Saposin D: A sphingomyelinase activator

Saposin D: A sphingomyelinase activator

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Vol. 156, No. 1, 1988 Pages 403-410 October 14, 1988 Saposin Satoshi D: A Sphingomyelinase ...

587KB Sizes 7 Downloads 78 Views

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Vol. 156, No. 1, 1988

Pages 403-410

October 14, 1988

Saposin Satoshi

D:

A Sphingomyelinase

Morimoto*,

Brian and

*Department School

of

of

Health,

Institutes

Molecular

Martin # , Yasuo

Center

University

of

California

of H e a l t h ,

Neurogenetics Bethesda,

K i s h i m o t o *I

S. O ' B r i e n *

Neurosciences,

Medicine,

La Jolla, #National

M.

John

Activator

for

Maryland

San

Genetics, Diego,

92093

National Unit,

Molecular

California

Institute

Building

I0,

for

Mental

Room

3D16,

20892

Received August 25, 1988

SUMMARY: Saposin D, a n e w l y discovered h e a t - s t a b l e , I0 kDa g l y c o p r o t e i n , was isolated f r o m Gaucher s p l e e n and p u r i f i e d to h o m o g e n e i t y . Chemical s e q u e n c i n g from its a m i n o t e r m i n u s d e m o n s t r a t e d c o l i n e a r i t y b e t w e e n its a m i n o acid s e q u e n c e and the d e d u c e d a m i n o acid s e q u e n c e of the f o u r t h d o m a i n of p r o s a p o s i n , the p r e c u r s o r of s a p o s i n p r o t e i n s . S a p o s i n D s p e c i f i c a l l y stimulates acid s p h i n g o m y e l i n a s e b u t has no significant effect on the other h y d r o l a s e s tested. © 1988 A c a d e m i c

Press,

Inc.

I N T R O D U C T I O N : The l y s o s o m a l h y d r o l y s i s of s p h i n g o l i p i d s is c a t a l y z e d b y the sequential

a c t i o n of acid

hydrolases.

Several

enzymatic hydrolytic

steps

are

s t i m u l a t e d b y small h e a t - s t a b l e proteins w h i c h i n t e r a c t w i t h either the s u b s t r a t e or the e n z y m e or both. Two of the h e a t - s t a b l e proteins have b e e n s t r u c t u r a l l y defined. The f i r s t p r o t e i n , n a m e d s a p o s i n B in this r e p o r t a c t i v a t o r of c e r e b r o s i d e s u l f a t a s e ( i ) , GMI p r o t e i n I (3), and d i s p e r s i n (4),

and p r e v i o u s l y d e s i g n a t e d

an

a c t i v a t o r (2), s p h i n g o l i p i d a c t i v a t o r

s t i m u l a t e s the h y d r o l y s i s of

galactocerebroside

sulfate (sulfatide) b y a r y l s u l f a t a s e A (1,5,6), GMI ganglioside by 5 - g a l a c t o s i d a s e (2,7) and g l o b o t r i a o s y l c e r a m i d e (Gb0se3Cer) b y c(-galactosidase A (8).

I m m u n o l o g i c a l and

genetic e v i d e n c e has d e m o n s t r a t e d that saposin B activates all t h r e e r e a c t i o n s (3,8). In a r e c e n t study, Li et al. (9) showed that this protein has

an e v e n b r o a d e r s u b s t r a t e

specificity t h a n r e p o r t e d p r e v i o u s l y , p r o m o t i n g the h y d r o l y s i s of the a b o v e t h r e e glycosphingolipids, as well as GM2 ganglioside, sulfate esters of l a c t o s y l c e r a m i d e and asialo GM2, globoside, t h r e e n e o l a c t o - t y p e glycolipids and two g l y c e r y l g l y c o l i p i d s . From t h e s e r e s u l t s , Li e t al. (9) c o n c l u d e d t h a t the h y d r o l y s i s of t h e s e lipids is

To W h o m

C o r r e s p o n d e n c e S h o u l d Be A d d r e s s e d . 0006-291X/88 $1.50 403

Copyright © 1988 by Academic Press, Inc. All rights" of reproduction in any form reserved.

Vol. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

p r o m o t e d b y a n o n s p e c i f i c d e t e r g e n t action of s a p o s i n B and called it "nonspecific activator protein". The p r i m a r y structure of saposin B was d e t e r m i n e d b y s e q u e n c i n g of a cDNA encoding it (I0). The physiological significance of saposin B is u n d e r s c o r e d b y the d i s c o v e r y of its a b s e n c e in a v a r i a n t form of m e t a c h r o m a t i c l e u c o d y s t r o p h y (8). The second protein, called saposin C in this p a p e r and p r e v i o u s l y t e r m e d factor P (I I), g l u c o c e r e b r o s i d a s e activator (12), coglucosidase (13), s p h i n g o l i p i d activator p r o t e i n 2 (3), and A1 activator (14), stimulates the h y d r o l y s i s of glucosylceramide b y glucosylceramidase (II-14),

t h a t of g a l a c t o c e r e b r o s i d e b y g a l a c t o s y l c e r a m i d e B-

g a l a c t o s i d a s e (15) and t h a t of s p h i n g o m y e l i n b y s p h i n g o m y e l i n a s e (15).

Unlike

saposin B, s a p o s i n C a p p e a r s to i n t e r a c t w i t h e n z y m e s to e x e r t its stimuJatory effect (16). The p r i m a r y s t r u c t u r e of saposin C was d e t e r m i n e d b y chemical s e q u e n c i n g of its amino acids (17, 18) and b y deducing its sequence from nucleotide sequencing of a cDNA e n c o d i n g p r o s a p o s i n , its p r e c u r s o r

(19). The p h y s i o l o g i c a l s i g n i f i c a n c e of

s a p o s i n C w a s d e m o n s t r a t e d b y d i s c o v e r y of its d e f i c i e n c y in a v a r i a n t form of Gaucher's disease (20). Recently, this l a b o r a t o r y has elucidated the complete n u c l e o t i d e s e q u e n c e of a cDNA coding

for prosaposin, the p r e c u r s o r p r o t e i n of both saposin B and C (19).

P r o s a p o s i n was f o u n d to c o n t a i n 4 saposin domains, two of w h i c h are saposin B and C; t h e s e are f l a n k e d b y two additional d o m a i n s we call saposin A and saposin D. Each s a p o s i n d o m a i n (A,B,C,D) is a p p r o x i m a t e l y 80 a m i n o acid r e s i d u e s in length, has n e a r l y i d e n t i c a l p l a c e m e n t of c y s t e i n e r e s i d u e s , g l y c o s y l a t i o n sites and helical r e g i o n s and is f l a n k e d b y proteolytic cleavage sites, Molecular models indicate t h a t the p r o t e i n s d e r i v e d from each d o m a i n can fold to give rise to a c o n f o r m a t i o n a l l y rigid h y d r o p h o b i c pocket held together by

3

disulfide bridges, We p r e d i c t e d t h a t

proteolytic cleavage of p r o s a p o s i n at each d o m a i n b o u n d a r y should give rise to all 4 saposins. We h a v e r e c e n t l y isolated saposin D, the p r o t e i n arising from d o m a i n 4. Saposin D appears

to s p e c i f i c a l l y s t i m u l a t e s p h i n g o m y e l i n a s e to h y d r o l y z e the

p h o s p h o r y l c h o l i n e m o i e t y of s p h i n g o m y e l i n .

METHODS I s o l a t i o n of S a D o s i n I). T e c h n i q u e s used for the i s o l a t i o n of s a p o s i n D were, in general, similar to those used for the isolation of coglucosidase b y Sano and R a d i n (18). Briefly, 201 g r a m s of spleen from a p a t i e n t w i t h a d u l t t y p e Gaucher's disease was h o m o g e n i z e d w i t h 800 ml of w a t e r and the h o m o g e n a t e was h e a t e d at 100°C for I0 min. The m i x t u r e was t h e n centrifuged at I0,000 x g f o r 15 min. and the s u p e r n a t a n t w a s f r a c t i o n a t e d b y a m m o n i u m sulfate p r e c i p i t a t i o n . The p r e c i p i t a t e s w h i c h a p p e a r e d b e t w e e n 45 and 80% s a t u r a t i o n , w e r e collected and dialyzed. The dialysate was t h e n f r a c t i o n a t e d by column c h r o m a t o g r a p h y on DEAE-cellulose (DE-52, W h a t m a n ) . The c o l u m n w a s e l u t e d w i t h a 0-0.SM NaCI l i n e a r g r a d i e n t in 10 mM sodium p h o s p h a t e buffer, pH 7.0. Fractions positive for s t i m u l a t i o n of h y d r o l y s i s of 4m e t h y l u m b e l l i f e r o n e (4-MU) B-D-glucoside (see b e l o w ) w e r e pooled, dialyzed and Ivophilized. The residue, after dissolving in a small v o l u m e of water, was f r a c t i o n a t e d 404

VoI. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

by gel f i l t r a t i o n using S e p h a d e x G-75. The f r a c t i o n s c o n t a i n i n g s t i m u l a t i n g a c t i v i t y for 4-MU g l u c o s i d e h y d r o l y s i s w e r e pooled and f u r t h e r f r a c t i o n a t e d b y HPLC. A Varian m o d el 5000 HPLC e q u i p p e d with a Vydac p r o t e i n C4 column (4.6 mm b y 25 cm) was used and f r a c t i o n s w e r e e l u t e d w i t h a l i n e a r g r a d i e n t of w a t e r c o n t a i n i n g 0.1% t r i f l u o r o a c e t i c acid and a c e t o n i t r i l e - w a t e r (4:1) c o n t a i n i n g 0.1% t r i f l u o r o a c e t i c acid. Peaks w e r e d e t e c t e d by m e a s u r i n g a b s o r b a n c e at 220 nm. A typical c h r o m a t o g r a m is s h o w n in Fig. I. The e f f l u e n t comprising t h e saposin D peak w h i c h e l u t e d l at er t h a n saposin B and C ( s h o w n in Fig. I) was collected and e v a p o r a t e d to dryness. .Immunological Procedures: A n t i b o d i e s ag ai n st s a p o s i n D w e r e p r e p a r e d in a r a b b i t as d e s c r i b e d by Crowle (21) and p u r i f i e d w i t h an a f f i n i t y c o l u m n w h i c h c o n t a i n e d p u r i f i e d saposin D linked to Affi-Gel 10 A c t i v a t e d A f f i n i t y S u p p o r t (BioRad) as d e s c r i b e d p r e v i o u s l y (10). Rabbit a n t i b o d i e s ag ai n st sap o si n B and C w e r e p r o v i d e d by Dr. A r v a n F l u h a r t y and Dr. David W en g er , r e s p e c t i v e l y . Dot and W e s t e r n blots w i t h t h e s e antibodies w e r e p e r f o r m e d as d e s c r i b e d pt'eviously (10). A~ys for Lvsosomal Enzyme Activities; Sphingomyelinase activity was assayed as d e s c r i b e d by Wenger (22). [ M e t h y l - 1 4 C ] s p h i n g o m y e l i n o b t a i n e d f r o m Dr. D. A. W e n g e r or f r o m NEN/DuPont, w a s used as s u b s t r a t e . H u m a n p l a c e n t a l s p h i n g o m y e l i n a s e p u r c h a s e d f r o m Sigma Chemical Co. or a Triton X-100 e x t r a c t of a p a r t i c u l a t e f r a c t i o n of h u m a n liver, as d e s c r i b e d by Radin and D e t e n t (23) w as used as an e n z y m e source. Galactoceramide 5 - g a l a c t o s i d a s e and f i - g l u c o s y l c e r a m i d a s e w e r e assayed as d e s c r i b e d b y W e n g e r et a i . ( 1 5 ) . [G-3H]Galactosylceramide w a s p r e p a r e d as d e s c r i b e d p r e v i o u s l y (24). [G-3H]Glucosylceramide w a s a gift f r o m Dr. D. A. W e n g e r . H u m a n s p l e e n w a s h o m o g e n i z e d w i t h two v o l u m e s of w a t e r and c e n t r i f u g e d at 12,500 x g for I0 m i n and t h e s u p e r n a t a n t o b t a i n e d w a s used as an e n z y m e s o u r c e of g a l a c t o s y l c e r a m i d e ~ - g a l a c t o s i d a s e . The s a m e h u m a n l i v e r p r e p a r a t i o n used for s p h i n g o m y e l i n a s e a c t i v i t y w a s used as e n z y m e s o u r c e for f i - g l u c o s y l c e r a m i d a s e assay. GMI g a n g l i o s i d e fJ-galactosidase a c t i v i t y w a s a s s a y e d as d e s c r i b e d p r e v i o u s l y (25). The s u b s t r a t e [ g a l a c t o s e - 3 H ] g a n g l i o s i d e G MI w h i c h w a s s y n t h e s i z e d as d e s c r i b e d (26) and p u r i f i e d h u m a n liver acid f~-galactosidase w e r e p r o v i d e d b y Dr. Yoshimi Y a m a m o t o of this la b o r a t o r y . The h y d r o l y s i s of 4-MU B - D - g l u c o s i d e or fJ-Dgalactoside was p e r f o r m e d as described p r e v i o u s l y (27). O t h e r A n a l y t i c a l M e t h o d s : P e p t i d e s e q u e n c i n g w as a c c o m p l i s h e d using an Applied Biosystems model 470A gas-phase s e q u e n c e r e q u i p p e d w i t h a m o d e l 120A online PTH a n a l y z e r using s t a n d a r d p r o c e d u r e s s u p p l i e d by the m a n u f a c t u r e r . P r o t e i n c o n c e n t r a t i o n and c a r b o h y d r a t e c o n t e n t w e r e d e t e r m i n e d by the m e t h o d of L o w r y e t al. (28) and b y th e phenol sulfuric acid method (29).

RESULTS Isolation from

Gaucher

and spleen

Characterization by

taking

of

advantage

Sa•osin

D. S a p o s i n

of its

heat-stability,

D was

isolated

acidity,

small

m o l e c u l a r size, and h y d r o p h o b i c i t y . Since saposin B and C w e r e also p r e s e n t in t h e DEAE c o l u m n f r a c t i o n s c o n t a i n i n g saposin D its f i n al p u r i f i c a t i o n w a s a c h i e v e d b y p r e p a r a t i v e h y d r o p h o b i c HPLC. The yield of pure s a p o s i n D w a s

16.1 mg f r o m 201 g of

Gaucher s p l e e n . S a p o s i n D w a s e l u t e d w i t h a h i g h e r a c e t o n i t r i l e p e r c e n t a g e t h a n saposin B or C i n d i c a t i v e of its g r e a t e r h y d r o p h o b i c i t y (Fig. I). Saposin D c o n t a i n s a single g l y c o s y l a t i o n site (19) and was f o u n d to co n t ai n 16% c a r b o h y d r a t e b y p h e n o l s u l f u r i c acid analysis.

P o l y a c r y l a m i d e gel e l e c t r o p h o r e s i s in SDS (Fig. 2) g a v e a

s u b u n i t m o l e c u l a r w e i g h t of a p p r o x i m a t e l y I0 kDa for saposin D similar to saposin B and C. A n t i b o d i e s raised against saposin D did not cross r eact w i t h saposin B or C (Fig. 2). C o n v e r s e l y , a n t i b o d i e s against saposin B or C did n o t cross r e a c t w i t h s a p o s i n D 405

VoI. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

A

B

o. re

B

Q

~

,'o

2'o

~'o

C

4'o

5'o

7'0 ,.i.'.

go

(~

1

2

3

4

1

2

3

4

Figure I. HPLC of SaDosin D. Purified saposin D was analyzed b y HPLC as described in Methods. Under the same conditions, saposin B and C a p p e a r w i t h r e t e n t i o n times as indicated b y arrows. Yi~ure 2. S D S - P o l y a c r v l a m i d e Gel E 1 e c t r o D h o r e s i s a n d I m m u n o b l o t t i n ~ of SaDosin D. The p u r i f i e d saposin D (8.6 ~tg, lane 2 and 6) w a s e l e c t r o p h o r e s e d together w i t h saposin C (7.6 }~g, lane 3 and 7) and saposin B (13.6 ~tg, lane 4 and 8) on 17.5% p o l y a c r y l a m i d e slab gels containing SDS. Lanes I and 5 c o n t a i n e d a protein s t a n d a r d m i x t u r e (Sigma Chemical Co.). The lowest protein m a r k e r is ¢ x - l a c t a l b u m i n (14,200 Da). Section A w a s s t a i n e d w i t h Coomassie b r i l l i a n t b l u e and B w a s i m m u n o b l o t t e d w i t h a n t i - s a p o s i n D a n t i s e r u m as described in Methods.

(data not shown). revealed

Chemical sequencing

of t h e N - t e r m i n a l

amino

a c i d s of s a p o s i n D

t h e f i r s t 19 a m i n o a c i d s to b e i d e n t i c a l to t h e p o l y p e p t i d e

predicted

to a r i s e

f r o m p r o t e o l y s i s of d o m a i n 4 of p r o s a p o s i n ( a m i n o acids 3 9 2 to 4 7 4 ) (19). Specificity

of

Sphingomyelinase

Stimulation

p r e s e n c e of T r i t o n X - 1 0 0 , s p h i n g o m y e l i n a s e

by

Saposin

activity was stimulated

D, I n

the

100% b y as l i t t l e

as 2 ~Ig (less t h a n 1 }~M) of s a p o s i n D as s h o w n i n Fig. 3. S t i m u l a t i o n w a s n o t i n c r e a s e d when

the

amount

concentration.

of s a p o s i n

Stimulation

D was

was

increased

indicating

near

n o t l i k e l y d u e to a n o n s p e c i f i c

saturation detergent

at this

nature

of

s a p o s i n D b e c a u s e t h e a s s a y m i x t u r e c o n t a i n e d s u f f i c i e n t T r i t o n X - 1 0 0 to s o l u b i l i z e t h e sphingomyelin

present

glucosylceramidase

in the

activity

assay.

(16,

In addition,

30)

(17,18,19,3 i) did not possess stimulatory

and

has

saposin

a structure

C, w h i c h similar

the

presence

galactosidase enhanced

of

~-galactoside,

6-galactosidase

I). T h e h y d r o l y s i s

saposin D was

hydrolysis

pyrophosphate, glucuronide,

galactosylceramide

activity (Table

when

stimulate

saposin

D

a c t i v i t y 3 - a n d 5-

H o w e v e r , t h e a c t i v i t y o b t a i n e d w i t h 5 4 llg w a s o n l y 10% of t h a t i n

of T r i t o n X - 1 0 0 . S a p o s i n D d i d n o t s t i m u l a t e

a c t i v i t y (Fig. 3),

to

13-

a c t i v i t y in t h e a s s a y . W i t h a d d i t i o n of T r i t o n

X - 1 0 0 , 2 7 ~tg a n d 5 4 }.tg of S a p o s i n D i n c r e a s e d t h e s p h i n g o m y e l i n a s e fold, r e s p e c t i v e l y .

stimulates

present

the

other

ganglioside

of 4 - M U 8 - D - g l u c o s i d e

(also shown in Table 4-MU

•-glucosylceramidase

a c t i v i t y or G M I

derivative

was

13-

slightly

I). S a p o s i n D d i d n o t substrates

including

13-galactoside, a - g l u c o s i d e , c x - m a n n o s i d e , 13-fucoside, 13=

and •-N-acetylglucosamide

(data not shown), 406

Vol. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

1.0-

[]

0.8 = 0.7-

0.60.5,

o

"o 0.~I E c

0.3'

0.2. 0.1!

©

D-)l~ug Saposin

)'5 C or

2'0

D

Figure 3, Effect of Sa~osin D on SDhin~omvelinase a n d G 1 u c o c e r e b r o s i d a s e , Various amounts of saposin D w e r e a d d e d to an assay mixture of s p h i n g o m y e l i n a s e and fl-glucosylceramidase activities and its effect was c o m p a r e d w i t h t h a t of saposin C. Sphingomyelinase activity assay mixture contained 20 nmol [methyl-14C] sphingomyelin (830 cpm/nmol), I0 lag Triton X-100, and 50 lamol acetate buffer pH 5.0 in 200 )II. Crude s p h i n g o m y e l i n a s e p r e p a r e d f r o m h u m a n p l a c e n t a (Sigma Chem. Co.) was used as enzyme source. Incubation was conducted at 37°C for I hr. 13-Glucosylceramidase a s s a y m i x t u r e c o n t a i n e d 5.25 n m o l to [ g l u c o - 3 H ) g l u c o c e r e b r o s i d e (1358 c p m / n m o l ) and 20 lamol c i t r a t e - p h o s p h a t e b u f f e r pH 4.2 in 200 lal. Human liver particulate preparation solubilized by 0.1% Triton X-100 was used as e n z y m e source. The activities for s p h i n g o m y e l i n a s e w i t h saposin D is s h o w n by open squares ( [ ] ) and t h a t w i t h saposin C is shown by closed squares ( • ) . The activity for 13-glucosylceramidase w i t h saposin D is e x p r e s s e d by o p e n circle ( O ) and t h a t w i t h s a p o s i n C is e x p r e s s e d by closed circle ( 11 ). No f u r t h e r i n c r e a s e of ~glucosylceramidase activity was observed by increasing saposins up to 35 lag each.

DISCUSSION In a c c o r d a n c e w i t h prosaposin generates i s o l a t i o n of a t h i r d

our recent

prediction that

the

proteolytic

4 s a p o s i n p r o t e i n s of s i m i l a r s t r u c t u r e ( 1 9 ) w e s a p o s i n p r o t e i n , s a p o s i n D, w h i c h

stimulates

processing

of

report here the the hydrolysis

of

s p h i n g o m y e l i n . P r o o f t h a t s a p o s i n D a r i s e s f r o m d o m a i n 4 of p r o s a p o s i n w a s o b t a i n e d by demonstrating and

the

addition,

c o l i n e a r i t y b e t w e e n its f i r s t 19 c h e m i c a l l y d e t e r m i n e d

deduced saposin

sequence D has

obtained

the

correct

from

domain

predicted

4 of t h e

molecular

a m i n o acids

prosaposin

weight

(10

cDNA. I n kDa)

p r o t e o l y t i c p r o c e s s i n g of d o m a i n 4. W h i l e t h i s w o r k w a s in p r o g r e s s F u r s t e t al. isolated the same protein from Gaucher spleen termed

component

from (31)

C; its a m i n o acid

s e q u e n c e is i d e n t i c a l t o s a p o s i n D e x c e p t f o r t h e a b s e n c e of t h e f i r s t t w o N - t e r m i n a l amino

acids which

may

have

been

removed

by

peptidase

a c t i o n . No a c t i v a t i n g

p r o p e r t i e s w e r e r e p o r t e d f o r c o m p o n e n t C. Saposin D has a remarkably

high sp e c i f i c i t y in s t i m u l a t i n g s p h i n g o m y e l i n a s e

a c t i v i t y . A c t i v a t i o n of s p h i n g o m y e l i n a s e a c t i v i t y b y s a p o s i n C h a s also b e e n r e p o r t e d 407

VoI. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Table I. Effect of Saposin D on GM 1 G a n g l i o s i d e g-Galactosidase, Galactocerebroside B-Galactosidase a n d 4 - M e t h y l u m b e l l i f e r y l Glucoside l~-G1ucosidase

Saposin

=,,

(~g)

nmol hydrolyzed/hr Saposin + Saposin

GMI G a n g l i o s i d e ~-galactosidase

B (42) D (45)

0 0

0.44 0.00

Galactosylceramidase

C (8) (16) (24)

0.41 0.41 0.41

0.57 1.24 1,48

D (14) (54) (95)

0.41 0.41 0.41

0.34 0.44 0.44

C (4) ( I 0) (25)

3.70 3.70 3.7O

9.00 t3.80 13.80

D (4) (10) (25)

3.70 3.70 3.70

5.50 5.00 5.00

4 - M e t h y l u m b e l l i f e r y l glucoside B - g l u c o s i d ase

(15); b u t in our h a n d s s a p o s i n C failed to s t i m u l a t e s p h i n g o m y e l i n a s e a c t i v i t y . Christomanou and her colleagues (20) purified two proteins, n a m e d A I and A 2, which stimulated

s p h i n g o m y e l i n a s e activity; t h e i r

A I p r o t e i n was f o u n d b y c h e m i c a l

s e q u e n c i n g to be i d e n t i c a l to saposin C (17). It is possible t h a t our HPLC-purified s a p o s i n C lost its s p h i n g o m y e l i n a s e a c t i v a t i n g p r o p e r t y

w h i l e r e t a i n i n g its tS-

g l u c o s y l c e r a m i d a s e s t i m u l a t i n g p r o p e r t y . A l t e r n a t i v e l y , p r e v i o u s p r e p a r a t i o n s of saposin C m a y have b e e n c o n t a m i n a t e d w i t h saposin D since their properties are v e r y s i m i l a r and e x t r e m e l y s m a l l a m o u n t s of s a p o s i n D are r e q u i r e d for a c t i v a t i o n . A n o t h e r e x p l a n a t i o n is the d e t e r g e n t - l i k e p r o p e r t y of s a p o s i n C w h i c h h e l p e d to solubilize s p h i n g o m y e l i n in the absence of Triton X-100. Prior to the discovery that saposin 13 and C are both d e r i v e d from the same p r e c u r s o r p r o t e i n (19), t h e s e proteins w e r e n a m e d n o n s y s t e m a t i c a l l y . The isolation of

saposin

D reported

nomenclature

for

the

here saposin

has

prompted

proteins.

As

us

to

propose

mentioned

the

a new

systematic

precursor

protein

( p r o s a p o s i n ) c o n t a i n s 4 d o m a i n s comprised of similar 80 a m i n o acid m o d u l a r units w h i c h are r e l e a s e d

u p o n proteolysis. We p r o p o s e t h a t t h o s e p r o t e i n s w h i c h are

derived from the first, second, third and f o u r t h domains be n a m e d saposin A, 13, C and D. Of the four, s a p o s i n A has y e t to be isolated. Partial proteolysis of prosaposin also 408

Vol. 156, No. 1, 1988

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

y i e l d s i n t e r m e d i a t e c l e a v a g e p r o d u c t s and t h e s e h a v e b e e n d e t e c t e d in most h u m a n t i s s u e s (19). We p r o p o s e t h a t p r o t e i n s p o s s e s s i n g two s a p o s i n d o m a i n s w i t h s u b u n i t molecular w e i g h t s of 2 5 - 3 0 kDa be called d i s a p o s i n A, B and C; containing d o m a i n s I and 2, 2 and 3, and 3 and 4 r e s p e c t i v e l y . S i m i l a r l y , c l e a v a g e p r o d u c t s c o n t a i n i n g t h r e e s a p o s i n d o m a i n s w i t h s u b u n i t m o l e c u l a r w e i g h t s of a p p r o x i m a t e l y 48 and 43 kDa, be n a m e d t r i s a p o s i n A and B; containing d o m a i n s 1,2 and 3 and d o m a i n s 2, 3, 4 r e s p e c t i v e l y . I n l i n e w i t h this proposal, w e h a v e r e c e n t l y i s o l a t e d a g l y c o p r o t e i n from Gaucher s p l e e n w h i c h a p p e a r s to be d i s a p o s i n A.

ACKNOWLEDGEMENTS We a r e g r a t e f u l to Dr. David W e n g e r for p r o v i d i n g us w i t h a n t i b o d i e s a g a i n s t saposin C and r a d i o a c t i v e sphingolipid s u b s t r a t e s , to Dr. A r y a n F l u h a r t y for giving us a n t i b o d i e s a g a i n s t s a p o s i n B,

to Dr. Yoshimi Y a m a m o t o for p u r i f i e d f}-galactosidase

and

GM I, and to Dr. N o r m a n R a d i n for s h o w i n g us an

radioactive

unpublished

ganglioside

manuscript.

We

also t h a n k

Susan

O'Brien for

her

assistance

in

p r e p a r a t i o n of this m a n u s c r i p t . This s t u d y w a s s u p p o r t e d in p a r t b y NIH r e s e a r c h grants NS-13559 (YK) and HD-18983 and NS-08682 (JOB).

REFERENCES I. 2. 3. 4. 5. 6. 7. 8. 9. I0. I I. 12. 13. 14. 15. 16. 17. 18. 19.

Fisher, G. and Jatzkewitz, H. (1975) H o p p e - S e y l e r ' s Z. Physiol. Chem. 356, 6 0 5 613. Li, S.-C. and Li, Y.-T. (1976) J. Biol. Chem. 25 I, 1159-1163. W e n g e r , D.A. and Inui, K. (1984) In The Molecular Basis of L y s o s o m a l S t o r a g e Disorders (R. O. B r a d y and J.A. Barranger, Eds.) pp. 61-78. A c a d e m i c Press, New York. Li, S.-C. and Li, Y.-T. (I 986) NATO ASI Ser. A. Life Sci. 1 1 6 , 3 0 7 - 3 1 4 . Mehl, E. and Jatzkewitz, H. (1964) H o p p e - S e y l e r ' s Z. Physiol. Chem. 339, 2 6 0 - 2 7 6 . Fischer, G. and Jatzkewitz, H. (1978) Biochim. Biophys. Acta 528, 69-76. Li, S.-C., Wan, C.C., Mazzotta, M.Y. and Li, Y.-T. (1974) C a r b o h y d r . Res. 34, 189193. Li, S.-C., Kihara, H. S e r i z a w a , S., Li, Y.-T., F l u h a r t y , A.L., M a y e s , J.S., and Shapiro, L.J.(1985) J. Biol. Chem. 260, 1867-1871. Li, S.-C., Sonnino, S., Tettamanti, G., and Li, Y.-T. (1988) J. Biol. Chem. 263, 6 5 8 8 6591. Dewji, N., W e n g e r , D., Fujibayashi, S., Donoviel, M., Esch, F., Hill, F., O'Brien, J.S. (1986) Biochem. Biophys. Res. Comm. 134, 9 8 9 - 9 9 4 . Ho. M.W. and O'Brien, J.S. (1971) Proc. Natl. Acad. Sci. USA 68, 2 8 1 0 - 2 8 1 3 . P e t e r s , S.P., Coffee, C.J., Glew, R.H., K u h l e n s c h m i d t , M.S., Rosenfeld, L., Lee, Y.C. (1977) J. Biol. Chem. 252, 563-573. Berent, S.L. and Radin, N.S. (1981) Arch. Biochem. Biophys. 208, 2 4 8 - 2 6 0 . C h r i s t o m a n o u , H. and Kleinschmidt, T. ( 1 9 8 5 ) Biol. Chem. H o p p e - S e y l e r 366, 245-256. W e n g e r , B.A., Sattler, M., Roth, S. (1982) Biochim. Biophys. Acta 712, 6 3 9 - 6 4 9 . Radin, N.S. ( 1 9 8 4 ) In Molecular Basis of L y s o s o m a l S t o r a g e D i s o r d e r s (R.O. B r a d y and J.A. B a r r a n g e r Eds.), pp. 9 3 - I 12. A c a d e m i c Press, New York. Kleinschmidt, T., Christomanou, H., and B r a u n i t z e r G. (1987) Biol. Chem. H o p p e Seyler 368, 1571-1578. Sano A., and Radin, N.S. (1988) FESEB J. 2: A1779. O'Brien, J.S., Kretz, K.A., Dewji, N.N., W e n g e r , B.A., Esch, F. and F l u h a r t y , A.L. (1988) Science, in press. 409

Vol. 156, No. 1, 1988

20. 21. 22. 23. 24 25. 26. 27. 28. 29. 30. 31.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Christomanou, H., Aignesberger, A. and Linke, R.P. (1986) Biol. Chem. HoppeSeyler 367, 879-890. Crowle, A.J. (1972) Immunodiffusion, 2rid Edition, pp. 78-96. Academic Press, New York. Wenger, D.A. ( 1 9 7 7 ) In Practical E n z y m o l o g y of the Sphingolipidoses (R.H. Glew and S.P. Peters, Eds.) pp. 39-70. Alan R. Liss Inc., New York. Radin, N.S. and Berent, S.L. (1982) Meth. Enzymol. 83, 5 9 6 % 0 3 . Hajra, A,K., Bowen, D.M., Kishimoto, Y. and Radin N.S. (1966) J. Lipid Res. 7, 379386. Norden, A.G.W. and O'Brien, J.S. (1973) Arch. 13iochem. Biophys. 159, 383-392. Suzuki, Y. and Suzuki, K. (1972) J. Lipid Res. 13, 687-690. Ho, M.W. and O'Brien, J.S. (1973) Biochem. J. 131, 173-176. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193,265-275. Ashwell, G. (1966) Meth. Enzymol. 8, 93-95. Glew, R.H., 13asu, A., LaMarco, K.L., and Prence, E.M. (1988) Lab. Invest. 58, 5-25. Furst, W., Machleidt, W., and Sandhoff, K. (1988) Biol. Chem. Hoppe-Seyler 369, 317-328.

410