s- and t-Channel transformation matrices for helicity and invariant amplitudes for γ + N → 1± + N

s- and t-Channel transformation matrices for helicity and invariant amplitudes for γ + N → 1± + N

ANNALS OF PHYSICS 80, 387-396 s- and t-Channel (1973) Transformation Invariant RONALD Center Amplitudes Matrices for y + N - G. PARSONS, BEN L...

309KB Sizes 2 Downloads 45 Views

ANNALS OF PHYSICS 80, 387-396

s- and t-Channel

(1973)

Transformation

Invariant RONALD Center

Amplitudes

Matrices for y + N -

G. PARSONS, BEN L. MANNY,

for Particle

Theory,

for

The University

Helicity

and

I* + N+

AND ROBERT BECK CLARK

of Texas

at Austin,

Austin,

Texas

78712

Received July 14, 1972

The Algebraic transformation matrices, valid for all s and I, connecting the s- and t-channel helicity amplitudes to a corresponding set of gauge invariant covariant amplitudes are presented for the photoproduction processes y + N j l* + N.

I.

INTRODUCTION

This paper is the third and last in a series of papers presenting transformation matrices connecting a set of helicity amplitudes to a set of gauge invariant covariant amplitudes. In this paper the processes N + y + N + (l-, l+) are considered. The transformation matrices for the above processes are given for both the s-channel and t-channel amplitudes. As in the first two papers [ 1, 21, the calculation was performed using the symbolic algebraic computer language REDUCE [3] to perform the necessary matrix multiplications and a variety of substitutions. The program produced output which required only a very small amount of further manipulation by hand to obtain the results shown below. The program is general enough to calculate the transformation matrices for any process of the type A+B+C+D

where A, B, C, and D are any particle or resonance of a given spin and parity and where the set of covariant amplitudes is given. In Section IT, the notation and conventions are established, and, in Section III, the results of the calculation are listed. + Supported in part by the U. S. Atomic Energy Commission under Contract At(40-1)3992.

387 Copyright All rights

0 1973 by Academic Press, Inc. of reproduction in any form reserved.

388

PARSONS,

MANNY,

AND

CLARK

11. NOTATION

We define J@&~,~, to be the helicity amplitude

for the s-channel reaction

1+2-+3+4 with momenta pi and helicities Xi . For the corresponding reaction in the t-channel, 4+2+3+i

with momenta qi and helicites Xi we define the helicity amplitude M!$,,A,A, . The spin-parities Jp of particles 1-4, respectively, are (&+), (I-), (fr+) and (l-, l+). The mass of particle 2 (the photon) is zero. A. s-Channel In the s-channel, the helicity amplitudes Ai by

are related to the covariant amplitudes

There is an implied sum O-3 over repeated greek indices using the metric of Bjorken and Drell [4]. The kinematics are defined in Fig. 1. The polarization four-vector of the photon (particle 2) is c”(p2 , h,) and has components 1 ‘I

+I)

= 2112

II 0

0

1

1 H -1

-i

)

E”(P2 9 -I)=-

-i

0

2

0

where pzw = 1p2 / (1, 0, 0, -1). The spinors u(p, , X,) for nucleon 1 have matrix representations 1 u ( Pl,

+ 2

i

El + m, Ii2 1 2ml

i I 0 IPII 4 + ml 0

,

0 u

(

P1,--

1 0

1 = ( El + ml 1ljz I 21 24 6

I 9

I Pl I + 1711

S- AND t-CHANNEL

TRANSFORMATION

389

MATRICES

FIG. 1. s-Channel center-of-mass kinematics.

where plu = (El , 0, 0, I p1 I). The spinors U(P, , h3) for nucleon 3 have the matrix representations

where p3p = (ES , I p3 1sin 8, , 0, j pS j cos 0,). The polarization particle 4 is EQ~ , h4) where

i I 0

dP4 3 +I)

1

= - 21/2

-cam e,5 i

sin 8,



four-vector

for

390

jn14 90) =1 1

PARSONS,

MANNY,

AND

CLARK

-- E4

in4 sin 0

dp4

8



,

1i-cos 8, 1 --

,:

c~~

8,

4

0

EYP4 3 -l)‘w

-j



sin 8,

and where p4p = (E4, The matrices SiP respect to the photon processes referred to

- ( p4 / sin 8,) 0, - / p4 ( cos 6,). are defined so as to be individually gauge invariant with (particle 2). These matrices are listed below for the various in this paper. We define P = (1/2)(p, + p3).

N+y+N+l(s+) + 1- - (Q+) + Ix;”

= P’(P,

. Pp4u - pz ’

Yy

= pz * p4gvLL

y:

= p2 ’ PgV, - p2”PP

4;”

= gvup’z - p2y

sy

= (g*upLpz . P - Pz”W

p4l-y

- PZ’P,”

$72

Y’,” = P”(PQYs - p2 . Py’) JT

=

P2wf2

sy

=

y*(p2

. PP4@

9;;

=

y’(y”~2

'p4

-

p4?2)

9’;

= y’(yL”p, . P -

P%)

G

= Y”Y”P’,

-

Pz . P4W

S- AND

?-CHANNEL

TRANSFORMATION

MATRICES

N+y+N+l+ (it+) + l- + (4’) + 1+ 9;” = iy,pY(p,

- Pp4@ - pz . p.$Pu)

C

= iyAp

. p4gYu - P2”P49

Sr

= iy,(p,

. PgY” - p2”Pu)

=5T = 9y

~ys(PP2

-

P2W

= iy,(gvGp2 . P - p2yPu) p2

YT = iy5Py(PLIp2 - p2 * Py”) 9;” = iysp2YP2 9:

= iysPvyuP,

-C

= h.yvb2

=%

=

9;:

= iy,y”(y*p,

-0;;

=

iy5yy(yL;I)2

.

PP4” . P4

-

P2

. P4W

P4”p2)

* P - Pup*)

iysy"yup2

FIG.

2.

t-Channel

center-of-mass

kinematics.

391

392

PARSONS, MANNY, AND CLARK

B. t-Channel In the t-channel, the helicity amplitudes are related to the covariant amplitudes Ai by

There is an implied sum O-3 over repeated greek indices using the metric of Bjorken and Drell [4]. The kinematics are defined in Fig. 2. The polarization four-vector for the photon (particle 2) is @(q2, A,) and has components

442 3 $1) = &

i I 0 -cos 6, -i 3

1

l %I22-1) = p

sin Bt

0 cos 8,

-i

i -sin

etI

where q2“ = I q2 I (1, sin 19~~0, cos 0,). The spinors for the antinucleon matrix representation9

2’ (ql ) + ;, = ( E’2fn,m’)1’2

-

El

y2

have the

0 I Ql I 4 f ml 0 1

-

21(ql ) - ;) = ( y+,m1

>

I %

I

+

ml

0 -1 0

where qlu = (4 , (40, I q1 I). 1 This convention for labeling the helicities of the antiparticles, represented by v-spinors, has been adopted because of its widespread usage. The general expression for this convention is

where s = --h and where, for p in the fz direction, Xl/? =

1 0

0

and

s- AND

~-CHANNEL

TRANSFORMATION

MATRICES

393

The spinors for N (particle 3) have the matrix representation 0

1 0 I 43 I E,

+

m3

-1 0 I 43 I E,

+

t%

0

where q3u = (E3, 0, 0, - 1q3 I). The polarization the matrix representations

four-vector

for particle 4 has

0

1

r1 -cos ot

21/2

i



sin 8,

--

) fi’4

444 ?0)

-E4 sin fl’4

et

0 --El cos et 1124

dq‘l 3 -1)

-i I 0 -cos et -i 2112 1

'

sin 8,

where q4 = (E4 , - 1q4 1sin et , 0, - I q4 / cos 0,). The matrices Yifl are defined so as to be individually gauge invariant with respect to the photon (particle 2). These matrices are listed below for the various processes referred to in this paper. We defined Q = (1/2)(q3 - ql).

394

PARSONS,

MANNY,

AND

CLARK

l-+y-d+m i=+ 4“

=

-Q”h

sy

=

-q2

#y

=

q2 . Qg”N

Jy

=

gy2

AT’

=

(g%

*

. q4 g”(”

Q”(Q“t2

-fT =

42Y42

$7

=

QyQ2

4,“

=

-y”h -Y”(Y”42

G

y”W%

=

4; =

-

+

-

-

4“ =

s;z=

Qsi’

q2 .

l--($‘)

+ @)

aQ10

42”44”

q2”QG

q2”yU

Q - qx”Q”>42 - q2. QY“)

.

.

QW- q2. qaQ") . q4

.

-

44”42)

Q - Q”42)

Y’Y”d2

1++ 3’1” =

--iysQ”(q2

6?

=

s-92

3:

= kh

FT

= iy5W42

-

Qa”

* 44P .

-

+

92 *

l--+(p)

qdQ”>

q2yq4w)

Qg”” - qt”Q’9 -

q2”y*)

Q - qz”Q’912 9: = b’@@l”dz - % . Qr‘9 3”;” = iy5q2yy~42

4”

= Mgyv,

ST

=

iy5Qyufj2

Ti‘

=

-hiy”(q2

Gl

=

-iy5y”(yV2

J%

=

hW‘q2

Gi

=

iy5yYt2

.

.

Qw -

*

q4

Q-

qaQ’9 - W42) Q“4J -

qz .

+ ($y

S- AND t-CHANNEL TRANSFORMATION MATRICES

III. A. s-Channel The kinematical

RESULTS

invariants in the s-channel are (see Fig. 3): s = (PI + PZ = (P3 + PA25 t = (PI - PA2 = (Pz - P4Y, u = (PI - P*Y = (Pz - P32, s + t + u = ml2 + mS2 + md2, 9& = {(S - (mi -+ mi)“)(s - (mi --

qSij = (s - (mi + mj)2)1/2 & = (s - (mi -- mJ2)l/’ wi = (s + mi2 - mj2)/2s1/2 pii = 9&/29

m2 = 0, WIj)2))‘/2

threshold (i,j) pseudothreshold

(i, j)

i = 1,2-j

= 2,1

1i == 3,4-j

= 4,3

) p1 I = 1p2 1 = p12 = pzl = c.m. initial momentum I p3 / = 1p4 I = pza = pd3 = c.m. final momentum cos e = 2st + S2 s

SZ@?i2

+ (ml2 - m22)(m,2 - rna2) Y;2%4

FIG. 3. Kinematic variables in the s-channel.

B. t-Channel The kinematical

invariants in the t-channel are (see Fig. 4): t =

(q2

+ qd2 = (Sl + qJ2,

s = (41 -

4212

= (93 - qJ2,

ZJ = (41 - %I2 = (42 - qd2, t + s + ii = ml2 + mS2 + md2, m2 = 0,

396

PARSONS,

MANNY,

AND

CLARK

FIG. 4. Kinematic variables in the r-channel.

qj

=

{(t

-

(mi

+

mJ2)(t

~

(rni

-

rnj)“)}‘l”

$ii = (t - (WZ~ + WZ~)‘)I/’

threshold (i, j)

*ii = (t - (W7i-

pseudothreshold (i, j)

WZj)2)1’2

oi = (t + mi2 - mi2)/2t’12 = 9J2P

qij

i=4,2*j==2,4 I i = 3, 1 t) j = 1,‘3

1q2 j = / q4 1 =

qJ2

=

q2a

= c.m. initial momentum

1q1 1 = j q3 ) =

qsl

=

q13

= c.m. final momentum

cos e = 2ts + t2 - t&q2 t

+ (mJ2 - m22)(m32 - ml”) <29&

(s, t) and A!$&s, The helicity amplitudes ~4’l\$,,~~~~ amplitudes Ai(s, t) are listed in Section IV.2

t) in terms of the covariant

REFERENCES

1. ROBERT BECK CLARK, BEN L. MANNY, AND RONALD G. PARSONS, Ann. Phys. 69 (1972), 522. 2. RONALD G. PARSONS,Ann. Phys. 72 (1972), 171. 3. A. C. HEARN, REDUCE, a user-oriented interactive system for algebraic simplification, in “Interactive Systems for Experimental Applied Mathematics” (M. Klerer and J. Reinfelds, Eds.), Academic Press, New York, 1968. 4. J. D. BIORKEN AND S. D. DRELL, “Relativistic Quantum Mechanics,” McGraw-Hill, New York, 1964. 2 See NAPS document # 02167 for 107 pages of supplementary material. Order from ASIS/ NAPS c/o Microfiche Publications, 305 E. 46th St., New York, NY 10017. Remit in advance for each NAPS accession number $1.50 for microfiche or $5.00 for photocopies up to 30 pages, 15e for each additional page. Make checks payable to Microfiche Publications.