G. Centi and F. Trifiro' (Editors), New Developments in Selective Oxidation 1990 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands
483
ROLE OF ACTIVE OXYGEN FORMS AND ACIDITY I N OXIDATlVE CONVERSION OF ETHANE ON ZEOLITES
S. N . VERESHCHAGIN, N . N . SHISHKINA, A. G. ANSHITS I n s t i t u t e of C h e m i s t r y and Chemical Technology, S i b e r i a n Branch of t h e USSR Academy of S c i e n c e . K a r l M a r k s s t . , 42, K r a s n o y a r s k . 680049. USSR SUMMARY C a t a l y t i c o x i d a t i o n of e t h a n e w i t h n i t r o u s o x i d e a n d oxygen h a s been i n v e s t i g a t e d over ZSM-5 a n d m o r d e n i t e . Selective c o n v e r s i o n of e t h a n e t o e t h y l e n e a n d p r o p y l e n e w a s believed to i n v o l v e s u r f a c e oxygen atomic s p e c i e s which w e r e formed by t h e i n t e r a c t i o n of n i t r o u s o x i d e w i t h z e o l i t e s . C a t a l y t i c a c t i v i t y w a s p r o p o r t i o n a l t o t h e number of N20-decomposition sites a n d d i d n o t
depend upon t h e t o t a l number of s t r o n g l y acidic sites measured by ammonia c h e m i s o r p t i o n .
I NTRODUCTI ON Zeolites
have
attracted
c o n s i d e r a b l e a t t e n t i o n as
catalysts
for m o r e t h a n t w o d e c a d e s a s a r e s u l t of t h e i r h i g h a c t i v i t y and unusual
selectivity
for
acid-catalyzed
reactions.
The
lack
of
i n t e r e s t i n z e o l i t e s as c a t a l y s t s for s e l e c t i v e o x i d a t i o n may be
of poor s e l e c t i v i t i e s and h i g h r e a c t i o n t e m p e r a t u r e s .
a result However
has
it
c o n v e r s i o n of HZSM-5-type Crefs.
recently
been
reported
methane t o h y d r o c a r b o n s ,
that
catalytic
the
i n c l u d i n g aromatics o v e r
z e o l i t e i n t h e p r e s e n c e of N 0 or O2 w a s o b s e r v e d 2 Differences in the product distribution and
1,2>.
catalytic
activity
mechanism is n o t t h e
with
two
the
oxidants
indicate
that
the
s a m e for N 0 a n d 02. Although t h e mechanism
is unknown i t is s u g g e s t e d
2 that initial
r e a c t i o n is t h e p r o t o n a t i o n of
s t e p of
t h e catalytic
methane by s u p e r a c i d sites Cref.
3>. I t h a s been r e p o r t e d t h a t O2 a n d N 0 h a v e e x t r e m e l y d i f f e r e n t 2 a c t i v i t i e s and a l s o t h e o x i d e r a d i c a l i o n 0-. which c a n be generated
primarily
r e a c t i v i t y t h a n 02,
in
the
decomposition
2-, 03, 0 i o n s
Crefs.
s t u d i e d t h e o x i d a t i o n of e t h a n e b y N 2 0
of NgO.
4-63.
shows
higher
W e have t h e r e f o r e
a n d O2 over
HZSM-5 a n d
m o r d e n i t e which w i l l b e of s i g n i f i c a n t i n t e r e s t i n t h e c h e m i s t r y
of a c t i v e oxygen s p e c i e s and a c i d - b a s e p r o p e r t i e s of t h e s u r f a c e .
484
EXPERIMENTAL.
Materials.
High
purity
g r a d e C99.8+%3, e t h a n e ,
oxygen
n i t r o u s o x i d e w e r e used without f u r t h e r p u r i f i c a t i o n .
and
Helium w a s
p u r i f i e d by p a s s i n g t h r o u g h CaA-liquid n i t r o g e n t r a p . The a c i d i c f o r m of
and mordenite w a s
t h e 234-5
e x c h a n g i n g t h e N a c a t i o n s w i t h NH C1 1 . 0 N a t QO'C 4
c a l c i n i n g i n a i r a t 550°C. impregnation
w a s o b t a i n e d by w e t
1.5%Na-HZSM-SC413
HZSM-SC41>
of
with
aqueous
o b t a i n e d by
a n d f u r t h e r by
solution
NaOH.
of
Exper i ment s h a v e been p e r f or med on sampl es w i t h Si 0 2 / A l 203 r a t i 0s equal
to
38.
41,
60.
90,
H a - 8 .
148 for
and
I1
HM.
for
Na
c o n t e n t w a s as l o w as 0.1%. Zeol i tes
Equi pment a n d C a t a l y s t Eva1 u a t i o n . 60-80 mesh for u s e i n t h e c a t a l y t i c r u n .
were
A m i x t u r e of
si e v e d C2H6.
to
NZO.
CO > w a s p a s s e d t h r o u g h a f i x e d bed i n a t u b u l a r f l o w reactor a t 2 atmospheric p r e s s u r e . The c a t a l y t i c r u n w a s carried o u t under the
following
conditions:
p r e s s u r e s of e t h a n e 370 kPa. respectively,
catalyst
of NgO C 0 2 >
weight
0.3
g.
partial
37 kPa and of H e 606 kPa
r e a c t i o n t e m p e r a t u r e 387OC.
t h e e x t e n t of
ethane
c o n v e r s i o n w a s u p t o 5%. a n d t h a t of N 2 0 CO > u p t o 20%. 2 P r o d u c t s a n a l y s e s were c a r r i e d o u t b y o n - l i n e g a s chromatography u s i n g
flame-ionization
detector
liquid
and catharometer
and t w o columns: Porapak Q a n d 5 A m o l e c u l a r s i e v e . A c i d i t v measurements.
After
a c t i v a t i o n a t 5 5 O 0 C under h e l i u m
ammonia w a s a d s o r b e d on t o t h e c a t a l y s t a t 1 0 0 ° C .
r a t e 17°/minl
i n d i c a t e d t h e number
TF'D
Cheating
of a c i d sites. g i v e n as t h e
m i 11i mol es of ammonia chemi sor bed p e r gram of c a t a l y s t . $0 the
decomposition.
reactor
under
He
Catalyst C40 s c c m
s a m p l e s w e r e h e a t e d CEjSO°C> i n at
1 atmosphere> for
3 hours.
P u l s e s of p u r e N 0 C 0 . 2 sccm3 i n H e w e r e i n t r o d u c e d a t 347-C. 2 The amount of oxygen h e l d by t h e s u r f a c e No w a s d e t e r m i n e d as
N o = N
- E N N2 O2 and N were t h e amount of n i t r o g e n a n d oxygen r e l e a s e d where N N2 O2 r e s p e cti v e l y . RESULTS AND D I S C U S I O N Upon p a s s i n g t h e r e a c t a n t s over
a c i d i c f o r m of z e o l i t e s t h e
C H a n d H 2 0 were d e t e c t e d . 2 4 The n a t u r e of t h e o x i d a n t u s e d had a s i g n i f i c a n t effect o n t h e
p r o d u c t s CO. CO,.
e t h a n e c o n v e r s i o n r a t e and p r o d u c t
f o r m a t i o n s e l e c t i v i t y Clable
l>.
With O2 as t h e o x i d a n t t h e main p a r t of e t h a n e u n d e r g o e s t h e
Table 1
C a t a l y t i c o x i d a t i o n of e t h a n e by n i t r o u s o x i d e over
ZSM-5 and rnordenite at 3 8 7 * C
Catalyst
O x i dant
R a t e of e t h a n e conver si on, 1 0 a mol ec /c g . $33
HZSM-SC383 HZSM-SC601
O2 N2° O2 N2°
HZSM-SCQO1 HZSM-SC1483
Oz N2° Oz N2°
HM-1 I
O2
HZSM-SC413
N2° N20
S e l e c t i v i t y to,%
C02
*h-peak
C3H6
0.5
48
58
-
6.3
2
88
8
0.3
so
50
-
4.4
2
88
10
0.2
60
40
7
3. 6
1
90
0.2
75
2s
-
0.4
3
8Q
6
total
h-peak
*
0.72
0.39
0.30
0.18
0.24
0.14
0.21
0.13
0. 86
0.34
0.3
59
39
-
2.8
13
85
I
9.7
1
91
7
0.74
0. 38
1
91
6
0.98
0. 08
I .5% N a -
HZSM-SC413 N20
C2H4
A c i d i t y , mmol /g
13.0
- t h e amount of ammonia which i s desorbed above 300*C.
486 deep o x i d a t i o n and no t r a c e of propylene and butenes w a s f o r m e d . By changing Si02/A1203 r a t i o f r o m 38 t o 1 4 8 c a t a l y t i c a c t i v i t y of z e o l i t e s w a s reduced by t h r e e t i m e s . The
ethane
HZSM-SC383
conversion
rate
for
over
N20-C2H6
w a s by an o r d e r of magnitude g r e a t e r
Upon i n c r e a s i n g SiO /A1203
02-C2Hs.
reaction
than t h a t
for
ratio catalytic activity was
2
reduced by a f a c t o r of 10. Ethylene and propylene w e r e found t o be t h e major p r o d u c t s with CO,.
methane and C -hydrocarbons 4
minor amounts. The d i f f e r e n t
of c a t a l y t i c
level
a c t i v i t y for
02-C2H6
in and
t h a t t h e r e a r e t w o r e a c t i o n mechanisms,
N20-C2H6
can i n d i c a t e .
caused
by t h e d i f f e r e n t
c o n t r i b u t i ons of
aci d i c and
oxi d a t i ve
pathways of e t h a n e conversion.
To e l u c i d a t e t h e r o l e of t h e c a t a l y s t
acid-base
a c t i v i t y w a s compared with a c i d i t y ,
catalytic
properties
e v a l u a t e d by TPD
s p e c t r a of ammoni a . conversion for r e a c t i o n of
Upon comparing t h e r a t e s of C2H6 02-C2He
it is evident.
t h a t t h e d e c r e a s e of c a t a l y t i c a c t i v i t y
and t h e amount of s t r o n g a c i d i c sites t a k e s p l a c e c o n c u r r e n t l y . The 0 -C 2
correlation H
2 6
indicates
that
the
activity
of
zeolites
for
conversion can be caused by t h e a c i d i t y of t h e s u r f a c e .
With N 0 as t h e oxidant t h e v a r i a t i o n of z e o l i t e s a c t i v i t y is 2 r a n g i n g f r o m 0.2.10iB t o 13.0.10'* m o 1 e c . C H / C g * s > and does n o t 2 6 c o r r e l a t e with t h e amount of ammonia adsorbed. The r a t e of N 0-C H conversion over HZSM-SCQOI w a s 10 times g r e a t e r t h a n t h e 2 2 6 r a t e observed over HZSM-5C1483, t h e s e samples having t h e equal
amount of s t r o n g a c i d sites. The sodium f o r m of ZSM-SC413 was not a c t i v e i n o x i d a t i v e conversion
of e t h a n e i n N20-C2H6
mixture.
D e c a t i o n i z a t i o n of samples l e d t o t h e appearence of s t r o n g a c i d sites.
These
reaction.
samples
exhibited
also
high
activity
I n t r o d u c t i o n of 1.5%N a i n t o HZSM-SC413
temperature
ammonia
c o n v e r s i o n over
adsorption
form,
1.5% Na-HZSM-SC413
but
the
in
the
suppresed high rate
of
w a s even 1 . 3 t i m e s
ethane
greater.
t h a n over a c i d i c form HZSM-5C413. Therefore. can n o t
be
t h e high l e v e l of c a t a l y t i c a c t i v i t y f o r N20-C e x p l a i n e d by t h e
connected with s p e c i f i c NzO
a c i d i t y of
activation.
samples
and
could
H
2 6
be
T h i s is c o n s i s t e n t with
t h e e a r l i e r s t u d y concerning t h e decomposition of n i t r o u s o x i d e
a t 45O0C over H-mordenite Cref. 73. To check
between
t h e p o s s i b i l i t y of
nitrous
oxide
and
N20
activation
zeolites
was
the interaction
studied
at
347-C.
487
E x p e r i m e n t s d e m o n s t r a t e d t h a t p u r e N 0 decomposed u n d e r s t u d i e d 2 c o n d i ti o n s t o g i v e g a s e o u s n i t r o g e n a n d n o a p p r e c i a b l e evol u t i on of
The N 0 c o n v e r s i o n w a s h i g h e s t i n t h e 2 13, b u t a f t e r 10-19 p u l s e s d e c o m p o s i t i o n d i d
oxygen w a s o b s e r v e d .
f i r s t p u l s e CFig. not occur.
E v o l u t i o n of
oxygen a l s o d i d n o t
a t 347OC i n
occur
f l o w i n g h e l i u m d u r i n g a n hour p e r i o d . Hence. t h e amount of oxygen
by
held
species
decomposed calculation z e o l i t es .
N
and
the the
surface nitrogen
to
equal
is
released.
the
This
amount
fact
of
N20
allows
the
of t h e number of N 20 d e c o m p o s i t i o n sites for each
I F i g 1. The amount of n i t r o u s o x i d e decomposed
-
I
on
HZSM-SC603.
2 - HZSM-8C1483
a s a f u n c t i o n of t h e p u l c e number
n.
P u l c e volume 0 . 2 c c m , T=347-C.
Number of p u l c e s . n The r a t e of C2H6 c o n v e r s i o n as a f u n c t i o n of N 2 0 d e c o m p o s i t i o n sites is shown i n F i g . samples l i n e a r
2.
I t is e v i d e n t t h a t for a l l
correlation exists,
, which h a s d i f f e r e n t s e l e c t i v i t i e s
HM-I1
examined
is t h e case e v e n f o r
that
and C3H6
t o C02, C2H4
f o r m a t i on. The
determining
role
of
surface
oxygen
species
c o n v e r s i o n is a l s o c o n f i r m e d b y p u l s e e x p e r i m e n t s . oxygen p r o d u c e d b y N 2 0
pretreatment
of
HZSM-SC38)
Upon i n c r e a s i n g t h e number of C2H6 p u l s e s e t h a n e
w a s s h a r p l y r e d u c e d t o z e r o a f t e r 5-6 p u l s e s . i'
e t h a n e c o n v e r t e d w a s 5.0.10
m o 1 e c . C 2H6 / g .
C2H6
reacted with
e t h a n e t o f o r m e t h y l e n e as a major p r o d u c t w i t h minor C02.
in
The s u r f a c e amount of conversion
The total amount of Taking i n t o a c c o u n t
t h e s e l e c t i v i t y of e t h y l e n e and C02 f o r m a t i o n i t is p o s s i b l e t o c a l c u l a t e t h e amount of equal
t o 5.3.10''
s u r f a c e oxygen consumed.
a t o m O/g
that
T h i s v a l u e is
c o r r e s p o n d s t o 804 of
initial
488
5
10
-
6
5 -
/7
8
4
12
Number of s i t e s , No*lO-is Fig. 2 .
R a t e of C2H6
decomposition sites N
conversion r i n N20-CeH6
0
0
sites/g
surface N 0 2 r e a c t i o n a t 387OC on z e o l i t e s : v e r s u s number of
I -NaZSM-SC 41 > , 2 - N a Z S M - S C 383 , 3-HZSM-SC 1483, 4-HZSM-SC QO> , 5-HM-11, 6-HZSM-5C 603 , 7-HZSM-SC 38>, 8-HZSM-SC 41 3 , 9-1.5% Na-HZSM-SC 41 3.
a t o m O/g for HZSM-SC38>>.
oxygen c o v e r a g e C 6 . 8 . 1 0 "
agreement between t h e amount of the
consumed
composition observed. coverage
oxygen
, as well dur i ng
o b t a i ned
These
results
determines
oxygen h e l d by t h e s u r f a c e and
as
the
pulse
and
c l e a r l y show
high
Hence, a good
degree
similarity f 1o w
that
of
the
paramagnetic
resonance
studies
product
oxygen
catalytic
e x c e l l e n t s e l e c t i v i t y t o C2-C3 o l e f i n e s f o r N20-C2HE Electron
of
exper i ments
have
was
surface
activity
and
reaction. demonstrated
t h a t t h e r e are s t r o n g r e d o x sites on HZSM-5 and m o r d e n i t e c a p a b l e to
ion-radical
form
cation-radicals w i t h HZSM-5
of
organic olefines
Cref.
species.
me
w a s observed d u r i n g t h e i n t e r a c t i o n of
appearence
8 3 , t h e anion-radical
w a s d e t e c t e d by EPR
90;
on HM d u r i n g a d s o r p t i o n of s u l f u r d i o x i d e C r e f . 9). Decomposition of
nitrous
oxide
can
be
a
result
of
N 0 2
s t r u c t u r a l d e f e c t s on t h e z e o l i t e framework 3+ m e t a l i o n s . for example Fe .
interaction
Cref.
with
73 o r impure
As t o p o s s i b l e oxygen s p e c i e s r e s p o n s i b l e f o r t h e r e a c t i o n t h e f o l l o w i n g o n e s may be mentioned: t o work
Cref.
10>
O-..-O-type
0- and atomic oxygen. sites
can
be
formed
According by
a
high
489
temperature being
t r e a t m e n t of
equal
to
lo"
CSi02/A1203=70-1403, t h e number
HZSM-5
spin/g
as
measured
by
EPR
spectroscopy.
W i t h i n a n o r d e r of magnitude i t c o r r e s p o n d s t o t h e number of NEO decomposition
sites which
HZSM-SC148>.
The
was
surface
found
oxygen
to
be
5.10''
species
sites/g
formed
by
for N20
d e c o m p o s i t i o n d o e s n o t e x h i b i t a n EPR s i g n a l . I t may b e c o n c l u d e d that
they
are l i k e l y t o be uncharged
forms
having
an
atomic
c h a r a c t e r as p r o p o s e d for o x i d a t i v e d e h y d r o g e n a t i o n of e t h a n e by n i t r o u s oxi d e o v e r c o b a l t -doped magnesi um oxi d e C r e f 11>. REFERENCES 1.
2.
S. S. S h e p e l e v . C19631 319. S. S.
K . G. I o n e .
Shepelev.
K . G.
React.
Ione.
React.
Kinet. Kinet.
Catal
Cata .
Lett. ,
23
L e t t . , 23
6.
Cl9833 323. S. K o w a l a k , J . B. Moffat , A p p l i e d C a t a l y s i s , 3 6 C I -23 C 19883 139. K . A i k a . J . H . L u n s f o r d . J . Phys. Chem., 81 C19773 1393. M. I w a m o t o . J . H. L u n s f o r d , J . Phys. Chem. 84 C19801 3078. M. I w a m o t o , T. Taga. S.K a g a w a . Chem. L e t t . , ClQ823 1469.
8. 9
19C43. C19783 Q22. S. J . S h i h , J . C a t a l . , 79 ClQ833 390. A. A . S l i n k i n . A. V. Kucherov, D. A. K o n d r a t j e v ,
3. 4.
5.
.
7. A . A . S l i n k i n .
T. K . Lavrovskaya,
I . V. Mishin.
Kinet.
Katal. ,
T. N. Bondarenko. A.M.Rubinstein. Kh. M. Minachev. K i n e t . K a t a l . . 22 (1-3 156. V. A. Poluboyarov. V. F. Anufrienko. N. G. K a l i n i n a . S. N. Vosel , 10. K i n e t . Katal . , 28 C19851 751. 11. K . A i k a . M.Isobe. K.Kido, T.Mariyama. T . O n i s h i . J . Chem. SOC. F a r a d a y T r a n s . -1, 83 C18873 3139.