Selective Oxidation of Ammonia to Hydroxylamine with Hydrogen Peroxide on Titanium Based Catalysts

Selective Oxidation of Ammonia to Hydroxylamine with Hydrogen Peroxide on Titanium Based Catalysts

V. Cortis Corberin and S. Vic Bell6n (Editors), New Deveiopnienls in Seleclive O x i d d o n If 0 1994 Elsevier Science B.V. All rights reserved. SEL...

556KB Sizes 32 Downloads 545 Views

V. Cortis Corberin and S. Vic Bell6n (Editors), New Deveiopnienls in Seleclive O x i d d o n If 0 1994 Elsevier Science B.V. All rights reserved.

SELECTIVE O X I D A T I O N OF AMMONIA TO HYDROXYLAMINE W I T H PEROXI DE ON T I TAN1 UM BASED CATALYSTS M . A . M A N T E G A Z Z A ~ , G. LEO FAN TI^, Z E C C H I N A ~ , s. B O R D I G A ~

G.

P E T R I N I ~ , M.

'ENICHEM ANIC, Centro Ricerche d i Bollate, 20021 B o l l a t e ( M I ) , I T A L Y

541

HYDROGEN

PA DO VAN^,

V i a S.

Pietro

A.

50,

2 D i p a r t i m e n t o d i Chimica I n o r q a n i c a , Chimica F i s i c a e Chimica d e i M a t e r i a l i d e l l ' U n i v e r s i t i i d i T o r i n o , V. P. G i u r i a 7 , 10125 T o r i no, I T A L Y

ABSTRACT

.

The s y n t h e s i s of h y d r o x y l a m i n e by o x i d a t i o n of ammonia w i t h h y d r o g e n p e r o x i d e on t i t a n i u m b a s e d c a t a l y s t s i s r e p o r t e d , Titanium s i l i c a l i t e i s t h e b e s t c a t a l y s t f o r t h e r e a c t i o n . The i n f l u e n c e of some r e a c t i o n p a r a m e t e r s on t h e main and s i d e r e a c t i o n s i s d i s c u s s e d and t h e r e a c t i o n n e t w o r k i s p r o p o s e d . The r o l e o f t i t a n i u m i s p o i n t e d o u t by r e s u l t s of s p e c t r o s c o p i c studies.

1. I N T R O D U C T I O N Hydroxylamine i s of g r e a t i n d u s t r i a l i m p o r t a n c e a s i n t e r m e d i a t e . More t h a n 9 5 % of hydroxylamine p r o d u c t i o n i s used t o p r o d u c e c y c l o h e x a n o n e oxime i n t h e caprolactam process. I n d u s t r i a l p r o d u c t i o n of h y d r o x y l a m i n e i s c a r r i e d o u t by t h e r e d u c t i o n of nitrogen oxides with s u l f u r dioxide o r by c a t a l y t i c hydrogenation ( r e f . 1 ) . I n a l l cases t h e product i s a n aqueous s o l u t i o n of a s a l t , r a t h e r t h a n f r e e hydroxylamine. Titanium s i l i c a l i t e (TiS) ( r e f . 2,3) i s a very s e l e c t i v e catalyst i n o x i d a t i o n r e a c t i o n s w i t h hydrogen peroxide, p a r t i c u l a r l y i n t h e l i q u i d p h a s e ammoximation o f cyclohexanone t o c y c l o h e x a n o n e oxime ( r e f . 4 ) . I n a p r e v i o u s work w e d e m o n s t r a t e d t h a t t h e ammoximation r e a c t i o n proceeds v i a t h e hydroxylamine i n t e r m e d i a t e ( r e f . 5 , 6 ) . I n t h e f i r s t s t e p , c a t a l y z e d by T i S , ammonia a n d h y d r o g e n p e r o x i d e r e a c t t o g i v e hydroxylamine which t h e n r e a c t s w i t h c y c l o h e x a n o n e t o g i v e t h e oxime. further In this communication w e r e p o r t t h e r e s u l t s of

542

i n v e s t i g a t i o n s on t h e c a t a l y t i c o x i d a t i o n of ammonia to hydroxylamine. T h i s r e a c t i o n i s i m p o r t a n t from a n i n d u s t r i a l p o i n t of view, because f r e e hydroxylamine can be o b t a i n e d d i r e c t l y from ammonia w h i t h o u t f o r m a t i o n of ammonium s a l t s .

2. E X P E R I MENTAL C a t a l y s t s samples w e r e s y n t h e s i z e d a c c o r d i n g t o r e f . 3. A l l samples were c h a r a c t e r i z e d by e l e m e n t a l a n a l y s i s , XRD,

N2 a d s o r p t i o n a t 7 7 K and s p e c t r o s c o p i c t e c h n i q u e s . The main f e a t u r e s of T i S samples were h i g h c r y s t a l l i n i t y and absence of e x t r a - framework T i . The ammonia o x i d a t i o n was c a r r i e d o u t under He atmosphere i n a j a c k e t e d g l a s s r e a c t o r equipped w i t h a mechanical s t i r r e r and a condenser. Aqueous hydrogen p e r o x i d e (30 w t % ) was f e d t o t h e s l u r r y o b t a i n e d by d i s p e r s i n g t h e c a t a l y s t i n an aqueous ammonia ( 1 5 w t % ) - s o l v e n t mixture (1: 1 v / v ) h e a t e d a t t h e A t the end, a f t e r c o o l i n g , t h e gaseous d e s i r e d temperature. r e a c t i o n p r o d u c t s were a n a l y z e d by gas chromatography. The c a t a l y s t w a s f i l t e r e d o f f and t h e hydroxylamine, a f t e r r e a c t i o n w i t h cyclohexanone, was determined as cyclohexanone oxime by g a s chromatography. N i t r i t e s and n i t r a t e s were d e t e r m i n e d by HPLC a n a l y s i s . The hydroxylamine o x i d a t i o n was c a r r i e d o u t i n t h e same way; aqueous s o l u t i o n s of NH2OH ( 5 0 w t % ) and H202 were f e d s e p a r a t e l y t o t h e aqueous ammonia/catalyst s y s t e m .

3. RESULTS AND DISCUSSION 3. 1 C a t a l y s t e v a l u a t i o n The r e s u l t s of ammonia o x i d a t i o n on d i f f e r e n t c a t a l y s t s , t - b u t a n o l ( T B A ) , a r e shown i n Table 1. A l l t h e y i e l d d a t a based on hydrogen p e r o x i d e .

in are

Table 1 O x i d a t i o n of ammonia o n d i f f e r e n t c a t a l y s t s Catalyst

Catalyst (wt %)

Silicalite

Ti02 Ti02/Si02 TiS ~~

1. 0 1. 8 4. 8 21. 3 63. 7

-

8 3

60

8 2 ~

NH20H y i e l d (mol%)

Ti

(wt%)

6 2 ~~

~~

Reaction conditions: s o l v e n t TBA; t e m p e r a t u r e 80' C; molar r a t i o 30; r e a c t i o n t i m e 0 . 5 hour.

NH3/H202

543 I n t h e absence of a c a t a l y s t t h e r e a c t i o n does n o t t a k e p l a c e . The h y d r o x y l a m i n e y i e l d i s n e g l i g i b l e a n d t h e main p r o d u c t i s oxygen r e s u l t i n g from h y d r o g e n p e r o x i d e d e c o m p o s i t i o n . With s i l i c a l i t e a l m o s t t h e same r e s u l t s a r e o b t a i n e d . Only T i - c o n t a i n i n g c a t a l y s t s s u c c e e d i n t h e o x i d a t i o n of ami s more e f monia t o h y d r o x y l a m i n e . Amorphous s i l i c a - t i t a n i a f i c i e n t t h a n t i t a n i u m o x i d e , b u t t h e y i e l d i s s t i l l low. With b o t h c a t a l y s t s t h e main r e a c t i o n p r o d u c t i s n i t r o g e n . T i S i s t h e most s e l e c t i v e c a t a l y s t a n d h y d r o x y l a m i n e i s t h e main r e a c t i o n product. The d a t a show t h a t t h e h y d r o x y l a m i n e y i e l d i s r e l a t e d t o t h e n a t u r e o f T i s p e c i e s r a t h e r t h a n t o i t s amount i n t h e c a t a l y s t . T h i s i s a n o t h e r example o f t h e p e c u l i a r i t y of isolated framework t i t a n i u m atoms i n TiS. 3. 2 R e a c t i o n parameters The i n f l u e n c e of s e v e r a l r e a c t i o n p a r a m e t e r s o n T i S c a t a l y z e d o x i d a t i o n o f ammonia i s d i s c u s s e d below. Solvent e f f e c t The r e s u l t s o f ammonia oxidation i n different s o l v e n t s , m i s c i b l e and non-miscible w i t h water, a r e shown i n T a b l e 2. I t has been found t h a t

Table 2 S o l v e n t e f f e c t on ammonia o x i d a t i o n Solvent

NH3/H202

molar r a t i o

NH20H y i e l d

(mol%)

32 H20 t h e r e a c t i o n c a n be p e r formed i n many s o l v e n t s : n-BuOH 16 t -BuOH 12 w a t e r , a l c o h o l s , amides, aromatic hydrocarbons. MeOH 16 The h y d r o x y l a m i n e y i e l d Toluene 11 r a n g e s from a b o u t 30% t o CH3CONH2 13 5 0 % , based on hydrogen peroxide. Good y i e l d s R e a c t i o n c o n d i t i o n s : temp. have been obtained a l s o 1. I w t % ; r e a c t i o n t i m e 0. 5 i n s o l v e n t s non-miscible w i t h w a t e r , l i k e t o l u e n e and n-butanol.

53. 5 39. 2 50. 1 46. 1 51. 0 32. 1

80' C;

hour.

TiS

E f f e c t of NH3/H307 molar r a t i o The r e s u l t s o f ammonia o x i d a t i o n i n TEA a t d i f f e r e n t N H 3 / H 2 0 2 m o l a r r a t i o s a r e r e p o r t e d i n T a b l e 3. The i n c r e a s e o f t h e N H 3 / H 2 0 2 r a t i o r e s u l t s i n a n i n c r e a s e of the hydroxylamine yield. At ratios higher than 100, h y d r o x y l a m i n e c a n be o b t a i n e d w h i t h y i e l d s a s h i g h a s 7 0 % . R e a c t i o n b y p r o d u c t s a r e n i t r o g e n , n i t r o u s o x i d e , n i t r i t e s and n i t r a t e s . N i t r o g e n i s t h e main b y p r o d u c t .

544 Table 3 E f f e c t of NH,/H202 Reaction

t i m e (h)

molar r a t i o on ammonia o x i d a t i o n Yield (mol%)

NH 3/H202 molar r a t i o

0. 5

7

0.3 0. 6 0.5 0.3

12 17 31 120

Reaction conditions: solvent c o n c e n t r a t i o n 1. 7 w t % .

TBA;

NH20H

N2

39. 0 50. 1 57. 1 63. 7 70. 3

49. 2 36. 5 32. 4 16. 4 11. 8

temperature

80' C;

TiS

E f f e c t of c a t a l y s t c o n c e n t r a t i o n The r e s u l t s of ammonia o x i d a t i o n a t i n c r e a s i n g c a t a l y s t c o n c e n t r a t i o n a r e shown i n Table 4. The hydrogen p e r o x i d e c o n v e r s i o n i s always complete e x c e p t f o r t h e t e s t w i t h o u t t h e c a t a l y s t (55 m o l % ) . By i n c r e a s i n g t h e c a t a l y s t c o n c e n t r a t i o n i ) t h e hydroxylamine y i e l d promptly i n c r e a s e s and r e a c h e s a p l a t e a u , ii) the n i t r o g e n and n i t r o u s o x i d e y i e l d q u i c k l y r e a c h e s a maximum and t h e n d e c r e a s e s s l i g h t l y , i i i ) t h e n i t r i t e s and n i t r a t e s t r e n d i s s i m i l a r t o t h e n i t r o g e n one b u t t h e i r d e c r e a s e i s more pronounced, I V ) t h e oxygen, t h e main p r o d u c t i n t h e a b s e n c e of TiS, becomes negligible even a t the lowest catalyst concentration. Table 4 E f f e c t of T i S c o n c e n t r a t i o n on ammonia o x i d a t i o n Yield ( m o l % )

T iS

(wt%) -

0.

a

1. 1 1. 7 3. 3

NH2OH 1. 0 29. a 59. 2 57. 9 62. 9

N2 2. 3 34. 2 28. 1 30. 0 28. 5

N20 7. 4 5. 5

5. 4 3. 6

NO; 1. 4 19. 5 3. 5 2. 9 3.0

NO;

02

0. 7

30. 0

9. 6 2. 1 1. a 1. 9

2. 2 1. 4 1. 0 0.7

R e a c t i o n c o n d i t i o n s : s o l v e n t TBA; t e m p e r a t u r e 80' C; NH3/H202 molar r a t i o 17; r e a c t i o n t i m e 0.5 hour.

545 E f f e c t of temperature The r e s u l t s of ammonia o x i d a t i o n a t d i f f e r e n t t e m p e r a t u r e s a r e shown i n T a b l e 5. A t t e m p e r a t u r e s from 6 0 ' t o 8 O ' C t h e hydroxylamine y i e l d is a l m o s t c o n s t a n t a n d t h e h y d r o g e n p e r o x i d e c o n v e r s i o n i s comp l e t e . A t 5 0 ' C t h e c a t a l y s t a c t i v i t y and t h e hydroxylamine y i e l d decrease. The b e h a v i o u r of b y p r o d u c t s i s q u i t e d i f f e r e n t . By d e c r e a s i n g t h e t e m p e r a t u r e n i t r o g e n and n i t r o u s o x i d e d e c r e a s e w h i l e n i t r i t e s , n i t r a t e s a n d oxygen i n c r e a s e . Table 5 E f f e c t o f t e m p e r a t u r e on ammonia o x i d a t i o n Temperature ( "C)

H202 conv. (mol%) ~

80 70 60 50

NH20H ~~

99 98 91

~

39. 0 41. 8 39. 1 21. 7

46

Yield (mol%) N2 N20 NOS

NO;

O2

0.4 0.4 1. 4 4. 3

0. 5 0. 3 0.2 1. 3

~

49. 2 42. 2 40. 6 a. 6

5. 4 5. 4 4.

2. 1 3. 7 5. 2

7

a.

1. I

1

R e a c t i o n c o n d i t i o n s : s o l v e n t TBA; NH3/H202 m o l a r r a t i o 7; c o n c e n t r a t i o n 1. 7 w t % ; r e a c t i o n t i m e 0. 5 h o u r .

TiS

E f f e c t of hydrogen p e r o x i d e f e e d r a t e The r e s u l t s o f ammonia o x i d a t i o n a t d i f f e r e n t h y d r o g e n p e r o x i d e f e e d r a t e a r e r e p o r t e d i n T a b l e 6. N o i n f l u e n c e on t h e hydroxylamine y i e l d i s o b s e r v e d by v a r y i n g t h e f e e d r a t e from 190 m l / h t o 4 ml/h. The h y d r o g e n p e r o x i d e f e e d r a t e a f f e c t s m a i n l y t h e n i t r i t e s , n i t r a t e s a n d n i t r o g e n y i e l d s . N i t r i t e s and n i t r a t e s d e c r e a s e while n i t r o g e n i n c r e a s e s almost p r o p o r t i o n a l l y . Table 6 E f f e c t of H202 f e e d r a t e on ammonia o x i d a t i o n H202 feed

rate (ml/h)

time (min)

190 9 4

1 21 51

~~

NH20H 53. 8 52. 1 53. 0

Yield ( m o l % ) N2 N20 27. 4 36. 5 38. 7

3. 4 3. 6 3. 7

NOS

a.

4 3. 1 2. 1

NO3

O2

2. 9 0.7 0.7

0.6 0.

a

0.9

~

R e a c t i o n c o n d i t i o n s : s o l v e n t TBA; t e m p e r a t u r e 80' C; m o l a r r a t i o 1 2 ; T i S 1. 7 w t % ; r e a c t i o n t i m e 1 h o u r .

NH3/H202

546

3 . 3 Hydroxylamine o x i d a t i o n w i t h hydrogen p e r o x i d e The r e a c t i v i t y of hydroxylamine towards hydrogen p e r o x i d e , w i t h and w i t h o u t TiS, has been i n v e s t i g a t e d i n o r d e r t o v e r i f y t h e s t a b i l i t y of hydroxylamine i n t h e r e a c t i o n medium. The r e s u l t s a r e r e p o r t e d i n Table 7 . Hydroxylamine i s o x i d i z e d i n b o t h n o n - c a t a l y z e d (homogeneous) and c a t a l y z e d ( h e t e r o g e n e o u s ) r e a c t i o n s . I n t h e a b s e n c e of t h e c a t a l y s t t h e r e a c t i o n i s n o n - s e l e c t i v e . N i t r o g e n , n i t r o u s o x i d e and n i t r i t e s a r e formed i n a l m o s t t h e same y i e l d . The f o r m a t i o n of a r e l e v a n t amount of oxygen p o i n t s o u t t h a t a l s o t h e hydrogen p e r o x i d e decomposition t a k e s p l a c e . With TiS t h e r e a c t i o n i s v e r y s e l e c t i v e and n i t r o g e n i s t h e main p r o d u c t .

Table 7 Hydroxylamine o x i d a t i o n w i t h hydrogen p e r o x i d e Yield ( m o l % )

TiS

(wt%) -

1. 7

3

N2

N20

NO:

NO

21

25 9

25 1

2 1

86

02

15 1

Reaction c o n d i t i o n s : N H 4 0 H ( 7 . 4 w t % ) 100 m l ; temperature molar r a t i o 0. 9; r e a c t i o n t i m e 2 . 5 hours.

8O'C;

NH20H/H202

3. 4 R e a c t i o n network The r e s u l t s p r e s e n t e d p o i n t o u t t h a t t h e ammonia o x i d a t i o n t o hydroxylamine i s c a t a l y z e d by TiS. The r e a c t i o n i s v e r y f a s t . The hydroxylamine produced can f u r t h e r r e a c t w i t h hydrogen nitrogen, nitrous p e r o x i d e to g i v e more o x i d i z e d p r o d u c t s : o x i d e , n i t r i t e s and n i t r a t e s . A s e v i d e n c e d i n Table 7 , n i t r o g e n and n i t r o u s o x i d e d e r i v e b o t h from n o n - c a t a l y z e d r e a c t i o n s i n t h e a b s e n c e of TiS and from c a t a l y z e d r e a c t i o n s i n t h e p r e s e n c e of T i S . A s r e p o r t e d i n Table 3, a l a r g e e x c e s s of ammonia i n c r e a s e s t h e hydroxylamine y i e l d and c u t s down t h e n i t r o g e n r e s u l t i n g from t h e c a t a l y z e d c o n s e c u t i v e hydroxylamine o x i d a t i o n , wich i s c o m p e t i t i v e w i t h t h e ammonia o x i d a t i o n . N i t r i t e s and n i t r a t e s a r e produced by n o n - c a t a l y z e d oxidation of t h e hydroxylamine, which i s c o m p e t i t i v e w i t h c a t a l y z e d r e a c t i o n s when t h e c a t a l y s t a c t i v i t y i s low, f o r i n s t a n c e a t low c a t a l y s t c o n c e n t r a t i o n ( s e e Table 4) and low t e m p e r a t u r e ( s e e Table 5 ) . The o v e r a l l r e a c t i o n network can be r e p r e s e n t e d by t h e f o l l o w i n g equations:

547

NH3

+

H202

1 H20

+

T iS

TiS,

NH2OH

c

H202

H202

N2

+

N20

O2

3 . 5 S p e c t r o s c o p i c c h a r a c t e r i z a t i o n of t h e a c t i v e T i c e n t r e s T i S h a s b e e n i n v e s t i g a t e d by s e v e r a l s p e c t r o s c o p i c t e c h n i q u e s t o e l u c i d a t e t h e i n t i m a t e mechanism o f t h e c a t a l y t i c r e a c t i o n b e t w e e n ammonia a n d h y d r o g e n p e r o x i d e , t h e r e a s o n why T i i n T i S i s s o a c t i v e a n d how i t c a r r i e s on i t s c a t a l y t i c a c t i v i t y . Under vacuum c o n d i t i o n s t h e most i m p o r t a n t s p e c t r o s c o p i c f e a t u r e s a s s o c i a t e d w i t h T i c a n be summarized a s f o l l o w s : 1 ) I R band a t 9 6 0 cm-' a s s o c i a t e d w i t h a S i - 0 s t r e t c h i n g mode i n [ S i 0 4 ] u n i t s p e r t u r b e d by a d j a c e n t [ T i 0 4 ] u n i t s or w i t h a s t r e t c h i n g mode o f [ T i 0 4 ] u n i t s ( r e f . 3 , 7 ) ; 2 ) o p t i c a l t r a n s i t i o n a t 48000 cm-l w i t h l i g a n d t o m e t a l c h a r g e t r a n s f e r ( C T ) c h a r a c t e r i n t e t r a c o o r d i n a t e d and i s o l a t e d T i ( I V ) ( r e f . 3, 8 ) ; 3 ) X-ray a b s o r p t i o n i n T i K p r e - e d g e r e g i o n , w i t h p e a k p o s i t i o n , f u l l w i d t h h a l f maximum (FWHM) and i n t e n s i t y i n d i c a t i n g t h a t T i i s t e t r a c o o r d i n a t e d and i n a symmetry v e r y c l o s e t o a perfect tetrahedron (ref. 9). The w h o l e r e s u l t s p o i n t o u t t h a t i n a w e l l s y n t h e s i z e d T i S a n i s o m o r p h o u s s u b s t i t u t i o n o f framework S i atoms by T i o n e s t a k e s p l a c e a n d t h e n a l l T i atoms a r e i s o l a t e d and i n t e t r a h e d r a l coordination. A f t e r t h e a d s o r p t i o n of molecules ( f o r instance water o r ammonia) t h e f o l l o w i n g c h a n g e s h a v e b e e n o b s e r v e d : 1 ) a s h i f t o f T i ( 1 V ) CT band t o l o w e r f r e q u e n c y d u e t o T i ( 1 V ) h e x a c o o r d i n a t e d complexes formed by l i g a n d a d d i t i o n ( r e f . 5 ) 2 ) a d i s a p p e a r a n c e of t h e p r e - e d g e p e a k r e p l a c e d by a new w e a k e r a b s o r p t i o n c h a r a c t e r i z e d by v e r y l a r g e FWHM, c l e a r l y i n d i c a t i n g t h e f o r m a t i o n of d i s t o r t e d o c t a h e d r a l s p e c i e s (ref. 9). These r e s u l t s , t o g e t h e r w i t h t h o s e o b t a i n e d by v o l u m e t r i c a d s o r p t i o n m e a s u r e m e n t s , d e m o n s t r a t e t h a t framework T i atoms i n T i S a r e a b l e t o a d s o r b up t o two l i g a n d s t o r e a c h t h e i r t y p i c a l hexacoordinated s t a t u s . The main s p e c t r o s c o p i c e v i d e n c e o f t h e i n t e r a c t i o n o f T i S w i t h h y d r o g e n p e r o x i d e i s t h e a p p e a r a n c e of i ) a band a t 43000 cm-' d u e t o t h e i n s e r t i o n of two w a t e r m o l e c u l e s i n t h e T i ( 1 V ) c o o r d i n a t i o n s p h e r e and i i ) a s t r o n g band a t 2 6 0 0 0 cm-' a s s o c i a t e d w i t h a CT from a h y d r o p e r o x o - t y p e s p e c i e s ( r e f . 5 ) .

548 When ammonia i s dosed on t h e preformed p e r o x o - s p e c i e s the band a t 26000 cm-l s h i f t s t o 2 7 5 0 0 cm-' and t h e n d e c l i n e s givaqueous i n g t h e same s p e c t r u m o b t a i n e d by a d i r e c t d o s a g e of hydroxylamine s o l u t i o n on TiS. S i m i l a r l y t h e ammonia d o s a g e on p r e a d s o r b e d hydrogen p e r o x i d e a band a t 1590 cm-I i n d i c a f o l l o w e d by I R s p e c t r o s c o p y g i v e s t i n g t h e hydroxylamine f o r m a t i o n ( r e f . 5 ) . I n c o n c l u s i o n t h e c a t a l y t i c s t e p of f o r m a t i o n of hydroxylamine c a n be r e p r e s e n t e d as f o l l o w s : 03Ti-OH

H20

0 3 T i OH) ( H 2 0 I 2

1

NH3

H2°2

03Ti ( OH) ( H 2 0 ) 2

NH 3

-

03Ti(OH) (NH3) ( H 2 0 )

1

H2°2

03Ti(00H)(NH3)(H20)

-c

03Ti(OH)(NH20H)(H20) REFERENCES

J. N. A r m o r i n " C a t a l y s i s of Organic R e a c t i o n s " , J . R. Kosak ( e d . 1 , Dekker, New York, 1984, 4 0 9 M. Taramasso, G. Perego, B. N o t a r i , U.S. P a t . 4. 410. 5 0 1 (1983) A. Zecchina, G. Spoto, S. Bordiga, A. F e r r e r o , G. Petrini, G. L e o f a n t i , M. Padovan i n Z e o l i t e Chemistry and C a t a l y s i s , P . A . J a c o b s e t a l . ( e d s . ) , E l s e v i e r , Amsterdam, 1991, 251 Roffia, G. Leofanti, A. Cesana, M. Mantegazza, M. 4 ) P. Padovan, G. Petrini, S. Tonti, P. Gervasutti i n "New Developments i n S e l e c t i v e O x i d a t i o n " , G. Centi et al. ( e d s . ) , E l s e v i e r , Amsterdam, 1990, 4 3 Petrini, 5 ) A. Zecchina, G. Spoto, S. Bordiga, F. Geobaldo, G. G. Leofanti, M. Padovan, M.A. Mantegazza, P. Roffia, P r o c e e d i n g s of t h e 1 0 t h I n t . Congr. on C a t a l y s i s - P a r t A, L. Guzci e t a l . ( e d s ) , Akademiai Kiadb, Budapest, 1993, 719 M . A . Mantegazza, M . Padovan, G. P e t r i n i , P. R o f f i a , I t . P a t . Appl. M I 91A001915 ( 1 9 9 1 ) A. Zecchina, G. Spoto, S. Bordiga, M. Padovan, G. Leofanti, G. G. P e t r i n i i n " C a t a l y s i s and A d s o r p t i o n by Z e o l i t e s " , Ohlman e t a l . ( e d s . ) , E l s e v i e r , Amsterdam, 1992, 671 F. Geobaldo, S. Bordiga, A. Zecchina, E. Giamello, G. L e o f a n t i , G. P e t r i n i , C a t a l y s i s L e t t e r s 1 6 ( 1 9 9 2 ) 109 S. Bordiga, F. Boscherini, S. Coluccia, F. Genoni, G. L e o f a n t i , L. Marchese, G. P e t r i n i , G. V l a i c , A. Zecchina, i n press

549

G. CENT1 (Dip. C h i m . I n d . e M a t e r i a l i , Bologna, I t a l y ) : I n t h e k i n e t i c network f o r hydroxylamine s y n t h e s i s and t r a n s f o r m a t i o n you proposed t h a t N 2 0 i s formed t o g h e t e r w i t h N2 by o x i d a t i o n of NH20H. However, i n s e v e r a l c a s e s you r e p o r t e d t h a t t h e N2 y i e l d i s a b o u t one o r d e r of magnitude h i g h e r t h a n t h a t of N20. My q u e s t i o n i s t h e r e f o r e whether t h e N 2 0 f o r m a t i o n may d e r i v e from a d i f f e r e n t s i d e r e a c t i o n , l i k e t h e r e a c t i o n of n i t r a t e s p e c i e s w i t h ammonia, o r N20 i s an i n t e r m e d i a t e i n t h e a b e t t e r u n d e r s t a n d i n g of o x i d a t i o n of NH20H t o N2. I n f a c t , t h e mechanism of N 2 0 f o r m a t i o n may a l l o w t o l i m i t t h i s byproduct which f o r m a t i o n may be p r o b l e m a t i c i n commercial ammoximation r e a c t i o n s . (ENICHEM, C e n t r o Ricerche B o l l a t e , Bollate For what concerns t h e N 2 0 f o r m a t i o n from a s i d e r e a c t i o n between n i t r a t e s and ammonia w e have v e r i f i e d t h a t b o t h ammonium n i t r a t e and n i t r i t e a r e s t a b l e i n ammonia s o l u t i o n i n t h e r e a c t i o n c o n d i t i o n s , even i n t h e p r e s e n c e of the catalyst. I n o u r r e s u l t s t h e r e i s no e v i d e n c e of a r e l a t i o n between N2O and N2 l i k e betweeen a n i n t e r m e d i a t e and a f i n a l p r o d u c t , as you s u g g e s t e d . The b e h a v i o u r of t h e s e p r o d u c t s i s s i m i l a r , i. e. when n i t r o g e n i n c r e a s e s also n i t r o u s o x i d e i n c r e a s e s , s o w e b e l i e v e t h a t N 2 0 i s a f i n a l p r o d u c t and n o t a n i n t e r m e d i a t e i n t h e NH20H oxidation. W e a g r e e t h a t a b e t t e r u n d e r s t a n d i n g of t h e mechanism of N20 f o r m a t i o n c o u l d be h e l p f u l a l s o f o r t h e ammoximation r e a c t i o n . Anyway i n t h e ammoximation of cyclohexanone t h e p r o d u c t i o n of N 2 0 i s negligible.

M. A. MANTEGAZZA ITALY):

F. T R I F I R O ' (Dip. Chim. Ind. e M a t e r i a l i , Bologna, I t a l y ) : O n t h e b a s i s of t h e work you have done on ammonia o x i d a t i o n you a r r i v e t o p r o p o s e t h a t t h e mechanism of ammoximation r e a c t i o n i s t h r o u g h NH2OH i n t e r m e d i a t e . However s c i e n t i s t s ( J i r u and a l . 1 claimed t h a t t h e main i n t e r m e d i a t e c a n be cyclohexanone imine. My q u e s t i o n i s : do you have a l s o k i n e t i c e v i d e n c e t h a t NH20H i s t h e t r u e i n t e r m e d i a t e i n ammoximation r e a c t i o n ? M. A. MANTEGAZZA: We h a v e n ' t done any k i n e t i c s t u d y on t h e ammoximation r e a c t i o n . Anyway t h e e v i d e n c e t h a t k e t o n e s w i t h l a r g e m o l e c u l a r s i z e , unable t o d i f f u s e i n t o t h e c a t a l y s t , g i v e good y i e l d s i n ammoximation (ref. 5 ) rules out t h e hypothesis of the c y c l ohexanone i m i ne i n t e r m e d i a t e . The ammoximation mechanism v i a NH20H i n t e r m e d i a t e i s based o n t h e following evidencies ( r e f . 5 ) : i ) there i s a r e l a t i o n

550

between t h e k e t o n e r e a c t i v i t y i n t h e ammoximation and i n the o x i m a t i o n r e a c t i o n : i n t h e c a s e of k e t o n e s w i t h low r e a c t i v i t y , t h e o x i m a t i o n i s t h e r a t e d e t e r m i n i n g s t e p i n t h e ammoximation r e a c t i o n i i ) t h e i n t e r m e d i a t e NH20H has been i s o l a t e d i n y i e l d c l o s e t o t h e ammoximation y i e l d .