Ribonucleic acid content and distribution in normal human lens and in senile cataract

Ribonucleic acid content and distribution in normal human lens and in senile cataract

E.,'p. Erie l?,'s. (196'1) 3, ll.q-117 R i b o n u c l e i c A c i d C o n t e n t and D i s t r i b u t i o n in N o r m a l H u m a n L e n s and i...

195KB Sizes 5 Downloads 69 Views

E.,'p. Erie l?,'s. (196'1) 3, ll.q-117

R i b o n u c l e i c A c i d C o n t e n t and D i s t r i b u t i o n in N o r m a l H u m a n L e n s and in S e n i l e C a t a r a c t (:IIt~VANNI .M:XRAINI. Cllolt(.~lO

l)ltyr'r!

AND ~[AR10

SAN'rOIII

Ol~hth,h,ologic, l Cli~ic of Parma 3Iedical ,qchool, Pa, rma, Da.ly (Received 16 ,&arch 1964) ..\ d i s o r d e r o f p r o t e i n m o t . a b o l i s , n is a c o m m o n {'eaturc o f t h e c a t a r a c t o u s lens. In v i e w o f t h e m a j o r vole p l a y e d b y r i b o n l l e l e i e a c i d in t h e s y n t h e s i s o f s p e c i f i c p r o t e i n s , its ( ' o n t e n b a n d d i s t r i b u t i o n h a v e b e e n s t u d i e d i n n o r m M h u m a n lens a n d in s e n i l e c a t a r a c t . In n o r m a l lens. t h e h i g h e s t ] ) r o p o v t i o , l o f t o t a l r i b o n u e l e i e a c i d h a s b e e n f o u n d in t h e .~olul)le f r a c t i o n a n d in t h e fr~u:l,ion a s s o c i a t e d wit, h t h e a l b u n l i n o i ( 1 . In s e n i l e c a t a r a c t , a (leert'a.se o f 17".,, o f tot.iI I / N A p e r g r a m p r o t e i n s w a s d e t e c t e d , l i n k e d t o a. 5 0 % loss o f solnl)h, t / N A . T h e p o s s i b i l i t y is c o n s i d e r e d t h a i t h e d e c r e a s e in p r o t e i n s y n t h e s i s o f t h e c a t a r a e t o u . ~ lens m a y be., at, least in p a r t , l i n k e d to t h e d e c r e a s e o f s o l u b l e l>, N A .

1. I n t r o d u c t i o n

T h e e x i s t e n c e of a d i s o r d e r of p r o t e i n m e t a b o l i s m of t h e lens is a c o m m o n f e a t u r e o f e x p e r i m e n t . h i c a t a r a c t a n d is well k n o w n f r o m t h e s t u d i e s of D i s c h e , B o r c n f r e u n d a n d Z e l m e n i s (1956) a n d D i s c h e , Z c l m e n i s a n d Y o u l u s (1957) a n d P i r i c a n d v a n H e y n i n g e n (195(;); t,he i m p o r t a n c e of q b e t t e r k n o w l e d g e of r i b o n u c l e i e a c i d (I~,NA) c o n t e n t a n d dist.ribution in n o c m a l a n d c a t a r a c t o u s lens is t h e r e f o r e e v i d e n t , d u e to t h e c h i e f role t h a t R N A has b e e n s h o w n to p l a y in t h e s y n t h e s i s of specific p r o t e i n s . I~NA c o n t e n t ha s b e e n s t u d i e d in n o r m a l r a t lens ( D i s c h e , D e v i a n d Z e l m e n i s , 1961; L o r m a n a n d I s h i d a . 1960), in r a b b i t lens ( M e n d e l a n d Q u a r a n t a , 1957; v a n H e y n i n g e n a n d \ V a l e y , 1961) a n d in b o v i n e lens ( M a n d e l , N o r d m a n n a n d Z i m m e r , 19.19; v a n H c y n i n g e n a n d \ V a l e y , 1961 ), b u t d a t a on h u m a n lens are, on t h e c o n t r a r y , v e r y s c a n t y , a n d t h e rally a v a i l a b l e r e p o r t is, t.o o u r k n o w l e d g e , a p r e l i m i n a r y n o t e b y D e v i (1963). I t is t h e aim. of ~he p r e s e n t p a p e r to r e p o r t on t h e first result~s o b t a i n e d b y s t u d y i n g 1R.NA cent, a n t a n d d i s t r i b u t i o n in n o r m a l h u m a n lens a n d in m a t u r e senile c a t a r a c t . 2. M e t h o d s

Not'real lenses were obt-~ined w i t h i n 2 hr after d e a t h from i n d i v i d u a l s aged 55-75 years; senile c a t a r a c t s were p r o c u r e d after surgical e x t r a c t i o n . The lenses were t r e a t e d i m m e d i a t e l y or stored a t -- 25°0 until used. Lenses (2 or 3 for a single e x p e r i m e n t ) were dried with filter paper, weighed and h o m o g e n i z e d with a P o t t e r h o m o g e n i z e r in an eightfold a m o u n t of ice-cold distilled water. P r o t e i n c o n t e n t was e s t i m a t e d on t h e t o t a l h o m o g e n a t e a c c o r d i n g to L o w r y , l~osebrough, F a r r and R a n d a l l (1951). The h o m o g e n a t e was t h e n f r a c t i o n a t e d in a Spineo p r e p a r a t i v e u l t r a c e n t r i f u g e a n d was s e p a r a t e d into t h r e e fractions; the first fraction was o b t a i n e d b y c c n t r i f u g a t i o n a t 600 g for 20 rain. The s u p e r n a t a n t was c e n t r i f u g e d again a t 105,000 g for 90 rain a n d a small s e d i m e n t (fraction 11) and a s u p e r n a t a n t (fraction I I I ) were o b t a i n e d . I~NA e x t r a c t i o n was a t t a i n e d with 1 0 ~ I~C104 at t-°C a c c o r d i n g to Ogur a n d R o s e n (1950) ; after an i n c u b a t i o n t i m e of 24 h r a t 4°C, u l t r a v i o l e t a b s o r p t i o n b e t w e e n 24.5 a n d 280 m/, was '~

115

llti

GIOVANNI

MARAINI,

(.; I t ) R (; I t )

I)IOTT!

AXI)

MARIO

HAN'I'()I{I

recorded wilat, a 13eekman sl)ectrophoto,neter model 1)U. ()ptical d e n s i t y at 260 r,,/.t was comi)arc(] wit, h t h a t o f a s t a n d a r d solution of pure yeast~ ]~NA; al)sorl)tion curves of yeast R N A and of the different RNA fractions from n o r m a l lens are shown in Fig. 1. F o u r e x p e r i m e n t s were carried out on normal lenses and four on sonile c a t , r a c t .

I

I

I

I

I000

900

800 700

600 eQJ

-5

5OO

..

°--

o 4OO 300

200 RNA f r o c t . i o n

I00 0

240

t

i

250

260

II:

i.

270 ,t (m/t)

.

280

lhc.. 1. Lrltraviolct absorption curves of pure yeast H,NA and of the different I¢,NA fl'actions from normal human

lens.

3.

Results

and

Discussion

T a b l e I gives t h e c o n c e n t r a t i o n o f . R N A in t h e f r a c t i o n s of n o r m a l an d c a t a r a c t o u s h u n3 a n

len ses.

I n n o r m a l lens t h e h i g h e s t p r o p o r t i o n of R N A is f o u n d in f r a c t i o n II.[ ( w h i c h is t h e s u p e r n a t a n t o b t a i n e d a f t e r c e n t r i f u g a l ; i o n a t ]0 5 ,0 0 0 g a n d c o n t a i n s s o l u b l e ]%NA) a n d in f r a c t i o n I (]~NA l i n k e d to t.hc a l b u m i n o i d ) ; R N A of f r a c t i o n I I r e p r e s e n t s o n l y about; 20°/o of t o t a l lens R N A . O u r d a t a on t o t a l I { N A / g ( w / w ) in n o r m a l h , l m a n lens a r e in g o o d a g r e e m e n t w i t h t h e r e s u l t s o b t a i n e d in c a t t l e a n d a d u l t r a b b i t lens l)y v a n / - I e y n i n g c n a n d "Waley(1961), w h i l e r a t lens s h o w s a d e f i n i t e l y h i g l , e r ~ N A c o n t e n b ( 2 - 5 - 3 - 0 mg/g (w/w)) a c c o r d i n g to D i s c h e e t al. (1961) a n d to L c r m a n a n d [ s h i d a (1960). I t m a y be of s o m e i n t e r e s t to p o i n t o u t t h e high p r o p o r t i o n of s o l u b l e ]{NA (s-i¢NA) in n o r m a l h u m a n lens,

](Ii~)NUCI,EIC

ACID

1N N O R M A L

AND

(.'.ATAI¢-\CT

I,I':NS

117

similar to t h a t d e t e c t e d in calf lens by v a n H e y n i n g e n and ~Valey (1961); on the contrary, in ,'at lens the main 1)report, ion of ]Z~NAhas been f o u n d to be linked to the albuminoi(l fraction, only a smaller i)ercc~tage of t o t a l R N A being recovered in t h e s u p e r n a t a n t fraction (fraction I l l ) . T h e other interesting feature of the d a t a reported in Table I is the decrease of t o t a l ] { N A in senile cat,trac~ (31°//0 if referred to wet weight a n d 17°//o if referred to proteins); this decrease is e x c l u s i v e l y due to a loss o f s - R N A (nearly 500//o) if the data referred to proteins are considered. TABLE N o r m a l leas "l'()tal I¢NA I{NA i~,N:k HNA I(N:\ RNA "l'olal Total

i)r~tcins (mg,:g w¢.t wl) fra~.tion I (/Lg per I()1) mg I)l'~)tcit~) fracti(m I (iLg/g wet wt) frac:iol~ il (iLg per I(l(| m g l ) r o t c i n ) fraction 11 [l~g..'.~w(.I wt) fractiotl I l l (l~g per Ic}0 m g protein) fract.iol~ I l l (/Lg.!g w e t wt) R N : \ (l~g'lOI) mg p r o t e i n ) | ( N A (tegfg w e t w t )

5SI-7 ± 81.2 1:1.2 -t- 3-1 75.5 4- 9-2 6.8 ± 2.3 38-0 ± 8-:~ I-1-1 +_ 5.1 79-.5 4- 19-7 34.1 _ 10-5 193.0 ± 37-1

Senile c a t a r a c t 501.3 I-l-I G5-9 {i-0 27-9 7.[i 39.7 27"7 133.5

__+ 92.(} ± 2.-I _--_-_+2S.I~ ± 2"6 ± ll-I _ 3-5 4-_ l(i-0 ± 9"5 ± 55-6 .-)~

.

After the 1),'esent investigation had been t e r m i n a t e d , a p r e l i m i n a r y note by Devi (1963) al)pcarc(l and her rcsult, s arc in good a g r e e m e n t with our data" a 20-21~/o loss of tot, al ]{NA was detected in senile c a t a r a c t (and unDublished d a t a of the same , u t h e r show t h a t this loss is in the soluble fraction of the lens) which a t the same time showed a decrease of 8-50°/o of the incori)oration of [llC ]leucine into ]~NA and proteins. The possible m e a n i n g of the decrease of s-]~,NA in senile c a t a r a c t m a y be obvious if one considers the chief role played by R N A in protein synt, hcsis; a 500//0 loss of s - ] ~ N A m ight explain, at Ic~st in ])art, the decrease iu the incorporation of labelled a m i n o acids into R N A an(i proteins, observed by L e r m a n , Dcvi aud H:awes (1961) in exDerimental cat,tract and by ])cvi (1963) in senile cataract. As far as the decreased protcir~ c o n t e n t ofcatar~lctol~s lens is concerned, the possible iml)ortance of al~ a c t i v a t e d a u t o l y s i n g system has been stlggcsted b y Devi, b u t no d e m o n s t r a t i o n of this has been m a d e up to now. It, is possible, on the o t h e r hand, t h a t further studies on R N A c o n t e n t and base composition in n o r m a l and c a t a r a c t o u s lenses will provide new d a t a for t~he i n t e r p r e t a t i o n of this problem. R.EFE

R ENCES

D e v i , A. (1963). E x p . Cell /Yes. 31, 205. l ) i s e h e , Z., B o r e n h ' e u n d , E . a n d Z c l m e n i s , G. (1956). A . l l / ' . f l . z4rch. Opht]~al. 55, 63"L I ) i s c h c , Z., .l)cvi, A. a n d Z c l m c n i s , G. ( 1 9 6 1 ) . A m e r . J . Ophthal. 5 1 , 9 9 3 . l ) i s c h c , Z., Z e l r n c l l i s , G. a n d 5"oulus, J . (1957). tl ~ner. J . Ophll~al. 44, 332. L c r m a n , S.. D c v i , A. a n d 1 4 a w e s , S. (1(.)61). zlmer. J . Ophlhol. 51, 1012. L c r m a n , S. a n d I s h i d a , ]3. K . (1960). A . M . A . . 4 r c h . Opl~thal. 63, 136. L o w r y , O. H . , l ~ o s e b r o u g h , N . J . , F a r r , A. L. a n d l l a n d a l l , I I . J . (1951). J . biol. Chem. 1 9 3 , 2 6 5 . M a n d e l , P . , N o r d m a n n , J . a n d Z i m m e r , J . (1949). C. R. Acad. Sci., P a r i s 2 2 8 , 516. M a n ( l c l , P . a n d Q u a r a n t a , C. A. (1957). C . R . Soc. Biol., P a r i s 1 5 1 , 6 0 4 . O g u r , 5I. a n d R o s e n , G. ( 1 9 5 0 ) . ~4rch. Biochem. 25, 262. Pil~ie, A. a n d v a n H e y n i n g e n , R . ( 1 9 5 6 ) . Bioche~nislry of the E y e . . B l a e k w c l l , O x f o r d . v a n ] ' T c y n i n g c n , R . ~ n d ~Valey, S. G . (1961). E x p . Eye I~es. 1, 155.