+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS Disponible en ligne sur
ScienceDirect www.sciencedirect.com Revue de micropaléontologie xxx (2015) xxx–xxx
Original article
Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia) Révision de la biostratigraphie par fusulines du Permien moyen et supérieur du Djebel Tebaga (Tunisie) Wissal Ghazzay a,∗ , Daniel Vachard b , Saloua Razgallah a b
a UR13/ES26, Campus Universitaire El Manar, Département de Géologie, Tunis 2092, Tunisia Université de Lille 1 (Sciences & Technologies), UMR 8198 Evo-Eco-Paléo, Cité Scientifique, SN5, 59650 Villeneuve d’Ascq, France
Abstract Most carbonate series of Jebel Tebaga (Tunisia) are assigned to the Capitanian (last stage of the Middle Permian); however, their accurate correlation with the El Capitan stratotype in the USA and with contemporaneous Tethyan localities remains unclear. With the intent to establish more accurate lithostratigraphic and biostratigraphical divisions, (1) we re-sampled bed-by-bed the classical field sections of Jebel Tebaga; (2) we revised the lithostratigraphical units E-I to E-VI, and (3) we selected 9 fusulinids in order to characterize more precisely local bioevents. We have therefore studied 3 giant genera (Chusenella, Neoschwagerina and Yabeina), 3 medium-sized taxa (Dunbarula, Rauserella and Yangchienia), and 3 small size genera (Lantschichites, Codonofusiella and Reichelina). The first group was known to synchronously disappear at the time of the end-Guadalupian mass extinction. The thirth group was generally considered to be characteristic of the early Late Permian, after a Lilliput effect among the fusulinid groups, during which the dwarfs replaced the giants. Our data show that, in Jebel Tebaga, the so-called Wuchiapingian small forms Codonofusiella and Reichelina appear very early in the Late Capitanian. In some hills of the Tebaga area (i.e., Baten Beni Zid and Jebel Seikra), Codonofusiella and Reichelina even dominated the fusulinid assemblages during two short episodes. The first episode is located near the base of the Capitanian series; the second one, although located near its top, remains Capitanian in age, because it took place before the local disappearance of the three giants Neoschwagerina, Yabeina and Chusenella. As the sequence becomes sandier after this bioevent, the boundary with the Wuchiapingian (first stage of the Late Permian or Lopingian) cannot be well positioned. The end-Guadalupian event is only marked by this sedimentological modification. Because the Late Permian Cheguimi sandstone is entirely devoid of foraminifers and conodonts, no local subdivisions can be proposed in this series. © 2015 Elsevier Masson SAS. All rights reserved. Keywords: Tebaga; Fusulinids; Microfacies; Biostratigraphy; Late Capitanian; Perigondwanan margin
Résumé L’appartenance au Capitanien (dernier étage du Permien moyen) de la plupart des séries carbonatées affleurant dans le Djebel Tebaga, en Tunisie, est à présent bien établie. Cependant, la corrélation exacte de ce Capitanien local avec le stratotype des États-Unis ou avec divers affleurements téthysiens manquait de précision. Afin de combler cette lacune : (1) les coupes classiques du Tebaga ont été revues de manière détaillée ; (2) les unités lithostratigraphiques E-I à E-V y ont été révisées avec précision ; et (3) neuf genres locaux de fusulines ont été choisis afin de mieux caractériser les bioévénements enregistrés dans ces unités. Ces genres de fusulines sont, d’une part, trois formes géantes : Chusenella, Neoschwagerina et Yabeina, d’autre part, trois genres de petites fusulines : Lantschichites, Codonofusiella et Reichelina, et enfin trois genres de taille moyenne : Dunbarula, Rauserella et Yangchienia. Cette sélection par groupes de taille a surtout été guidée par le fait que, pendant la crise fini-guadalupienne, les fusulines géantes étaient toutes censées disparaître, tandis que les petites fusulines survivantes s’octroyaient leur place par effet Lilliput. Il s’est avéré que ces petites fusulines, notamment Codonofusiella et Reichelina, souvent présentées comme caractéristiques du Permien supérieur (ou Lopingien), apparaissaient tôt dans le Capitanien supérieur du Djebel Tebaga. Elles y dominaient même lors de deux épisodes à Baten Beni Zid et au Djebel ∗
Corresponding author. E-mail address:
[email protected] (W. Ghazzay).
http://dx.doi.org/10.1016/j.revmic.2015.04.001 0035-1598/© 2015 Elsevier Masson SAS. All rights reserved.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 2
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Seikra. Après chaque épisode à Codonofusiella et à Reichelina, les fusulines géantes, qui réapparaissent, parfois assez massivement, indiquent que l’on reste dans le Capitanien. Par contre, on ne peut établir précisément pour l’instant si les niveaux à Dunbarula et à petits foraminifères, qui succèdent au dernier retour des Neoschwagerina, Yabeina et Chusenella, correspondent à l’extrême sommet du Capitanien ou à l’extrême base du Wuchiapingien. Rien d’autre qu’une sédimentation progressivement plus sableuse ne vient en effet marquer au Tebaga la grande crise de la limite du Permien moyen et du Permien supérieur. On n’enregistre en Tunisie, et sans doute dans tout le fond du cul-de-sac téthysien, que les effets d’une baisse progressive du niveau marin et de l’augmentation croissante d’apports siliciclastiques ; deux types d’influences qui pourraient n’être dus qu’à des phénomènes locaux. L’unité E-VI, ou grès de Cheguimi, représente probablement l’ensemble du Lopingien, mais, étant totalement dépourvue de foraminifères ou de conodontes, elle n’a pu être datée plus précisément. Au Tebaga, comme dans beaucoup de régions périgondwanes et cimmériennes, les foraminifères ne réapparaîtront qu’à la fin du Trias inférieur. © 2015 Elsevier Masson SAS. Tous droits réservés. Mots clés : Tebaga ; Fusulines ; Microfaciès ; Biostratigraphie ; Capitanien supérieur ; Marge périgondwane
1. Introduction The outcrops of Jebel Tebaga (Fig. 1) are famous because they are the unique Permian carbonate series in Africa (Miller and Furnish, 1957; Driggs, 1977; Termier et al., 1977). Furthermore, they correspond to the western extremity of the Tethys’ cul-desac (Aljinovic et al., 2008) and to the westernmost extension of the Perigondwanan shelves of this ocean (Fig. 2). The age of outcrops of Tebaga was discussed by numerous authors: Douvillé, 1934; Ciry and Mathieu, 1947; Miller and Furnish, 1957; Mathieu, 1949; Newell et al., 1976; Termier et al., 1977; Khessibi, 1985; Memmi, 1986; Lys, 1988; Chaouachi, 1988; Vachard, 1991; Vachard and Razgallah, 1993; Benzarti and Crasquin, 1998; Vachard et al., 2002; and Angiolini et al., 2008. In contrast, the overlying siliciclastic series (Cheguimi sandstone) remained poorly studied (Figs. 3 and 4). It is now well established that the majority of the Tebaga outcrops are Capitanian in age (Angiolini et al., 2008); nevertheless, the exact regional Capitanian biozonation and its accurate correlation with the US stratotype subdivisions, remains to be done. On the other hand, the age of the top of the Permian series, i.e., the interval located between the disappearance of giant fusulinids like Yabeina and Chusenella and the appearance of the Triassic facies, was questionable, and possibly was either still Capitanian or corresponding to the whole local Late Permian, or even including only some parts of the stages Wuchiapingian and/or Changhsingian (Fig. 5) of this period. We tried to revise more accurately the lithostratigraphy and biostratigraphy of the Tebaga series, whether their lithology is carbonate or siliciclastic. More specifically, we re-investigated four field sections: Baten Beni Zid, Jebel Seikra, Oudjh El Ghar, and Halq Jemal (Fig. 1), which were sampled bed-by-bed and studied by means of thousands of thin-sections. We also tried to investigate the PTB boundary interval (work in progress), which was never accurately studied before, in order to understand the possible regional, biostratigraphical extension of the Late Permian. On the other hand, the former, industrial Tebaga boreholes, previously analyzed by Glintzboeckel and Rabaté (1964), Hamaoui (1984), and Lys (1988) were re-examined thanks to the authorization of the SEREPT Company. This first paper is devoted to the accurate establishment of the FO and LO (with FO = first regional occurrence; LO = last occurrence) of three giant fusulinids, which proliferate in the Tethyan and
Panthalassan Capitanian: Chusenella, Neoschwagerina and Yabeina, and those of smaller fusulinids: Reichelina and Codonofusiella, the acme zone of which is generally interpreted as Late Permian (Henderson et al., 2012). Additionally, a medium-sized fusulinid group, composed of Dunbarula, Rauserella and Yangchienia, was analyzed. The objectives of this paper consist of a revised the highresolution biostratigraphy of Tebaga and a better definition of the lithostratigraphic units, as well as the characterization in the field and/or in microfacies of the late and latest Capitanian. Another purpose is to describe the ecological and biostratigraphical aspects of nine genera of fusulinids, with the intention to indicate the constraints upon giant and small fusulinids in Jebel Tebaga. 2. Geological setting The Jebel Tebaga is located in the vicinity of the Dkhilet Toujane village, 30 km west-north-west of Medenine town in southernmost Tunisia (Fig. 1). This 15 km-long monoclinal structure is oriented ENE-WSW, it dips gently 30◦ to the SouthSouth-East, and it is affected by numerous faults (see Ben Ayed and Khessibi, 1981; Khessibi, 1985; Ben Ayed, 1986; Bouaziz, 1986). A spectacular angular unconformity, discovered by Mathieu (1940), separates the Permian monoclinal succession from the overlying horizontal Jurassic to Cretaceous strata. Geologically explored for the first time in 1932 (Douvillé et al., 1933), the Jebel Tebaga was rapidly made famous by the highly fossiliferous character of its strata. These macrofaunas were studied in numerous monographies by Termier and Termier between 1955 and 1975 (with all the references in Driggs (1977) and Termier et al. (1977)), whereas different aspects of the reefal bioconstructions were emphasized by Newell et al. (1976), Driggs (1977), Vachard and Razgallah (1988a), Vachard et al. (1989) and Razgallah and Vachard (1991). Several petroleum boreholes drilled during the fifties and sixties years traversed the Permian beds of the Jebel Tebaga area. They encountered in subsurface a series, which was divided in three informal parts by Glintzboeckel and Rabaté (1964): a lower “Ensemble inférieur”; the middle “Ensemble moyen”; and the upper “Ensemble supérieur”. Only the “Ensemble supérieur”
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
3
Fig. 1. A. Location of Jebel Tebaga, in southernmost Tunisia. B. Location of the four field sections (1–4) studied bed-by-bed and detailed in Figs. 9–12.
Fig. 2. Late Guadalupian palaeogeographic map with location of Tebaga in the extremity of the Tethys cul-de-sac (according to Kasuya et al., 2012, slightly modified). References to the two Japanese outcrops, Akiyoshi and Akasaka, indicate the easternmost extension of the main fusulinids of Tebaga.
crops out in the different hills of Jebel Tebaga. Finally, the Tebaga Group was formally named by Memmi (1986), for designating the series informally published by Glintzboeckel and Rabaté (1964). More recently, few other lithostratigraphic and
micropalaeontological studies were dedicated to this Tebaga Group (Figs. 3 and 4). Their topics were the gymnocodiacean, dasycladacean, phylloid and solenoporacean algae, and the fusulinids and smaller foraminifers like Hemigordiopsis renzi
Fig. 3. Historical background of the lithostratigraphic subdivisions of Jebel Tebaga (Tunisia).
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 4
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 4. Historical background of the biostratigraphic subdivisions of Jebel Tebaga (Tunisia).
Fig. 5. Schematic table showing the biozonations and global events for the time interval analyzed in this paper. Abbreviations of conodont zones: p. = postbitteri; C. = Clarkina; H. = Hindeodus; J. = Jinogondolella; N. = Neogondolella. Abbreviations of fusulinid assemblages: N. = Neoschwagerina; A. = Afghanella.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Reichel (see Gargouri and Vachard, 1988), and Endoteba controversa Vachard and Razgallah, one of the rare foraminifers which survived the PTB (Permian-Triassic Boundary) mass extinction (Vachard et al., 1994; Groves and Altiner, 2005; Gaillot and Vachard, 2007; Vachard et al., 2010, 2013; Rigaud et al., 2015). The bioconstructions of the microproblematica Tubiphytes Maslov and Archaeolithoporella Endo, which are particularly developed in the upper part of the Tebaga Group were accurately studied by Razgallah and Vachard (1991). 3. New results from the Permian outcrops of Jebel Tebaga 3.1. Lithostratigraphy, faunal and floral content and microfacies The Permian outcrops of Jebel Tebaga exhibit an approximately 600 m thick series of carbonates, sandstones and shales. During this study, the Tebaga series was investigated and sampled bed-by-bed; in order to refine lithostratigraphic and biostratigraphic analyses. The Tebaga series was traditionally divided into six informal lithological units (Figs. 3, 6, 7), E-I to E-VI. Regionally, (1) the units E-I and EI-II are exposed in Baten Beni Zid (Figs. 1.1, 8, 9); (2) the units E-III and E-IV in Jebel Seikra (Fig. 1.2, 10) and in Oudjh El Ghar (Figs. 1.3, 11); and the units E-V and E-VI/Cheguimi Sandstone were investigated in Halq Jemal (Figs. 1.4, 12). These units E-I to E-VI may be re-described as follows. Unit E-I: This basal unit, 50 to 140 m thick, is mainly composed of sandstone with carbonate and shale intercalations. The limestone consists of bioclastic or oolitic wackestone to packstone-grainstone. The bioclastic limestone is rich in fusulinids associated with smaller foraminifers, green and red algae, oncoids, echinoderms and bivalve fragments. The sandstone contains fusulinid and crinoid debris, arranged within planar and through cross stratifications. The following microfacies were observed in the lower part of the unit E-I: (1) microfacies with H. renzi (Fig. 8.1–2) associated with numerous dasycladales, Endoteba, Rauserella and Neoschwagerina (that is the microfacies where the biodiversity is maximal); (2) sandy microfacies passing to (3) microfacies with Yabeina ex gr. syrtalis (Fig. 8.3–6); (4) these latter are often entirely dissolved but indirectly preserved under the form of biopisolite nuclei (Fig. 8.7–8). Uppermost shales are very rich in sponges associated with crinoids, brachiopods and goniatites. They contain rare intercalations of bioclastic limestone rich in Yabeina ex gr. syrtalis associated with smaller foraminifers and microproblematical algae, which form small domes with Archaeolithoporella hidensis and sponges associated with Ivanovia tebagaensis, microbialites, Parachaetetes lamellatus, Aphralysia tebagaensis and Tubiphytes obscurus. Shales are overlain by a succession of 12 lenticular, reddish sandstone beds. A level with abundant brachiopods is present at the top of this unit (Fig. 8). Unit E-II: This dolomitic unit, up to 70 m thick, constitutes the first cliff of Tebaga. It is composed of four carbonate bars of decametric bioherms constructed by the
5
microproblematica A. hidensis and T. obscurus, and contains a subordinate microfauna of foraminifers, crinoids and sponges. The bioherms, built by A. hidensis (Fig. 8.5), partly dolomitized, are laterally relayed and vertically overlain by red/green shale, channelized fine sandstone, bedded limestone and scarce carbonate breccia. Unit E-III: Up to 90 m thick, the unit E-III is mainly composed of relatively deep marine shales with intercalations of metric biostromes. The green to brownish shales yield isolated sponges, crinoids, brachiopods, ostracodes and goniatites. The biostromes are built by sponges, A. hidensis, and phylloid algae associated with some microbialites, gymnocodiaceans Permocalculus sp., rare fusulinids Dunbarula mathieui, encrusting miliolates Palaeonubecularia sp., T. obscurus, brachiopods, and crinoid stems. Subordinate bedded packstones are rich in sponges, crinoids, brachiopods (Richthofenidae), bryozoans and foraminifers. Unit E-IV: This second dolomite cliff, up to 120 m thick, is composed of three biohermal bars, laterally and vertically relayed by red–greenish shales, sandstone and bedded bioclastic limestone. The decametric bioherms are built by encrusting microproblematica and sponges. These regressive bioherms are generally dolomitized and locally karstified. This facies is entirely dolomitized and does not reveal anything in microfacies. Unit E-V: This unit, up to 80 m thick, only crops out in the Halq Jemal sector, west of Jebel Tebaga (Fig. 1.4). It is composed of alternating shales and dolomitic limestones. These latter generally consist of shallow marine bedded limestone rich in fusulinids, smaller foraminifers, bivalves, brachiopods, bellerophontid gastropods, microbialite debris, and oncoids Ottonosia formed by algae and microproblematica. Locally, they include metric limestone lenses bioconstructed by sponges and phylloid algae. The upper part of unit E-V is sandier and consists of coastal channelized fine sandstones displaying cross stratifications, current figures, and wood fragments. The microfacies of the base are represented by microbialitic dolomites associated with Reichelina, Codonofusiella and smaller foraminifers. They are followed by: * A microfacies with Dunbarula mathieui. * A dolomitic and sandy microfacies with Yabeina ex gr. syrtalis, Neoschwagerina sp., D. mathieui, Reichelina sp., Codonofusiella sp., Chusenella cf. tunetana, associated with smaller foraminifers (e.g., Endoteba controversa, Polytaxis sp., Palaeonubecularia sp., Neoendothyra broennimanni, Pseudovermiporella ex gr. nipponica), A. tebagaensis, calcisponges, bivalves, gastropods, brachiopods, and palechinid radioles. * A facies with bellerophontid gastropods, brachiopods and oncoids Ottonosia. Cheguimi sandstone (or Unit E-VI): This sandy unit starts with 20 m of red sandstone and shale corresponding to finingup tidal channel fill sequences. The sandstone exhibits cross stratifications, herringbone bedding, wave ripples and burrows. These coastal siliciclastics are overlain by tens of metres of fluviatile meandering channel deposits with red sandy beds and shale. This last Permian unit is characterized by redddish silty clay and sandstone with cross stratifications, bioturbations, and fossil woods.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 6
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 6. Synthetic lithostratigraphic column of the studied series in Jebel Tebaga.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
7
Fig. 7. General view of outcrops displaying the different lithostratigraphic units E-I to E-VI (for location of the sections see Fig. 1). 1. EI–E-II Units: Baten Beni Zid section. 2. E-III–E-IV Units: Oudjh El Ghar section. 3. E-V–E-VI Units: Halq Jemal section.
3.2. Assemblages of fusulinids of Tebaga units 3.2.1. Units E-I and E-II In Baten Beni Zid (Fig. 9), the lowermost assemblage, devoid of Yabeina, is characterized by Neoschwagerina and Rauserella. The second assemblage is characterized by Neoschwagerina and Yabeina syrtalis. An episode with Codonofusiella, Reichelina and Lantschichites is intercalated. A rich, typical, late Capitanian assemblage succeeds this episode and is characterized by Chusenella, Dunbarula, Neoschwagerina and Yabeina. Then, the giant fusulinids momentaneously disappear and are replaced by Dunbarula and Reichelina. The last assemblage is composed
of D. mathieui with smaller foraminifers. The following unit, E-II, with Archaeolithoporella bioconstructions, is devoid of foraminifers. 3.2.2. Units E-III and E-IV The Jebel Seikra and Oudjh El Ghar sections (Figs. 10 and 11) show lateral variation in the composition of fusulinid assemblages and in both field sections foraminifers are absent in E-IV due to the complete dolomitization of this unit. Jebel Seikra (Fig. 10) shows successively in the unit E-III, (1) an assemblage with diversified fusulinids: Chusenella, Codonofusiella, Dunbarula, Reichelina and Yabeina; (2) an episode with
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 8
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 8. Facies and microfacies of the lithostratigraphic units E-I and E-II of Baten Beni Zid, with a lithostratigraphic column (left); an explanation of symbols used in several figures of this paper (bottom); and some illustrations in the field or in microfacies (right), as follows: 1–2. Facies and microfacies with Hemigordiopsis renzi. 3–4, 6. Facies and microfacies with Yabeina ex gr. syrtalis. 5. Microfacies with Archaeolithoporella hidensis. 7–8. Facies with dissolved Yabeina as nuclei of complex biopisoids.
Codonofusiella and Reichelina; (3) an interval with only smaller foraminifers; (4) a short episode with D. mathieui and smaller foraminifers. In Oudjh El Ghar (Fig. 11), only two assemblages are present in the unit E-III, (1) an assemblage with Chusenella, Dunbarula and Yabeina; (2) an assemblage with D. mathieui and smaller foraminifers. 3.2.3. Units E-V and E-VI The unit E-V in Halq Jemel (Fig. 12) shows (1) an assemblage with Dunbarula and Chusenella; (2) another assemblage with diversified fusulinids: Chusenella, Codonofusiella, Dunbarula, Reichelina and Yabeina; and finally (3) a short intercalation with D. mathieui and smaller foraminifers. Then, the Cheguimi unit (formerly E-VI) constitutes a large interval without any foraminifers. 3.2.4. General biozonation by fusulinids in Tebaga The authors have generally interpreted the “stratigraphic sequence” (sic) of Skinner and Wilde (1966), as a true biostratigraphic succession in Jebel Tebaga; our study demonstrates that this sequence is only an idealized and arbitrarily reconstructed succession based on a sampling carried out both in boreholes and in the field by C. Glintzboeckel. Furthermore, many idealized biostratigraphies were based on imprecisely located
palaeontological collections. The revised local data (Fig. 13) may be summarized as follows: (1) A first episode without Y. syrtalis might correspond to the last beds of the early Capitanian, because Y. syrtalis is an evolved representative of this genus, and thus considered most probably as limited to the Tethyan equivalents of the Late Capitanian (see discussion below). (2) Y. syrtalis being present after that into all the series, this latter is considered as totally Late Capitanian in age. (3) An episode with Codonofusiella, Reichelina and Lantschichites appears in the lower part of this late Capitanian. (4) The highest part of the Yabeina syrtalis Zone corresponds to the uppermost beds of the late Capitanian. (5) The second episode with Codonofusiella and Reichelina Zone, occurs in the upper part of this late (perhaps latest?) Capitanian. By its assemblages and the associated maximal development of the Archaeolithoporella bioconstructions, this part of the series of Tebaga is relatively similar with the bioherms of the mid Tansill Formation in the Capitan type area (USA) (see Noé, 2003). (6) Furthermore, the last Yabeina beds, which reappear after this episode with Codonofusiella and Reichelina indicate the presence of additional late (probably latest) Capitanian beds in Tebaga. These last Yabeina beds are probably correlable with the upper Tansill or post-Lamar beds of the Capitanian stratotype.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
9
Fig. 9. Lithostratigraphy, biostratigraphy, and foraminiferal content of the Baten Beni Zid section. For symbols, see Figs. 6 and 8. Abbreviations of fusulinid assemblages: C = Chusenella, D = Dunbarula, L = Lantschichites, N = Neoschwagerina, Ra = Rauserella, Re = Reichelina, Y = Yabeina.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 10
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 10. Lithostratigraphy, biostratigraphy and foraminiferal content of the Jebel Seikra section. For symbols, see Figs. 6 and 8. Abbreviations of fusulinid assemblages: C = Chusenella, Co = Codonofusiella, D = Dunbarula, N = Neoschwagerina, Re = Reichelina, Y = Yabeina.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
11
Fig. 11. Lithostratigraphy, biostratigraphy and foraminiferal content of the Oudjh El Ghar section. For symbols, see Figs. 6 and 8. Abbreviations of fusulinid assemblages: C = Chusenella, D = Dunbarula, Y = Yabeina.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 12
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 12. Lithostratigraphy, biostratigraphy, and foraminiferal content of the Halq Jemal section. For symbols, see Figs. 6 and 8. Abbreviations of fusulinid assemblages: C = Chusenella, Co = Codonofusiella, D = Dunbarula, N = Neoschwagerina, Re = Reichelina, Y = Yabeina.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
13
Fig. 13. General biozonation of Jebel Tebaga.
(7) D. mathieui and smaller foraminifers constitute the ultimate assemblage of foraminifers. It could be the consequence of the end-Guadalupian crisis because all the large fusulinids (Chusenella, Neoschwagerina and Yabeina) diasappear just before it. Nevertheless, independently from the endGuadalupian mass extinction, two regional causes might explain this modification of the foraminiferal populations, (1) the detrital sedimentation begins; (2) similar impoverished populations exist in the top of E-I, and E-III, but after these impoverishments, the giants may reappear (at the base of E-III and middle part of E-V, respectively). In order to solve this problem, we will try to revise the Kirchaou and Kasbah Leguine 2 boreholes where these levels are present and seem to be richer in foraminifers, as evidencied by the Glintzboeckel and Rabaté’s plates. 3.3. Palaeoenvironments Based on our results in terms of biostratigraphy and microfacies analysis, a palaeotransect (Fig. 14) is here reconstructed, including the following palaeoenvironments.
3.3.1. Intertidal deposits The younger carbonates of Tebaga outcrops yield “Ottonosia” grains sensu Termier et al. (1977), which are probably intertidal biopisoids. They characterize the shallower environments in the Tebaga succession, in which no supratidal facies are known; in contrast to the Capitanian stratotype, where caliche pisoids and crusts are widespread (Dunham, 1972; Esteban and Pray, 1983; Noé, 2003). 3.3.2. Innermost ramp deposits The aligned accumulations of Permocalculus (Glintzboeckel and Rabaté, 1964, Pl. 67, fig. 1) or Permocalculus and Dunbarula (Glintzboeckel and Rabaté, 1964, Pl. 66, fig. 2, Pl. 67, fig. 1) or Gymnocodium and Dunbarula (Vachard and Razgallah, 1993, Pl. 2, fig. 5) are probably located in the same position as the ooidal bars of other geological times. Two other very shallow environments are the microbialitic buildups with Reichelina and Codonofusiella (and, for the first episode, with Lantschichites) and cyanobacteria Koivaella permica Chuvashov (see Glintzboeckel and Rabaté, 1964, Pl. 58, figs. 1–2). The
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 14
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Fig. 14. Palaeotransect of the Tebaga platform during the late Capitanian, with the environmental distribution of the principal algae and foraminifers (explanations in the text).
well-known oligotypic grainstones with Dunbarula are also very shallow deposits because of their sorting and winnowing. 3.3.3. Middle-inner ramp deposits There are (a) algal meadows with Permocalculus and Gymnocodium (Glintzboeckel and Rabaté, 1964, Pl. 60, fig. 2, Pl. 61, fig. 1, Pl. 68, fig. 2, Pl. 75, figs. 1–2) and (b) algal meadows with diversified dasycladales (Glintzboeckel and Rabaté, 1964, Pl. 78, fig. 2, Pl. 74, figs. 1–2, Pl. 75, figs. 1–2; Vachard, 1985; Vachard and Razgallah, 1993, Pl. 1, figs. 1–6), Hemigordiopsis, Endoteba, Neoschwagerina, etc. (Glintzboeckel and Rabaté, 1964, Pl. 68, fig. 2, Pl. 69, figs. 1–2, Pl. 70, figs. 1–2, Pl. 71, figs. 1–2); (c) some diversified assemblages of fusulinids, absent from our samplings, are relatively common in the Tebaga borehole, with e.g., Verbeekina and Sumatrina (Vachard and Razgallah, 1993, Pl. 3, fig. 1). 3.3.4. Outer-inner ramp deposits The distal part of the carbonate ramp is characterized by (a) Yabeina accumulations (Glintzboeckel and Rabaté, 1964, Pl. 64, fig. 2, Pl. 65, fig. 1; Vachard and Razgallah, 1993, Pl. 2, figs. 1, 3) which are probably similar to the nummulitid accumulations of the classical models (see for example, Sartorio and Venturini, 1988). Yabeina are oligotypic or associated with (a) large, complex biopisoids with Sparaphralysia orientalis Vachard in Vachard et al., 2001 (Glintzboeckel and Rabaté, Pl. 72, figs. 1–2, Pl. 73, fig. 1); (b) biotopes with Chusenella (Glintzboeckel and Rabaté, 1964, Pl. 63, fig. 2; Vachard and Razgallah, 1993, Pl. 2, figs. 4–6); and (c) bioconstructions with Tubiphytes and Archaeolithoporella (Glintzboeckel and Rabaté, 1964, Pl. 59, figs. 1–2; Razgallah and Vachard, 1991).
3.3.5. Mid-ramp deposits These are essentially composed of the marls at Merbah El Oussif and their mudmounds with calcisponges, which have been accurately studied (Termier et al., 1977; Termier and Termier, 1977; Senowbari-Daryan and Rigby, 1988, 1991; Lethiers et al., 1989). Due to the marl deposits and the dominance of sponges, they were possibly deposited off the inner ramp. Lethiers et al. (1989) mentioned in these deposits an impoverished assemblage constituted of D. mathieui and N. ex gr. craticulifera. 4. New data from 9 selected fusulinid genera The traditional classifications of fusulinids (e.g., Loeblich and Tappan (1987); Vachard et al. (1993, 2010, 2013); Rauzer-Chernousova et al. (1996); Hageman and Kaesler (1998); and Kobayashi (2003, 2011)) based on six (occasionally seven) major types of wall structure are followed here. Therefore, the genera Yangchienia, Dunbarula, Rauserella, Reichelina, Codonofusiella, and Lantschichites are considered as schubertelloids; Chusenella is a schwagerinoid genus; and Neoschwagerina and Yabeina are neoschwagerinoids (Pl. 1–3). 4.1. Genus Yangchienia Lee, 1934 Type species: Yangchienia iniqua Lee, 1934. Yangchienia is rare in Tebaga (Glintzboeckel and Rabaté, 1964, Pl. 56, fig. 1c; Lys, 1988, Pl. 7, figs. 10, 13); its identification as Y. thompsoni Skinner and Wilde, 1966, proposed by Lys (1988) cannot be confirmed due to (a) our poor material, and (b) the very great similarities of the species Y. thompsoni,
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
15
Fig. 15. FO and LO of the principal fusulinids of Jebel Tebaga, along the four studied sections (Figs. 6, 9–12) and in the different lithostratigraphic units from E-I to E-VI/Cheguimi Sandstone.
Y. tobleri Thompson, and Y. haydeni Thompson. Morphologically, our material might belong to Y. tobleri (Pl. 3, fig. 11), but this identification needs further study, because of the controversial status of contemporaneous species of Yangchienia and its possible biostratigraphic importance in the upper Capitanian sequences of Tethys, highlighted for the first time in this paper. In Tebaga, Y. tobleri is located in the inner to middle ramp (= photic to disphotic) interval; i.e., in the more suitable environment for the fusulinids. The FO of the genus Yangchienia in Tebaga remains poorly known due to the rarity of our material,
but, clearly, our oldest specimen appears well after Y. syrtalis (Fig. 11), in the upper part of the unit E-III. Furthermore, its LO follows very rapidly its FO (Figs. 11, 15). 4.2. Genus Dunbarula Ciry, 1948 Type species: Dunbarula mathieui Ciry, 1948. Despite the richness in individuals of this genus in Tebaga samples (e.g., Sartorio and Venturini, 1988), the material was assigned to only two species: D. nana Kochansky-Devidé and
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 16
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Plate 1. Plate 1. 1-3, 6-7, 11-14. Lantschichites sp. 1. Subaxial section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 2. Subaxial section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 3. Axial section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 6. Tangential section (centre) with Reichelina cf. changhsingensis (top left). Baten Beni Zid. Early late Capitanian. Sample Bbz31. 7. Oblique section. Oudjh El Ghar Sample TG17. 11. Tangential section (left, centre) with Dunbarula nana (right). Baten Beni Zid. Early late Capitanian. Sample Bbz31.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Ramovs, 1955 (Pl. 1, fig. 11) and D. mathieui (Pl. 2, figs. 7–8; Pl. 3, fig. 15). We confirm the presence of these two species, sometimes discussed or misinterpreted. Thus, C. cf. nana Erk sensu Hamaoui, 1984, Pl. 2, fig. 22 is a D. nana, whereas, among the two specimens of D. nana sensu Lys (1988, Pl. 7, fig. 7), one is a Schubertella ex gr. silvestrii Skinner and Wilde, 1966 and/or a Praedunbarula Vachard in Kolodka et al., 2012, and the other (Lys, 1988, Pl. 7, fig. 8) is a D. mathieui. Recently, Angiolini et al. (2008) added two species in Tebaga: “D. sp. (primitive)” and D. pusilla Skinner, 1969. Unfortunately, these specimens were not illustrated, and they are totally absent in our material. They are also absent from the material of Vachard from Afghanistan. Recently revised by Colpaert et al. (2015), this material, which contains numerous Dunbarula, permitted to describe a lineage composed of Dunbarula kitakamiensis Choi, D.? schubertellaeformis Sheng (transitional to Codonofusiella), D. nana, and D. mathieui (Colpaert et al., 2015). The most ancient ancestor of this lineage; i.e., the ancestor of D. kitakamiensis, might be Praedunbarula Vachard in Kolodka et al. (2012). In the Tebaga area, Dunbarula are most generally observed in packstone and grainstone microfacies. In Jebel Seikra, they form important bioaccumulations where they constitute up to 50% of the sediment, associated with traditional Middle–Late Permian algae (Permocalculus, Gymnocodium, and Mizzia) and smaller foraminifers. They lived in shallow and agitated marine water and were probably epiphytic. In perireefal facies, Dunbarula are generally poorly represented. D. nana is present since the base of the Tebaga outcrops (Skinner and Wilde, 1967, fig. 3); i.e., it is possibly late early Capitanian in age. D. mathieui appears a little later; i.e., in the late Capitanian. Moreover, its holotype was probably defined in “pale coloured limestone, quite compact” of Jebel Souinia (Ciry, 1948, p. 103), the age of which corresponds probably to the middle to latest Capitanian. D. mathieui is the last taxon in the fusulinid records of Jebel Tebaga (Figs. 12, 15), its LO is located a little after the disappearance of the giants Yabeina and Chusenella, and much higher than the second appareance of Reichelina and Codonofusiella (Figs. 10, 15). Even if the LAD of Dunbarula is poorly-known, this genus was mentioned up to the Lepidolina zone (Kobayashi, 2007), (2) after that, it gives rise to Paradundarula in the Wuchiapingian (Vachard et al., 2003) and then, to Nanlingella in the late Wuchiapingian-Changhsingian (Wang and Ueno, 2009), and finally to Shindella in the Changhsingian (Kotlyar et al.,
17
1990). However, the exact and comparative FAD and LAD of these four genera, Lepidolina, Paradundarula, Nanlingella and Shindella, remain poorly defined (Plate 1). 4.3. Genus Rauserella Dunbar, 1944 Type species: Rauserella erratica Dunbar, 1944. The unique species mentioned in Tebaga, R. cf. staffi Skinner and Wilde, 1966 (= Reusserella (sic) sensu Glintzboeckel and Rabaté, 1964, Pl. 68, fig. 1; re-illustrated in Lys, 1988, Pl. 7, fig. 1), is rare and rather present in the lowermost part of the series. However, we prefer compare the Tebaga specimens with the type species and use the nomenclature R. cf. erratica and Rauserella sp. (Figs. 9, 11, 12, 15; Pl. 1, figs. 4–5; Pl. 3, figs. 7–10). The genus Rauserella is relatively difficult to interpret and identify, because of the great morphological differences between the planes of section of the tests and between the growth stages (juvenaria and adults). Consequently, this taxon was named “Incertae sedis 3” (Tien, 1979, p. 144, Pl. 33, figs. 8–10), “Incertae sedis Nguyen Duc Tien, 1979” (Fontaine et al., 1988, fig. 3. 12; 1994, Pl. 7, fig. 7), Kahlerina (Noé, 2003), and even Globivalvulina sp. (Angiolini et al., 2008, text-fig. 6.4). Rauserella is scarcely present in the whole Capitanian series, but is especially interesting at the base of the outcrops of Tebaga (Figs. 9, 11, 12, 15), prior to the FO of Y. syrtalis. Consequently, this first local interval with Rauserella might belong either to the early late Capitanian or to the late early Capitanian. Conventionally, we adopt the second hypothesis. Moreover, as in the Capitanian stratotype (New Mexico, USA), Rauserella is present up to the latest Capitanian in Tebaga. 4.4. Genus Reichelina Erk, 1942 Type species: Reichelina cribroseptata Erk, 1942. The identification of R. cf. cribroseptata by Lys (1988, Pl. 7, fig. 2) is clearly misinterpreted because Lys’ taxon is small, with a short planispiral part and a large uncoiled part, with weak or absent chomata, and a wall unilayered and dark-microgranular, whereas R. cribroseptata is a medium-sized species, rhombic, with a large planispiral part and a short uncoiled part, strong chomata, and a probably differentiated wall. In reality, the taxon of Lys probably does not belong to Reichelina but to another genus which might be Parareichelina Miklukho-Maklay emend. Pronina-Nestell and Nestell (2001). That is also true for a
12. Subaxial section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 13. Subaxial section. Halq Jemal. Early late Capitanian. Sample TH31. 14. Axial section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 4-5. Rauserella cf. erratica. 4. Subaxial section. Baten Beni Zid. Early late Capitanian. Sample Bbz1. 5. Subaxial section. Baten Beni Zid. Early late Capitanian. Sample Bbz2. 6, 9-10. Reichelina cf. changhsinghensis 6. Tangential section (top left) with Codonofusiella sp. (centre). Baten Beni Zid. Early late Capitanian. Sample Bbz31. 9. Tangential section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 10. Tangential section. Baten Beni Zid. Early late Capitanian. Sample Bbz31. 8. Codonofusiella cf. paradoxica Subtransverse section. Halq Jemal. Late Capitanian. Sample TH9.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 18
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Plate 2. 1-2. Neoschwagerina sp. 1. Subaxial section. Jebel Seikra. Late Capitanian Sample Sb56. 2. Two subtransverse and subaxial sections. Baten Beni Zid. Early late Capitanian. Sample Bbz 48. 3-4. Chusenella cf. tunetana. 3. Tangential section. Baten Beni Zid. Early late Capitanian. Sample Bbz31.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Reichelina illustrated by Glintzboeckel and Rabaté (1964, Pl. 58, fig. 2). The family Reichelinidae needs probably revision because obviously it does not belong to Ozawainelloidea, as generally admitted by the authors. The last representatives of the Ozawainelloidea are indeed Early Permian (Sakmarian) in age (Yarahmadzahi and Vachard, 2013), while the Reichelinidae appear in the late Capitanian. On the other hand, we confirm that all our specimens belong to R. cf. changhsingensis Sheng and Chang, 1958 (Pl. 1, figs. 6, 9–10; Pl. 3, figs. 2, 4–6; Fig. 15.1), first mentioned in Tebaga by Vachard and Razgallah (1988b, Pl. 1, figs. 27–28 and 1993, Pl. 3, figs. 4–5), and consequently, we do not follow the advice of Angiolini et al. (2008) who asserted that this taxon was only questionably a representative of Reichelina. In Tebaga, Reichelina seems to be confined in very shallow microbialitic boundstones. For example, the Reichelina of Glintzboeckel and Rabaté (1964, Pl. 58, figs. 1–2) is associated with trichomes of the cyanobacteria K. permica Chuvashov. Reichelina is generally present in quiet, shallow to moderately deep waters of inner carbonate ramps (Turkey, Greece, Armenia, Oman, South China, etc.; see e.g., Flügel et al., 1991, Pronina, 1989). It is absent from the Persian Gulf wells, e.g., in Abu Dhabi, probably due to restricted environments (Gaillot et al., 2009). In Tebaga, the first Reichelina appear before the Yabeina syrtalis and consequently are perhaps still late early Capitanian in age (Figs. 9, 10, 12, 14, 15), and they disappear at the end of the Capitanian, whereas its LAD is late Changhsingian in NW Caucasus, (Pronina-Nestell and Nestell, 2001), in the South Kitakami Belt (Japan) (Kobayashi, 2002) and in southern Tibet (Wang et al., 2010). That confirms the relative faciologic dependence of Reichelina in Tebaga (Plate 2).
4.5. Genus Codonofusiella Dunbar and Skinner, 1937 Type species: Codonofusiella paradoxica Dunbar and Skinner, 1937. The taxon Codonofusiella sp. was illustrated by Glintzboeckel and Rabaté (1964, Pl. 56, figs. 1a–b, Pl. 103, fig. 2), and two of these three illustrations were identified to C. paradoxica by Lys (1988, Pl. 7, figs. 4–6). We agree with this name (Pl. 1, fig. 8; Pl. 3, fig. 1), whereas other illustrations (Glintzboeckel and Rabaté, 1964, Pl. 103, fig. 2, Lys, 1988, Pl. 6, fig. 7) are more similar to C. explicata Kawano. Our material contains also one or two species potentially new (Pl. 1, figs. 1–3, 6–7, 12). Furthermore, as indicated above, the unique specimen of C. cf. nana Erk, although illustrated three times
19
under this name, by Hamaoui, 1984 (Pl. 2, fig. 22) and Lys, 1988 (Pl. 7, fig. 3, Pl. 11, fig. 5), is a D. nana. These misinterpretations are common in the literature; for example, C. paradoxica sensu Erk, 1942 in reality encompasses D. cf. nana (Pl. 12, fig. 2) and D. cf. kitakamiensis (Pl. 12, fig. 4); this assemblage is therefore latest Wordian (= earliest Midian) in age. Similarly, C. paradoxica sensu Lys and Lapparent (1971, Pl. 22, figs. 3–4) belongs to D. kitakamiensis (see Colpaert et al., 2015). C. paradoxica sensu Pasini (1965) and Tien (1979, 1986a, b) are specimens of D. nana (see the revision of Vachard and Ferrière (1991), and the excellent analysis of Leppig (1995)). Codonofusiella is generally present in quiet, shallow waters with Permocalculus algae (like in many Tethyan carbonate platforms; e.g., Armenia, South China). In Tebaga, it seems to be confined in very shallow microbialitic boundstones. In Tebaga, the FO of Codonofusiella (Figs. 9, 13) is located near the base of the late Capitanian outcrops. Due to regional unsuitable conditions, its LO at the top of Capitanian (Figs. 12 and 13) is not biostratigraphically significant, because the LAD of Codonofusiella is well defined as being late Changhsingian in age; especially, in North Caucasus (ProninaNestell and Nestell, 2001) and Tibet (Wang et al., 2010) (Plate 3). 4.6. Genus Lantschichites Tumanskaya, 1953 Type species: Codonofusiella (Lantschichites) maslennikovi Tumanskaya, 1953. This genus is mentioned and illustrated for the first time in Tebaga (Pl. 1, figs. 13–14). It was observed in grainstones in association with Reichelina, Rauserella, Dunbarula and Codonofusiella. These deposits are typically located in the intertidal zone and/or at the limit of intertidal and subtidal zones. The FO and LO of Lantschichites might constitute an important bioevent in the late Capitanian of Tebaga (Figs. 9, 13, 15). However, as the interval of presence of this genus is very short (Figs. 9, 13, 15), its LO cannot be actually used for local biostratigraphy. For comparison, the FAD of Lantschichites seems to be late Capitanian in the Sichuan (China) (Lai et al., 2008); its LAD is latest Capitanian in Texas (Skinner and Wilde, 1954) and Japan (Kobayashi, 2007). It is also present (as P. splendens Skinner and Wilde, 1954) in the Tansill Fm of the Capitan Reef area (Noé, 2003, Pl. 2, fig. 5). 4.7. Genus Chusenella Hsu, 1942 Type species: Chusenella ishanensis Hsu, 1942. The species C. tunetana is relatively rare in Tebaga, however it was one of the first taxa, which were described by Douvillé
4. Subtransverse section. Baten Beni Zid. Early late Capitanian. Sample Bbz35. 5-6. Yabeina ex gr. syrtalis 5. Subtransverse section. Baten Beni Zid. Early late Capitanian. Sample Bbz48. 6. Transverse section. Baten Beni Zid. Early late Capitanian. Sample Bbz21. 7-8. Dunbarula mathieui. 7. Transverse section. Oudjh El Ghar. Early late Capitanian. Sample TG2. 8. Various sections. Jebel Seikra. Late Capitanian. Sample Sb3.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 20
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Plate 3. 1. Codonofusiella sp. Oblique subtransverse section. Jebel Seikra. Late Capitanian. Sample Sb63. 2, 4-6. Reichelina cf. changhsingensis. 2. Two subaxial sections. Jebel Seikra. Late Capitanian. Sample Sb61. 4. Subaxial section. Halq Jemal. Late Capitanian. Sample TH30.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model
ARTICLE IN PRESS
REVMIC-252; No. of Pages 27
W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
21
(1934). C. tunetana is evidently synonymous of C. rabatei Skinner and Wilde, 1967. These latter authors probably ignored the existence of the taxon of Douvillé, when they wrote that C. rabatei “does not closely resemble any previously described species”. P. navillei (Erk) sensu Glintzboeckel and Rabaté (1964, Pl. 63, fig. 1) and sensu Lys (1988, Pl. 8, fig. 1), is also probably synonymous of C. tunetana or at least belongs to the same group of species. Similarly, our material is part of this group of species (Pl. 2, figs. 3–4; Pl. 3, fig. 13). As indicated by Vachard et al. (2003, text-fig. 3), Chusenella is probably the fusulinid living in the deepest deposits found in Tebaga and in Afghanistan, and it inhabited probably near the lower limit of the inner ramp. The biotopes are rarely found in situ (Vachard and Razgallah, 1993); they are probably deeper than the Yabeina accumulations, but both genera may be reworked together in some grainstones (for example in Sartorio and Venturini, 1988). There are no precise data about the LO of Chusenella in the Tebaga boreholes, but in our material from the outcrops, this genus appears synchronously with Y. syrtalis (Fig. 9) and is therefore Late Capitanian in age (Figs. 9, 13, 14). Similarly, the LO of Chusenella is synchronous with the LO of Yabeina (Fig. 12).
relatively poor material was difficut to classify, and it is generally remained in open nomenclature (Pl. 2, figs. 1–2, Pl. 3, fig. 14); nevertheless, possible identifications might be proposed: N. ex gr. haydeni (Fig. 9), N. cf. fusiformis (Fig. 10) and N. ex gr. margaritae (Fig. 12). The genus Neoschwagerina remains relatively rare in Tebaga and never constitutes accumulations like Yabeina. However, Neoschwagerina is relatively widespread in the algal and foraminiferal deposits with diversified dasycladales and Hemigordiopsis of Baten Beni Zid. As indicated by several authors (Glintzboeckel and Rabaté, 1964; Skinner and Wilde, 1967), Neoschwagerina appears lately in Tebaga, almost concomitantly with Yabeina (Figs. 9, 15). Therefore, its FO is not significant. Furthermore, we confirm the late LO of Neoschwagerina, previously suggested by Skinner and Wilde (1967) and Vachard (1991) in the same bed as Yabeina and Chusenella (Figs. 12, 15). Similarly, the species N. pinguis Skinner seems disappear very lately in Turkey (Skinner, 1969) and Armenia (Kotlyar et al., 1989). “Y. ” texana Skinner and Wilde, 1955, which is in reality more similar to a N. ex gr. margaritae, disappears in the latest Capitanian in the stratotype.
4.8. Genus Neoschwagerina Yabe, 1903
Type species: Neoschwagerina (Yabeina) inouyei Deprat, 1914. Since the beginning of the exploration, two species of Yabeina have been described in Tebaga: Y. syrtalis (Douvillé, 1934) emend. Ciry, 1954 and Y. punica (Douvillé, 1934). They were confirmed by Skinner and Wilde (1967) and Lys (1988). However, their distinctive characters are variable, and both species need a biometric revision. Y. syrtalis is also known in central Croatia (Aljinovic et al., 2008), but Y. punica seems to be endemic. Despite the numerous citations of Y. punica in Tebaga and our very abundant material (Figs. 8.3–4, 6; Pl. 2, figs. 5–6; Figs. 9, 11, 12,14.1–2), we have rarely been able to undoubtedly distinguish this taxon, except for the latest beds of the Capitanian (Fig. 12). Both Yabeina species of Tebaga are evolved species of this genus; they are consequently relatively similar to Y. globosa, and therefore date the Tebaga outcrops as late Capitanian (see discussion below). The Yabeina tests form accumulations in Baten Beni Zid and Halq Jemal. In these accumulations, Yabeina is generally oligotypic, but they may also be associated with Dunbarula and Neoschwagerina. In grainstone microfacies, in agitated
Type species: Schwagerina craticulifera Schwager, 1883. Three local species were created by Skinner and Wilde (1967) but they were very rarely re-found after that; neither in Tebaga nor in other areas of the world. These three local species are N. glintzboeckeli, N. tebagaensis, and N. fusiformis. They may be re-interpreted as follows: (1) N. glintzboeckeli displays rare transverse septula of second order and therefore belongs to the group N. margaritae Deprat; (2) by its skeletal evolution stage and its oval shape, N. tebagaensis resembles N. occidentalis Kochansky-Devidé and Ramovs; (3) due to its septula system, N. fusiformis appears similar to N. craticulifera; the same comparison can be made for N. margaritae sensu Lys (1988, Pl. 9, figs. 5–6) non Deprat. Furthermore, N. fusiformis was compared with N. haydeni Dutkevich and Khabakov by Ueno (1992); moreover, this form seems differ because it is more ovoid. As N. fusiformis is late Capitanian in age in Japan (Ueno, 1992, 1996), we suggest that this species migrated lately from the Tebaga where it is probaly appeared in the late Wordian. Despite the endemism of these three species in Tebaga, our
4.9. Genus Yabeina Deprat, 1914
5. Subaxial section. Halq Jemal. Late Capitanian. Sample TH10. 6. Subaxial section. Halq Jemal. Late Capitanian. Sample TH14. 3. Angelina arpaensis. Axial section. Halq Jemal. Late Capitanian. Sample TH 30. 7-10. Rauserella cf. erratica. 7. Tangential section. Halq Jemal. Early late Capitanian. Sample TH53. 8. Subaxial section. Halq Jemal. Early late Capitanian. Sample TH53. 9. Subtransverse section. Halq Jemal. Early late Capitanian. Sample TH53. 10. Subtransverse section. Halq Jemal. Early late Capitanian. Sample TH53. 11. Yangchienia cf. tobleri. Subaxial section. Oudjh El Ghar. Late Capitanian. Sample TG29. 12. Richthofenid brachiopod wall. Oudjh El Ghar. Late Capitanian. Sample TG32. 13. Chusenella cf. tunetana. Subtransverse section. Jebel Seikra. Late Capitanian. Sample Sb41. 14. Neoschwagerina sp. Subaxial section. Jebel Seikra. Late late Capitanian. Sample Sb56. 15. Dunbarula mathieui. Subtransverse section (left) and subaxial section (right). Jebel Seikra. Late Capitanian. Sample Sb2.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model
ARTICLE IN PRESS
REVMIC-252; No. of Pages 27 22
W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
environment, they form the nuclei of oncolites. The grainstone with Yabeina and Chusenella are rare but present (Sartorio and Venturini, 1988). 5. Discussion For a long time, the Tebaga Group was considered as Murgabian in age due to a very strict application of Leven’s biozonations (e.g., Leven, 1967, 1981, 1985, 1992). In contrast, all the series were attributed to the Capitanian (= Midian) by Vachard et al. (2002), and to the Capitanian passing to the Wuchiapingian by Angiolini et al. (2008). In this paper, we confirm, discuss and refine this dating (Figs. 13, 15, 16). 5.1. The late Capitanian Y. syrtalis Zone Recently, Henderson et al. (2012) proposed new, and possibly definitive, correlations between the official stages of the Middle Permian: Roadian, Wordian, and Capitanian, and the Tethyan stages of Leven: Kubergandian, Murgabian, and Midian. The Tethyan Midian stage corresponds to the Yabeina Zone, and the first occurrence of Yabeina characterizes, by definition, the base of the Midian (Leven, 1967; Toriyama, 1984). Two biozones have been introduced by Leven (1967, 1985), Toriyama (1984) and Davydov (1994), the lower Y. archaica Dutkevich Zone and the upper Y. globosa Zone. As Y. syrtalis of Tebaga is an evolved species of the genus, quite similar to Y. globosa, the Tebaga outcrops containing
Y. syrtalis are late Capitanian in age, as those which in Turkey contain a third avatar of the group, Y. opima Skinner. Consequently, Y. archaica Zone could correspond to an early Capitanian age. However, it is difficult to establish the correlation and/or superposition of this Y. archaica subzone with a zone secondarily added by Leven at the base of the Midian sensu lato, and based on the genera Dunbarula, Kahlerina and Sumatrina. In Afghanistan, these latter genera appear massively in beds where not any Yabeina are present (Colpaert et al., 2015); consequently, that confirms the Dunbarula, Kahlerina and Sumatrina subzone predates the Y. archaica subzone, and is most probably latest Wordian in age. Not mentioned in Tebaga, the Y. archaica Zone might correspond to a stratigraphical gap (Fig. 16), while the Dunbarula, Kahlerina and Sumatrina subzone is present at the top of the Tebaga borehole (compare with Glintzboeckel and Rabaté, 1964; Skinner and Wilde, 1967, etc.). Anyway, the lowermost part of the Tebaga outcrops and all the Tebaga boreholes are probably older than the Late Capitanian. In Japan and SE Asia, a L. multiseptata Zone and then, a L. kumaensis Zone overlie the Y. globosa Zone (e.g., Isozaki et al., 2011). The “Y. ” texana from the latest Capitanian stratotype area of the USA were supposed contemporaneous of the Lepidolina kumaensis (Kobayashi et al., 2007), but as discussed above, Y. texana is more similar to a N. ex gr. margaritae than a true Yabeina. As Lepidolina is absent in Tunisia, three hypotheses are possible: (1) a gap of the Lepidolina Zone; (2) Yabeina has a refuge in Tunisia, where it subsists up to the end of the Guadalupian; (3) the basal part of the Cheguimi sandstone
Fig. 16. Recapitulative table showing the Carboniferous-Permian biozones in Tunisia and their dating.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
corresponds to the top of the Guadalupian, and consequently this unit is a comprehensive series including the top Capitanian, the Wuchiapingian, the Changhsingian and eventually the base of the Triassic. 5.2. The Codonofusiella and Reichelina episodes The genus Codonofusiella is often indicated to appear at the base of the Wuchiapingian (Leven, 1998; Ota and Isozaki, 2006; Aljinovic et al., 2008; Isozaki, 2009; Henderson et al., 2012); i.e., just after the end-Guadalupian crisis. In constrast, many Codonofusiella are mentioned in the Capitanian (Wilde, 1990; Vachard and Razgallah, 1993; Mertmann, 2000; Altiner and Özkan-Altiner, 2010; Bond et al., 2010) and as early as the middle/late Wordian in central Iran (Kobayashi and Ishii, 2003). Even if some Codonofusiella described by Kobayashi and Ishii (2003) do not belong to the genus (for example, C. schubertellaeformis Sheng of these authors is rather a dunbarulin), the oldest representative identified to C. tenuissima Sheng belongs unquestionably to the genus Codonofusiella. The Codonofusiella–Reichelina assemblage zone in Japan is undoubtedly important in the Wuchiapingian of Japan (Ota and Isozaki, 2006). Commonly, the Codonofusiella–Reichelina assemblage characterizes typical Wuchiapingian microfacies (for example in South China, Armenia and SE Asia). However, our discoveries demonstrate that this assemblage is unquestionably present as early as the late Capitanian. Finally, in Tebaga, (1) Reichelina was encountered since the first beds and might be latest Early Capitanian in age; (2) Codonofusiella become common in the last part of the late Capitanian; and (3) both genera constitute two episodes completely mimicking the Wuchiapingian microfacies as early as the lower part of the local late Capitanian. It is noteworthy that Lantschichites is only present in the older episode in Tebaga and might be an interesting marker permitting the identification of such early late Capitanian assemblages in other Tethyan localities. 5.3. Is the lowermost part of the Tebaga outcrops older than late Capitanian? In absence of Yabeina, we have supposed that this part of the series was early Capitanian in age. However, for confirming this hypothesis, it is necessary to find more makers. Rauserella must be more accurately investigated, as well as Kahlerina which was very rarely observed in our specimens, but which seems to be relatively more common in the regional boreholes (see Glintzboeckel and Rabaté, 1964, Pl. 92, fig. 2, Pl. 95, fig. 1a; Skinner and Wilde, 1967, Pl. 1, figs. 1–7; Hamaoui, 1984, Pl. 13, fig. 19; Lys, 1988, Pl. 7, figs. 11–12, Pl. 11, fig. 7). Smaller foraminifers and dasyclad algae might be also revised to discuss this possible dating. 5.4. A possible Capitanian/Wuchiapingian boundary in Tebaga D. mathieui is the last taxon in the fusulinid records of Jebel Tebaga (Figs. 9–12, 15), after the synchronous disappearance of
23
the giants Neoschwagerina, Yabeina and Chusenella, and well after the second episode of Reichelina and Codonofusiella. It is possible that the last assemblage of D. mathieui and smaller foraminifers in Halq Jemal (Fig. 12) be located at the base of the local Wuchiapingian. However, further studies are necessary to confirm this hypothesis. We are also studying the smaller foraminiferal assemblage in order to see if some genera like Angelina (Fig. 15), some miliolates or some nodosariates might be used for solving this problem. 5.5. The question of the PTB (Permian-Triassic Boundary) In Tebaga, after the last assemblage with D. mathieui and smaller foraminifers, no younger foraminifers are known up to the Early Triassic. That disturbs: (1) the exact chronostratigraphical correlation of this zone; (2) the knowledge of the Wuchiapingian recovery after the end-Guadalupian mass extinction. The Streblospira Zone of Glintzboeckel and Rabaté (1964) is probably located close to the Permian-Triassic boundary interval. The earliest Triassic of Tebaga is characterized by M. phlyctaena and Postcladella? spp. (re-interpretation of Glintzboeckel and Rabaté, 1964, Pl. 48, figs. 1-2, Pl. 50, fig. 1, Pl. 51, figs. 1a-1b), like in many Perigondwanan and Cimmerian areas. A revision of the Kirchaou and Kasbah Leguine boreholes would be necessary for understanding the question of the local PTB (Permian-Triassic Boundary). 5.6. Questions on the Permian and Carboniferous substrate The Tebaga Group overlies a Carboniferous series, which contains Visean to Moscovian series, and was relatively well described by Glintzboeckel and Rabaté (1964) and Lys (1988) (Fig. 16). In the near future, we intend to publish new results from these levels. Then, there are strata which are Late Pennsylvanian in age, in our opinion and not Early Permian as indicated by the authors, becasuse they contain Darvasoschwagerina sp. (Glintzboeckel and Rabaté, 1964, Pl. 28, fig. 1, Pl. 33, fig. 1); Triticites sp. (Glintzboeckel and Rabaté, 1964, Pl. 28, fig. 2); Quasifusulina sp. (Glintzboeckel and Rabaté, 1964, Pl. 31, fig. 2); Daixina? sp. (Glintzboeckel and Rabaté, 1964, Pl. 34, fig. 2); and beresellacean algae Trinodella sp. (Glintzboeckel and Rabaté, 1964, Pl. 29, figs. 1–2, Pl. 30, figs. 1–2). The only fossiliferous Early Permian beds (i.e., the Hemigordius zone of Glintzboeckel and Rabaté, 1964) contain Eoverbeekina cf. salopeki, which was recently re-dated as Artinskian in Croatia (Aljinovic et al., 2008; Isozaki et al., 2011). 6. Conclusions 1. The carbonate outcrops of Jebel Tebaga (units E-I to E-V) are entirely late Capitanian in age, except for the lowermost unit E-I which could be still early Capitanian in age, and perhaps the uppermost part of E-V which could be already earliest Wuchiapingian in age. 2. The units E-I to E-V correspond to the range zone of Y. syrtalis, which is a species similar to Y. globosa
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 24
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. 15.
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
considered as characteristic of the late Capitanian in Japan. The last unit of the Tebaga outcrops (Cheguimi sandstone formerly E-VI), where the carbonates are totally absent, represents the whole late Permian (Lopingian), because it is intercalated between the late Capitanian carbonates and the Early Triassic facies. Two episodes with a dominance of Reichelina and Codonofusiella have been encountered in the series of Jebel Tebaga, while these two fusulinid genera were often considered, in the literature, as indicative of the late Permian (Wuchiapingian). The second episode with Codonofusiella and Reichelina in Tebaga is followed by a fusulinid assemblage dominated by the three giant genera Neoschwagerina, Yabeina and Chusenella, and therefore still belongs to the late Capitanian. The first episode with Reichelina and Codonofusiella included near the base of the late Capitanian and at the beginning of the range zone of Y. syrtalis is currently the oldest known assemblage mimicking the Wuchiapingian zones. Lantschichites is encountered in this first episode with Reichelina and Codonofusiella but no in the second one. This datum possibly permits to establish more precisely the LAD of Lantschichites. A last assemblage with Dunbarula and smaller foraminifers, which appear after the synchronous disappearance of Neoschwagerina, Yabeina and Chusenella could represent the Capitanian/Wuchiapingian boundary interval. This last foraminiferal assemblage in our studied field sections is possibly located just at (or just below?) the Capitanian-Wuchiapingian boundary. This dating remains hypothetical because the typical early Wuchiapingian Reichelina, Codonofusiella and Nanlingella simplex Zone is not characterized in Tebaga. During the late Capitanian, Dunbarula evolves very slowly in Tebaga and cannot be used as a local biomarker of several biozones, as proposed by some authors. Rauserella is interesting because it appears before Yabeina, and might characterize a late early Capitanian local zone. Inversely, it is to notice that Rauserella subsists during all the Capitanian time in the USA. Chusenella has a limited biostratigraphic importance in Tebaga, because it is not commonly found and faciologically controlled. Lantschichites is also to restudy because: (1) it is relatively poorly known and controversial; (2) it is a possible synonym of Paraboultonia, which exists in the uppermost part of the Guadalupian stratotype; (3) this genus is generally poorly distinguished from Codonofusiella in the Tethys. The Tebaga outcrops would be interesting to re-investigate for the knowledge of the end-Guadalupian crisis. The boreholes of the Tebaga area are probably more adequate to understand the late Permian of Tunisia and the PTB.
Disclosure of interest The authors declare that they have no conflicts of interest concerning this article. Acknowledgements We would like to thank Prof. Taniel Danelian for his helpful and valuable comments. Many thanks to Demir Altiner and an anonymous reviewer for their constructive remarks. References Aljinovic, D., Isozaki, Y., Sremac, J., 2008. The occurrence of giant bivalve Alatoconchidae from the Yabeina zone (Upper Guadalupian, Permian) in European Tethys. Gondwana Research 13, 273–287. Altiner, D., Özkan-Altiner, S., 2010. Danielita gailloti n. gen., n. sp., within the evolutionary framework of Middle-Late Permian dagmaritins. Turkish Journal of Earth Sciences 19, 497–512. Angiolini, L., Chaouachi, C., Soussi, M., Verna, V., Davydov, V.I., Henderson, C.M., Nicora, A., Rettori, R., Carabelli, L., 2008. New fossil findings and discovery of conodonts in the Guadalupian of Jebel Tebaga de Medenine: biostratigraphic implications. Permophiles 51, 10–22. Ben Ayed, N., (Thèse ès Sciences, Paris-Orsay) 1986. Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mesozoïque à l’Actuel. Ben Ayed, N., Khessibi, M., 1981. Mise en évidence de deux couloirs de décrochement E-W dextres en bordure de la plateforme saharienne (Tunisie méridionale). In: Actes du Premier Congrès National des Sciences de la Terre, Tunis, Septembre 1981, pp. 291–302. Benzarti, R., Crasquin, S., 1998. Les ostracodes du Permien supérieur de Tunisie reconnus en subsurface. Actes du 3e Congrès Européen des Ostracodologistes, 1996. Bulletin Centre Recherches Elf Exploration Production 20, 213–229. Bond, D.P.G., Wignall, P.B., Wang, W., Izon, G., Jiang, H.S., Lai, X.L., Sun, Y.D., Newton, R.J., Shao, L.Y., Védrine, S., Cope, H., 2010. The midCapitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 282–294. Bouaziz, S., (Doctorat de Specialité Sfax (Tunisie)) 1986. Étude de la déformation dans la région Dahar-Jeffara (Sud-tunisien) par approche multiscalaires., pp. 1–169. Chaouachi, M.C., (Thèse ès Sciences) 1988. Étude sédimentologique des séries du Permien supérieur du Jebel Tebaga de Medenine (Sud-Est de la Tunisie) : genèse, diagenèse et potentiel réservoir des corps récifaux. Faculté des Sciences de Tunis. Ciry, R., 1948. Un nouveau Fusulinidé permien : Dunbarula mathieui. Bulletin Scientifique de Bourgogne 11, 103–110 (1946–47). Ciry, R., 1954. A propos de Neoschwagerina syrtalis Douvillé. Bulletin de la Société des Sciences naturelles de Tunisie 7, 111–122 (1953–54). Ciry, R., Mathieu, G., 1947. Sur la faune des calcaires dits à Bellerophons du Permien supérieur de l’extrême-sud tunisien. Comptes Rendus Sommaires de la Société Géologique de France 1947 (9), 189–191. Colpaert, C., Monnet, C., Vachard, D., 2015. Eopolydiexodina (Middle Permian giant fusulinids of Afghanistan): biometry, morphometry, palaeobiogeography and end-Guadalupian events. Journal of Asian Earth Sciences 102, 127–145. Davydov, V.I., 1994. Murgabian-Midian fusulinid zonation and the problem of correlation of the Murgabian/Midian boundary on a Global Scale. Abstracts and Program. In: International Symposium on Permian stratigraphy, environments and resources, Guiyang, China, pp. 5–6. Deprat, J., 1914. Étude des Fusulinidés du Japon, de Chine et d’Indochine et classification des calcaires à Fusulines (3e mémoire). Étude comparative des Fusulinidés d’Akasaka (Japon) et des Fusulinidés de Chine et d’Indochine. Mémoires du Service géologique de l’Indochine 3 (1), 1–45.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Douvillé, H., 1934. Le Permien marin de l’Extrême-Sud Tunisien; II : les Fusulinidés de la Tunisie. Mémoires Service Carte Géologique Tunisie 1 (1), 75–90. Douvillé, H., Solignac, M., Berkaloff, E., 1933. Découverte du Permien marin au Jebel Tebaga (extrême-sud Tunisien). Comptes Rendus de l’Académie des Sciences de Paris 196, 21–24. Driggs, A.F., 1977. The petrology of three Upper Permian bioherms, southern Tunisia. Brigham Young University Geology Studies 24 (1), 37–53. Dunbar, C.O., 1944. Permian and Pennsylvanian (?) Fusulines. Geology and Paleontology of the Permian area NW of Las Delicias, SW Coahuila, Mexico. In: King, R.E., Dunbar, C.O., Cloud, P.E., Miller, A.K. (Eds.), Geological Society America, Special Papers 52 (2), 35–48. Dunbar, C.O., Skinner, J.W., 1937. Permian Fusulinidae of Texas. The geology of Texas. The University of Texas Bulletin no 3701 3 (2), 518–825. Dunham, R.J., 1972. Capitan Reef, New Mexico and Texas: facts and questions to aids interpretation and group discussion. Permian Basin Section of the Society of Economic Paleontologists and Mineralogists, Publication 72 (14), 1–225. Erk, A.S., 1942. Sur la présence du genre Codonofusiella, Dunbar et Skinner dans le Permien de Bursa (Turquie). Eclogae Geologicae Helvetiae 34 (1941), 243–253. Esteban, M., Pray, L.C., 1983. Pisoids and pisolite facies (Permian), Guadalupe Mountains, New Mexico and west Texas. In: Peryt, T. (Ed.), Coated grains. Springer Verlag, pp. 503–537. Flügel, E., Di Stefano, P., Senowbari Daryan, B., 1991. Microfacies and depositional structure of allochthonous carbonate base-of-slope deposits. The Late Permian Pietra di Salomone megablock, Sosio Valley (western Sicily). Facies 25, 147–186. Fontaine, H., Lys, M., Nguyen Duc, T., 1988. Some Permian corals from east Peninsular Malaysia, associated microfossils, paleogeographic significance. Journal Southeast Asian Earth Sciences 2 (2), 65–78. Gaillot, J., Vachard, D., 2007. The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios de Paleontología 57, 37–223. Gaillot, J., Vachard, D., Galfetti, T., Martini, R., 2009. New latest Permian foraminifers from Laren (Guangxi Province, South China). Palaeobiogeographic implications. Géobios 42, 141–168. Gargouri, S., Vachard, D., 1988. Sur Hemigordiopsis et d’autres Foraminifères porcelanés du Murghabien du Tebaga (Permien supérieur de Tunisie). Revue de Paléobiologie Volume spécial 2, Benthos’86 (1), 57–68. Glintzboeckel, C., Rabaté, J., 1964. Microfaunes et microfaciès du PermoCarbonifère du Sud-Tunisien. International Sedimentary Petrology Serie. E.J. Brill Publisher, Leiden, pp. 1–45. Groves, J.R., Altiner, D., 2005. Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction. Comptes Rendus Palevol 4, 487–500. Hageman, S.A., Kaesler, R.L., 1998. Wall structure and growth of fusulinacean foraminifera. Journal of Paleontology 72 (2), 181–190. Hamaoui, M., 1984. Sélection de marqueurs biostratigraphiques du Paléozoïque supérieur de Tunisie. In: 2nd International Symposium Benthic Foraminifera, Benthos’83, Pau et Bordeaux, April 1983, pp. 281–287. Henderson, C.M., Davydov, V.I., Wardlaw, B.R., 2012. (contributors: Gradstein F.M. and Hammer O.) (2012). Chapter 24: The Permian Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The geologic time scale. Elsevier Publisher. Hsu, Y.C., 1942. On the type species of Chusenella. Bulletin Geological Society China 22 (3–4), 175–176. Isozaki, Y., 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences 36, 459–480. Isozaki, Y., Aljinovic, D., Kawahata, H., 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 12–21. Kasuya, A., Isozaki, Y., Igo, H., 2012. Constraining paleo-latitude of a biogeographic boundary in mid-Panthalassa: Fusuline province shift on the
25
Late Guadalupian (Permian) migrating seamount. Gondwana Research 21, 611–623. Khessibi, M., 1985. Etude sédimentologique des affeurements permiens du Jebel Tebaga de Médenine (Sud tunisien). Bulletin Centres Recherches Exploration Production Elf-Aquitaine 9 (2), 427–464. Kobayashi, F., 2002. Lithology and foraminiferal fauna of allochthonous limestones (Changhsingian) in the upper part of the Toyoma Formation in the South Kitakami Belt, Northeast Japan. Paleontological Research 6 (4), 331–342. Kobayashi, F., 2003. Palaeogeographic constraints on the tectonic evolution of the Maizuru Terrane of Southwest Japan to the eastern continental margin of South China during the Permian and Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 299–317. Kobayashi, F., 2007. Late Middle Permian (Capitanian) foraminifers in the Mitaka area, Hyogo, with special reference to plasticity deformation of their test and their paleobiogeographic affinity with South China. Late Paleozoic and Early Mesozoic foraminifers of Hyogo, Japan, Part 5. Nature and Human Activities 11, 17–28. Kobayashi, F., 2011. Permian fusuline faunas and biostratigraphy of the Akasaka limestone (Japan). Revue de Paléobiologie 30, 431–574. Kobayashi, F., Ishii, K.I., 2003. Permian fusulinacean faunas of the Surmaq Formation in the Abadeh region, central Iran. Rivista Italiana di Paleontologia e Stratigrafia 109 (2), 307–337. Kobayashi, F., Ross, C.A., Ross, J.R.P., 2007. Age and generic assignment of Yabeina columbiana (Guadalupian fusulinacea) in southern British Columbia. Journal of Paleontontology 81 (2), 238–253. Kochansky-Devidé, V., Ramovs, A., 1955. Neoschvagerinski skladi innjih fuzulinida fauna pri Bohinjski Beli in Bledu. Die NeoschwagerinenSchichten und ihre Fusuliniden-Fauna bei Bohinjska Bela und Bled (Julische Alpen, Slowenien, NW Jugoslawien). Razprave Slovenska Akademija Znanosti Umetnosti, Classis 5 (Historia Naturalis), Razred Prirodoslovne Vede, 361–424 (in Serbo-Croatian and German). Kolodka, C., Vennin, E., Vachard, D., Trocmé, V., Goodarzi, M., 2012. Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils. Facies 58, 131–153. Kotlyar, G.V., Zakharov, Y.D., Kropacheva, G.S., Pronina, G.P., Chediya, I.O., Burago, V.I., 1989. Pozdnepermskii etap evolyutsii organicheskogo mira, midinskii yarus SSSR (Evolution of the latest Permian biota, Midian regional stage of the USSR). Leningrad “Nauka”, Leningradskoe Otdelennie, 1–177 (in Russian). Lai, X.L., Wang, W., Wignall, P.B., Bond, D.P.G., Jiang, H.S., Ali, J.R., John, E.H., Sun, Y.D., 2008. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology. Palaeoecology 269, 78–93. Lee, J.S., 1934. Taxonomic criteria of fusulinidae with notes on seven new Permian genera. Memoirs of the National Research Institute of Geology 14, 1–32. Leppig, U., 1995. Codonofusiella (fusulinidae): shell architecture and its functional meaning. Marine Micropaleontology 26, 461–467. Lethiers, F., Razgallah, S., Colin, J.P., Vachard, D., 1989. Micropaleontology of the Permian Marls of Merbah el Oussif (Jebel Tebaga, Tunisia) with special emphasis on the ostracods. Journal of Micropaleontology 8 (2), 227–238. Leven, E.Ya., 1967. Stratigrafiya i fuzulinidy permskikh otlozheniy Pamira (Stratigraphy and fusulinids from the Permian deposits of Pamir). Akademiya Nauk SSSR, Geologicheskii Institut, Izdateltsvo “Nauka” 167, 1–224 (in Russian). Leven, E.Ya, 1981. Obem i kharakteristika kubergandinskogo yarusa permi (Pamir). (Extension and characteristic of the Kubergandian Permian stage (Pamir)). Izvestiya Akademiya Nauk SSSR, seriya geologicheskaya 4, 79–90 (in Russian). Leven, E.Ya, 1985. Filogeniya sumatrinid i voprosy zonalnogo raschleneniya murgabskogo i midinskogo yarusov permi (Sumatrinid phylogeny and the questions of the zonal subdivision of the Murgabian and Midian stages in the Permian). Paleontologicheskii Zhurnal 1993 (3), 23–29. Leven, E.Ya, 1992. Problems of Tethyan Permian stratigraphy. International Geology Review 34 (10), 976–985.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27 26
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Leven, E.J., 1998. Permian fusulinid assemblages and stratigraphy of the Transcaucasia. Rivista Italiana de Paleontologia e Stratigrafia 104 (3), 299–328. Loeblich, A.R., Tappan, H., 1987. Foraminiferal genera and their classification. Van Nostrand Reinhold Company Publisher (1 vol. text: X + 970 p., 1 vol. plates: VIII + 212 p. 847 pl.). Lys, M., 1988. Biostratigraphie des dépôts marins du Carbonifère et du Permien du Sud-tunisien, micropaléontologie (foraminifères) et paléobiogéographie. Bulletin des Centres de Recherche Elf-Aquitaine 12 (2), 601–659. Lys, M., de Lapparent, A.F., 1971. Foraminifères et microfaciès du Permien de l’Afghanistan Central. Notes et Mémoires Moyen-Orient. Muséum National d’Histoire Naturelle 12, 49–133. Mathieu, G., 1940. Discordance et faciès dans l’Extrême-Sud tunisien. Comptes Rendus de l’Académie des Sciences de Paris 211 (5), 69–71. Mathieu, G., 1949. Contribution à l’étude des Monts Troglodytes dans l’Extrême-sud tunisien. Annales des Mines et Géologie de Tunis 4, 1–82. Memmi, L., 1986. Lexique stratigraphique (Première partie) Précambrien et Paléozoïque. In: Memmi, L., Burollet, P.F., Viterbo, I. (Eds.), Lexique stratigraphique de la Tunisie Première partie : Précambrien et Paléozoïque. Notes Service Géologique de Tunisie, 53, pp. 19–58 (with the collaboration of Burollet P.F.). Mertmann, D., 2000. Foraminiferal assemblages in Permian carbonates of the Zaluch Group (Salt Range and Trans Indus Range, Pakistan). Neues Jahrbuch für Paläontologie Monathefte 2000 (3), 129–146 (with the collaboration of Sarfraz A.). Miller, A.K., Furnish, W.M., 1957. Permian Ammonoids from Tunisia. Journal of Paleontology 31 (4), 705–712. Newell, N.D., Rigby, J.K., Driggs, A.F., Boyd, D.W., Stehli, F.G., 1976. Permian Reef Complex, Tunisia. Brigham Young University Geology Studies 22 (4), 75–112. Noé, S., 2003. Spätstadium einer sterbenden Karbonatplattform: Schelfrand-und Aubenschelf-Entwicklung der Tansill-Formation (Permian Reef Complex, New Mexico, USA). Kölner Forum für Geologie und Paläontologie 11, 1–254. Ota, A., Isozaki, Y., 2006. Fusuline biotic turnover across the GuadalupianLopingian (Middle-Upper Permian) boundary in mid-oceanic carbonate buildups: biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Science 26, 353–368. Pasini, M., 1965. Fusulinidi, una chiave analitica per la determinazione dei generi. Paleontographia Italica, 1–107. Pronina, G.P., 1989. Foraminifery zony Paratirolites kittli Doramskogo yarusa pozdnei permi Zakavkazya (Foraminifers from the Paratirolites kittli zone of the Dorashamian stage, Late Permian of Transcaucasia). Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshchestva, 30–37 (in Russian). Pronina-Nestell, G.P., Nestell, M.K., 2001. Late Changhsingian foraminifers of the northwestern Caucasus. Micropaleontology 47 (3), 205–234. Rauzer-Chernousova, D.M., Bensh, F.R., Vdovenko, M.V., Gibshman, N.B., Leven, E., Lipina, Ya., Reitlinger, O.A., Solovieva, E.A., Chediya, M.N.I.O., 1996. Spravochnik po sistematike foraminifer paleozoya; endothyroidy, fuzulinoidy (Handbook of systematics of Palaeozoic foramifers; Endothyroida and Fusulinoida). In: Rossiiskaya Akademiya Nauk Geologicheskii Institut, Moskva “Nauka”., pp. 1–207 (in Russian). Razgallah, S., Vachard, D., 1991. Systématique et biosédimentologie des algues constructrices permiennes Tubiphytes et Archaeolithoporella, suivant l’exemple du Jebel Tebaga (Murghabien de Tunisie). Palaeontographica, B 221 (5–6), 171–205. Rigaud, S., Vachard, D., Martini, R., Rettori, R., 2015. Agglutinated versus microgranular foraminifers: end of a paradigm? Journal of Systematic Palaeontology 13/2, 75–95. Sartorio, D., Venturini, S., 1988. Southern Tethys biofacies. AGIP S.P.A., San Donato Milanese, pp. 1–235. Schwager, C., 1883. China. In: Richthofen, F. von (Ed.), Karbonische Foraminiferen aus China und Japan, 4. Dietrich Reimer Publisher, Berlin, pp. 106–159. Senowbari-Daryan, B., Rigby, J.K., 1988. Upper Permian segmented sponges from Jebel Tebaga, Tunisia. Facies 19, 171–250. Senowbari-Daryan, B., Rigby, J.F., 1991. Three additional thalamid sponges from the Upper Permian reefs of Jebel Tebaga (Tunisia). Journal of Paleontology 65 (4), 623–629.
Sheng, J.C.S., Chang, L.H.Z., 1958. Fusulinids from the type locality of the Chang-hsing limestone. Acta Paleontologica Sinica 6 (2), 205–214. Skinner, J.W., 1969. Permian foraminifera from Turkey. The University of Kansas. Paleontological Contribution Paper 36, 1–14. Skinner, J.W., Wilde, G.L., 1954. The fusulinid subfamily Boultoniinae. Journal of Paleontology 28, 434–444. Skinner, J.W., Wilde, G.L., 1955. New Fusulinids from the Permian of West Texas. Journal of Paleontology 29 (6), 927–940. Skinner, J.W., Wilde, G.L., 1966. Permian fusulinids from Sicily. The University of Kansas Paleontological Contributions Paper 8, 1–16. Skinner, J.W., Wilde, G.L., 1967. Permian Foraminifera from Tunisia. The University of Kansas Paleontological Contributions Paper 30, 1–22. Termier, H., Termier, G., 1955. Contribution à l’étude des spongiaires permiens du DJebel Tebaga (Extrême-sud tunisien). Bulletin de la Société Géologique de France, sér. 6 (5), 613–630. Termier, H., Termier, G., 1977. Structure et évolution des Spongiaires hypercalcifiés du Paléozoïque supérieur. Mémoires Institut géologique Université de Louvain 29, 57–109. Termier, H., Termier, G., Vachard, D., 1977. Monographie paléontologique du Permien du Jebel Tebaga (Sud tunisien). Palaeontographica, A 156, 1–109. Tien, N.D., (Thèse 3e Cycle, unpublished) 1979. Étude micropaléontologique (Foraminifères) de matériaux du Permien du Cambodge. Université Paris Sud Orsay, pp. 1–166. Tien, N.D., 1986a. Foraminifera and algae from the Permian of Kampuchea. CCOP Technical Bulletin 18, 116–137. Tien, N.D., 1986b. Foraminifera and algae from the Permian of Guguk Bulat and Silungkang, Sumatra. CCOP Technical Bulletin 18, 138–147. Toriyama, R., 1984. Summary of the fusuline faunas in Thailand and Malaysia. Geology and Paleontology of Southeast Asia 25, 137–146. Tumanskaya, O.G., 1953. O verkhnepermskikh fuzulinidakh yushnoussuriiskogo Kraya (On late Permian fusulinids of Southern Ussuri territory). Gosgeoltekhizdat, 1–56. Ueno, K., 1992. Verbeekinid and Neoschwagerinid Fusulinaceans from the Akiyoshi Limestone Group above the Parafusulina kaerimizensis zone, southwest Japan. Transactions and Proceedings of the Paleontological Society of Japan 165, 1040–1069. Ueno, K., 1996. Late early to middle Permian fusulinacean biostratigraphy of the Akiyoshi Limestone Group, southwest Japan, with special reference to the Verbeekinid and Neoschwagerinid fusulinacean biostratigraphy and evolution. Reports of Shallow Tethys 4. International Symposium Albrechtsberg, Austria, 1994. Annali dei Musei Civici di Rovereto, Sezione Archeologia, Storia e Scienze Naturali. vol. 11, 1995, 77–104. Vachard, D., 1985. Remarques sur les Dasycladales (Algues vertes) du Permien supérieur du Jebel Tebaga. In: 1er Congrès National des Sciences de la Terre, Tunis (1981), pp. 271–281. Vachard, D., 1991. The importance of the Neoschwagerina-Yabeina biozone at the boundary between Murghabian and Midian (Upper Permian). In: International Congress on the Permian System of the World, Perm, Abstracts: A12. Vachard, D., Ferrière, J., 1991. Une association à Yabeina (foraminifère fusulinoïde) dans le Midien (Permien supérieur) de la région de Whangaroa (Baie d’Orua, Nouvelle-Zélande). Revue de Micropaléontologie 34 (3), 201–230. Vachard, D., Razgallah, S., 1988a. Survie des genres Tharama et Renalcis (Epiphytales, algues problématiques) dans le Permien supérieur du Jebel Tebaga (Tunisie). Comptes Rendus de l’Académie des Sciences de Paris 306, série 2, 1137–1140. Vachard, D., Razgallah, S., 1988b. Importance phylogénétique d’un nouveau foraminifère endothyroïde: Endoteba controversa n. gen. n. sp. (Permien du Jebel Tebaga, Tunisie). Geobios 21 (6), 805–811. Vachard, D., Gargouri-Razgallah, S., Chaouachi, M.C., 1989. Sur les biohermes à algues solénoporacées et phylloïdes du Permien supérieur de Tunisie (Murghabien du Jebel Tebaga) et sur les incidences de la diagenèse carbonatée sur la systématique algaire. Revue de Paléobiologie 8 (1), 121–141. Vachard, D., Razgallah, S., 1993. Discussion sur l’âge murgabien ou midien des séries permiennes du Jbel Tebaga (Sud de la Tunisie). Rivista Italiana Paleontologia e Stratigrafia 99 (3), 327–356.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001
+Model REVMIC-252; No. of Pages 27
ARTICLE IN PRESS W. Ghazzay et al. / Revue de micropaléontologie xxx (2015) xxx–xxx
Vachard, D., Clift, P., Decrouez, D., 1993. Une association à Pseudodunbarula (Fusulinoïde) du Permien supérieur (Djoulfien) remaniée dans le Jurassique d’Argolide (Grèce). Revue Paléobiologie 12 (1), 217–242. Vachard, D., Martini, R., Rettori, R., Zaninetti, L., 1994. Nouvelle classification des foraminifères endothyroïdes du Trias. Geobios 27 (5), 543–557. Vachard, D., Hauser, M., Martini, R., Zaninetti, L., Peters, T., Matter, A., 2001. New algae and microproblematica with algal affinity from the Permian of the Aseelah Unit in the Batain Plain, East Oman. (Nouvelles algues et formes affines microproblématiques du Permien de l’Unité d’Aseelah) (Batain Plain, Est de l’Oman). Geobios 34 (4), 375–404. Vachard, D., Hauser, M., Martini, R., Zaninetti, L., Matter, A., Peters, T., 2002. Middle Permian (Midian) foraminiferal assemblages from the Batain Plain (Eastern Oman): their significance to Neotethyan paleogeography. Journal of Foraminiferal Research 32 (2), 155–172. Vachard, D., Zambetakis-Lekkas, A., Skourtsos, E., Martini, R., Zaninetti, L., 2003. Foraminifera, algae and carbonate microproblematica from the Late Wuchiapingian/Dzhulfian (Late Permian) of Peloponnesus (Greece). Rivista Italiana di Paleontologia e Stratigrafia 109, 339–358. Vachard, D., Pille, L., Gaillot, J., 2010. Palaeozoic Foraminifera: systematics, palaeoecology and responses to the global changes. Les foraminifères
27
paléozoïques : systématique, paléoécologie et réponses aux changements globaux. Revue de Micropaléontologie 53, 209–254. Vachard, D., Krainer, K., Lucas, S.G., 2013. Pennsylvanian (Late Carboniferous) calcareous microfossils from Cedro Peak (New Mexico, USA); Part 2: smaller foraminifers and fusulinids. Annales de Paléontologie 99 (1), 1–42. Wang, Y., Ueno, K., 2009. A new fusulinoidean genus Dilatofusulina from the Lopingian (Upper Permian) of southern Tibet, China. Journal of Foraminiferal Research 39 (1), 56–65. Wang, Y., Ueno, K., Zhang, Y.C., Cao, C.Q., 2010. The Changhsingian foraminiferal fauna of a Neotethyan seamount: the Gyanyima Limestone along the Yarlung-Zangbo Suture in southern Tibet. China. Geological Journal 45, 308–318. Wilde, G.L., 1990. Practical Fusulinid zonation: the species concept, with Permian Basin emphasis. West Texas Geological Society Bulletin 29 (7), 5–34. Yabe, H., 1903. On a Fusulina limestone with Helicoprion in Japan. Geological Society Tokyo, Journal 10, 1–13. Yarahmadzahi, H., Vachard, D., 2013. Paleobiogeographic significance of a new ozawainelloid fusulinid Pseudoacutella partoazari n. sp., from the Asselian (lowermost Permian) of Gaduk (Central Alborz, Iran). Revue de Micropaléontologie 57, 117–124.
Please cite this article in press as: Ghazzay, W., et al., Revised fusulinid biostratigraphy of the Middle–Late Permian of Jebel Tebaga (Tunisia). Revue de micropaléontologie (2015), http://dx.doi.org/10.1016/j.revmic.2015.04.001