Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays

Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays

Chaos, Solitons and Fractals 35 (2008) 1003–1008 www.elsevier.com/locate/chaos Robust control for Takagi–Sugeno fuzzy systems with time-varying state...

150KB Sizes 0 Downloads 66 Views

Chaos, Solitons and Fractals 35 (2008) 1003–1008 www.elsevier.com/locate/chaos

Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays Chang-Hua Lien b

a,b,*

, Ker-Wei Yu

b

a Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan, ROC Department of Marine Engineering, National Kaohsiung Marine University, 811, Taiwan, ROC

Accepted 6 June 2006

Abstract The paper investigates the robust control for uncertain Takagi–Sugeno (T–S) fuzzy systems with time-varying state and input delays. Delay-dependent stabilization criterion is proposed to guarantee the asymptotic stabilization of fuzzy systems with parametric uncertainties. The result of [Lee HJ, Park JB, Joo YH. Robust control for uncertain Takagi– Sugeno fuzzy systems with time-varying input delay. ASME J Dyn Syst Meas Control 2005;127:302–6] is extended to uncertain fuzzy systems with time-varying state and input delays. Simulations show that significant improvement over the previous results can be obtained. Ó 2006 Elsevier Ltd. All rights reserved.

1. Introduction Many practical systems suffer time delays frequently. Among them are: chemical engineering systems, manual controls, neural networks, nuclear reactors, rolling mills, inferred grinding models, pollution dynamic models and systems without transmission lines. The impacts of these delays are not only costly but also disastrous, even catastrophic in cases of accidents caused by chemical or nuclear explosions. Takagi–Sugeno (T–S) fuzzy system model concept [2] has received considerable attention in control system analysis and synthesis. The stability and stabilization problems of fuzzy systems have been investigated by using the nonlinear frameworks [1–7]. The stability of fuzzy system is guaranteed if a common positive definite matrix exists [6]. The scientific and engineering communities throughout the world are fascinated by the properties and potentials of T–S fuzzy systems. Thus, a great number of studies and researches had been done on stabilization of T–S fuzzy systems in the past few years [1,3,4]. Among those endeavors, we are indebted to Lyapunov stability theory and LMI approach. Our proofs will be incomplete without them. In this paper, we focus on linear and nonlinear variables and the roles they play in the processes of robust stabilization. In [1], they study the relationship between time-varying input delays and robust stabilization of T–S fuzzy systems. So does the relationship between a group of uncertain parameters and robust stabilization. In [4], robust stabilization of fuzzy systems with time-varying state delay and nonlinear uncertain parameters is considered.

*

Corresponding author. Tel.: +886 7 6577711x6619; fax: +886 7 6577205. E-mail address: [email protected] (C.-H. Lien).

0960-0779/$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2006.06.007

1004

C.-H. Lien, K.-W. Yu / Chaos, Solitons and Fractals 35 (2008) 1003–1008

Based on the sizes of delays, we classify T–S fuzzy systems either as delay-dependent [1] or delay-independent [4]. Generally speaking, when the values of (time) delays are relatively small, delay-dependent T–S fuzzy systems are less conservative than the delay-independent ones. In [1,4], they enlist Lyapunov–Razumikhin stability theory to explain the stabilization problems of delay-independent T–S fuzzy systems. To determine the outcome of delay-dependent stabilizations, both the Lyapunov–Krasovskii function and the Leibniz–Newton formula are used. LMI (linear matrix inequality) approach [8] finds the upper boundaries of delays in the T–S fuzzy systems. LMI approach also serves to secure robust stabilization of the uncertain T–S fuzzy systems. A numerical example which appears in [1] has shown that the obtained delay-dependent result in this paper is less conservative even in this special case.

2. Problem formulation and main result Consider a continuous-time uncertain fuzzy system with time-varying state and input delays, which is represented by a Takagi–Sugeno (T–S) fuzzy model [2] composed of a set of fuzzy implications. Each implication is expressed by a linear uncertain time-delay system and the ith rule of the T–S model is written in the following form: Rule i: If z1(t) is about Mi1, . . . , zr(t) is about Mir, then x_ ðtÞ ¼ ½Ai þ DAi ðtÞxðtÞ þ ½Bi þ DBi ðtÞxðt  hðtÞÞ þ ½C i þ DC i ðtÞuðt  sðtÞÞ; xðtÞ ¼ /ðtÞ; t 2 ½H ; 0; i ¼ 1; 2; . . . ; m;

ð1aÞ ð1bÞ

t P 0;

where z1(t), z2(t), . . . , zr(t) are premise variables, Mij, i = 1, 2, . . . , m, j = 1, . . . , r are fuzzy sets, m is the rules number. _ 6 hD ; sðtÞ 6 sM ; s_ ðtÞ 6 sD ; hM > 0; sM > 0, and xðtÞ 2 Rn is the state, uðtÞ 2 Rp is the input, hðtÞ 6 hM ; hðtÞ H = max{hM, sM}. The matrices Ai ; Bi 2 Rnn , and C i 2 Rnp , are known, and the initial vector /i belongs to the set of continuously functions. The perturbed matrices DAi(t), DBi(t), DCi(t), are some time-varying functions satisfying ½ DAi ðtÞ DBi ðtÞ DC i ðtÞ  ¼ Di  F i ðtÞ  ½ E1i

E2i

E3i ;

ð2aÞ

where Di, Eji, i 2 {1, . . . , m}, j 2 {1, 2, 3}, are some given constant matrices, Fi(t) is an unknown real time-varying function with appropriate dimension and bounded as follows: F i ðtÞT  F i ðtÞ 6 I;

i 2 f1; . . . ; mg 8t P 0;

ð2bÞ

where the notation A 6 B stands that the matrix B  A is symmetric positive semi-definite. The final state output of fuzzy system is inferred as follows: x_ ðtÞ ¼

m X

wi ðzðtÞÞ  f½Ai þ DAi ðtÞxðtÞ þ ½Bi þ DBi ðtÞxðt  hðtÞÞ

i¼1

,

þ ½C i þ DC i ðtÞuðt  sðtÞÞg

m X

wi ðzðtÞÞ

i¼1

¼ xðtÞ ¼

m X i¼1 m X

gi ðzðtÞÞ  f½Ai þ DAi ðtÞxðtÞ þ ½Bi þ DBi ðtÞxðt  hðtÞÞ þ ½C i þ DC i ðtÞuðt  sðtÞÞg; gi ðzðtÞÞ  /i ðtÞ;

t P 0;

t 2 ½H ; 0;

ð3aÞ ð3bÞ

i¼1

Pm Q where wi ðzðtÞÞ ¼ rj¼1 Xij ðzj ðtÞÞ; gi ðzðtÞÞ ¼ wi ðzðtÞÞ i¼1 wi ðzðtÞÞ; Xij ðzj ðtÞÞ isPthe grade of membership of zj(t) in m fuzzy set M . In this paper, we assume w (z(t)) P 0, i 2 {1, . . . , m}, and ij i i¼1 wi ðzðtÞÞ > 0. Hence gi(z(t)) P 0 and Pm g ðzðtÞÞ ¼ 1, for all t P 0. i¼1 i In this paper, we use the following fuzzy rule for fuzzy-model-based control: Rule i: If z1(t) is Mi1, . . . , zr(t) is Mir, then uðtÞ ¼ K i xðtÞ; pn

where K i 2 R

uðtÞ ¼ 

t P 0;

; i 2 f1; . . . ; mg, are control gains. The final feedback control is inferred as follows:

m X i¼1

gi ðzðtÞÞ  K i xðtÞ;

t P 0:

ð4Þ

C.-H. Lien, K.-W. Yu / Chaos, Solitons and Fractals 35 (2008) 1003–1008

1005

Lemma 1 [9]. Let Z, M, N, and F(t) be the matrices of appropriate dimensions. Assume that Z is symmetric and FT(t)F(t) 6 I, then Z þ MF ðtÞN þ N T F T ðtÞM T < 0; if and only if there exists a scalar e > 0 satisfying Z þ e1  ðeMÞðeMÞT þ e1  N T N < 0: Now we present a delay-dependent condition for the asymptotic stability of system (1) with (2). Theorem 1. If for a given l > 0, there exist some positive definite symmetric matrices P 0 ; P 1 ; P 2 ; R1 ; R2 , matrices K i 2 Rpn ; i 2 f1; . . . ; mg, and some positive constants eij, i, j 2 {1, . . . , m}, such that the following LMI conditions hold for all i, j 2 {1, . . . , m}, 2 3 N11ij N12ij N13ij N14ij N15ij N16ij 6 N22ij 0 N24ij 0 N26ij 7 6 7 6 7 6  N33ij N34ij 0 N36ij 7 7 < 0; Nij ¼ 6 ð5Þ 6   N44ij N45ij 0 7 6 7 6 7 4    N55ij 0 5 









N66ij

where * represents the symmetric form in the matrix and N11ij ¼ Ai P 0 þ P 0 ATi þ P 1 þ P 2  R1  R2 ; N14ij ¼ N26ij ¼

l  P 0 ATi ; N15ij P 0 ET2i ; N33ij ¼

N44ij ¼ 2l  P 0 þ

h2M

¼ eij  Di ;

N16ij ¼

N12ij ¼ Bi P 0 þ R1 ; P 0 ET1i ;

ð1  sD Þ  P 2  R2 ;

 R1 þ

s2M

 R2 ;

N13ij ¼ C i K j þ R2 ;

N22ij ¼ ð1  hD Þ  P 1  R1 ;

N34ij ¼ l 

N45ij ¼ eij  l  Di ;

K Tj C Ti ;

N36ij ¼

N24ij ¼ l  P 0 BTi ;

K Tj ET3i ;

N55ij ¼ N66ij ¼ eij  I:

for all Then uncertain fuzzy time-delay system (1) with (2) is asymptotically stabilizable by (4) with K j ¼ K j P 1 0 _ 6 hD ; sðtÞ 6 sM ; s_ ðtÞ 6 sD . hðtÞ 6 hM ; hðtÞ Proof. Define the Lyapunov functional Z t Z xT ðsÞP 1 xðsÞds þ V ðxt Þ ¼ xT ðtÞP 0 xðtÞ þ þ sM 

Z

thðtÞ

t

xT ðsÞP 2 xðsÞds þ hM 

tsðtÞ

Z

t

ðs  ðt  hM ÞÞ_xT ðsÞR1 x_ ðsÞds thM

t

ðs  ðt  sM ÞÞ_xT ðsÞR2 x_ ðsÞds;

ð6Þ

tsM

P P where P0, P1, P2, R1, R2 > 0. By system (3) with mi¼1 gi ðzðtÞÞ ¼ 1 and mj¼1 gj ðzðt  sðtÞÞÞ ¼ 1, the time derivatives of V(xt), along the trajectories of system (1) with (2) and (4) satisfy V_ ðxt Þ ¼

m X

gi ðzðtÞÞ  fxT ðtÞðP 0 Ai þ ATi P 0 ÞxðtÞ þ xT ðtÞðP 0 DAi ðtÞ þ DATi ðtÞP 0 ÞxðtÞ

i¼1

þ 2xT ðtÞP 0 ðBi þ DBi ðtÞÞxðt  hðtÞÞg m X m X gi ðzðtÞÞ  gj ðzðt  sðtÞÞÞ  f2xT ðtÞP 0 ðC i þ DC i ðtÞÞK j xðt  sðtÞÞg  i¼1

j¼1

T _ ðt  hðtÞÞP 1 xðt  hðtÞÞ þ x ðtÞP 1 xðtÞ  ð1  hðtÞÞx T

þ xT ðtÞP 2 xðtÞ  ð1  s_ ðtÞÞxT ðt  sðtÞÞP 2 xðt  sðtÞÞ Z t þ h2M  x_ T ðtÞR1 x_ ðtÞ  hM  x_ T ðsÞR1 x_ ðsÞds þ s2M  x_ T ðtÞR2 x_ ðtÞ  sM 

Z

thM t

x_ T ðsÞR2 x_ ðsÞds: tsM

1006

C.-H. Lien, K.-W. Yu / Chaos, Solitons and Fractals 35 (2008) 1003–1008

By the inequality in [10], we have Z Z t T  hM  x_ ðsÞR1 x_ ðsÞds 6 hðtÞ  thM

 sM 

Z

t T

x_ ðsÞR1 x_ ðsÞds 6 

Z

thðtÞ

t T

x_ ðsÞR2 x_ ðsÞds 6 sðtÞ 

tsM

Z

!T

t

x_ ðsÞds

Z

T

x_ ðsÞR2 x_ ðsÞds 6 

tsðtÞ

Z

x_ ðsÞds :

R1

thðtÞ

t

!

t

ð7aÞ

thðtÞ

!T

t

x_ ðsÞds

tsðtÞ

Z

!

t

x_ ðsÞds :

R2

ð7bÞ

tsðtÞ

From Leibniz–Newton formula, we have Z t x_ ðsÞds ¼ xðtÞ  xðt  hðtÞÞ; thðtÞ t

Z

ð7cÞ x_ ðsÞds ¼ xðtÞ  xðt  sðtÞÞ:

tsðtÞ

From (7c), (7a) and (7b) can be rewritten as Z t x_ T ðsÞR1 x_ ðsÞds 6 ðxðtÞ  xðt  hðtÞÞÞT R1 ðxðtÞ  xðt  hðtÞÞÞ;  hM   sM 

Z

ð7dÞ

thM t

x_ T ðsÞR2 x_ ðsÞds 6 ðxðtÞ  xðt  sðtÞÞÞT R2 ðxðtÞ  xðt  sðtÞÞÞ:

ð7eÞ

tsM

From (7d), (7e), and the following result with a given constant l > 0: ( m X m X T T  2l  x_ ðtÞðP 0 Þ_xðtÞ þ l  x_ ðtÞP 0  gi ðzðtÞÞ  gj ðzðt  sðtÞÞÞ  ½ðAi þ DAi ðtÞÞxðtÞ þ ðBi þ DBi ðtÞÞxðt  hðtÞÞ i¼1

)  ðC i þ DC i ðtÞÞK j xðt  sðtÞÞ

j¼1

(

þl

m X m X i¼1

gi ðzðtÞÞ  gj ðzðt  sðtÞÞÞ  ½ðAi þ DAi ðtÞÞxðtÞ

j¼1

)T  P 0 x_ ðtÞ ¼ 0;

þ ðBi þ DBi ðtÞÞxðt  hðtÞÞ  ðC i þ DC i ðtÞÞK j xðt  sðtÞÞ one has V_ ðxt Þ 6

m X m X i¼1

gi ðzðtÞÞ  gj ðzðt  sðtÞÞÞ  ½UT  Rij  U;

j¼1

 where UT ¼ xT ðtÞ xT ðt  hðtÞÞ 2 R11ij R12ij R13ij 6  R22ij 0 6 Rij ¼ 6 4   R33ij   

xT ðt  sðtÞÞ 3 R14ij R24ij 7 7 7; R34ij 5

ð8Þ

 x_ T ðtÞ ,

R44ij

R11ij ¼ P 0 Ai þ ATi P 0 þ P 0 DAi ðtÞ þ DATi ðtÞP 0 þ P 1 þ P 2  R1  R2 ; R13ij ¼ P 0 ðC i þ DC i ðtÞÞK j þ R2 ; T

R24ij ¼ l  ðBi þ DBi ðtÞÞ P 0 ;

T

R14ij ¼ l  ðAi þ DAi ðtÞÞ P 0 ;

R33ij ¼ ð1  sD Þ  P 2  R2 ;

P 0 ¼ P 1 0 ;

1 P 1 ¼ P 1 0 P 1P 0 ;

1 P 2 ¼ P 1 0 P 2P 0 ;

P 1 0

R22ij ¼ ð1  hD Þ  P 1  R1 ;

R34ij ¼ l  K Tj ðC i þ DC i ðtÞÞT P 0 ;

R44ij ¼ 2l  P 0 þ h2M  R1 þ s2M  R2 :

 Pre- and post-multiplying the matrix Rij in (8) by diag P 1 0

R12ij ¼ P 0 ðBi þ DBi ðtÞÞ þ R1 ;

P 1 0

1 R1 ¼ P 1 0 R1 P 0 ;

 > 0 with P 1 0 1 R2 ¼ P 1 0 R2 P 0 ;

K j ¼ K j P 1 0 ;

we have 2

N11ij 6  b ij ¼ 6 R 6 4  

N12ij N22ij

N13ij N23ij

 

N33ij 

3 N14ij N24ij 7 7 T 7 þ wij  F i ðtÞxij þ xTij F Ti ðtÞwij ; 0 5 N44ij

ð9Þ

C.-H. Lien, K.-W. Yu / Chaos, Solitons and Fractals 35 (2008) 1003–1008

 0 , Nklij, k, l 2 {1, 2, . . . , 6} are defined in (5). By the b ij < 0 in (9). The condition R b ij < 0 in (9) will also Lemma 1 and Schur complement of [8], LMI (5) is equivalent to R equivalent to Rij < 0 in (8) for all i, j 2 {1, . . . , m}. By Eq. (8) with the matrix Rij < 0, there exists a constant m > 0 such that  where wij ¼ DTi

  0 0 l  DTi , xij ¼ E1i P 0

1007

E2i P 0

E3i K j

V_ ðxt Þ 6 m  kxðtÞk2 :

ð10Þ

From (6) and (10), we can conclude that the fuzzy system (1) with (2) is asymptotically stabilizable by (4) [11].

h

Remark 1. In general, two conditions for the time-varying delays h(t) and s(t) are usually considered: _ 6 hD ; sðtÞ 6 sM ; s_ ðtÞ 6 sD . (A1) hðtÞ 6 hM ; hðtÞ (A2) h(t) 6 hM, s(t) 6 sM. In (A1), the slow variation condition h_ i ðtÞ 6 hD < 1 is necessary in this delay-dependent result [7]. In Theorem 1, the slow variation conditions hD < 1 and sD < 1 are not imposed in this paper. In (A2) (i.e. unknown hD and sD), Theorem 1 is also valid with P 1 ¼ 0 and P 2 ¼ 0. In [1], delay-dependent stabilization criterion for fuzzy systems with time-varying input delay is proposed by using Lyapunov–Razumikhin stability theory. In this paper, new Lyapunov–Krasovskii functional and Leibniz–Newton formula are used to obtain delay-dependent stabilization result and the result of [1] is extend to the stabilization of fuzzy systems with time-varying state and input delays.

3. Numerical example Consider the nonlinear mass–spring–damper mechanical system in [1]. The T–S fuzzy models can be constructed as follows: Plant rules [1]: Rule 1: If x1(t) is about C1, then x_ ðtÞ ¼ ½A1 þ DA1 ðtÞxðtÞ þ ½C 1 þ DC 1 ðtÞuðt  sðtÞÞ:

ð11aÞ

Rule 2: If x1(t) is about C2, then x_ ðtÞ ¼ ½A2 þ DA2 ðtÞxðtÞ þ ½C 2 þ DC 2 ðtÞuðt  sðtÞÞ;       0:5 0:1 1 0:1 0 0:1nðtÞ ; A2 ¼ ; DA1 ðtÞ ¼ DA2 ðtÞ ¼ ; where A1 ¼ 1 0 1 0 0 0   0 0:1nðtÞ DA2 ðtÞ ¼ ; jnðtÞj 6 1; C1 and C2 are defined in [1]. 0 0 From (1), (2) and (11), we have " pffiffiffiffiffiffiffi #   0 0 0:1 ; D1 ¼ D2 ¼ ; B1 ¼ B2 ¼ 0 0 0

 pffiffiffiffiffiffiffi  E11 ¼ E12 ¼ 0 0:1 ;

ð11bÞ   1 C1 ¼ C2 ¼ ; 0

E21 ¼ E22 ¼ ½ 0

0 ;

DA1 ðtÞ ¼

E31 ¼ E32 ¼ 0:

In order to show the improvement of this paper, a comparison for the upper bound of input delay to guarantee the asymptotic stabilization of fuzzy system is shown in Table 1. The obtained result in this paper improves the result of [1] in this example.

Table 1 A comparison for the upper bounds of input delay for fuzzy system (11) Results

Upper bound of input delay and fuzzy control gains in (4)

[1]

sM = 0.4223 (sD unknown) K 1 ¼ ½ 0:7623 0:5212 ; K 2 ¼ ½ 0:3690 0:5362  sM = 1.75 (sD unknown) K 1 ¼ ½ 0:3622 0:299 ; K 2 ¼ ½ 0:3625 0:299 

This paper (l = 2)

1008

C.-H. Lien, K.-W. Yu / Chaos, Solitons and Fractals 35 (2008) 1003–1008

4. Conclusion In this paper, the robust control problem for a class of uncertain fuzzy system with time-varying state and input delays has been investigated. Based on the LMI approach, delay-dependent criterion has been proposed to guarantee the asymptotic stabilization of fuzzy systems. An example has been provided to demonstrate the reduced conservativeness of the proposed result.

Acknowledgement The research reported here was supported by the National Science Council of Taiwan, ROC under grant no. NSC 93-2213-E-214-020.

References [1] Lee HJ, Park JB, Joo YH. Robust control for uncertain Takagi–Sugeno fuzzy systems with time-varying input delay. ASME J Dyn Syst Meas Control 2005;127:302–6. [2] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybernet 1985;15:116–32. [3] Cao YY, Frank PM. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans Fuzzy Syst 2000;8:200–11. [4] Wang RJ, Lin WW, Wang WJ. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Trans Syst Man Cybernet B 2004;34:1288–92. [5] Lien CH. Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay. Chaos, Solitons & Fractals 2006;28:422–7. [6] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst 1992;45:135–56. [7] Li C, Wang H, Liao X. Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. IEE Proc Control Theory Appl 2004;151:417–21. [8] Boyd SP, Ghaoui LE, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia: SIAM; 1994. [9] Singh V. Robust stability of cellular neural networks with delay: linear matrix inequality approach. IEE Proc Control Theory Appl 2004;151:125–9. [10] Gu K, Kharitonov VL, Chen J. Stability of time-delay systems. Boston: Birkhauser; 2003. [11] Kolmanovskii VB, Myshkis A. Applied theory of functional differential equations. Netherlands: Kluwer Academic Publishers; 1992.