Exp. Eye Res. (1990)
111
51, 111-112
LETTER
S-Antigen
from
the
TO THE EDITORS
Rat Retina and Pineal Sequences
The pineal gland (PG) has photoreceptor cells and proteins similar to the photoreceptor proteins in the retinas of most animals. However, the mammalian PG is considered to have evolved from the common ancestal photoreceptor cells of the third eye to a secretory organ. Some photoreceptor proteins such as rhodopsin and transducin have been converted from major proteins in the retina to proteins of undetectable levels in the PG by immunocytochemical staining techniques (Vigh and Vigh-Teichman, 1981; van Veen et al., 1986). On the other hand, some proteins such as S-antigen (S-Ag) and 33-kDa protein are still major soluble proteins in pinealocytes (Kalsow and Wacker, 1978; Reig, Yu and Klein, 1990). S-Ag is also known to induce experimental autoimmune inflammation in the retina and PG (Wacker et al.,
Gland
Have
Identical
1977). We wondered whether S-Ag sequences are conserved or diverged in the mammalian pineal gland during evolution. Previously, we have determined the sequence of S-Ag cDNA from the rat PG (Abe et al., 1989). Here we present the S-Ag sequence from rat retina and compare its sequence with the rat PG S-Ag. Nine cDNAs have been isolated from a rat retinal library (kind gift from Drs G. Lieu and F. Gonzalez-Fernandez, Baylor College of Medicine, Houston, TX) and the largest cDNA sequence has been determined. The nucleotide and the deduced amino acid sequences are shown in Fig. 1. Comparison of the sequences with those of the rat PG indicated that the nucleotide and amino acid sequences of S-Ag from retina and PG are identical. These results further suggest that the functional role is the same in both tissues. We found
'_AGCCAGGGCCTCACCCTTGCCCTGTGAGGTTATCTGATAGGATTTTACCAGTTCCCTCAGCGCACGGGGCTAGCTGCTCACCATCTGAA .~:';CACAGCCATTCGGCCTTGGACATACATCCCAAGGGACAGACAACATGGCAGCCTGTGTGAAGACCAATAAATCCCATGTCATCTTCAA M AA C VKTNKSHV I F GAAGGTCTCCCGGGACAAGTCGGTGACCATCTACCTGGGG~GAGAGACTATATAGATCACGTCAGCC~GTAGAGCCTGTAGATGGTGT KVSRDKSVTIYLGKRDYIDHVSQVEPVDGV TGTATTGGTGGATCCTGAGCTCGTGAAGGGGG~G~GTGTATGTCACCCTGACCTGCGCCTTCCGCTATGGCC~GAGGACATTGATGT VLVDPE LVKGKKVYVTLTCAFRYGQEDIDV I;ATTGGCCTGACCTTCCGCAGGGACCTGTATTTCTCTCGGGTCCAGGTATATCCTCCTGTTGGGCCATGAGTGCCCCAACCCAGCTCCA IGLTFRRDLYFSRVQV YPPVGAMSAPTQLQm ';TTGAGCCTGCTCAAGAAACTGGGAGATAACACGTACGTACCCATTTCTGCTCACGTTCCCTGACTACCTACCCTGCTCAGTGATGTTGCAGCC LSLLKKLGDNTYPFLLTFPDYLPCSVMLQ ;~;CTCCACAAGATGTAGGGAAGAGCTGTGGGGTTGACTTTGAGGTT~GCATTTGCCACAGACATCACAGATGCTGAAGAGGACAAT A P Q D V G KS CGVDFEVKAFATDITDAEEDKIW l_CCC.~GAAGAGCTCTGTGCGGTTACTGATCCGGAAGGCCTCCTG P K K S SVRLLIRKVQHAPPEMGPQPCAEASWB ';CAGTTCTTCATGTCTGACAAGCCCCTGCACCTCTCAGTCTCCCTCAGCAAAGAGATATATTTCCATGGGGAGCCCATCCCTGTGACCGT SDKPLHLSVSLS Q F FM K E I Y FHGEPIPVTVa ';ACTGTGACCAATAACACGGAGAAGGTTGTCAAGAAGATTAGCCAATGTGGTTCTCTACTCGAGTGATTA TVTNNTEKVVKKIKVSVEQIANVVLYSSDYZ55 TTACGTCAAGCCTGTGGCCTCGGAGGAAACACAGGAAAAAGTGCAGCCAAACAGCACTTTGACCAAGACGCTGGTGCTGGTGCCCCTCCT YVKPVASEETQEKVQPNSTLTKTLVL v P L ~;GCTAACAACAGAGAAAGAAGAGGCATCGCGCTGGATGGGAAGATCAAGCATGAGGACACAAACCTGGCCTCCAGCACCATTATCAAGGA AN N R E R R G I A L D G K I K H E D T N LAS S T I I K GGGCATCGATCGGACCGTCATGGGCATCCTGGTGTCATACCATATCAAGGTGAAGCTCACGGTGTCAGGCTTTCTAGGAGAGCTCACATC GIDRTVMGILVSYHIKVKLTVSGFLGELTS C.~GTGAAGTGGCTACTGAGGTGCCGTTCCGTCTGATGCACCCCCAGCCTGAGGACCCAGCAAAAGAAAGTGTCCAGGATGAAAATCTGGT SEVATEVPFRLMHPQ P E D PAKESVQD E N i TTTTGAAGAGTTTGCTCGACAAAATCTGAAAGATACTGGAGAGAATACAGAAGGGG~G~GATGAGGATGCAGGCCAGGATGAGTG~G FEEFARQN LKDTGENTEGKKDEDAGQDE~;CTTAGCCTTGATGCCTAGAAACTGCTTGTAGTCCTGGTTGCCTTGTGGGAAACCCCTGGTAACCTTTCAGAGTTATGCTAAATACGAAA XTCGAGCATTCTTCCCAGAAATAAAGTCTGTGGGTCCTCCCA
K
P
90 180 15 270 45 360 75 450 540 __ 135 630 720 810 900
990 -285 1080 E -315 1170 -345 1260 V 375 1350 403 1440 1508 L
FIG. 1. Nucleotide and deduced amino acid sequences. The numbers at the right margin indicate nucleotide and amino acid (underlined) residues. The lines below the nucleotide sequence indicate the initiation, termination and poly(A) attaching signal sequences. Materials and Methods are shown elsewhere (Abe et al., 1989). 00144835/90/070111+02
$03.00/O
0 1990 Academic
Press Limited
T.ABE
112
one error in the rat PG DNA sequence (position 462). It should be T not G and the corresponding amino acid residue is L not R (residue 109). In addition, one Laboratory of Retinal Ceil and Molecular National Eye Jnstitute, National Institute of Health, Bethesda, MD 20892, U.S.A. (Received
AND
typographical error was found in the rat PG sequence at position 103 6 ; it should be C not A.
Biology,
23 February
T. SHINDHARA
TOSHIMICHI
1990 and accepted
27 February
TOHRU ABE SHINOHARA’
1990)
* For correspondence
References Abe, T., Yamaki, K., Tsuda, M., Singh, V. K., Suzuki, S., McKinnon, R., Klein, D. C., Donoso, L. A. and Shinohara, T. (1989). Rat pineai S-antigen: sequence analysisrevealspresenceof a-transducin homologous sequence.FEBS I.&t. 247, 307-11. Kalsow, M. C. and Wacker, W. B. (1978). Pineal gland involvement in retina-induced experimental allergic uveitis. Invest. Ophthalmol. Vis. Sci. 17, 774-83. Reig, J. A., Yu, L. and Klein, D. C. (1990). Pineal transduction: Adrenergic- cyclic AMP-dependent phosphorylation of cytoplasmic 33 kDa protein (MEKA) which binds &complex of transducin. J. BioI. Chem. 265, 5816-24.
van Veen,T., Ostholm,T., Gierschik,P., Spiegel,A., Somers, R., Korf, H. W. and Klein, D. C. (1986). a-Transducin immunoreactivity in retinae and sensorypineal organ of adult vertebrates.Proc. Natl. Acad. Sci. U.S.A. 83, 912-6. Vigh, B. and Vigh-Telchman,I. (1981). Light- and electronmicroscopicdemonstrationof immunoreactiveopsinin the pinealocytesof various vertebrates.CeilTissueRes. 221, 451-63. Wacker, W. B., Donoso,L. A., Kalsow,C. M., Yankeelov,Jr.. J. A. andOganisciak,D. T. (1977). Experimentalallergic uveitis. Isolation,characterization,and localizationof a solubleuveitopathogenicantigenfrom bovine retina. 1. Immunol. 119, 1949-58.