal stability. Herein, we provide a review on
21
Ga2O3-based optoelectronics, with a detailed introduction of the phosphors and EL
22
devices and a concise summary of solar-blind photodetectors. We classify the
23
currently reported phosphors and EL devices based on Ga2O3 undoped and doped
24
with various elements (Eu, Er, Tm, Mn, Nd, Tb, Cr), and sorted out the latest
25
progresses of Ga2O3-based solar-blind photodetectors in various forms of bulk single
26
crystal,
27
metal-semiconductor-metal structure, Schottky junctions, heterojunctions, and pn
28
junctions. Finally, conclusions and future perspectives for Ga2O3 based optoelectronic
29
devices are presented.
nanostructures,
thin
films
with
30
2
various
device
structure
of
31
TABLE OF CONTENTS
32
1. INTRODUCTION.................................................................................................... 4
33
2. BASIC PROPERTIES AND DEVICE APPLICATIONS OF Ga2O3 ................. 5
34
2.1 CRYSTAL STRUCTURE AND PHASE TRANSFORMATION.............................................................. 5
35
2.2 BASIC PHYSICAL PROPERTIES AND POTENTIAL APPLICATIONS OF DEVICES ....................... 9
36
3. PHOSPHORS AND ELECTROLUMINESCENT DEVICES .......................... 13
37
3.1 UNDOPED ............................................................................................................................................... 13
38
3.2 Eu DOPED ............................................................................................................................................... 15
39
3.3 Er DOPED ................................................................................................................................................ 21
40
3.4 Tm DOPED .............................................................................................................................................. 24
41
3.5 Mn DOPED .............................................................................................................................................. 25
42
3.6 Nd DOPED ............................................................................................................................................... 27
43
3.7 Tb DOPED ............................................................................................................................................... 29
44
3.8 Cr DOPED ................................................................................................................................................ 34
45
4. SOLAR-BLIND PHOTODETECTORS.............................................................. 36
46
5. SUMMARY AND FUTURE PERSPECTIVES .................................................. 40
47
ACKNOWLEDGMENTS ......................................................................................... 41
3
48
1. Introduction
49
Gallium oxide (Ga2O3), with a bandgap of 4.9 eV, is an emerging
50
ultrawide-bandgap semiconductor material, which attracted recently much scientific
51
and technological attention due to their extensive future applications in power
52
electronics (field effect transistors, Schottky barrier diodes), optoelectronics
53
(phosphors and EL devices, solar-blind photodetectors), memory (spintronic devices,
54
resistance random access memory devices), sensing systems (gas sensors, nuclear
55
radiation detectors), deep ultraviolet transparent conductive oxide electrode,
56
photocatalyst, and so on [1-5]. Research on Ga2O3 becomes a hot topic world wide,
57
and the number of publications on Ga2O3 exhibits the exponential growth as a
58
function of time on logarithmic scale, as shown in Fig. 1. It is expected this trend will
59
continue for the foreseeable future as research funding for power device development
60
increases.
61 62 63
FIG.1 Number of publications on Ga2O3 as a function of time. (Data from the Scopus) 4
64
2. Basic properties and device applications of Ga2O3
65
2.1 Crystal structure and phase transformation
66
Ga2O3 can form six different polymorphs, known as α, β, γ, δ, ε, and κ, as shown
67
in Table I [3,6-8]. Among them, β-phase is the most stable while κ-phase is transient
68
[8]. Polymorphs are different not only in their crystal space group but also in the
69
coordination number of Ga ions. Although as many as above mentioned six
70
polymorphs of Ga2O3, there are likely four polymorphs: α, β, γ, and (δ/ε/κ). The
71
ε-phase is likely mimicking the κ phase due to rotational grains formed on sapphire
72
[9], while the δ-phase is a mixture of the β- and ε-phases [8]. TABLE I. Lattice parameters of Ga2O3 polymorphs.
73
Polymorph
System
Space group
Lattice parameters
Ref.
α
Hexagonal
c R3
a=b=4.98 Å, c=13.43 Å, α=β=90°,
[10]
γ=120° β
Monoclinic
a=12.23 Å, b=3.04 Å, c=5.80 Å,
C2/m
[11]
α=γ=90°, β=103.8° γ
Cubic
m Fd3
a=b=c=8.24 Å, α=β=γ=90°
[12]
δ
Cubic
Ia3
a=b=c=9.52 Å, α=β=γ=90°
[13]
ε
Hexagonal
P63mc
a=b=2.90 Å, c=9.26 Å, α=β=90°, γ=120°
[8]
κ
Orthorhombic
Pna21
a=5.05 Å, b=8.70 Å, c=9.28 Å,
[9]
α=β=γ=90°
74
α-Ga2O3 is hexagonal, with space group R 3 c, belongs to the corundum
75
structure[Fig. 2(a)] [10,14]. There are a variety of rhombohedral corundum-structured
76
III-oxide materials, that is, α-M2O3 (M = Al, Ga, In, Cr, Fe, V, and Ti). Owing to the
77
same crystal structure, alloys and heterostructures of them are essentially expected,
78
leading to novel functions in the future. In this area, Fujita’s group from Kyoto
79
University have done a lot of original innovative works [15-29]. In spite of metastable
80
phase, α-Ga2O3 and α-In2O3 thin films were epitaxially grown on sapphire (α-Al2O3) 5
81
substrates by using mist chemical vapour deposition (mist-CVD) [15,17,21,22,24],
82
and this enabled the growth of α-(Al,Ga,In)2O3 semiconductor alloys with which they
83
can achieve the “band gap engineering” from 3.8 eV to 8.8 eV [18,20,24]. They also
84
expect to tailor the materials functions with alloying transition-metal oxides (M = Cr,
85
Fe, V, and Ti) due to their unique properties with the α-(Al,Ga,In)2O3 semiconductor
86
alloys, leading to “function engineering” [20]. For example, α-Cr2O3 has been studied
87
as a surface coating material on stainless steels as an oxidation-resistant thin film
88
because of the excellent thermal stability, and also exhibits a magnetoelectric effect
89
[30-31]. α-V2O3 shows temperature-induced insulator-metal transition [32]. α-Fe2O3
90
shows weak ferromagnetism and is promising for applications to a spintronic material
91
[33]. Magnetization hysteresis observed for α-(Ga,Fe)2O3 at higher than room
92
temperature is an example of the “function engineering” realizing fusion of
93
semiconductor and magnetic properties in a material [34]. Meanwhile, α-Ga2O3 also
94
can be obtained by heating GaOOH prepared by hydrothermal method in air [6,35],
95
halide vapour phase epitaxy (HVPE) [36], and laser molecular beam epitaxy [37]. We
96
can expect designing a variety of alloys and heterostructures with the
97
corundum-structured III-oxide alloys toward novel multifunctional devices in the
98
future.
99
β-Ga2O3 has monoclinic structure, belongs to the space group of C2/m
100
[11,38-40].The unit cell of β-Ga2O3 is shown in Fig. 2(b). It contains two
101
crystallographically in equivalent Ga positions, one with tetrahedral geometry Ga (I)
102
and one with octahedral geometry Ga (II). The oxygen ions are arranged in a
103
“distorted cubic” close-packed array. Oxygen atoms have three crystallographically
104
different positions and are denoted as O(I), O(II) and O(III), respectively [41-42].
105
Two oxygen atoms are coordinated trigonally and one is coordinated tetrahedrally.
106
The bulk crystals of β-Ga2O3 can be grown directly from the melt with a melting point
107
of 1793
108
compared with the vapor growth techniques used to manufacture bulk crystals of GaN
109
and SiC, or more exotic wide bandgap semiconductors like diamond. The main melt
. The cost of producing larger area, uniform substrates is potentially lower
6
110
growth methods reported to date have included Czochralski (CZ) [43-46], float zone
111
(FZ) [47-52], vertical Bridgman (VB)/vertical gradient freeze (VGF) [53-56], and
112
edge-defined film-fed growth (EFG) methods [57-58]. The estimated electric field
113
breakdown of β-Ga2O3 is roughly a factor of two larger than the theoretical limits of
114
SiC and GaN [4,59-60]. In terms of power switching device figures-of-merit, the large
115
EB for β-Ga2O3 leads to a Baliga figure of merit almost three times larger than for
116
GaN and SiC. β-Ga2O3 is an interesting material system combining an
117
ultrawide-bandgap (~ 4.9 eV) with a decent mobility (~ 100 cm2/Vs), a high
118
breakdown field (8 MV/cm) and good thermal/chemical stability, which is promising
119
for power electronics and solar blind photodetectors, as well as extreme environment
120
electronics [high temperature, high radiation, and high voltage (low power) switching]
121
[2,4,59-67]. Furthermore, similar to GaN, β-Ga2O3 has shown the potential to form a
122
two-dimensional electron gas (2DEG) at including β-(AlxGa1-x)2O3/Ga2O3 and
123
β-(InxGa1-x)2O3/Ga2O3 hetero-interfaces and thus offers a basis for the development of
124
high electron mobility transistors (HEMTs) [68-73].
125
γ-Ga2O3 belongs to the space group of Fd3m, and has defective cubic spinel-type
126
structure (AB2O4-type) [Fig. 2(c)], which is similar to that of γ and η-Al2O3
127
[12,74-79]. The ideal spinel structure of AB2O4-type is represented by a 2×2×2
128
array of an fcc packed oxygen sub-cell, with the A and B cations occupying the 8a (of
129
the 64 available) tetrahedrally and the 16d (of 32) octahedrally coordinated interstitial
130
sites. First principles calculations indicate that the cation vacancies are mainly located
131
on the octahedral site. γ-Ga2O3 thin film can be obtained by the mist-CVD [80],
132
molecular beam epitaxy [81], and pulsed laser deposition (PLD) [82-84] with the use
133
of sapphire and spinel substrates. γ-Ga2O3 is promising for a spintronic material from
134
the facts that Mn-doped γ-Ga2O3 epitaxial layers shows room temperature
135
ferromagnetism [85-86].
136
δ-Ga2O3 belongs to the space group of Ia3, which is known as a body-centered
137
cubic crystal and isomorphous with other bixbyite crystals such as In2O3, Mn2O3 and
138
Ti2O3 [8,13]. However, thin film growth of the δ-Ga2O3 phase has not been reported 7
139
so far.
140
ε-Ga2O3 is hexagonal, with the space group of P63mc [Fig. 2(d)]. ε phase is the
141
second-most stable phase and is compatible with the common hexagonal wide
142
bandgap semiconductors GaN and SiC [87]. ε-Ga2O3 has a crystal structure similar to
143
κ-Al2O3 [9,40,88-90]. ε-Ga2O3 thin films were grown by HVPE on nitride, β-Ga2O3,
144
magnesia, and yttria-stabilized zirconia substrates [91-92], by plasma-assisted
145
molecular beam epitaxy on sapphire [93], and by metal organic chemical vapour
146
deposition on sapphire [94-95]. It is predicted that ε-Ga2O3 has a large spontaneous
147
polarization and therefore could produce high-density 2DEG used for conducting
148
channels in heterostructure field effect transistors. Ferroelectric properties were
149
observed in ε-Ga2O3 due to the presence of uncompensated electrical [94].
150
κ-Ga2O3 is orthorhombic, with the space group of Pna21 and the lattice
151
parameter of a=5.046 Å, b=8.702 Å, c=9.283 Å, α=β=γ=90°, which is usually
152
misinterpreted as the disordered structure with its P63mc space group symmetry
153
referred to as ε-Ga2O3 in the current literature [9].
154
155
156
FIG. 2. Crystal structures of several polymorphs of Ga2O3 [67].
β-Ga2O3 is the most common and the only stable phase up to 1800
, while
157
other modifications are low temperature phases. The formation energy of the
158
polymorphs has the following order β<ε<α<δ<γ [13]. Although other phases than
159
β-phase cannot be grown as bulk crystals from the melt, fluxor gas phase, they could 8
160
be obtained as thin films or thick layers. β-Ga2O3 can be obtained by baking any other
161
polymorph of Ga2O3 in air at temperatures above 500-700
162
converted into other phases at higher pressures or temperatures [10]. For example, it
163
undergoes a transition to the hexagonal α-Ga2O3 phase at a pressure of 4.4 GPa at
164
1000
165
to the trigonal α-Ga2O3 occurs at around 19.2 GPa under cold compression [97]. They
166
heated powdered samples to 2000 K at 30 GPa, and found that α-Ga2O3 is the most
167
stable structure at the high pressure [97]. This high pressure phase can remain as a
168
metastable phase if quenched to room temperature [98-99].
[Fig. 3], which can be
[96]. Ma et al. found that the phase transition from the monoclinic β-Ga2O3
169 170
171
172 173
FIG. 3. Interconversion relation of Ga2O3 polymorphs [8,67].
2.2 Basic physical properties and potential applications of devices Table Π compares the important material properties of major semiconductors with those of Ga2O3, which has important applications in the following device fields:
9
TABLE Π. Material properties of major semiconductors and Ga2O3
174
175
Materials parameters
Si
GaAs
GaP
4H-SiC
ZnO
GaN
Ga2O3
Diamond
AlN
MgO
Bandgap, Eg(eV)
1.1
1.43
2.27
3.3
3.35
3.4
4.2~5.3
5.5
6.2
7.8
Electron mobility, µ (cm2/Vs)
1400
8500
350
1000
200
1200
300
2000
135
-
Breakdown field, Eb (MV/cm)
0.3
0.6
1
2.5
3.3
8
10
2
-
Dielectric constant, Ɛ
11.8
12.9
11.1
9.7
8.7
9
10
5.5
8.5
9.9
Thermal conductivity k, (W/cmK)
1.5
0.55
1.1
2.7
0.6
2.1
10
3.2
-
Baliga (ƐµEb3)
1
853
339
-
870
24661
20
-
I)
8
0.23[010] 0.13[100]
3443
Ga2O3 is a promising material for deep ultraviolet transparent conductive
176
oxide (TCO) film electrode. It has an ultra-large bandgap of about 4.9 eV, with
177
excellent chemical and thermal stability and high UV-visible transmittance. Ga2O3
178
thin film n-type carrier concentration can be tuned the from low 1017 cm-3 up to 1020
179
cm-3 by doping with, for instance, Si, Ge or Sn [100-101]. These above characteristics
180
of Ga2O3 can simultaneously meet the requirements of good conductivity and high
181
optical transmittance of transparent conductive electrode. Compared to commercial
182
TCO electrodes (such as ITO, FTO, AZO, etc.), the TCO based on Ga2O3 has an
183
obvious advantage of a high transmittance to ultraviolet C, which will increase the
184
utilization of ultraviolet light in the device.
185
II)
Ga2O3, with a direct bandgap of ~ 4.9 eV, is a natural material for solar-blind
186
photodetector. Due to the strong absorption of deep ultraviolet light by stratospheric
187
ozone, the solar irradiation between 200 and 280 nm which is called solar-blind
188
region does not exist at the surface of the earth. Consequently, the photodetectors
189
operating in this region, the so-named solar-blind photodetectors, could detect very
190
weak signals accurately under sun and artificial illuminations due to the “black
191
background”. The bandgap of Ga2O3 directly corresponds to the solar-blind 10
192
ultraviolet detection band with wavelength less than 280 nm. There is no need of
193
doping in Ga2O3 to tune its bandgap, compared to AlGaN, MgZnO, etc., thereby
194
avoiding alloy composition fluctuations and phase separation. Solar-blind
195
photodetectors based on Ga2O3 have a vast and ever growing number of military and
196
civil surveillance applications such as missile tracking, fire detection, ozone holes
197
monitoring, chemical/biological analysis, and so on.
198
III)
Ga2O3 is an attractive substrate for the fabrication of efficient high-brightness
199
vertically-structured LEDs, and is a novel alternative to currently used powder
200
phosphors [102-110]. β-Ga2O3 as substrate for homoepitaxy as well as for
201
heteroepitaxial deposition of GaN-based devices. High-brightness blue-LEDs with
202
vertical current injection are demonstrated. By the vertical injection, the current
203
crowding inherent to horizontal structures is avoided, the heat is dissipated more
204
efficiently, and also the forward operation voltage decreases, thus also the heat losses
205
are diminished. The light comes out through the substrate, taking advantage of its
206
high transparency. Ga2O3 doped with rare-earths or other elements exhibits strong
207
luminescence emissions at various wavelengths, as a new multicolor-emitting
208
phosphors host material, which is promising for white light applications, in particular
209
for those involving high-brightness LEDs or LDs as primary light sources.
210
IV)
Ga2O3-based transistors and diodes possess fundamental electronic properties
211
that make it an ideal candidate for high-power devices [2,4,59-60,63-64,111-113].
212
The β-Ga2O3 theoretically has a high theoretical breakdown field (8MV/cm) that is
213
approximately 2 higher than the breakdown field of GaN (3.3MV/cm) and SiC
214
(2.5MV/cm), and 20 higher than the breakdown field of Si (0.3MV/cm). This high
215
breakdown field allows Ga2O3-based devices to be biased at a high drain voltage
216
(Vbreak-down≫100 V) while maintaining a large dynamic range. Furthermore, the wide
217
bandgap of Ga2O3 allows device operation at elevated temperature (>300
218
degradation. In addition, Ga2O3 has a high saturation electron velocity (vsat = 2×107
219
cm/s), which is partially accountable for the high current density.
220 221
V)
) without
Ga2O3 can also serve as a reactive oxide layer, sensitive to a wide variety of
gases, is a promising choice for gas sensing applications at high temperatures and in 11
222
harsh environments [114-121]. The gas sensing capability of Ga2O3 stems from
223
surface reactions with gas molecules, thus resulting in chemiresistive change in the
224
conductivity. Ga2O3 based gas sensors have important applications in monitoring
225
exhaust gases of automobiles, flue gases of incinerators, pollutant gases of refinery
226
plants, and explosive gases from military applications.
227
VI)
Ga2O3 is a potential photocatalyst for application in wastewater treatments,
228
particularly for the defluorination of fluorinated substances [122-127]. Compared to
229
TiO2, Ga2O3 has a higher bandgap and a higher redox potential. The photogenerated
230
hole and excited electron on the surface of Ga2O3 possess higher oxidation and
231
reduction power. Therefore, Ga2O3 is expected to efficiently degrade organic
232
substances attached to the catalyst surface; the elimination efficiency is higher in
233
comparison with the TiO2.
234
VII)
Ga2O3 doped with the transition metal elements can realize ferromagnetism
235
at room temperature, presenting a promising candidate for use in spintronic devices
236
that are capable of working at room temperature [20,34,85,128-131]. Guo et al.
237
observed the room temperature ferromagnetism in Mn-doped β-Ga2O3 epitaxial thin
238
films
239
corundum-structured α-(Ga1-xFex)2O3 alloy thin films and spinel-structure Mn-doped
240
γ-Ga2O3 thin films [20,34,85].
241
VIII)
[129].
Room
temperature
ferromagnetism
also
has
be
found
in
As an oxide semiconductor material, Ga2O3 is considered as one of ideal
242
candidates for resistance random access memory (RRAM) devices because of its
243
intrinsic high resistance characteristic and extraordinarily sensitive conductivity to the
244
oxygen [132-142]. Guo et al. observed the unipolar resistive switching behavior and
245
abnormal-bipolar resistive switching behavior respectively in the sandwich structure
246
of Pt/amorphous Ga2O3-x/Pt, which are stable and repeatable [132-133]. Ga2O3
247
RRAM devices based on the resistance switching is the potential next generation for
248
nonvolatile memory due to their outstanding features such as simplicity in structure,
249
high operation speed, low power consumption, high scalability, excellent endurance,
250
and multistate memory.
251
There are several review articles on various topics in Ga2O3, but there is a lack of 12
252
an overview of optoelectronic devices [1,3-4,63,65-66,73,143-145]. The present
253
review summarizes the application of Ga2O3 in solar-blind photodetector, phosphors
254
and EL devices.
255
3. Phosphors and electroluminescent devices
256
Ga2O3 has gained attention as new multicolor-emitting phosphors host material
257
for emissive display applications such as thin-film electroluminescent (TFEL)
258
displays, field emission displays, plasma display panels and fluorescent lamps
259
[105-106,146-160]. Conventional sulphide based phosphors have many disadvantages
260
such as the lack of primary colour emissions and chemical instability, especially in
261
regard to moisture. In contrast, β-Ga2O3 is very stable both chemically and physically.
262
Because of high electric strength of Ga2O3, it is possible to apply higher electric fields
263
to the Ga2O3 EL devices. Ga2O3 activated with transition metals, rare-earths or other
264
elements
265
High-luminance multicolor emissions can be realized by TFEL devices with a Mn, Cr,
266
Co, Sn or rare-earth activated Ga2O3 phosphor. High-luminance multicolor emissions
267
can be realized by TFEL devices with a Mn, Cr, Co, Sn or rare-earth activated Ga2O3
268
phosphor. Red and green emission colors can be obtained using Ga2O3 phosphors
269
activated with Eu3+, Cr, Co, Sm and Mn, Tb, Er, Ho, respectively (Table Ш). Yellow
270
and blue emission colors can be also obtained using Ga2O3 phosphors activated with
271
Tm, Ce, Sn and Dy, Eu2+, respectively (Table Ш).
exhibits
strong
luminescence
emissions
at
various
wavelengths.
272
Table Ш. Multicolor emissions with transition metal or rare-earth activated Ga2O3
273
phosphor Emission colors
Doping elements
Red
Eu3+, Cr, Co, Sm
Yellow
Tm, Ce, Sn
Green
Mn, Tb, Er, Ho
Blue
Dy, Eu2+
13
274
3.1 Undoped
275
In 2002, Hao et al. have prepared polycrystalline thin films of undoped Ga2O3 by
276
spray pyrolysis and observed abroad blue-green emission cathodoluminescence (CL)
277
spectrum [161]. The emission band can be separated into three Gaussian bands: Two
278
major emissions were centred at 497 nm (2.49 eV) and 526 nm (2.36 eV), while one
279
minor emission was centred at 424 nm (2.92 eV). The CL intensity was found
280
generally to increase with the increase of annealing temperature when these samples
281
were annealed in forming gas for 1 h, while emission peak position did not change.
282
Meanwhile, the intensity of CL emission band was affected strongly by the annealing
283
ambient, though the line position and line width did not change. The annealing
284
ambient changed from an oxidizing one (oxygen and air), through to an inert one (N2
285
or Ar) and on to a reducing one (forming gas), corresponding to a change from
286
oxygen-rich to oxygen-deficient Ga2O3 films. Forming gas created more oxygen
287
vacancies, and the CL intensity increased. On the other hand, the oxygen ambient
288
decreased these vacancies and the CL intensity decreased. The dependence of the CL
289
intensity on the annealing atmosphere and temperature was consistent with a model
290
that involved oxygen vacancies in the recombination [162]. Those three emission
291
could be attributed to: (a) recombination of electrons in shallow traps with holes in
292
deep traps, (b) recombination of electrons in deep traps with holes in shallow traps, (c)
293
recombination of electrons in deep traps with photo-excited or cathodo-excited holes
294
in the valence band, (d) recombination of photo-excited or cathodo-excited electrons
295
with holes in deep traps, as shown in Fig. 4 [161].
296
Three different PL bands corresponding to UV, blue and green emission were
297
observed in unintentionally doped Ga2O3 early, which were also attributed to the
298
recombination of an electron on a donor formed by oxygen vacancies with a hole on
299
an acceptor made up of either gallium vacancies or gallium oxygen vacancy pairs (VO,
300
VGa) by some researchers [163-177]. Because the thin films of Ga2O3 were prepared at
301
much lower temperature than was used to produce powders and single crystals, it is 14
302
possible that these films were oxygen deficient. Therefore, there could exist an
303
appreciable amount of singly ionized oxygen vacancies, gallium vacancies or
304
gallium-oxygen vacancy pairs (VO, VGa) in sprayed Ga2O3 thin films. As a result, the
305
emission could result from a rate-determining transfer of an electron from a donor
306
(oxygen vacancy) to a hole trapped at an acceptor site (gallium vacancy or a gallium
307
oxygen vacancy pair).
308
309
FIG. 4. Schematic diagram of the energy band of blue-light emission from undoped
310
Ga2O3. The carriers migrate through the solid lines and recombine via (a), (b), (c) and
311
(d) paths [161].
312
3.2 Eu doped
313
For Eu doped Ga2O3, there are two different luminescence spectrum dependent
314
on the Eu valence state (divalent or trivalent) [103,106,159,178-181]. Eu3+-doped
315
Ga2O3 is a promising red phosphor due to the 5D0 →7Fj transition band, while
316
Eu2+-doped Ga2O3 exhibits blue emission which can be attributed to the transition
317
band of 4f→5d [112,137]. Eu2+ is unstable in an oxidizing atmosphere, and it can be
318
oxidized to Eu3+ easily via Eu2+→ Eu3+. Annealing the phosphors at relative high 15
319
temperatures for hours in a reducing atmosphere is required for both crystallization of
320
compounds and reduction of Eu3+ to Eu2+ [137].
321
Layek et al. synthesized Eu2+/Eu3+-doped Ga2O3 colloidal nanocrystals (NCs)
322
with a metastable cubic crystal structure (γ phase) [178]. The PL spectra exhibit red
323
emission at 613 nm for Eu3+ doped and blue emission at 402 nm for Eu2+ doped,
324
which can be attributed to the transition band of 5D0 →7Fj and 4f→5d respectively. At
325
the high synthesis temperature, the PL intensities of both Eu2+ and Eu3+ increase with
326
increasing doping concentration, and the increase in intensity of Eu2+ is much more
327
pronounced. The overall scheme of the charge and energy transfer processes
328
responsible for the PL properties of Eu-doped Ga2O3 NCs is shown in Fig. 5. The
329
excitation above the Ga2O3 band edge energy leads to an efficient trapping of the
330
photo-excited electrons and holes in the donor and acceptor states, respectively,
331
resulting in a broad donor and acceptor pairs (DAP) emission of Ga2O3 NCs (thick
332
blue-green arrow). The nature of the donors are extensively in β-Ga2O3 single crystals.
333
These donor states are predominantly associated with one of the three different
334
oxygen vacancy sites (VO) and that electron transfer takes place along the b
335
crystallographic axis through a hopping or tunneling mechanism, depending on
336
temperature. The donor and acceptor defect states play a key role in the sensitization
337
of the Eu emission by nonradiative transfer of the DAP exciton energy to the dopant
338
ions (dashed lines in Fig. 5). The energy transfer is much more efficient for Eu3+
339
(thicker dashed line). Given the low absorptivity of f-f transitions, the energy transfer
340
is likely to be the Dexter rather than the Förster type. On the other hand, Eu2+ can be
341
readily excited directly (purple arrow), allowing for a control of the NC emission
342
color by selective excitation. The Eu2+ and Eu3+ centers behave independently, with
343
insignificant energy transfer between them, which could be associated with different
344
spatial distribution of the two species. While Eu2+ appears to be stabilized as an
345
internal dopant, Eu3+ is partitioned between the interior and surface of the NCs, with a
346
larger fraction on the NC surfaces. For high synthesis temperatures, Eu3+ in the
347
reaction mixture is readily reduced to Eu2+. The obtained NCs are also larger and on 16
348
average contain fewer native defects, a significant fraction of which could be located
349
in the interior of the NCs. These internal defects (i.e., oxygen vacancies with a single
350
positive charge) play a key role in the stabilization of Eu2+, as described above,
351
leading to a strong emission upon direct excitation of the Eu2+ dopant centers. A
352
decrease in the reaction temperature results in a lower degree of reduction of Eu3+ and
353
a higher concentration of native defects in the vicinity of NC surfaces, owing to an
354
increase in the surface-to-volume ratio. The lack of internally incorporated Eu2+ and
355
more effective sensitization of Eu3+ by surface-based NC defects lead to exclusive
356
Eu3+ emission. It is plausible that some non-oxidized Eu2+ ions remain on the surfaces
357
of NCs, where they are quenched by nonradiative relaxations. These manipulations of
358
the relative fractions of Eu2+ and Eu3+ centers and native defect concentration by
359
reaction conditions, such as temperature, time, and starting dopant precursor
360
concentration, enable the tuning of the PL emission in colloidal Ga2O3 NCs from blue
361
to red. The coexistence of Eu2+ with Eu3+ has not been reported for bulk (β-phase)
362
Ga2O3 prepared by solid state reaction or other high-temperature preparation methods,
363
such as PLD, spray pyrolysis, sputtering, and son on, as follows.
364
365
FIG. 5. Schematic representation of the charge and energy transfer processes involved
366
in the dual emission of Eu2+/Eu3+-doped Ga2O3 NCs. Charge transfer is indicated with
367
solid lines and energy transfer with dashed lines [178].
368
Chen et al. reported that Eu3+ doped Ga2O3 films with different Eu contents can 17
369
be obtained by changing the Eu composition in the targets on sapphire substrates by
370
PLD at substrate temperature as low as 500
371
nm were clearly observed in the Eu doped Ga2O3 films and the intensity increases
372
remarkably with the increase of Eu doping content, which can be attributed to the
373
transitions from 5D0 to 7F2 levels in Eu. While the intensity of the XRD peaks of
374
Ga2O3 decreases with increasing Eu contents, they speculate that the emission
375
intensity of the films was mainly determined by the amount of formation of Eu2O3. In
376
order to understand the nonradiative and radiative transition process, overcome
377
intensity quenching and increase the effective number of optically active Eu ion in the
378
host, the temperature dependence luminescence behavior of Eu doped Ga2O3 thin film
379
were investigated [183]. The emission intensity of Eu3+ decreased solely with elevated
380
temperature by using 325 nm light, while it had a maximum value at a certain
381
temperature under 488 nm light. Both of the experimental data were well fitted by the
382
luminescence dynamic equation models, suggesting that the variation of the emission
383
intensity may be attributed to the thermal activated distribution of electrons among 7Fj
384
and thermal quenching effect. They also have investigated substrate temperature
385
dependence of luminescence spectra in Eu doped Ga2O3 film grown by PLD at
386
various substrate temperature and found that the intensity of red emission line
387
observed at 613 nm increases with increasing substrate temperatures up to 400
388
and then decreases from 400 to 600
389
lattice and substituted in the lattice or localized at the grain boundaries at substrate
390
temperature as low as 400
391
have investigated structural properties of Eu doped Ga2O3 films grown by PLD at
392
different substrate temperature. X-ray rocking curve and Raman spectroscopy
393
measurements prove that the films grown at the substrate temperature above 400
394
are of monoclinic β-Ga2O3 structure and the crystalline quality of the films depends on
395
the substrate temperature. X-ray absorption near edge structure measurements indicate
396
that the valence of Eu ions in the Eu doped Ga2O3 films varies from mixture of
397
bivalent and trivalent to only trivalent with increasing substrate temperature.
398
Extended X-ray absorption fine structure analysis reveal that the Eu atoms doped in
[182]. Intense red emissions at 613
[183]. Are Eu ions incorporated on a Ga2O3
by PLD. Therefore, in another work [184], Chen et al.
18
399
Ga2O3 matrix are incorporated on Ga sites in Ga2O3 matrix even for the films with
400
amorphous structure grown at low substrate temperature.
401
However, since the substrate of sapphire is not conductive, it is not possible to
402
fabricate optical devices operating between the films and the substrates. GaAs is a
403
desirable conductive substrate due to its availability in large wafer size and its large
404
role in the electro optic industry. Moreover, as a gallium-based substrate, it is believed
405
that high quality Ga2O3 films could be epitaxial grown on GaAs. They have fabricated
406
Eu doped Ga2O3 thin films on GaAs substrate by using PLD at a substrate
407
temperatures of 500
408
controlled by adjusting the Eu contents in the targets. XPS spectra indicated that the
409
incorporation of trivalent Eu can substitute Ga3+ to form Eu2O3. Red LEDs of
410
Eu-related luminescence at about 611 nm in Eu:Ga2O3/GaAs heterojunctions was
411
observed, which originates from the 5D0→7F2 transition of Eu3+. Bright red light can
412
be observed with the naked eye at 6.0 V, providing an outlook on the future of Ga2O3
413
as a candidate for low driven voltage and small-scale displays such as mobile device
414
screens or micro-LED displays [185]. Under forward bias, the electrons will first
415
transit to the defect-related energy levels and then recombine with holes. The indirect
416
recombination of carriers in the Ga2O3 host could transfer energy to the Eu ions. The
417
work of Chen et al. also suggested that PLD is a promising method for obtaining high
418
quality Eu doped Ga2O3 films at low growth temperature, which paves the way for the
419
fabrication of optoelectronic devices based on Ga2O3 films.
[184]. The contents of Eu in Ga2O3 films can also be
420
As early as in 2000, Kitai’s group reported a high brightness of 840 cd/m2
421
located at 615 nm in on-filtered Ga2O3:Eu EL phosphor at 370V/650 Hz, which
422
exhibits the long-term stability and can be maintained for a single-insulating device
423
for over 2500 hours [149,152]. Hao et al. prepared the thin film of 1.0 at% Eu3+ doped
424
Ga2O3 by spray pyrolysis and observed a red CL spectrum [161]. Further, they
425
reported
426
of x = 0.643 and y = 0.356 with a dominant wavelength of 605 nm and a color purity
427
of 99%, and suggested that the spray pyrolysis process which avoids the use of a high
sprayed Ga2O3:Eu thin film can produce excellent chromaticity coordinates
19
428
vacuum apparatus may be more attractive from the point of view of large-scale and
429
large-area production of TFEL devices [157]. Wellenius et al. Produced Eu doped
430
gallium oxide thin film EL devices with bright, red emission 611 nm and relatively
431
low threshold voltages of 60 V using PLD, as shown in Fig. 6 [105-106]. The use of
432
transparent conducting electrodes of amorphous InGaZnO on transparent aluminum
433
titanium oxide/indium tin oxide/7059 Corning glass substrates resulted in a device
434
that is transparent throughout the visible spectrum. The origin of the red emission is
435
the 5D0 to 7F2 transition and is consistent with PL and CL results. At 100 V, with 1
436
kHz excitation, the luminance and chromaticity coordinates were 221 cd/m2 and x=
437
0.629, y= 0.355 respectively. The turn on voltage of the device is about 45 V ac, and
438
the device appears to be robust, operating at elevated voltages without degradation.
439
Brightness increased substantially for higher drive frequencies, with optimal emission
440
near 2 kHz for this device geometry [106].
441
442
FIG. 6. Electroluminescence spectrum illustrating the characteristic red emission of
443
Eu3+ ions. A device schematic and a picture of a working device are the inset [106]. 20
444
Marwoto et al. have grew Eu doped Ga2O3:Eu thin films using direct current
445
magnetron sputtering, and found that the broad red PL emission peak between 593
446
and 602 nm will be blue shift with the Eu concentration of 2% while it will be red
447
shift when it was 5% [156]. Kim et al. synthesized nanostructured and bulk
448
β-Ga2O3:Eu3+ phosphors through sol-gel and solid-state reaction techniques
449
respectively, and found both the luminescent intensity and color purity of
450
nanostructured β-Ga2O3:Eu3+ are enhanced in comparison with bulk one due to the
451
surface hindrance of resonant energy transfer [158]. Kang et al. synthesized Eu3+
452
doped β-Ga2O3 (3 mol%) hollow nanostructures by hydrothermal and calcination
453
processes, which showed strong red emission corresponding to the 5D4→7Fj transition
454
[186]. Theses hollow nanostructures also show the low blue emission intensity at
455
300-500 nm, which can be attributed to the recombination of an electron on a donor
456
with a hole on an acceptor formed by a gallium vacancy or gallium-oxygen vacancy
457
pair in the β-Ga2O3 crystal structures. López et al. also prepared Eu3+ doped Ga2O3
458
nanowires by implantation and rapid thermal annealing treatments, and observed the
459
most intense red emission located at 610 nm corresponding to the 5D0→7F2 transition
460
[187]. Lorenzi et al. presented the synthesis of Eu-doped γ-Ga2O3 hybrid
461
nanoparticles with an in situ organic capping resulting from a non-aqueous
462
solution-based benzyl alcohol synthesis route, and demonstrates the role of the
463
intrinsic and organic related activation of Eu3+ PL [76].
464
3.3 Er doped
465
Er has been widely studied in different hosts for luminescence purposes, mainly
466
due to its green (4S3/2-4I15/2) and infrared (IR) (4I13/2–4I15/2) luminescence lines. The
467
former of green emission located at around 550 nm play an important role in
468
full-color display technology and in the development of white LEDs, while the latter
469
centred at around 1.54 µm has a great importance in the telecommunications industry
470
because of its coincidence with the wavelength at which the standard silica-based
471
optical fibres present the lowest losses. 21
472
Chen et al. epitaxially grew Er doped Ga2O3 films with various Er contents
473
Ga2O3 films on the sapphire substrate by PLD [188]. Temperature insensitive pure
474
green emissions at 550 nm are clearly observed for the Er doped Ga2O3 films. No
475
peak shift at 550 nm is found with temperatures ranging from 77 to 450 K, and the
476
intensity of the green emission increases with the increase of the Er doping content
477
and the decrease of temperature. The strongest peak at 550 nm is caused by the 4S3/2
478
to 4I15/2 transition, and a shoulder at longer wavelength is ascribed to Stark splitting
479
because the spine orbit splitting of the energy level. Other PL peaks observed at 524,
480
655, 850, and 975 nm can be assigned to the transitions from 2H11/2 → 4I15/2, 4F9/2 →
481
4
482
energy due to the recombination of electrons in the defect state with the
483
photogenerated holes can transfer to the excited states of Er ions. The normalized
484
intensity of the Er doped Ga2O3 films has a smaller variation with temperature
485
compared to Er doped GaN films, indicating that Ga2O3 is a good host material for Er
486
and potentially for other rare earth elements. As mentioned earlier, sapphire substrate
487
based devices is not possible to operate the photoelectric performance between the
488
films and the substrates since sapphire is not conductive. Moreover, Ga2O3:Er/Si
489
heterojunctions are especially attractive due to the well-known advantage of the Si
490
substrate and their prominent application in Si-based optoelectronic integrated circuits.
491
Thus, Er doped Ga2O3 thin films were deposited on Si substrate and their EL
492
properties were investigated [189]. Bright green emission (548 nm) can be observed
493
by naked eye from Ga2O3:Er/Si LEDs. The driven voltage of that LEDs is 6.2 V
494
which is lower than that of ZnO:Er/Si or GaN:Er/Si devices. The EL intensity
495
increases with the forward bias, and no peak shift in the EL spectrum is observed with
496
the injection current ranging from 3 to 60 mA. Moreover, the EL spectra has two
497
narrow, strong green emission bands centered at 524 and 548 nm, which are
498
consistent with the PL results. Since the wide bandgap of Ga2O3 contain more
499
defect-related level which will enhance the effects of recombination between
500
electrons in the defect-related level and the holes in the valence band, resulting in the
501
improvement of the energy transfer to Er ions [189-191].
I15/2, 4I9/2 → 4I15/2, and 4I11/2 → 4I15/2, respectively, as shown in Fig. 7. The related
22
502 503
FIG.7 Energy diagram of Ga2O3 and Er and the proposed mechanisms for laser
504
excitation less than 488 nm [188].
505
Wu et al. obtained highly oriented (201) Er3+-doped β-Ga2O3 thin films with
506
different Er doping concentrations on (0001) sapphire substrates using rf magnetron
507
sputtering, and systematically studied the crystal structure, optical absorption,
508
near-infrared luminescence, and ultraviolet photoresponse properties [192]. A
509
remarkable structural modification is induced by the Er doping from the XRD patterns.
510
The (402) diffraction peak positions of the Er doped thin films
511
lower 2θ compared to the undoped Ga2O3 thin film. The shift in the 2θ values
512
indicates an increase of the lattice constants, which can be attributed to the ionic radii
513
difference (30%) between Er3+and Ga3+ (Er3+: 0.89 Å , Ga3+:0.62 Å for octahedral
514
coordination and 0.47 Å for tetrahedral coordination, respectively). Meanwhile, the 23
gradually shift to
515
band gap of Er:Ga2O3 thin films gradually increases with the increase of Er content.
516
The evolution of lattice and energy band gap with increasing doping level confirms
517
the chemical substitution of Er3+ ions into the Ga2O3 crystal lattice. The down-shifting
518
near-infrared luminescence located at 1538 nm was observed under ultraviolet
519
excitation, which is attributed to the Er transition 4I13/2→4I15/2. The emission intensity
520
can be remarkably enhanced with increasing Er3+doping concentration. The most
521
probable site for the Er3+ ions substitution is at the distorted octahedral sites of the
522
Ga2O3 lattice with an inversion center, which implies the selection rules forbidding all
523
4f-4f electric dipole (ED) transitions. When the dopant concentration increases, the
524
elongation of the d spacing of (201) plane promotes the structure asymmetry of the
525
Ga2O3 host, approaching lower symmetry around Er3+ ions. The lower symmetry
526
means that the more uneven crystal-field components can mix opposite-parity into 4f
527
levels and subsequently increase the ED transition probabilities of the dopant ions,
528
resulting in the enhancement of NIR PL emission. They also had demonstrated the
529
existence of efficient energy transfer (ET) from the electron-hole pairs created in the
530
Ga2O3 host to the Er3+ ions.
531
Nogales et al. prepared Er doped β-Ga2O3 nanowires and microwires by a
532
vapour-solid process from an initial mixture of Ga2O3 and Er2O3 powders [193]. The
533
presence of rather intense Er intraionic blue, green and red emission lines, even at
534
room temperature, is observed in the CL spectra. Mapping of the main 555 nm
535
emission intensity shows a non-homogeneous distribution of Er ions in the
536
microstructures. They also observed strong near IR emission and weak green emission
537
from the Er doped β-Ga2O3 powder pellet, which is mainly excited through band to
538
band excitation followed by an energy transfer process and assigned to Er3+ in
539
octahedral Ga sites within the β-Ga2O3 [194]. Vincent et al. obtained single crystals of
540
conducting Er doped β-Ga2O3 through floating zone method, and determined some
541
crystal field levels of the 4I15/2 and 4I13/2 multiplets through the absorption and
542
emission spectra obtained at 1.5 µm in the 0.5% Er doped β-Ga2O3 sample [195].
543
Biljan et al. reported on facile solution combustion synthesis of Er doped 24
544
β-Ga2O3with urea as fuel [196]. Main characteristic of luminescence spectrum of
545
β-Ga2O3:Er is a strong Er3+ NIR emission at 1.54 µm due to the 4I13/2→4I15/2 transition
546
under the 1064 nm excitation. The intensity of this technologically important
547
transition can be significantly (around 60 times) increased by the Yb3+ codoping. It
548
also exhibits intense characteristic Er3+ luminescence in the visible region.
549
3.4 Tm-doped
550
Tm-activated phosphors have complicated energy level schemes due to the strong
551
deviation from Russell Saunders coupling in the (4f) configuration [197-206]. As a
552
consequence, the relaxation of the excited states of Tm3+ ions may take place via a
553
large number of relaxation paths and result in UV, visible, and IR emissions. Hao et al.
554
reported the Tm-doped Ga2O3 film exhibits a spectrum very similar to that for the
555
undoped film except for a minor peak around 813 nm relating to the transition from
556
1
557
which corresponds to the transitions between electronic energy levels of Tm3+. Instead,
558
a broad blue-green emission occurred over the range from 350 to 650 nm, which may
559
still be due to transitions involving Tm3+ levels or that it comes from the Ga2O3 host.
560
Furthermore, the luminance under the same conditions was 10 and 19 cd/m2 for the
561
Ga2O3 and Ga2O3:Tm films, respectively. Consequently, although the undoped film
562
exhibits a spectrum very similar to that for the Tm-doped film, the Tm dopant
563
enhances the CL emission intensity. This emission band can be separated into three
564
Gaussian bands: Two major emissions were centred at 497 and 526 nm, while one
565
minor emission was centred at 424 nm.
G4 →3H5 of the Tm3+ ion [161-162]. There is no obvious blue-emitting peak present
566
Guo et al. have deposited Tm doped Ga2O3 films on sapphire substrates by PLD
567
with changing Tm compositions in the targets [207]. Energy dispersive spectroscopy
568
results reveal that films with different Tm compositions can be tailored by changing
569
the Tm composition in the targets. XRD and Raman spectra analysis indicate that all
570
films have the monoclinic structure. PL measurements demonstrate that the emission 25
571
peaks at 460, 650 and 800 nm are observed from the Tm3+ 4f intrashell transitions
572
from 1G4 excited states to the 3H6, 3F4, and 3H5 states, respectively [Fig. 8].
573 574
575
FIG. 8. Energy levels and luminescent transitions in Tm doped Ga2O3 [207].
3.5 Mn-doped
576
In 1997, Minami et al. found Mn-activated Ga2O3 phosphors are very promising
577
as the thin-film emitting layer for TFEL devices [208]. A green emission with a
578
luminance of 232 cd/m2 was obtained for a Ga2O3:Mn TFEL device driven at 1 kHz.
579
When CaO is added to the host material Ga2O3 as the multicomponent oxide phosphor,
580
the EL emission color from CaO-Ga2O3:Mn TFEL devices changed from green to
581
orange as the CaO content was increased from 0 to 100 mol%. And a yellow emission
582
with a luminance of 1725 and 261 cd/m2 was obtained in a TFEL device using a
583
CaGa2O4:Mn thin film prepared with a CaO content of 50 mol%, when driven at 1
584
kHz and 60 Hz, respectively. However, the Ga2O3:Mn and CaO-Ga2O3:Mn phosphor
585
thin-film emitting layers were prepared by conventional planar rf magnetron
586
sputtering here, leading to a relative expensive cost of practical TFEL devices due to
587
the vacuum preparation process. In order to resolve this problem of cost, they
588
demonstrated the use of oxide phosphors as well as a chemical deposition technique 26
589
which eliminates the need for vacuum processes. They developed using a Ga2O3:Mn
590
thin film prepared by a sol-gel process using a relatively inexpensive and easy to
591
handle material gallium acetylacetonate as gallium source, and obtained the
592
high-luminance EL devices [Fig. 9] [153,209-210]. The sol-gel process, which
593
eliminates the need for vacuum processes, enabled the inexpensive preparation of
594
Ga2O3:Mn thin films on large-area thick ceramic sheet insulators. TFEL devices with
595
a Ga2O3:Mn thin-film emitting layer prepared by the sol-gel process at a deposition
596
temperature of 900
597
luminances of 1271 and 401 cd/m2 when driven at 1 kHz and 60 Hz, respectively.
598
Based on the above results, they concluded that a thin-film preparation method using a
599
sol-gel process is very promising for the fabrication of less expensive oxide phosphor
600
TFEL displays and flat panel TFEL lamps. In 2000, they have developed
601
multicolor-emitting TFEL devices using Mn and Cr co-doped Ga2O3 phosphors with
602
variations of both Mn and Cr from 0 to a content of 20 at.% [211]. They found that the
603
emission from Ga2O3:Mn,Cr TFEL devices were more strongly dependent on the Cr
604
content than on the Mn content doped into the phosphor-emitting layers. A change
605
from green to red in emission color and a high luminance above 100 cd/m2 were
606
obtained in the TFEL devices driven at 1 kHz, when the co-doped Cr content was
607
varied from 0 to 20 at.% under a constant Mn content of 0.3 at.% doping. In addition,
608
the emission color of a Ga2O3:Mn,Cr TFEL device co-doped with a Mn content of 0.3
609
at.% and a Cr content of 3 at.% changed from green to red with an increase of the
610
applied voltage. They pointed out that high-luminance multicolor emissions can be
611
realized by TFEL devices with a Mn, Cr, Co,Sn or rare-earth activated Ga2O3
612
phosphor [146,212-213].
and a post annealing temperature of 1000
27
exhibited
613
614
FIG. 9. Cross-sectional structure of a thick ceramic-insulating-layer-type
615
TFEL device [153].
616
Kim et al. fabricated the device with an inverted half-stack structure of
617
ITO/Ga2O3:Mn/lead zirconate titanate (PZT)/Au, and studied the alternating current
618
EL characteristics of Mn doped Ga2O3 thin film [151]. The devices exhibited a
619
broad-band PL emission peaked at around 507 nm in the green range, which is
620
accounted for by the 3d-3d intrashell transition from the 4T1 excited state level to the
621
6
622
EL emission were measured to be x=0.197 and y=0.623.
623
3.6 Nd doped
A1 ground state in the divalent Mn ion. The CIE chromaticity color coordinates of the
624
Nd doped Ga2O3 with NIR emission at 1100 nm corresponding to 4F3/2-4I11/2
625
transition is promise for high power laser media with a high stimulated emission
626
cross-section [214-220]. Wu et al. have investigated structural and NIR luminescence
627
of Nd-doped β-Ga2O3 thin films (Nd:Ga2O3) with different Nd doping concentrations
628
[215]. XPS results confirmed that Nd atoms have been effectively incorporated into
629
the oxide matrix and participate in the chemical bonding, exhibiting a trivalent Nd
630
(Nd3+). With an increase of Nd3+ content, the crystal lattice of the films expands,
631
while the energy band gap shrinks. Compared to undoped Ga2O3 film, the pronounced
632
NIR PL emission consists of three bands, corresponding to the infra-4f transitions of 28
633
Nd3+ ions from 4F3/2 level to 4I9/2 (905 nm), 4I11/2 (1067 nm), and 4I13/2 (1339 nm)
634
levels, respectively. And the intensity of NIR PL emission will be remarkably
635
enhanced with the increase of Nd3+ doping concentration. An enhancement factor of
636
main 4F3/2→4I11/2 transition band can reach up to 2.3. Similar to the discussion above
637
in the Er doped Ga2O3 films by Wu et al., the improvement of emission intensity with
638
the increasing doping concentration can be attributed to the lower symmetry around
639
Nd3+ ions. Notably, the NIR emission bands from Nd:Ga2O3 thin films present an
640
obvious blue-shift, the main luminescent peak (4F3/2→4I11/2) shifts from 1077 nm to
641
1065 nm. They attributed this phenomenon to the variation in the crystal field around
642
Nd3+ ions caused by lattice distortion. As discussed above, the lattice distortion is
643
gradually enhanced as the Nd concentration increases. The increase of the octahedral
644
distortion leads to the enhancement in the Stark splitting of the 4F3/2 multiplet. And the
645
enhanced Stark emitting levels are splitted from the 4F3/2 state, causing the blue-shift.
646
In above process, Ga2O3 acts as an effective light harvester to absorb UV photons and
647
subsequently transfer energy to Nd3+ ion, thereby resulting in the typical NIR
648
luminescence.The excitation energy of incident light is lower than the band gap of
649
Nd:Ga2O3. Owing to the existence of oxygen vacancy defects in the films, hence, the
650
ET process between the Ga2O3 host and Nd ion is as follows. Through ground state
651
absorption (GSA) process, the electrons are excited from the valence band to the
652
donor band (oxygen vacancy) by the light source.The released energy due to the
653
recombination of electrons in the defect state with the photogenerated holes can
654
transfer to the excited states of the Nd ions; thereby, NIR emissions of Nd take place.
655
Zhang et al. have deposited Nb-doped β-Ga2O3 thin films on the Si substrate
656
respectively by radio frequency magnetron technique, and investigated the effects of
657
Nb doping on the structural and optical properties of Ga2O3:Nb thin films [221-223].
658
They only observed the room temperature PL spectrum in the wavelength range of
659
350 ~ 650 nm, and did not obtained the PL spectrum in the NIR region [223].
29
660
661
FIG. 10. Energy level diagram of Ga2O3 and Nd3+, as well as the proposed
662
mechanisms less than 325 nm laser excitation [215].
663
3.7 Tb doped
664
Zhao et al. prepared one-dimensional Tb3+-doped β-Ga2O3 nanofibers by a
665
simple and cost-effective electrospinning process, and investigated the effects of Tb3+
666
doping on the PL of these nanofibers [224]. The diameter of the nanofibers annealed
667
at 900
668
to several tens to hundred micrometers. The β-Ga2O3:Tb3+ nanofiber shows the green
669
emission with the strongest peak at 550 nm under ultraviolet excitation, corresponding
670
to 5D4→7F5 transition of Tb3+ ions. The intensity of the green emission increases and
671
then decreases with the increase of the Tb3+ doping concentration, and reaches its
672
maximum at 3 mol% Tb3+ ions. The decrease of the fluorescence intensity with a
673
higher Tb3+ concentration can be attributed to the concentration quenching effect
674
because the addition of the activator over a sufficient quantity increased the distance
675
between the Tb3+ ions. Kang et al. synthesized Tb3+-doped β-Ga2O3 hollow
676
nanostructures with various Tb3+ concentrations by hydrothermal and calcination
677
processes [225]. They also observed the green emission spectra due to the 5D4→7Fj
ranged from 100 to 300 nm, and the lengths of the nanofibers reached up
30
678
transition and obtained the highest green emission intensity at 7 mol% of Tb3+ ions.
679
Tokida et al. synthesized Ga2O3:Tb3+ green phosphor by metal-organic
680
deposition (MOD) and reported the PL properties of this phosphor [155]. The
681
Tb3+-related green emission intensity shows an increase with the increase of the molar
682
ratio M = Tb/Ga and a saturation at M ~ 0.005-0.03, followed by the concentration
683
quenching at M > 0.03. The green emission intensity exhibits a gradual decrease with
684
increasing temperature above ~ 300 K, yielding quenching energies of 0.25 and 0.63
685
eV. They obtained the detailed energy-level scheme of Tb3+ ions in β-Ga2O3 from the
686
PL and PL excitation spectra of this phosphor, as shown in Fig. 11(a). A series of the
687
sharp PL peaks at λem ~ 490-623 nm correspond to the 4f8 (5Dj)→4f8 (7Fj) transitions in
688
Tb3+. Because of their parity- and spin-forbidden nature, the Tb3+-related emission
689
peaks are usually observed to be very weak. While their decay times are also very
690
long, in the milliseconds region. The Tb3+-related emission or absorption peaks are
691
observed at the three different wavelength regions: 5D4↔7F6 (490 nm) in the blue
692
region; 5D4↔7F5 (543 nm), 7F4 (588 nm) in the green region; and 5D4↔7F3 (623 nm),
693
7
694
F2 (655 nm), 7F1 (672 nm), 7F0 (685 nm) in the red region. The most intensive
emission peak is at the 5D4→7F5 transitions in the green region (543 nm), whereas the
695
5
D4↔7Fj (j= 0-2) red emission peaks are observed to be very weak. They put the PL
696
peak and PLE shoulder at ~ 490 nm attributed to the 5D4↔7F6 transitions. And no
697
large Stokes shift in the 5D4↔7F6 transitions is expected to occur. Very weak
698
absorptions at ~ 410-470 nm are due to the 7Fj→5D3 transitions with j=2-5. The
699
lowest 4f8 excited state in Tb3+ is surely 5D4, whereas the second lowest excited state
700
should be 5D3 or 5L10. As shown in Fig. 11(a), they assumed that the higher-lying
701
energy state labeled by 5Dj (j
702
5
3) contains a set of each nearly same energy state [e.g.,
D3 = (5D3, 5L10), 5D2 = (5D2, 5L6-9, 5G2-6), 5D1 = (5D1, 5H7), and 5D0 = (5D0, 5H5-6)].
703
The PLE peaks or shoulders observed at ~ 310-380 nm is due to the 7F6→5Dj
704
transitions with j=0-3. The
705
transitions of 7F6→5D3 and/or 7F6→5L10, and so on. The PLE structure observed in the
706
250-300 nm region is due to the spin-forbidden 4f8→4f75d transitions in Tb3+, which
7
F6→5D3 (j=3) transitions mean the inner-f-shell
31
707
can be resolved into three independent peaks at ~ 260, 275, and 290 nm [7F6(4f8)→9T2
708
(4f75d) (triplet) transitions]. Due to the ultra-wide band gap of β-Ga2O3 (~ 4.9eV), an
709
electron energy transfer from the conduction band (CB) in the β-Ga2O3 host to the 9T2
710
(4f75d) states in Tb3+ results in the enhanced PLE strengths at ~ 260-290 nm. The
711
Tb3+-related absorption is observed at λ< 250 nm, which is caused by both the spin-
712
and parity-allowed 7F6(4f8)→9T2 (4f75d) transitions in Tb3+. And the 7T2 (4f75d) triplet
713
states are shown to be energetically located within the CB of β-Ga2O3.
714
32
715
FIG. 11. Electronic energy-level scheme for Tb3+singly doped [155] and (Tb3+,
716
Eu3+)-codoped [226] β-Ga2O3.
717
In view of excitation energy transfer and cooperative optical phenomena
718
commonly occur in codoped phosphors, which are an important concept to be used for
719
the improvement of phosphor performances. Sawada et al. investigated the codoping
720
effects of Tb3+ and Eu3+ in β-Ga2O3 crystallites by PL analysis, PLE spectroscopy, and
721
PL decay characteristics [226-227]. The XRD analysis indicated that only β-phase
722
Ga2O3 can be synthesized by the MOD and subsequent calcination at Tc
723
Above ~ 900
724
emission intensities. The Tb3+ and Eu3+ emission intensities in the Ga2O3:Tb3+, Eu3+
725
phosphors by excitation at λex = 266 nm showed remarkable concentration quenching
726
at
727
singly doped samples showed concentration quenching at
728
concentration quenching of the Tb3+ emission in the codoped sample was to be due to
729
an interaction between Tb3+ and Eu3+ in the β-Ga2O3 host. The quenching energies
730
determined here were 80 meV (45 meV) and 0.30 eV (0.20 eV) for the Tb3+ (Eu3+)
731
emission, regardless of the singly doped or codoped sample. Enhanced Eu3+ emission
732
intensity was observed under resonant excitation at λex = 488 nm (Tb3+; 7F6→5D4) in
733
the (Tb3+, Eu3+)-codoped β-Ga2O3 sample. They found PL and PLE measurements
734
showed that the (Tb3+, Eu3+)-codoped samples exhibit clearly different luminescence
735
properties when excited at wavelengths below or above λex ~ 350 nm, which
736
corresponds to the boundary in wavelength between the 4f6→charge transfer state and
737
4f6→4f6 transitions to occur in Eu3+. At λex> 350 nm, efficient energy transfer
738
occurred from Tb3+ to Eu3+, resulting in the decreased Tb3+ and enhanced Eu3+
739
emissions. At λex< 350 nm, not only the Tb3+ but also the Eu3+ emissions decreased
740
with increasing Tb3+/Eu3+ concentration. Furthermore, the PL intensity degradation in
741
the seconds time scale was observed by exciting light at λex< 350 nm. Such unusual
742
PL phenomena at λex< 350 nm seem to be due to an interaction between Tb3+ and Eu3+
743
with producing nonradiative relaxation channels in the Tb3+/Eu3+ emission pathway.
700
.
, calcination treatment greatly reduced the Tb3+ green and Eu3+ red
0.03 mol% (Tb3+) and
0.1 mol% (Eu3+), whereas those in the Tb3+/Eu3+
33
0.1 mol%. The
744
The energy-level scheme for the (Tb3+, Eu3+)-codoped β-Ga2O3 sample is shown in
745
Fig. 11(b). Various 4fN states for Tb3+ (N=8) and Eu3+ (N=6) are shown by the
746
horizontal lines. The 4f8→4f7 5d and 4f8→CTS transitions in Fig. 11(b) occur at
747
wavelengths ≥320 nm (Tb3+) and ≥350 nm (Eu3+). The electrons excited at the high
748
photon energy (λex=266 nm) will experience more nonradiative relaxation events than
749
those excited at the low photon energy (λex=488 nm). Such nonradiative relaxation
750
events would occur more dramatically if samples were more highly doped, known as
751
the concentration quenching. They further investigated the resonance energy transfer
752
process between the Tb3+ and Eu3+ ions in β-Ga2O3:Tb3+, Eu3+ phosphor by analyzing
753
the time-resolved PL spectra of Eu3+ ions exhibiting PL rising behavior [228]. The
754
intensity rising of the PL curve was observed in the time (t) range of t< 0.3 ms by the
755
excitation at 355 nm light. The time-resolved PL curves are well reproduced by
756
theoretical calculations based on a rate equation model including direct excitation
757
(pumping laser) and indirect excitation (energy transfer) processes of Eu3+. The
758
indirect excitation fraction of Eu3+ ions decreases with increasing the Eu
759
concentration, while the energy transfer rate and efficiency increases with increasing
760
the concentration due to the decrease in the average distance between the donor (Tb3+)
761
and acceptor (Eu3+) ions. Furthermore, the transfer efficiency estimated from Eu3+ PL
762
dynamics is confirmed to be larger than that from Tb3+ PL dynamics. This larger
763
efficiency reflects Eu3+ ions purely interacting with Tb3+ ions.
764
The effects of Tb3+ and Eu3+ codoped Ga2O3 also have been investigated by
765
others. Cabello et al. synthesized (Tb3+, Eu3+) codoped Ga2O3 films by photochemical
766
metallorganic deposition [229]. XRD analysis suggested that the films are amorphous
767
in nature. Under UV excitation, the Tb3+ singly doped film shows the characteristic
768
Tb3+ emission peaks attributed to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb ion. For the
769
(Tb3+, Eu3+)-codoped Ga2O3 film, the Tb3+ and Eu3+ emission peaks were observed
770
with decreased Tb3+ and Eu3+ emission intensities. Their results suggested an
771
interaction between Tb3+ and Eu3+ with producing nonradiative relaxation channels in
772
both the Tb3+ and Eu3+ emission pathways. They also reported these characteristic 34
773
Tb3+ emissions decrease and deteriorate in the transition metal co-doped films
774
(Ga2O3-x/Tb/M, where M=Mn or Cr) [230]. Wawrzynczyk et al. studied (Tb3+,
775
Eu3+)-codoped cubic γ-Ga2O3 nanoparticles prepared by thermal decomposition
776
reaction [231]. The luminescence from the Tb3+ or Eu3+ singly doped sample under
777
UV excitation showed a broad blue emission band and a characteristic series of sharp
778
emission lines coming from the lanthanide ions. After codoping with 1% of Tb3+ and
779
Eu3+, the nanoparticles showed only the broad blue emission band but not lanthanide
780
luminescence. The lanthanide luminescence quenching could result from the energy
781
exchange between neighbor Tb3+ and Eu3+ ions, followed by the nonradiative
782
relaxation. Patil et al. synthesized pure and Tb3+/Eu3+ codoped β-Ga2O3 nanoparticles
783
[159]. Strong blue emission is observed from un-doped gallium oxide nanoparticles,
784
while nanoparticles doped with Eu3+ and Tb3+ give strong red and green emissions,
785
respectively. When doped with Eu3+ and Tb3+ together, gallium oxide nanoparticles
786
emit white light. The CIE co-ordinate of the emitted light was found to be (0.33, 0.33),
787
which is well within the white light region. Sinha et al. also obtained the bright white
788
emission with the CIE co-ordinate values of 0.32 and 0.36 in Tb3+/Eu3+ codoped
789
Ga2O3 nanoparticles [160].
790
3.8 Cr doped
791
As early as in 1987, Vivien et al. have grown Cr3+ doped β-Ga2O3 single crystals
792
with various doping levels by the floating zone technique [232]. The broad band
793
4
794
with a 210 µs life time at the room temperature, while the 4T2 level is depopulated so
795
that fluorescence originates only from the 2E level with a 2.3 ms life time at 77 K. The
796
temperature dependence of the lifetime indicates that the 4T2 level lies approximately
797
600 cm-1 above the 2E level, which are similar to those of alexandrite: Cr3+. Walsh et
798
al. also observed a broadband luminescence in Cr3+ doped β-Ga2O3 crystal originated
799
mainly on the 4T2 level, and examined this luminescence over a wide range of
800
temperature to determine the radiative efficiency of the material and the relative
T2→4A2 fluorescence emission extending between 650 and 950 nm is dominated
35
801
positions of the 2E and 4T2 emitting levels [233]. PL and PLE spectroscopies studies
802
were widely performed on Cr3+ doped β-Ga2O3 crystal, and showed sharp red line
803
emissions superimposed on a broad luminescence band [234-237]. The intense and
804
broad PL peak at ~ 400 nm in nominally pure β-Ga2O3was observed to be abruptly
805
suppressed by Cr doping [235]. The luminescence properties of Cr3+ doped
806
nanoparticles, nanowires and thin films have also been studied using PL and PLE
807
spectroscopies [238-242]. Nogales et al. characterized the red emission obtained in Cr
808
doped β-Ga2O3 nano- and microwires, which is attributed to electronic transitions of
809
trivalent Cr ions in this host [238]. Temperature evolution of the luminescence time
810
decay is well fitted to a three level model where thermal population between the two
811
upper ones occurs. These three levels are the 4A2, 2E, and 4T2 of Cr3+, and a value of
812
60 meV is obtained for the 4T2-2E energy difference in this oxide. A rough estimation
813
of the Huang-Rhys factor for the 4T2-4A2 electronic transition in this host yields a
814
value of S ~ 5. Fujihara et al. have experimentally demonstrated that, under UV
815
excitation, the green emission from β-Ga2O3 thin film is quenched by the inclusion of
816
Cr3+ ions, and the material exhibits the red emission instead [243]. They infer that the
817
energy of the photo-excitation is more efficiently transferred to the Cr3+ activators
818
than to the defect centers which are responsible for the green emission.
819
Tokida et al. prepared Ga2O3:Cr3+ films by MOD and analyzed PL properties in
820
detail, such as the temperature-dependent PL intensity, peak energy, and spectral
821
width [244]. An activation energy of ~ 0.9 eV for the Cr3+ ions in β-Ga2O3 is
822
determined from a plot of PL intensity vs calcination temperature. The red-line
823
emission doublet R1 and R2 at ~ 1.8 eV and the broad emission band with a peak at
824
~ 1.7 eV are ascribed to the intra-d-shell electronic transitions of Cr3+ ions in the
825
β-Ga2O3 host. The zero-phonon line (ZPL) energies of the Cr3+ states, 2E, 4T2, 2T2, 4T1,
826
and 4T1, were determined to be 1.7884, 1.7979, 2.3, 2.40, and 3.35 eV at 300 K,
827
respectively. The high-energy luminescence tail of the broad 4T2→4A2 emission band
828
can be explained by the hot-carrier effect of the photo-excited electrons in the 4T2
829
state. The relative intensities of the R-line emission doublet can also be explained 36
830
(R1) very well by the population and depopulation of the electron numbers in the E
831
(R2) states. Their proposed configurational-coordinate model shows a good and 2A
832
agreement with the experimental data, as schematically shown in Fig. 12. They also
833
found that the PL emission intensities in Eu3+-activated β-Ga2O3 and Tb3Ga5O12 were
834
strongly influenced by the Cr3+ red line emissions, where the Cr3+ ions were
835
unintentionally introduced in the synthesized phosphors [245-246].
836
837
838
839
FIG. 12. Schematic energy diagram of Cr3+ ions in β-Ga2O3 [244].
4. Solar-blind Photodetectors
840
37
841
Solar-blind photodetectors based on ultrawide-bandgap semiconductor, with the
842
high photosensitivity and low false alarm rate, have caused great concern recently due
843
to their wide potential applications in military fields (such as: ultraviolet
844
communication, missile early warning and tracking, rocket tail flame detection,
845
high-energy physics and so on) and civilian fields (such as: sterilization ultraviolet
846
intensity detection, biological medicine, fire warning, high voltage corona detection,
847
ozone hole monitoring and so on). To date, various ultra-wide band-gap
848
semiconductors such as AlGaN, ZnMgO, diamond, Ga2O3, etc., have been employed
849
to fabricate solar-blind photodetectors [247]. Although AlGaN with high Al
850
composition has been achieved solar-blind photodetection, the crystal quality of the
851
AlGaN epitaxial layer deteriorates rapidly with increasing Al composition [248].
852
Meanwhile, it is difficult to grow a single wurtzite ZnMgO with high Mg composition
853
due to phase segregation between ZnO wurtzite and MgO rock salt [249]. Diamond
854
has a band gap of 5.5 eV, and the sensitivity range is restricted to wavelengths below
855
225 nm. It is not possible to be used to detect entire solar-blind region due to their
856
mismatched bandgaps [250]. Among them, β-Ga2O3, with a direct bandgap of ~ 4.9
857
eV (corresponding to the solar-blind region), low cost, strong radiation hardness, and
858
high thermal and chemical stability, is a natural material for solar-blind photodetector.
859
Compared with ZnMgO and AlGaN, β-Ga2O3 is unnecessary to tune the band gap to
860
avoid phase separation and alloy composition fluctuations. In the last year, Ga2O3
861
based solar-blind photodetectors have been reviewed from various perspectives
862
[65-67,143,251-252]. Guo et al. comprehensively review the latest progresses of
863
solar-blind photodetectors based on Ga2O3 materials in various forms of bulk single
864
crystal, nanostructures, thin films (crystalline and amorphous) with various device
865
structure of metal-semiconductor-metal structure, Schottky junctions, heterojunctions,
866
and pn junctions [67]. Table ΙV summarizes the parameters of solar blind
867
photodetector
868
quasi-two-dimensional β-Ga2O3 microbelts mechanically exfoliated from bulk
869
β-Ga2O3 single crystal shows the highest photoresponsivity (1.8×105 A/W) [253],
870
followed by α-Ga2O3/ZnO heterojunction thin film (1.1×104 A/W) [254] and
based
on
Ga2O3.
The
38
photodetector
composed
of
871
ZnO/β-Ga2O3 core-shell heterojunction microwire (1.3×103 A/W) [255]. The
872
photodetector based on Au/β-Ga2O3 Schottky junction exhibits a photoresponsivity of
873
103 A/W [256]. Devices formed heterojunction or Schottky junction tend to have a
874
high gain. The photodetector composed of quasi-two-dimensional β-Ga2O3 microbelts
875
also has the highest external quantum efficiency(up to 8.8×105 %) [253], followed by
876
In-doped Ga2O3 nanobelts device (2.72×105 %) [257]. Compared with single crystal
877
and thin film devices, the photodetector based on Ga2O3 nanostructures tends to have
878
a higher dark current, which can be as low as the order of pA. The ratio of light
879
current to dark current (Idark/ILigh ) of Ga2O3 photodetector can reach 106 for all forms
880
of bulk single crystal, nanostructures, and thin films.The devices based on
881
heterojunction, Schottky junction or amorphous thin film often have faster response
882
speed, such as: graphene/Ga2O3 single crystal heterojunction (< 2.24 µs) [258],
883
ZnO/Ga2O3 core-shell heterojunction microwires (20 µs),255 Au/Ga2O3 nanowires
884
Schottky junction (64 µs) [259], amorphous Ga2O3 thin film (19.1 µs) [260]. The
885
photodetector based on ZnO/Ga2O3 core/shell micron-wire has a best comprehensive
886
performance, which exhibits a photoresponsivity of 1.3×103 A/W and a response time
887
of 20 µs to 254 nm light at -6 V [255].
888
t
Table ΙV Parameter list of Ga2O3 based solar-blind ultraviolet photodetector Photodetector type
Photoresponsivity, R (A/W)
External quantum efficiency, EQE ( % )
Idark (A)
Idark/ILight
Response time, t(s)
Ref.
Ga2O3 nanowire
-
-
≈ 10-12
≈ 2×103
2.2×10-1
261
-2
262
≈
-
-
Ga2O3 nanowire
8.0×10-4
3.9×10 -1
≈ 10-10
≈ 102
-
Ga2O3 nanowire
3.4×10-3
1.37
-
≈ 102
-
Ga2O3 nanowire
6×10
2
Ga2O3 nanowire
3.77×10
Ga2O3 nanowire
-1
7.1×10
1
2.0×10
5
2.5×10
2
≈ 10
-11
≈ 10
≈ 10
-11
3
≈ 10
1.08×10-2 (0V)
5.27×10-3
Ga2O3 nanorod array PEC
2.1×10-4 (0V)
Ga2O3 nanosheet
3.3
1.85×10
Ga2O3 nanorod array
Ga2O3 nanosheet (γ) Ga2O3 nano flower (γ) Ga2O3 nanobelt
-
3.37×10
264
6.4×10
-5
259
2.1×10
-1
265
1.9×10
-1
266
-3
8×10
≈ 10-13
9.14
3.8×10-1
268
-
-
-
5.6×10-2
269
1.6×103
≈ 10-9
10
3×10-2
270
-2
271
1
-5
2
263
-
-
-
10
< 2×10
2
2.6×10
-
Graphene/Ga2O3 nanowire
3×10
4
Ga2O3 nanowire
-4
10
-12
1.67×10
39
4
≈ 10
-9
1.64×10
≈ 10
-9
2.2×10
2
4.0×10
2
≈ 10
-13
4
6×10 10
-1
8.6×10
267
272 1
273
Ga2O3 nanobelt
8.51×102
4.2×103
≈ 10-13
≈ 103
< 3×10-1
274
Ga2O3 nanobelt
1.93×101
9.4×103
≈ 10-10
≈ 104
< 2×10-2
275
In:Ga2O3 nanobelt
5.47×102
2.72×105
≈ 10-13
9.1×102
1
257
Ga2O3 microbelt
5
Ga2O3 microbelt Ga2O3 microbelt
1.8×10 (-30V) -
8.8×10
5
-
1.68
2.57
≈ 10
-4
-
≈ 10
-13
-
≈ 10
-13
1
≈ 10
-6
6.7×10
-1
253
1.4
1.9×10 ≈ 10
3
276
5.3×10
-1
277
4
-
278
Graphene/Ga2O3 microbelt
2.98×10
Ga2O3 single crystal
2.6-8.7
-
≈ 10-10
≈ 103
-
279
Ga2O3 single crystal
3.7×10-2
1.8×101
≈ 10-10
1.5×104
9×10-3
280
Ga2O3 single crystal
103
-
≈ 10-10
≈ 106
-
256
Ga2O3 single crystal Graphene /Ga2O3 single crystal Graphene /Ga2O3 single crystal
4.3
2.1×10
3.93×10
1
-2
1.03×10 (0V) -2
1
1.96×10
4
≈ 10
≈ 10 ≈ 10
5
-11
-6
-10
-5
10
5
10
3
10
2
< 2.24×10
10
2
-1
283
-
281
2.2×10
2
282 -6
258
-
≈ 10
3 × 10-3
-
≈ 10-8
101
1.4×10-1
284
Ga2O3 single crystal
4
-
≈ 10-10
≈ 102
3×10-1
285
Ga2O3 single crystal
1.28×10-3
-
≈ 10-10
1.5×101
8×10 -2
286
-
-
-
287
Ga2O3 single crystal
5×10
Ga2O3 single crystal
Ga2O3 thin film Ga2O3 thin film Ga2O3 thin film
8×10
-5
3.7×10
4.53×10
Ga2O3 thin film
≈ 10
-1
Ga2O3 thin film
≈ 101
Ga2O3 thin film
-
-2
-1
-1
1.8×10
1
-
10
-
290 291
103
-
-
≈ 10
-11
5
-
≈ 10
-10
-
Ga2O3 thin film
289
≈ 10-7
Ga2O3 thin film
2.59×10
-
3
-
8.2×103
Ga2O3 thin film
10
≈ 10
1.7×101
2
288
-
Ga2O3 thin film
9.03×10
5
-10
7.6×10
Ga2O3 thin film
-
≈ 10
Ga2O3 thin film
-1
≈ 10
-10
>10
2
-9
2.4×10
-
10
170 -2
6
5×10
≈ 10-9
8.5×106
-
293
-
≈ 10-11
102
8×10-1
294
-
≈ 10
-11
10
5
-
295
≈ 10
-10
10
4
7.9×10
4
≈ 10
4
≈ 10
-7
-11
4×10
1.5×10
1
5.7×10
4
-1
-
296 297
-1
Ga2O3 thin film
8.4
4.1×10
Ga2O3 thin film
8.9×101
4.1×102
≈ 10-10
105
2.5×10-1
299
Ga2O3 thin film/crystal
1.8
8.7×102
≈ 10-6
3.69×101
-
300
Ga2O3 thin film
4.2
-
≈ 10-11
1.6×104
4×10-2
-
-5
Ga2O3 thin film Al: Ga2O3 thin film Si:Ga2O3 thin film
9×10
-3
1.5 6×10
≈ 10
7.8×10 1
3×10 1
2
4
1.8×10
-1
298
301 283
-
-
-
302
-
9
-
303
4
-
9
-
304
Si:Ga2O3 thin film
3.6×10
Si:Ga2O3 thin film
1.6×10-1
8.75×101
-
104
-
305
Zn:Ga2O3 thin film
2.1×102
-
≈ 10-11
5×104
1.4
306
a-GaOx amorphous thin film
7×101
-
≈ 10-10
1.2×105
2×10-2
-
-12
Ga2O3 amorphous thin film
1.9×10
-1
1.75×10
10
1
1×10
292
40
≈ 10
10
6
1.9×10
-5
301 260
Ga2O3 amorphous thin film
4.5×101
-
≈ 10-10
104
1.48×10-4
307
Ga2O3 thin film
1.2×10-4
-
≈ 10-10
102
-
308
Ga2O3 thin film
1.5
-
≈ 10-9
103
Ga2O3 thin film Ga2O3 thin film Ga2O3 thin film
2.9×10
-1
1.1×10
-1
1.4×10
-1
1.34 -
≈ 10
-8
≈ 10
-9
≈ 10
-
-11
-8
Ga2O3 thin film
1.5
-
≈ 10
Ga2O3 thin film
2.6×101
-
≈ 10-8
Graphene/Ga2O3 thin film
1.28×101
-
Ga2O3 thin film
9.6×101
4.76×104
-5
Ga2O3 thin film
5.86×10
Ga2O3 thin film
2
Ga2O3 thin film
1.5×10 10
-1
7×10
4
1.6×10 3.5×10
3
4.5×10
1.4×10
6
-1
2×10
310 -1
311 311
104
1.8×10-1
312
≈ 10-8
-
2×10-3
313
≈ 10-6
-
-
314
-9
10
3
10
309
1.8×10
-11
10
≈ 10
-8
-
-8
≈ 10
-
309 -1
-
≈ 10
-
3
1
5
-1
315
1.3
316
10
-
309
6
8.6×10
-1
247
Ga2O3 thin film
-
-
≈ 10
Ga2O3 thin film
-
-
≈ 10-9
1.3×101
6.2×10-1
317
Ga2O3 thin film
-
-
≈ 10-11
1.6×104
1.6×10-2
318
Ga2O3/Ga/Ga2O3 thin film
2.85
-
≈ 10-11
8×105
-
319
Mn:Ga2O3 thin film α-Ga2O3 thin film α-Sn:Ga2O3 thin film
7×10
-2
1.5×10
-2
9.6×10
-2
3.6×10
1
7.39 -
≈ 10
-9
6.7×10
≈ 10
-9
1
≈ 10
-9
1.4×10
-7
3×10
1
2.8×10
-1
320
-
37
1.08
321
4
8.73
322
2
α-Sn:Ga2O3 thin film
-
-
≈ 10
ε-Sn:Ga2O3 thin film
6.05×10-3
3.02
≈ 10-9
4.6×101
-
323
β-Sn:Ga2O3 thin film
3.61×10-2
-
≈ 10-8
19
1.37
303
-
≈ 10
-9
2
1. 23
≈ 10
-9
≈ 10
-6
≈ 10
-8
9.4×10
Zn:Ga2O3 thin film Er:Ga2O3 thin film Au NPs/Ga2O3 thin film
10
2
2
>2×10
1.6×10
192
2
-
325
2
1.8
326
Ga2O3/p-Si heterojunction
3.7×10
Ga2O3 /NSTO heterojunction
4.3×101
2.1×104
≈ 10-6
2×101
7×10-2
327
Ga2O3/Ga:ZnO heterojunction
7.6×10-4
-
≈ 10-9
2.6×102
2.7×10-1
328
Ga2O3/Cu2O pn junction PEC
4.2×10-4
-
-
-
1.01×101
35
5.4×10
3
-
329
1.7
p-Si/i-SiC/n-Ga2O3 Graphene/Ga2O3 /SiC Graphene/Ga2O3/graphene
1.8×10
1.8×10
5
2.5
324 -1
-1
9.66
-
≈ 10
-8
≈ 10
-5
6.3×10
1
≈ 10
-9
8.3×10
1
-9
7.7
-
332
330
9.6×10
-1
331
Ga2O3/SiC/Al2O3
-
-
≈ 10
Ga2O3 /Al2 O3
1.4
-
≈ 10-7
9.04
1.26
333
Ga2O3 /SiC heterojunction
7×10-2
-
≈ 10-10
-
9×10-3
334
Ga2O3 /SiC heterojunction
6.78×10-2
3.3×101
≈ 10-10
3.84×102
3.1×10-1
335
Ga2O3/GaN heterojunction Ga2O3/GaN heterojunction nanowire array Sn:Ga2O3/GaN heterojunction Ga2O3/ZnO heterojunction
5.4×10
-2
5.5×10
2
3.05 3.5×10
2.25×10
3
-1
1.7×10
41
2
≈ 10
-6
≈ 10
-7
≈ 10
-11
≈ 10
-10
1.5×10
2
5 10
4
1.5×10
1
8×10
-2
336
8×10
-2
337
1.8×10
-2
338
6.2×10
-1
339
α-Ga2O3/ZnO heterojunction
1.1×104 (-40V)
-
≈ 10-12
-
2.4×10- 4
254
ZnO/Ga2O3 core-shell nanowire arrays
1.38×102 (0V)
-
-
2.64×104
8.6×10-5
340
ZnO/Ga2O3 core-shell microwire
1.3×103 (-6V)
-
≈ 10-10
≈ 106
2×10-5
255
-
-10
ZnO/Ga2O3 core-shell microwire Ga2 O3/diamond heterojunction α-Ga2O3/Cu2O heterojunction
-3
9.7×10 (0V) 2×10
-4
4.2×10
≈ 10
-
-4
-
α-Ga2O3 solid/liquid heterojunction
1.44×10
-3
7×10
β-Ga2O3 solid/liquid heterojunction
3.81×10-3
Ga2O3/CuSCN core-shell microwire heterojunction
1.33×10-2 (5V)
-1
≈ 10
-9
≈ 10
-6
≈ 7×10
2
10
1
-
3.7×10 ≈2
-4
10
341 342
1
343 -1
344
-
≈6
1.7×10
1.86
-
≈ 2.9×101
1.6×10-1
344
-
10-12
4.14×104
3.5×10-2
345
889
42
890
5. SUMMARY AND FUTURE PERSPECTIVES
891
Ga2O3 is a new type of ultrawide-bandgap semiconductor material, which can
892
crystallize in six different phases (known as α, β, γ, δ, ε, and κ-phases). These various
893
polymorphs each have unique physical properties and can be widely used in various
894
fields of devices. Among them, the monoclinic β-Ga2O3 (space group: C2/m) has been
895
recognized as the most stable phase, which can be grown in bulk form from EFG with
896
a low-cost method. Also, β-Ga2O3 has been the most widely studied and utilized,
897
which can be attributed to two main reasons: 1) β-Ga2O3 has more commercial value
898
than other phases because its low cost and good thermal/chemical stability; 2)
899
β-Ga2O3 is easy to prepare while other phases are relatively difficult. With a large
900
bandgap of about 4.9 eV and a high theoretical breakdown electrical field (8 MV/cm),
901
β-Ga2O3 is a potential candidate material for next generation optoelectronics,
902
high-power electronics, and extreme environment electronics [high temperature, high
903
radiation, and high voltage (low power) switching]. In this review, we mainly
904
summarize the application of Ga2O3 in optoelectronic devices (including phosphors
905
and EL devices, solar-blind photodetectors). β-Ga2O3 emerges as a new
906
multicolor-emitting phosphor host material for emissive display applications on
907
account of its extremely stable chemically and thermally. Red and green emission
908
colors can be obtained using Ga2O3 phosphors activated with Eu3+, Cr, Co, Sm and
909
Mn, Tb, Er, Ho, respectively. Yellow and blue emission colors can be also obtained
910
using Ga2O3 phosphors activated with Tm, Ce, Sn and Dy, Eu2+, respectively. Because
911
of high electric strength of Ga2O3, it is possible to apply higher electric fields to the
912
Ga2O3 EL devices. High-luminance multicolor emissions can be realized by TFEL
913
devices with transition metal or rare-earth activated Ga2O3 phosphor. Meanwhile,
914
Ga2O3 is a natural choice for use in solar-blind photodetector due to the virtues of
915
direct bandgap of ~ 4.9 eV which is in the solar-blind region. The performance
916
parameters of β-Ga2O3 solar-blind photodetectors based on various material type of
917
nanostructures, bulk single crystal and thin film are summarized. The photodetector
918
based on quasi-two-dimensional β-Ga2O3 microbelts shows the highest responsivity 43
919
(1.8×105 A/W). The photodetector based on ZnO/Ga2O3 core/shell micron-wire has a
920
best comprehensive performance, which exhibits a responsivity of 1.3×103 A/W and a
921
response time of 20 µs to 254 nm light at -6 V. We look forward to the application of
922
β-Ga2O3 based solar-blind ultraviolet photodetectors in military (such as: missile early
923
warning and tracking, ultraviolet communication, harbor fog navigation, and so on)
924
and civilian fields (such as: ozone hole monitoring, disinfection and sterilization
925
ultraviolet intensity monitoring, high voltage corona detection, forest fire ultraviolet
926
monitoring, and so on) as soon as possible.
927
44
928
ACKNOWLEDGMENTS
929
This work was supported by the National Natural Science Foundation of China (No.
930
61704153, 51572241, 61774019, 51572033), Zhejiang Public Service Technology
931
Research Program/Analytical Test (LGC19F040001), Beijing Municipal Commission
932
of Science and Technology (SX2018-04), Visiting Scholar Foundation of State Key
933
Lab of Silicon Materials (SKL2019-08), and Fundamental Research Funds of
934
Zhejiang Sci-Tech University (2019Q061).
45
936
[1] S. J. Pearton, J. C. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro, Appl. Phy. Rev. 5 (2018) 011301.
937
[2] M. Higashiwaki, G. H. Jessen, Appl. Phys. Lett. 112 (2018) 060401.
938
[3] Z. Galazka, Semicond. Sci. Tech. 33 (2018) 113001.
939
[4] M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55 (2016) 1202A1.
935
940
942
[5] M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S. J. Peartong, ECS J. Solid State Sc. 6 (2017) P356.
943
[6] R. Roy, V. G. Hill, E. F. Osborn, J. Am. Chem. Soc. 74 (1952) 719.
944
[7] S. Penner, C. Zhuo, R. Thalinger, M. Grünbacher, C. Hejny, S. Vanicek, M. Noisternig, Monatsh. Chem. 147 (2015) 289.
941
945 946 947
[8] H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J. 19 (2013) 2803.
949
[9] I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pécz, R. Fornari, CrystEngComm 19 (2017) 1509.
950
[10] M. Marezio, J. P. Remeika, J. Chem. Phys. 46 (1967) 1862.
951
[11] V. M. Bermudez, Chem. Phys. 323 (2006) 193.
952
[12] H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, R. I. Walton, J. Chem. Phys. C 118 (2014) 16188.
948
953
955
[13] S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, J. Phys.: Condens. Mat. 19 (2007) 346211.
956
[14] L. P. Dong, J. G. Yu, Y. M. Zhang, R. X. Jia, Comp. Mater. Sci. 156 (2019) 273.
957
[15] D. Shinohara, S. Fujita, Jpn. J. Appl. Phys. 47 (2008) 7311.
958
[16] K. Kaneko, T. Nomura, S. Fujita, Phys. Status Solidi (c) 7 (2010) 2467.
959
[17] K. Akaiwa, S. Fujita, Jpn. J. Appl. Phys. 51 (2012) 070203.
960
[18] H. Ito, K. Kaneko, S. Fujita, Jpn. J. Appl. Phys. 51 (2012) 100207.
961
[19] K. Kaneko, H. Kawanowa, H. Ito, S. Fujita, Jpn. J. Appl. Phys. 51 (2012) 020201.
954
962
46
963
[20] K. Kaneko, I. Kakeya, S. Komori, S. Fujita, J. Appl. Phys. 113 (2013) 233901.
964
[21] S. D. Lee, K. Akaiwa, S. Fujita, Phys. Status Solidi (c) 10 (2013) 1592.
965
[22] N. Suzuki, K. Kaneko, S. Fujita, J. Cryst. Growth 364 (2013) 30.
966
[23] S. Fujita, K. Kaneko, J. Cryst. Growth 401 (2014) 588.
967
[24] N. Suzuki, K. Kaneko, S. Fujita, J. Cryst. Growth 401 (2014) 670.
968
[25] K. Kaneko, S. Fujita, T. Hitora, Jpn. J. Appl. Phys. 57 (2018) 02CB18.
969
[26] R. Jinno, T. Uchida, K. Kaneko, S. Fujita, Phys. Status Solidi (b) 255 (2018) 1700326.
970 971 972
[27] S. Kan, S. Takemoto, K. Kaneko, I. Takahashi, M. Sugimoto, T. Shinohe, S. Fujita, Appl. Phys. Lett. 113 (2018) 212104.
974
[28] T. Uchida, R. Jinno, S. Takemoto, K. Kaneko, S. Fujita, Jpn. J. Appl. Phys. 57 (2018) 040314.
975
[29] T. Uchida, K. Kaneko, S. Fujita, MRS Adv. 3 (2018) 171.
976 977
[30] K. Toyoki, Y. Shiratsuchi, A. Kobane, S. Harimoto, S. Onoue, H. Nomura, R. Nakatani, J. Appl. Phys. 117 (2015) 17D902.
978
[31] C. S. Cheng, H. Gomi, H. Sakata, Phys. Status Solidi (a) 155 (1996) 417.
979
[32] D. B. McWhan, J. P. Remeika, Phys. Rev. B 2 (1970) 3734.
980
[33] T. Fujii, Solid State Ionics 172 (2004) 289.
981
[34] K. Kaneko, T. Nomura, I. Kakeya, S. Fujita, Appl. Phys. Express 2 (2009) 075501.
973
982 983 984 985
[35] C. R. He, D. Y. Guo, K. Chen, S. L. Wang, J. Q. Shen, N. Zhao, A. P. Liu, Y. Y. Zheng, P. G. Li, Z. P. Wu, C. R. Li, F. M. Wu, W. H. Tang, ACS Appl. Nano Mater. 2 (2019) 4095.
986
[36] Y. Oshima, E. G. Víllora, K. Shimamura, Appl. Phys. Express 8 (2015) 055501.
987
[37] D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, W. H. Tang, Mater. Lett. 164 (2016) 364.
988 989 990
[38] M. Yamaga, E. G. Víllora, K. Shimamura, N. Ichinose, M. Honda, Phys. Rev. B 68 (2003) 155207. 47
991
[39] T. Zacherle, P. C. Schmidt, M. Martin, Phys Rev. B 87 (2013) 235206.
992
[40] M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, H. Hosono, Thin Solid Films 411 (2002) 134.
993 994 995 996 997 998
[41] C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, C. G. Van de Walle, New J. Phys. 13 (2011) 085014. [42] S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, A. E. Romanov, Rev. Adv. Mater. Sci. 44 (2016) 63.
1001
[43] Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, ECS J. Solid State Sc. 6 (2016) Q3007.
1002
[44] Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M.
1003
Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404 (2014) 184.
999 1000
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
[45] Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, R. Fornari, Cryst. Res. Technol. 45 (2010) 1229. [46] K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110 (2011) 063720. [47] M Saurat, A Revcolevschi, Revue Internationale Des Hautes Temperatures Et. Des. Refractaires 8 (1971) 291. [48] E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270 (2004) 420. [49] J. G. Zhang, B. Li, C. T. Xia, G. Q. Pei, Q. Deng, Z. H. Yang, W. S. Xu, H. S. Shi, F. Wu, Y. Q. Wu, J. Xu, J. Phys. Chem. Solids 67 (2006) 2448.
1017
[50] E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, T. Fukuda, Phys. Status Solidi (c) 193 (2002) 187.
1018
[51] S. Ohira, N. Arai, Phys. Status Solidi (c) 5 (2008) 3116.
1019
[52] T. Oshima, N. Arai, N. Suzuki, S. Ohira, S. Fujita, Thin Solid Films 516 5768.
1016
1020
48
(2008)
1021 1022 1023 1024 1025
[53] V. I. Nikolaev, V. Maslov, S. I. Stepanov, A. I. Pechnikov, V. Krymov, I. P. Nikitina, L. I. Guzilova, V. E. Bougrov, A. E. Romanov, J. Cryst. Growth 457 (2017) 132. [54] M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101 (2012) 132106.
1027
[55] J. G. Zhang, C. T. Xia, Q. Deng, W. S. Xu, H. S. Shi, F. Wu, J. Xu, J. Phys. Chem. Solids 67 (2006) 1656.
1028
[56] K. Suzuki, T. Okamoto, M. Takata, Ceram. Int. 30 (2004) 1679.
1029 1030
[57] A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55 (2016) 1202A2.
1031
[58] H. H. Tippins, Phys. Rev. 140 (1965) A316.
1032
[59] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys.
1026
1033
Lett. 100 (2012) 013504.
1035
[60] M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Tech. 31 (2016) 034001.
1036
[61] S. J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 124 (2018) 220901.
1037
[62] M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 112 (2018) 023503.
1034
1038 1039 1040
[63] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Status Solidi (c) 211 (2014) 21.
1042
[64] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, J. Cryst. Growth 378 (2013) 591.
1043
[65] J. J. Xu, W. Zheng, F. Huang, J. Mater. Chem. C 7 (2019) 8753.
1044
[66] Y. Qin, S. B. Long, H. Dong, Q. M. He, G. Z. Jian, Y. Zhang, X. H. Hou, P. J. Tan, Z. F. Zhang, H. B. Lv, Q. Liu, M. Liu, Chin. Phys. B 28 (2019) 018501.
1041
1045
1047
[67] D. Y. Guo, P. G. Li, Z. W. Chen, Z. P. Wu, W. H. Tang, Acta Phys. Sin.-Ch. Ed. 68 (2019).
1048
[68] Y. W. Zhang, A. Neal, Z. B. Xia, C. D. Joishi, J. M. Johnson, Y. H. Zheng, S.
1046
1049 1050
Bajaj, M. Brenner, D. Dorsey, K. Chabak, Appl. Phys. Lett. 112 (2018) 173502. [69] T. S. Wang, W. Li, C. Y. Ni, A. Janotti, Phys. Rev. Appl. 10 (2018) 011003. 49
1052
[70] Z. Cheng, N. Tanen, C. Chang, J. Shi, J. McCandless, D. Muller, D. Jena, H. G. Xing, S. Graham, arXiv preprint arXiv:1905.00139 (2019).
1053
[71] Y. Zhang, A. Neal, Z. B. Xia, C. Joishi, Y. Zheng, S. Bajaj, M. Brenner, S. Mou,
1051
1054 1055 1056 1057 1058 1059
D. Dorsey, K. Chabak, arXiv preprint arXiv:1802.04426 (2018). [72] R. Wakabayashi, M. Hattori, K. Yoshimatsu, K. Horiba, H. Kumigashira, A. Ohtomo, Appl. Phys. Lett. 112 (2018) 232103. [73] F. H. Teherani, G. A. Khodaparast, Y. V. Xu, J. Wu, V. P. Dravid, D. Pavlidis, M. Razeghi, R. McClintock, D. J. Rogers, J. H. Park, Proc. SPIE 10533, Oxide-based Materials and Devices IX 105330 (2018).
1061
[74] M. Mitome, S. Kohiki, T. Nagai, K. Kurashima, K. Kimoto, Y. Bando, Cryst. Growth Des. 13 (2013) 3577.
1062
[75] S. S. Farvid, T. Wang, P. V. Radovanovic, J. Am. Chem. Soc. 133 (2011) 6711.
1063
[76] R. Lorenzi, A. Paleari, N. V. Golubev, E. S. Ignat'eva, V. N. Sigaev, M.s Niederberger, A. Lauria, J. Mater. Chem. C 3 (2015) 41.
1060
1064 1065 1066 1067 1068
[77] M. Takahashi, T. Nakatani, S. Iwamoto, T. Watanabe, M. Inoue, J. Phys.: Condens. Mat. 18 (2006) 5745. [78] M. Zinkevich, F. M. Morales, H. Nitsche, M. Ahrens, M. Rühle, F. Aldinger, Z. Metallkd. 95 (2004) 756.
1070
[79] Q. Liu, D. Y. Guo, K. Chen, Y. L. Su, S. L. Wang, P. G. Li, W. H. Tang, J. Alloy. Compd. 731 (2018) 1225.
1071
[80] T. Oshima, T. Nakazono, A. Mukai, A. Ohtomo, J. Cryst. Growth 359 (2012) 60.
1072
[81] T. Oshima, Y. Kato, M. Oda, T. Hitora, and M. Kasu, Appl. Phys. Express 10
1069
1073 1074 1075 1076 1077 1078 1079
(2017) 051104. [82] T. Oshima, K. Matsuyama, K. Yoshimatsu, A. Ohtomo, J. Cryst. Growth 421 (2015) 23. [83] H. Hayashi, R. Huang, F. Oba, T. Hirayama, I. Tanaka, J. Mater. Res. 26 (2011) 578. [84] H. Hayashi, R. Huang, F. Oba, T. Hirayama, I. Tanaka, J. Mater. Sci. 46 (2011) 4169.
50
1081
[85] H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, I. Tanaka, S. Sonoda, Appl. Phys. Lett. 89 (2006) 181903.
1082
[86] R. Huang, H. Hayashi, F. Oba, I. Tanaka, J. Appl. Phys. 101 (2007) 063526.
1083 1084
[87] X. C. Xia, Y. P. Chen, Q. J. Feng, H. W. Liang, P. C. Tao, M. X. Xu, G. T. Du, Appl. Phys. Lett. 108 (2016) 202103.
1085
[88] K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H.
1080
1086
Hosono, Thin Solid Films 496 (2006) 37.
1088
[89] B. Ollivier, R. Retoux, P. Lacorre, D. Massiot, G. Férey, J. Mater. Chem. 7 (1997) 1049.
1089
[90] X. Y. Bi, Z. P. Wu, Y. Q. Huang, W. H. Tang, AIP Adv. 8 (2018), 025008.
1090 1091
[91] Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, K. Shimamura, Jpn. J. Appl. Phys. 118 (2015) 085301.
1092
[92] H. Nishinaka, D. Tahara, M. Yoshimoto, Jpn. J. Appl. Phys. 55 (2016) 1202BC.
1093
[93] M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, Phys. Rev. Appl. 8 (2017) 054002.
1087
1094 1095 1096
[94] F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, R. Fornari, Inorg. Chem. 55 (2016) 12079.
1099
[95] R. Fornari, M. Pavesi, V. Montedoro, D. Klimm, F. Mezzadri, I. Cora, B. Pécz, F. Boschi, A. Parisini, A. Baraldi, C. Ferrari, E. Gombia, M. Bosi, Acta Mater. 140 (2017) 411.
1100
[96] J. P. Remeika, M. Marezio, Appl. Phys. Lett. 8 (1966) 87.
1101
[97] Y. M. Ma, H. Y. Chen, K. F. Yang, M. Li, Q. L. Cui, J. Liu, G. T. Zou, Chin. Phys. Lett. 25 (2008) 1603.
1097 1098
1102
1104
[98] H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, Phys. Rev. B 74 (2006) 195123.
1105
[99] H. He, M. A. Blanco, R. Pandey, Appl. Phys. Lett. 88 (2006) 261904.
1106
[100] K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C.
1103
1107 1108
Fitch, J. P. McCandless, G. H. Jessen, Appl. Phys. Lett. 111 (2017) 012103.
51
1110
[101] E. Chikoidze, H .J. von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, Y. Dumont, J. Appl. Phys. 120 (2016) 025109.
1111
[102]
1109
1112 1113 1114
F. H. Teherani, D. C. Look, D. J. Rogers, E. G. Víllora, S. Arjoca, K.
Shimamura, D. Inomata, K. Aoki, 8987 (2014) 89871U. [103] M. Peres, K. Lorenz, E. Alves, E. Nogales, B. Méndez, X. Biquard, B. Daudin, E. G. Víllora, K. Shimamura, J. Phys. D: Appl. Phys. 50 (2017) 325101.
1116
[104] P. Wellenius, E. R. Smith, S. M. LeBoeuf, H. O. Everitt, J. F. Muth, J. Appl. Phys. 107 (2010) 103111.
1117
[105]
1118 1119
[106] P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, J. F. Muth, Mater. Sci. Eng.: B 146 (2008) 252.
1120
[107]
1115
1121
P. Wellenius, A. Suresh, J. F. Muth, Appl. Phys. Lett. 92 (2008) 021111.
P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N.
Saripalli, H. Y. Peng, H. O. Everitt, Appl. Phys. Lett. 88 (2006) 221906.
1122
[108]
1123
[109] S. E. Choi, Y. T. Oh, H. K. Ham, T. W. Kim, G. S. Heo, J. W. Park, B. H. Choi, D. C. Shin, Curr. Appl. Phys. 11 (2011) S255.
1124 1125 1126 1127
C. F. Lin, K. T. Chen, K. P. Huang, IEEE Electr. Device L. 31 (2010) 1431.
[110] K. Iizuka, Y. Morishima, A. Kuramata, Y. J. Shen, C. Y. Tsai, Y. Y. Su, G. Liu, T. C. Hsu, J. H. Yeh, Gallium Nitride Materials and Devices X (2015) (unpublished).
1129
[111] Z. Liu, P. G. Li, Y. S. Zhi, X. L. Wang, X. L. Chu, W. H. Tang, Chin. Phys. B 28 (2019) 017105.
1130
[112]
1128
1131 1132 1133
M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A.
Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 103 (2013) 123511 . [113] J. C. Yang, F. Ren, M. Tadjer, S. J. Pearton, A. Kuramata, ECS J. Solid State Sc. 7 (2018) Q92.
1135
[114] M. Bartic, C. I. Baban, H. Suzuki, M. Ogita, M. Isai, J. Am. Ceram. Soc. 90 (2007) 2879.
1136
[115]
1137
[116] M. Bartic, M. Ogita, M. Isai, C. L. Baban, H. Suzuki, J. Appl. Phys. 102 (2007) 023709.
1134
1138
C. Baban, Y. Toyoda, M. Ogita, Thin Solid Films 484 (2005) 369.
52
1139
[117]
1140
[118] L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, S. M. Prokes, Langmuir 26 (2010) 13722.
1141
M. Bartic, Phys. Status Solidi (a) 213 (2016) 457.
1143
[119] L. Mazeina, V. M. Bermudez, F. K. Perkins, S. P. Arnold, S. M. Prokes, Sensor. Actuat. B: Chem. 151 (2010) 114.
1144
[120]
1142
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, T. H. Wang, Appl. Phys. Lett. 89
(2006) 112114. [121] A. Trinchi, S. Kaciulis, L. Pandolfi, M. K. Ghantasala, Y. X. Li, W. Wlodarski, S. Viticoli, E. Comini, G. Sberveglieri, Sensor. Actuat. B: Chem. 103 (2004) 129. [122] X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. Int. Edit. 51 (2012) 13089. [123] Y. D. Hou, X. C. Wang, L. Wu, Z. X. Ding, X. Z. Fu, Environ. Sci. Tech. 40 (2006) 5799. [124] S. Q. Jin, X. Wang, X. L. Wang, M. G. Ju, S. Shen, W. Z. Liang, Y. Zhao, Z. C. Feng, H. Y. Playford, R. I. Walton, J. Phys. Chem. C 119 (2015) 18221. [125] Y. D. Hou, L. Wu, X. C. Wang, Z. X. Ding, Z. H. Li, X. Z. Fu, J. Catal. 250 (2007) 12.
1158
[126] X. F. Li, X. Z. Zhen, S. G. Meng, J. J. Xian, Y. Shao, X. Z. Fu, D. Z. Li, Environ. Sci. Tech. 47 (2013) 9911.
1159
[127]
B. X. Zhao, M. Lv, L. Zhou, J. Environ. Sci.-China 24 (2012) 774.
1160
[128]
G. Q. Pei, C. T. Xia, Y. J. Dong, B. Wu, T. Wang, J. Xu, Scripta Mater. 58
1157
1161 1162 1163 1164 1165 1166 1167
(2008) 943. [129] D. Y. Guo, Z. P. Wu, Y. H. An, X. J. Li, X. C. Guo, X. L. Chu, C. L. Sun, M. Lei, L. H. Li, L. X. Cao, P. G. Li, W. H. Tang, J. Mater. Chem. C 3 (2015) 1830. [130] D. Y. Guo, Z. P. Wu, P. G. Li, Q. J. Wang, M. Lei, L. H. Li, W. H. Tang, RSC Adv. 5 (2015) 12894. [131] D. Y. Guo, Y. H. An, W. Cui, Y. S. Zhi, X. L. Zhao, M. Lei, L. H. Li, P. G. Li, Z. P. Wu, W. H. Tang, Sci. Rep. 6 (2016) 25166.
53
1169
[132] D. Y. Guo, Z. P. Wu, Y. H. An, P. G. Li, P. C. Wang, X. L. Chu, X. C. Guo, Y. S. Zhi, M. Lei, L. H. Li, W. H. Tang, Appl. Phys. Lett. 106 (2015) 042105.
1170
[133]
1168
1171 1172 1173 1174 1175 1176 1177 1178 1179
D. Y. Guo, Z. P. Wu, L. J. Zhang, T. Yang, Q. R. Hu, M. Lei, P. G. Li, L. H.
Li, W. H. Tang, Appl. Phys. Lett. 107 (2015) 032104. [134] D. Y. Guo, Y. P. Qian, Y. L. Su, H. Z. Shi, P. G. Li, J. T. Wu, S. L. Wang, C. Cui, W. H. Tang, AIP Adv. 7 (2017) 065312. [135] X. Gao, Y. D. Xia, J. F. Ji, H. N. Xu, Y. Su, H. T. Li, C. J. Yang, H. X. Guo, J. Yin, Z. G. Liu, Appl. Phys. Lett. 97 (2010) 193501. [136] J. B. Yang, T. C. Chang, J. J. Huang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, M. J. Tsai, Thin Solid Films 529 (2013) 200. [137] P. C. Wang, P. G. Li, Y. S. Zhi, D. Y. Guo, A. Q. Pan, J. M. Zhan, H. Liu, J. Q. Shen, W. H. Tang, Appl. Phys. Lett. 107 (2015) 262110.
1181
[138] Y. Aoki, C. Wiemann, V. Feyer, H. S. Kim, C. M. Schneider, H. Yoo, M. Martin, Nat. Commun. 5 (2014) 3473.
1182
[139]
C. W. Hsu, L. J. Chou, Nano Lett. 12 (2012) 4247.
1183
[140]
D. Y. Lee, T. Y. Tseng, J. Appl. Phys. 110 (2011) 114117.
1184
[141] J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, M. J. Tsai, IEEE Electr. Device L. 33 (2012) 1387.
1180
1185
1187
[142] J. B. Yang, T. C. Chang, J. J. Huang, Y. T. Chen, P. C. Yang, H. C. Tseng, A. K. Chu, S. M. Sze, M. J. Tsai, Thin Solid Films 528 (2013) 26.
1188
[143]
X. H. Chen, F. F. Ren, S. L. Gu, J. D. Ye, Photonics Res. 7 (2019) 381.
1189
[144]
S. Kumar, R. Singh, Phys. Status Solidi -R 7 (2013) 781.
1190 1191
[145] H. Morkoc, F. Omnès, C. W. Litton, E. Monroy, E. Muñoz, J. L. Reverchon, Proc. of SPIE 6473 (2007) 64730E.
1192
[146]
T. Miyata, T. Nakatani, T. Minami, J. Lumin. 87 (2000) 1183.
1193
[147]
P. C. Stanish, P. V. Radovanovic, J. Phys. Chem. C 120 (2016) 19566.
1194
[148]
S. C. Vanithakumari, K. K. Nanda, Adv. Mater. 21 (2009) 3581.
1195
[149] T. Xiao, A. H. Kitai, G. Liu, A. Nakua, J. Barbier, Appl. Phys. Lett. 72 (1998) 3356.
1186
1196
54
1198
[150] H. B. Xie, L. M. Chen, Y. N. Liu, K. L. Huang, Solid State Commun. 141 (2007) 12.
1199
[151]
1200 1201
[152] D. Stodilka, A. H. Kitai, Z. Huang, K. Cook, SID Symposium Digest of Technical Papers. Oxford, UK: Blackwell Publishing Ltd. 31 (2000) 11.
1202
[153]
1197
1203
J. H. Kim, K. H. Yoon, J. Korean Phys. Soc. 53 (2008) 818.
T. Minami, T. Shirai, T. Nakatani, T. Miyata, Jpn. J. Appl. Phys. 39 (2000)
L524.
1205
[154] J. F. Wager, J. C. Hitt, B. A. Baukol, J. P. Bender, D. A. Keszler, J. Lumin. 97 (2002) 68.
1206
[155]
Y. Tokida, S. Adachi, ECS J. Solid State Sc. 3 (2014) R100.
1207
[156]
P. Marwoto, S. Sugianto, E. Wibowo, J. Theor. Appl. Phys. 6 (2012) 17.
1208
[157] J. H. Hao, Z. D. Lou, I. Renaud, M. Cocivera, Thin Solid Films 467 (2004) 182 .
1204
1209 1210 1211
[158] J. S. Kim, H. E. Kim, H. L. Park, G. C. Kim, Solid State Commun. 132 (2004) 459.
1213
[159] P. Patil, J. Park, S. Y. Lee, J. K. Park, S. H. Cho, Appl. Sci. Conv. Tech. 23 (2014) 296.
1214
[160]
G. Sinha, A. Patra, Chem. Phys. Lett. 473 (2009) 151.
1215
[161]
J. H. Hao, M. Cocivera, J. Phys. D: Appl. Phys. 35 (2002) 433.
1216
[162]
J. H. Hao, G. G. He, X. W. Huang, R. Wu, J. Rare Earth. 24 (2006) 728.
1217
[163]
L. Binet, D. Gourier, Appl. Phys. Lett. 77 (2000) 1138.
1218
[164]
L. Binet, D. Gourier, J. Phys. Chem. Solids 59 (1998) 1241.
1219
[165]
T. Harwig and F. Kellendonk, J. Solid State Chem. 24 (1978) 255.
1220
[166] V. I. Vasiltsiv, Y. M. Zakharko, Y. I. Rym, Ukrainskii Fizicheskii Zhurnal 33 (1988) 1320.
1212
1221
1223
[167] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, S. Y. Zhang, Appl. Phys. Lett. 78 (2001) 3202.
1224
[168]
1222
T. Wang, P. V. Radovanovic, J. Phys. Chem. C 115 (2011) 18473. 55
1226
[169] T. Wang, S. S. Farvid, M. Abulikemu, P. V. Radovanovic, J. Am. Chem. Soc. 132 (2010) 9250.
1227
[170]
1225
1228 1229 1230 1231 1232 1233 1234
P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, L. W. Tu,
Opt. Express 21 (2013) 24599. [171] G. Sinha, D. Ganguli, S. Chaudhuri, J. Phys.: Condens. Mat. 18 (2006) 11167. [172] T. Yanagida, G. Okada, T. Kato, D. Nakauchi, S. Yanagida, Appl. Phys. Express 9 (2016) 042601. [173] S. Z. Luan, L. P. Dong, X. F. Ma, R. X. Jia, J. Alloy. Compd. 812 (2020) 152026.
1236
[174] A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A. I. Popov, Nucl. Instrum. Meth. B 441 (2019) 12.
1237
[175]
J. L. Jiang, J. Zhang, J. P. Li, D. Y. Xu, Chem. Phys. Lett. 719 (2019) 8.
1238
[176]
L. Dong, R. Jia, B. Xin, B. Peng, Y. Zhang, Sci. Rep. 7 (2017) 40160.
1239
[177] L. P. Dong, R. X. Jia, B. Xin, Y. M. Zhang, J. Vac. Sci. Technol. A 34 (2016) 060602.
1235
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
[178] A. Layek, B. Yildirim, V. Ghodsi, L. N. Hutfluss, M. Hegde, T. Wang, P. V. Radovanovic, Chem. Mater. 27 (2015) 6030. [179] G. C. Liu, X. C. Duan, H. B. Li, D. W. Liang, Mater. Chem. Phys. 110 (2008) 206. [180] Y. Quan, S. Q. Liu, K. L. Huang, D. Fang, X. Y. Zhang, H. W. Hou, T. Nonferr. Metal. Soc. 20 (2010) 1458. [181] N. F. Santos, J. Rodrigues, A. J. S. Fernandes, L. C. Alves, E. Alves, F. M. Costa, T. Monteiro, Appl. Surf. Sci. 258 (2012) 9157. [182] Z. W. Chen, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. X. Guo, J. Cryst. Growth 430 (2015) 28. [183] Z. W. Chen, X. Wang, F. B. Zhang, S. Noda, K. Saito, T. Tanaka, M.Nishio, Q. X. Guo, J. Lumin. 177 (2016) 48. [184] Z. W. Chen, K. Nishihagi, X. Wang, C. Y. Hu, M. Arita, K. Saito, T. Tanaka, Q. X. Guo, J. Lumin. 194 (2018) 374. 56
1256
[185] Z. W. Chen, D. Y. Guo, P. G. Li, Z. W. Chen, W. H. Tang, Q. X. Guo, Appl. Phys. Express 12 (2019) 061009.
1257
[186]
1255
1258 1259 1260 1261 1262 1263 1264
B. K. Kang, S. R. Mang, H. D. Lim, K. M. Song, Y. H. Song, D. H. Go, M. K.
Jung, K. Senthil, D. H. Yoon, Mater. Chem. Phys. 147 (2014) 178. [187] I. López, K. Lorenz, E. Nogales, B. Méndez, J. Piqueras, E. Alves, J. A. García, J. Mater. Sci. 49 (2014) 1279. [188] Z. W. Chen, X. Wang, S.Noda, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. X. Guo, Superlattice. Microst. 90 (2016) 207. [189] Z. W. Chen, X. Wang, F. B. Zhang, S. Noda, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. X. Guo, Appl. Phys. Lett. 109 (2016) 022107.
1266
[190] Z. W. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. X. Guo, Appl. Phys. Lett. 109 (2016) 102106.
1267
[191]
1268 1269
[192] Z. P. Wu, G. X. Bai, Y. Y. Qu, D. Y. Guo, L. H. Li, P. G. Li, J. H. Hao, W. H. Tang, Appl. Phys. Lett. 108 (2016) 211903.
1270
[193]
1271
[194] E. Nogales, J. A. García, B. Méndez, J. Piqueras, K. Lorenz, E. Alves, J. Phys. D: Appl. Phys. 41 (2008) 065406.
1265
1272
Z. W. Chen, K. Saito, T. Tanaka, Q. X. Guo, CrystEngComm 19 (2017) 4448.
E. Nogales, B. Mendez, J. Piqueras, Nanotechnology 19 (2008) 035713.
1274
[195] J. Vincent, O. Guillot-Noël, L. Binet, P. Aschehoug, Y. Le Du, F. Beaudoux, P. Goldner, J. Appl. Phys. 104 (2008) 033519.
1275
[196]
1276
[197] Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, J. Heo, J. Am. Ceram. Soc. 83 (2000) 787.
1273
1277 1278 1279
T. Biljan, A. Gajović, Z. Meić, J. Lumin. 128 (2008) 377.
[198] D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, H. Lin, Opt. Express 18 (2010) 18997.
1281
[199] G. Y. Zhao, Y. Tian, S. K. Wang, H. Y. Fan, L. L. Hu, J. Phys. B: Condens. Mat. 407 (2012) 4622.
1282
[200]
Y. S. Han, J. H. Song, J. Heo, J. Appl. Phys. 94 (2003) 2817.
1283
[201]
J. Heo, Y. B. Shin, J. N. Jang, Appl. Opt. 34 (1995) 4284.
1280
57
1285
[202] D. M. Shi, Q. Y. Zhang, G. F. Yang, Y. H. Liu, Z. H. Jiang, Chin. Phys. Lett. 23 (2006) 478.
1286
[203]
1284
1287
D. M. Shi, Y. G. Zhao, Q. Qian, D. D. Chen, Q. Y. Zhang, J. Alloy. Compd.
499 (2010) 126.
1288
[204]
D. M. Shi, Y. G. Zhao, X. F. Wang, J. Liu, Phys. Procedia 48 (2013) 172.
1289
[205]
B. Zhou, L. L. Tao, W. Jin, Y. H. Tsang, IEEE Photonic. Tech. L. 24 (2012)
1290 1291 1292
1726. [206] D. C. Zhou, D. Y. Jin, Q. M. Ni, X. Y. Song, X. M. Bai, K. X. Han, J. Am. Ceram. Soc. (2019).
1294
[207] Q. X. Guo, K. Nishihagi, Z. W. Chen, K. Saito, T. Tanaka, Thin Solid Films 639 (2017) 123.
1295
[208]
1293
1296
T. Minami, H. Yamada, Y. Kubota, T. Miyata, Jpn. J. Appl. Phys. 36 (1997)
L1191.
1298
[209] T. Minami, T. Miyata, T. Shirai, T. Nakatani, MRS Online Proceedings Library Archive 621 (2000).
1299
[210]
T. Miyata, T. Nakatani, T. Minami, Superficies Y Vacío (1999) 70.
1300
[211]
T. Minami, T. Nakatani, T. Miyata, J. Vac. Sci. Technol. A 18 (2000) 1234 .
1301
[212]
T. Minami, T. Miyata, Y. Suzuki, Jpn. J. Appl. Phys. 42 (2003) L1018.
1302
[213]
T. Minami, H. Toda, T. Miyata, J. Vac. Sci. Technol. A 19 (2001) 1742.
1303
[214] R. Kumaran, T. Tiedje, S. E. Webster, S. Penson, W. Li, Opt. Lett. 35 (2010) 3793.
1297
1304
1306
[215] Z. P. Wu, G. X. Bai, Q. R. Hu, D. Y. Guo, C. L. Sun, L. Y. Ji, M. Lei, L. H. Li, P. G. Li, J. H. Hao, W. H. Tang, Appl. Phys. Lett. 106 (2015) 171910.
1307
[216]
1305
1308 1309 1310 1311 1312
L. R. P. Kassab, S. H. Tatumi, C. M. S. Mendes, L. C. Courrol, N. U. Wetter,
Opt. Express 6 (2000) 104. [217]
L. R. P. Kassab, R. D. Mansano, L. D. S. Zambom, V. D. D. Cacho, Braz. J.
Phys. 36 (2006) 451. [218] E. Antic-Fidancev, M. Lemaitre-Blaise, M. Latroche, P. Porcher, J. Coutures, J. P. Coutures, J. Alloy. Compd. 250 (1997) 342. 58
1314
[219] J. Zhang, X. T. Tao, C. M. Dong, Z. T. Jia, H. H. Yu, Y. Z. Zhang, Y. C. Zhi, M. H. Jiang, Laser Phys. Lett. 6 (2008) 355.
1315
[220]
1313
1316 1317 1318 1319 1320 1321 1322
A. A. Kaminskii, G. A. Bogomolova, D. N. Vylegzhanin, K. S. Bagdasarov,
A. M. Kevorkov, M. M. Gritsenko, Phys. Status Solidi (c) 38 (1976) 409. [221] H. Zhang, J. X. Deng, Z. W. Pan, Z. Y. Bai, L. Kong, J. Y. Wang, Vacuum 146 (2017) 93. [222] H. Zhang, J. X. Deng, L. Kong, Z. W. Pan, Z. Y. Bai, J. Y. Wang, Micro Nano Lett. 14 (2019) 701. [223] H. Zhang, J. X. Deng, P. Duan, R. D. Li, Z. W. Pan, Z. Y. Bai, L. Kong, J. Y. Wang, Vacuum 155 (2018) 465.
1324
[224] J. G. Zhao, W. Y. Zhang, E. Q. Xie, Z. L. Liu, J. W. Feng, Z. J. Liu, Mat. Sci. Eng.: B 176 (2011) 932.
1325
[225]
B. K. Kang, S. R. Mang, D. H. Yoon, Mater. Lett. 111 (2013) 67.
1326
[226]
K. Sawada, T. Nakamura, S. Adachi, J. Alloy. Compd. 678 (2016) 448.
1327
[227]
K. Sawada, T. Nakamura, S. Adachi, ECS J. Solid State Sc. 5 (2016) R67.
1328
[228]
K. Sawada, T. Nakamura, J. Lum. 215 (2019) 116616.
1329
[229]
G. Cabello, A. Araneda, L. Lillo, C. Caro, C. Venegas, M. Tejos, B. Chornik,
1323
1330
Solid State Sci. 27 (2014) 24.
1332
[230] G. Cabello, L. Lillo, C. Caro, M. A. Soto-Arriaza, B. Chornik, G. E. Buono-Core, Ceram. Int. 39 (2013) 2443.
1333
[231]
1334 1335
[232] D. Vivien, B. Viana, A. Revcolevschi, J. D. Barrie, B. Dunn, P. Nelson, O. M. Stafsudd, J. Lum. 39 (1987) 29.
1336
[233]
1331
1337 1338 1339 1340
D. Wawrzynczyk, M. Nyk, M. Samoc, Chem. Phys. 456 (2015) 73.
C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, J. P.
Remeika, J. Lum. 40 (1988) 103. [234]
J. G. Zhang, B. Li, C. T. Xia, J. Xu, Q. Deng, X. D. Xu, F. Wu, W. S. Xu, H.
S. Shi, G. Q. Pei, Y. Q. Wu, Sci. China Ser. E. 50 (2007) 51. [235]
H. Wakai, Y. Sinya, A. Yamanaka, Phys. Status Solidi (c) 8 (2011) 537.
59
1341 1342 1343 1344 1345 1346 1347 1348
[236] T. C. Lovejoy, R. Chen, E. N. Yitamben, V. Shutthanadan, S. M. Heald, E. G. Villora, K. Shimamura, S. Zheng, S. T. Dunham, F. S. Ohuchi, M. A. Olmstead, J. Appl. Phys. 111 (2012) 123716. [237] Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, M. Bickermann, J. Cryst. Growth 486 (2018) 82. [238] E. Nogales, J. A. García, B. Méndez, J. Piqueras, J. Appl. Phys. 101 (2007) 033517.
1350
[239] I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, J. M. González-Calbet, J. Phys. Chem. C 117 (2013) 3036.
1351
[240]
Y. H. Wang, K. Xu, D. R. Li, H. Zhao, Z. F. Hu, Opt. Mater. 36 (2014) 1798.
1352
[241]
M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. Nó, J. Piqueras, B.
1349
1353
Méndez, Phys. Rev. Appl. 9 (2018).
1355
[242] X. S. Wang, J. Q. Situ, X. Y. Ying, H. Chen, H. F. Pan, Y. Jin, Y. Z. Du, Acta Biomater. 22 (2015) 164.
1356
[243]
S. Fujihara, Y. Shibata, J. Lum. 121 (2006) 470.
1357
[244]
Y. Tokida, S. Adachi, J. Appl. Phys. 112 (2012) 063522.
1358
[245]
Y. Tokida, S. Adachi, Jpn. J. Appl. Phys. 52 (2013) 101102.
1359
[246]
K. Sawada, S. Adachi, ECS J. Solid State Sc. 3 (2014) R238.
1360
[247]
D. Y. Guo, Z. P. Wu, P. G. Li, Y. H. An, H. Liu, X. C. Guo, H. Yan, G. F.
1354
1361
Wang, C. L. Sun, L. H. Li, W. H. Tang, Opt. Mater. Express 4 (2014) 1067.
1362
[248]
1363 1364
[249] X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, A. Y. Kuznetsov, Adv. Mater. 21 (2009) 4625.
1365
[250]
Y. J. Lu, C. N. Lin, C. X. Shan, Adv. Opt. Mater. 6 (2018) 1800359.
1366
[251]
C. Xie, X. T. Lu, X. W. Tong, Z. X. Zhang, F. X. Liang, L. Liang, L. B. Luo,
1367 1368 1369
M. Razeghi, P. IEEE 90 (2002) 1006.
Y. C. Wu, Adv. Funct. Mater., 1806006 (2019). [252] C. Q. Zhou, Q. Ai, X. Chen, X. H. Gao, K. W. Liu, D. Z. Shen, Chin. Phys. B 28 (2019) 048503. 60
1371
[253] S. Oh, J. Kim, F. Ren, S. J. Pearton, J. Kim, J. Mater. Chem. C 4 (2016) 9245.
1372
[254]
1370
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
X. H. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. L. Gu, R.
Zhang, Y. D. Zheng, J. D. Ye, ACS Appl. Mater. Inter. 9 (2017) 36997. [255] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett. 15 (2015) 3988. [256] R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, S. Ohira, Appl. Phys. Lett. 94 (22), 222102 (2009). [257] W. Tian, C. Y. Zhi, T. Y. Zhai, S. M. Chen, X. Wang, M. Y. Liao, D. Golberg, Y. Bando, J. Mater. Chem. 22 (34), 17984 (2012). [258] M. Z. Chen, J. G. Ma, P. Li, H. Y. Xu, Y. C. Liu, Opt. Express 27 (6), 8717 (2019). [259] X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, D. Shen, ACS Appl. Mater. Inter. 8 (2016) 4185. [260] S. J. Cui, Z. X. Mei, Y. H. Zhang, H. L. Liang, X. L. Du, Adv. Opt. Mater. 5 (2017) 1700454. [261] P. Feng, J. Y. Zhang, Q. H. Li, T. H. Wang, Appl. Phys. Lett. 88 (2006) 153107. [262] Y. B. Li, T. Tokizono, M. Y. Liao, M. Zhong, Y. Koide, I. Yamada, J. J. Delaunay, Adv. Funct. Mater. 20 (2010) 3972. [263] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, S. P. Chang, IEEE Photonic. Tech. L. 22 (2010) 709. [264] Y. L. Wu, S. J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, K. C. Chen, IEEE Sens. J. 13 (2013) 2368. [265] J. Y. Du, J. Xing, C. Ge, H. Liu, P. Y. Liu, H. Y. Hao, J. J. Dong, Z. Y. Zheng, H. Gao, J. Phys. D: Appl. Phys. 49 (2016) 425105. [266] S. L. Wang, H. L. Sun, Z. Wang, X. H. Zeng, G. Ungar, D. Y. Guo, J. Q. Shen, P. G. Li, A. P. Liu, C. R. Li, W. H. Tang, J. Alloy. Compd. 787 (2019) 133. [267] T. He, Y. K. Zhao, X. D. Zhang, W. K. Lin, K. Fu, C. Sun, F. F. Shi, X. Y. Ding, G. H. Yu, K. Zhang, Nanophotonics 7 (2018) 1557. 61
1401
[268] S. L. Wang, K. Chen, H. L. Zhao, C. R. He, C. Wu, D. Y. Guo, N. Zhao, G. Ungar, J. Q. Shen, X. L. Chu, RSC Adv. 9 (2019) 6064.
1402
[269]
1400
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
J. H. Zhang, S. J. Jiao, D. B. Wang, S. M. Ni, S. Y. Gao, J. Z. Wang, J. Mater.
Chem. C 7 (2019) 6867. [270] W. Feng, X. N. Wang, J. Zhang, L. F. Wang, W. Zheng, P. A. Hu, W. W. Cao, B. Yang, J. Mater. Chem. C 2 (2014) 3254. [271] Y. Q. Wang, L. X. Song, Y. Teng, F. Wang, W. P. Wang, M. M. Ruan, Z. Yang, Z. Y. Xu, J. Mater. Chem. C 7 (2019) 1477. [272] Y. Teng, X. S. Le, A. Ponchel, Z. K. Yang, J. Xia, Adv. Mater. 26 (2014) 6238. [273] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Nanoscale 3 (2011) 1120. [274] R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, W. Zhang, Small 10 (2014) 1848. [275] M. Z. Zhong, Z. M. Wei, X. Q. Meng, F. M. Wu, J. B. Li, J. Alloy. Compd. 619 (2015) 572. [276] Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, F. Ren, Appl. Phys. Lett. 110 (2017) 131901.
1419
[277] S. Oh, M. A. Mastro, M. J. Tadjer, J. Kim, ECS J. Solid State Sc. 6 (2017) Q79.
1420
[278]
S. Oh, C. K. Kim, J. Kim, ACS Photonics 5 (2017) 1123.
1421
[279]
T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, S. Fujita, Appl. Phys.
1418
1422
Express 1 (2008) 011202.
1424
[280] T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, S. Fujita, Jpn. J. Appl. Phys. 48 (2009) 011605.
1425
[281]
1426
[282] W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo, Adv. Mater. 28 (2016) 10725.
1423
1427 1428 1429
R. Suzuki, S. Nakagomi, Y. Kokubun, Appl. Phys. Lett. 98 (2011) 131114.
[283] Q. Feng, L. Huang, G. Q. Han, F. G. Li, X. Li, L. W. Fang, X. Y. Xing, J. C. Zhang, W. X. Mu, Z. T. Jia, IEEE T. Electron Dev. 63 (2016) 3578. 62
1431
[284] W. X. Mu, Z. T. Jia, Y. R.Yin, Q. Q. Hu, J. Zhang, Q. Feng, Y. Hao, X. T. Tao, CrystEngComm 19 (2017) 5122.
1432
[285]
1430
1433 1434
A. S. Pratiyush, U. U. Muazzam, S. Kumar, P. Vijayakumar, S.
Ganesamoorthy, N. Subramanian, R. Muralidharan, D. N. Nath, IEEE Photonic. Tech. L. 31 (2019) 923.
1436
[286] L. P. Dong, J. G. Yu, R. X. Jia, J. C. Hu, Y. M. Zhang, J. W. Sun, Opt. Mater. Express 9 (2019) 1191.
1437
[287]
1435
1438
Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90 (2007)
031912.
1439
[288]
1440
[289] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, H. T. Hsueh, IEEE Sens. J. 11 (2010) 999.
1441 1442 1443 1444 1445 1446 1447
T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys. 46 (2007) 7217.
[290] Z. D. Huang, W. Y. Weng, S. J. Chang, C. J. Chiu, T. J. Hsueh, S. L. Wu, IEEE Sens. J. 13 (2013) 3462. [291] Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu, T. J. Hsueh, S. L. Wu, IEEE Sens. J. 13 (2012) 1187. [292] P. Guo, J. Xiong, X. H. Zhao, T. Sheng, C. Yue, B. W. Tao, X. Z. Liu, J. Mater. Sci.: Mater. El. 25 (2014) 3629.
1449
[293] G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, D. Z. Shen, Express 23 (2015) 13554.
1450
[294]
T. Sheng, X. Z. Liu, L. X. Qian, B. Xu, Y. Y. Zhang, Rare Metals 1 (2015).
1451
[295]
F. P. Yu, S. L. Ou, D. S. Wuu, Opt. Mater. Express 5 (2015) 1240.
1452
[296] X. Z. Liu, P. Guo, T. Sheng, L. X. Qian, W. L. Zhang, Y. R. Li, Opt. Mater. 51 (2016) 203.
1448
1453 1454 1455 1456 1457 1458 1459
Opt.
[297] L. X. Qian, X. Z. Liu, T. Sheng, W. L. Zhang, Y. R. Li, P. T. Lai, AIP Adv. 6 (2016) 045009. [298] Y. Qin, H. D. Sun, S. B. Long, G. S. Tompa, T. Salagaj, H. Dong, Q. M. He, G. Z. Jian, Q. Liu, H. B. Lv, M. Liu, IEEE Electr. Device L. 1 (2019). [299] Y. K. Peng, Y. Zhang, Z. W. Chen, D. Y. Guo, X. Zhang, P. G. Li, Z. P. Wu, W. H. Tang, IEEE Photonic. Tech. L. 30 (2018) 993. 63
1460
[300]
1461
[301] L. X. Qian, Z. H. Wu, Y. Y. Zhang, P. T. Lai, X. Z. Liu, Y. R. Li, ACS Photonics 4 (2017) 2203.
1462
X. Z. Liu, C. Yue, C. T. Xia, W. L. Zhang, Chin. Phys. B 25 (2016) 017201.
1464
[302] Q. Feng, X. Li, G. Q. Han, L. Huang, F. G. Li, W. H. Tang, J. C. Zhang, Y. Hao, Opt. Mater. Express 7 (2017) 1240.
1465
[303]
1463
1466 1467 1468
S. Ahn, Y. H. Lin, F. Ren, S. Oh, Y. Jung, G. Yang, J. Kim, M. A. Mastro, J.
K. Hite, C. R. E. Jr, J. Vac. Sci. Technol. B. 34 (2016) 041213. [304] S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim, M. A. Mastro, J. K. Hite, C. R. E. Jr, S. J. Pearton, J. Vac. Sci. Technol. B. 34 (2016) 041207.
1470
[305] F. Alema, B. Hertog, P. Mukhopadhyay, Y. Zhang, A. Mauze, A. Osinsky, W. V. Schoenfeld, J. S. Speck, T. Vogt, APL Mater. 7 (2019) 022527.
1471
[306]
1469
1472 1473 1474 1475 1476 1477 1478 1479
F. Alema, B. Hertog, O. Ledyaev, D. Volovik, G. Thoma, R. Miller, A.
Osinsky, P. Mukhopadhyay, S. Bakhshi, H. Ali, W. V. Schoenfeld, Phys. Status Solidi (a) 214 (2017) 1600688. [307] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, S. W. Lee, ACS Photonics 4 (2017) 2937. [308] S. J. Jiao, H. L. Lu, X. H. Wang, Y. Y. Nie, D. B.Wang, S. Y. Gao, J. Z. Wang, ECS J. Solid State Sc. 8 (2019) Q3086. [309] A. S. Pratiyush, S. Krishnamoorthy, S. V. Solanke, Z. B. Xia, R. Muralidharan, S. Rajan, D. N. Nath, Appl. Phys. Lett. 110 (2017) 221107.
1481
[310] D. P. Chaudhari, M. Ombaba, J. Y. Oh, H. Mao, K. H. Montgomery, A. Lange, S. Mahajan, J. M. Woodall, M. S. Islam, IEEE Sens. J. 9 (2017) 1.
1482
[311]
1483
[312] D. Zhang, W. Zheng, R. C. Lin, T. T. Li, Z. J. Zhang, F. Huang, J. Alloy. Compd. 735 (2018) 150.
1480
1484
S. Rafique, L. Han, H. P. Zhao, Phys. Status Solidi (a) 214 (2017) 1700063.
1486
[313] R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, F. Huang, ACS Appl. Mater. Inter. 10 (2018) 22419.
1487
[314]
1488
[315] H. Shen, Y. N. Yin, K. Tian, K. Baskaran, L. B. Duan, X. R. Zhao, A. Tiwari, J. Alloy. Compd. 766 (2018) 601.
1485
1489
K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 5 (2018) 2391.
64
1491
[316] Y. Xu, Z. Y. An, L. X. Zhang, Q. Feng, J. C. Zhang, C. F. Zhang, Y. Hao, Opt. Mater. Express 8 (2018) 2941.
1492
[317]
1490
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P.
G. Li, W. H. Tang, Appl. Phys. Lett. 105 (2014) 023507. [318] X. Wang, Z. W. Chen, D. Y. Guo, X. Zhang, Z. P. Wu, P. G. Li, W. H. Tang, Opt. Mater. Express 8 (2018) 2918. [319] S. J. Cui, Z. X. Mei, Y. N. Hou, Q. S. Chen, H. L. Liang, Y. H. Zhang, W. X. Huo, X. L. Du, Chin. Phys. B 27 (2018) 067301. [320] D. Y. Guo, P. G .Li, Z. P .Wu, W. Cui, X. L .Zhao, M. Lei, L. H .Li, W. H. Tang, Sci. Rep. 6 (2016) 24190. [321] X. L. Zhao, Z. P. Wu, D. Y. Guo, W. Cui, P. G. Li, Y. H. An, L. H. Li, W. H Tang, Semicond. Sci. Tech. 31 (2016) 065010. [322] X. L .Zhao, Z. P .Wu, W. Cui, Y. S. Zhi, D. Y. Guo, L. H. Li, W. H. Tang, ACS Appl. Mater. Inter. 9 (2017) 983. [323] X. L. Zhao, Y. S. Zhi, W. Cui, D. Y. Guo, Z. P. Wu, P. G. Li, L. H. Li, W. H. Tang, Opt. Mater. 62 (2016) 651. [324] X. L. Zhao, Z. P. Wu, Y. S. Zhi, Y. H. An, W. Cui, L. H. Li, W. H. Tang, Phys. D: Appl. Phys. 50 (2017) 085102.
J.
[325] Y. H. An, X. L. Chu, Y. Q. Huang, Y. S. Zhi, D. Y. Guo, P. G. Li, Z. P. Wu, W. H. Tang, Prog. Nat. Sci. 26 (2016) 65. [326] X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, W. H. Tang, J. Alloy. Compd. 660 (2016) 136. [327] D. Y. Guo, H. Liu, P. G. Li, Z. P. Wu, S. L. Wang, C. Cui, C. R. Li, W. H. Tang, ACS Appl. Mater. Inter. 9 (2017) 1619. [328] Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, W. H. Tang, J. Mater. Chem. C 5 (2017) 8688. [329] Y. H. An, Y. S. Zhi, Z. P. Wu, W. Cui, X. L. Zhao, D. Y. Guo, P. G. Li, W. H. Tang, Appl. Phys. A 122 (2016). [330] Y. Y. Qu, Z. P. Wu, M. L. Ai, D. Y. Guo, Y. H. An, H. J. Yang, L. H. Li, W. H. Tang, J. Alloy. Compd. 680 (2016) 247. 65
1521
[331] M. L. Ai, D. Y. Guo, Y. Y. Qu, W. Cui, Z. P. Wu, P. G. Li, L. H. Li, W. H. Tang, J. Alloy. Compd. 692 (2017) 634.
1522
[332]
1520
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
Y. Q. Huang, H. Wu, Y. S. Zhi, Y. L. Huang, D. Y. Guo, Z. P. Wu, P. G. Li, Z.
W. Chen, W. H. Tang, Appl. Phys. A 124 (2018). [333] W. Cui, D. Y. Guo, X. L. Zhao, Z. P. Wu, P. G. Li, L. H. Li, C. Cui, W. H. Tang, RSC Adv. 6 (2016) 100683. [334] S. Nakagomi, T. Momo, S. Takahashi, Y. Kokubun, Appl. Phys. Lett. 103 (2013) 072105. [335] J. G. Yu, Z. Z. Nie, L. P. Dong, L. Yuan, D. J. Li, Y. Huang, L. C. Zhang, Y. M. Zhang, R. X. Jia, J. Alloy. Compd. 798 (2019) 458. [336] P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, W. H. Tang, J. Mater. Chem. C 5 (2017) 10562. [337] T. He, X. D. Zhang, X. Y. Ding, C. Sun, Y. K. Zhao, Q. Yu, J. Q. Ning, R. X. Wang, G. H. Yu, S. L. Lu, K. Zhang, X. P. Zhang, B. S. Zhang, Adv. Opt. Mater., 1801563 (2019). [338] D. Y. Guo, Y. L. Su, H. Z. Shi, P. G. Li, N. Zhao, J. H. Ye, S. L. Wang, A. P. Liu, Z. W. Chen, C. R. Li, W. H. Tang, ACS Nano 12 (2018) 12827. [339] D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, W. H. Tang, Semicond. Sci. Tech. 32 (2017) 03LT01. [340] D. T. You, C. X. Xu, J. Zhao, W. Zhang, F. F. Qin, J. P. Chen, Z. L. Shi, J. Mater. Chem. C 7 (2019) 3056.
1542
[341] B. Zhao, F. Wang, H. Y. Chen, L. X. Zheng, L. X. Su, D. X. Zhao, X. S. Fang, Adv. Funct. Mater. 27 (2017) 1700264.
1543
[342]
1541
1544 1545 1546 1547 1548 1549 1550
Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, C. X. Shan,
J. Mater. Chem. C 6 (2018) 5727. [343] C. R. He, D. Y. Guo, K. Chen, S. L. Wang, J. Q. Shen, N. Zhao, A. P. Liu, Y. Y. Zheng, P. G. Li, Z. P. Wu, C. R. Li, F. M. Wu, W. H. Tang, ACS Appl. Nano Mater. 2 (2019) 4095. [344] K. Chen, S. L. Wang, C. R. He, H. W. Zhu, H. L. Zhao, D. Y. Guo, Z. W. Chen, J. Q. Shen, P. G. Li, A. P. Liu, C. R. Li, F. M. Wu, W. H. Tang, ACS Appl. Nano Mater. 2 (2019) 6169. 66
1551 1552
[345] S. Li, D. Y. Guo, P. G. Li, X. Wang, Y. H. Wang, Z. Y. Yan, Z. Liu, Y. S. Zhi, Y. Q. Huang, Z. P. Wu, W. H .Tang, ACS Appl. Mater. Inter. 11 (2019) 35105.
1553
67
Highlights 1. Ga2O3 emerges as a new multicolor-emitting phosphor host material for emissive display applications. 2. Ga2O3 also is a natural choice for use in solar-blind photodetector due to the appropriate bandgap of ~ 4.9 eV. 3. We summarized the application of Ga2O3 in optoelectronic devices and presented the future perspectives.
Conflict of Interest Statement The authors declare no conflict of interest. Daoyou Guo, Qixin Guo, Zhengwei Chen, Zhenping Wu, Peigang Li, Weihua Tang