Sharpening Jensen's Inequality and a Majorization Theorem

Sharpening Jensen's Inequality and a Majorization Theorem

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO. 214, 721]728 Ž1997. AY975527 Sharpening Jensen’s Inequality and a Majorization Theore...

180KB Sizes 0 Downloads 54 Views

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO.

214, 721]728 Ž1997.

AY975527

Sharpening Jensen’s Inequality and a Majorization Theorem S. Abramovich Department of Mathematics and Computer Science, Uni¨ ersity of Haifa, Haifa, Israel

B. Mond School of Mathematics, La Trobe Uni¨ ersity, Bundoora, Victoria, 3082, Australia

and J. E. Pecaric ˇ ´ Faculty of Textile Technology, Uni¨ ersity of Zagreb, Pierottije¨ a 6, 10000, Zagreb, Croatia Submitted by A. M. Fink Received October 10, 1995

1. INTRODUCTION In this paper we shall show that sharpening Holder’s Inequality can be ¨ generalized to sharpen Jensen’s inequality for concave and convex functions w1, 4x. We shall also sharpen a majorization theorem for concave functions and two sequences Žor functions. when only one of them is monotonic w6x.

2. SHARPENING JENSEN’S INEQUALITY Let us consider a concave function F of several variables defined on an open convex set u in R n w3, pp. 31, 32x. Let the real functions 0 - w Ž t ., and f i Ž t . w Ž t ., i s 1, . . . , n be integrable functions on the real interval 721 0022-247Xr97 $25.00 Copyright Q 1997 by Academic Press All rights of reproduction in any form reserved.

ABRAMOVICH, MOND, AND PECARIC ˇ ´

722

w a, b x. Then Jensen’s Inequality in its integral form w5, p. 10x is b

Ha

F Ž f 1 , . . . , f n . w Ž t . dt b

Ha

b

FF

w Ž t . dt



b

Ha

b

f 1w dt

Ha

Ha

,...,

b

w Ž t . dt

Ha

f n w dt

w Ž t . dt

0

. Ž 2.1.

Using this inequality we get the following Let Ž x 1 , . . . , x n . be a complex function in n complex ¨ ari-

THEOREM 1. ables and let

< F Ž x1 , . . . , x n . < F < F Ž < x1 < , . . . , < x n <. < .

Ž 2.2.

Let also < F Ž x 1 , . . . , x n .< be a conca¨ e function for x s Ž x 1 , . . . , x n . g R n. If f i Ž t ., i s 1, . . . , n, w Ž t . are complex functions of real ¨ ariables, and Ž f i t . w Ž t ., w Ž t . are integrable on w a, b x, then c

AŽ c . s

Ha w Ž t . F Ž f Ž t . , . . . , f Ž t . dt n

1

q

Hc

b

< w Ž t . < dt F



Hc

b

Hc

< w Ž t . f 1 < dt b

,...,

Hc

< w Ž t . < dt

b

Hc

< w Ž t . f n < dt b

< w Ž t . < dt

is a decreasing function in c, a F c F b. Analogous results for the discrete case are obvious. Proof. Let a F c - d F b, AŽ d . s

d

Ha

wF Ž f 1 , . . . , f n . dt b

b

Hd < w < dt F

q

F



Hd < wf < dt b

c n

q

b

Hd < w < dt F



Hc

Hd < wf < dt

d

b

0

< wF Ž < f 1 < , . . . , < f n < . < dt b

Hd < wf < dt n

1

Hd < w < dt

b

Hd < w < dt

b

q

Hd < wf < dt n

,...,

Hd < w < dt

Ha wF Ž f , . . . , f . dt 1

b

1

,...,

b

Hd < w < dt

0

0

Ž 2.3.

SHARPENING JENSEN’S INEQUALITY

F

c

Ha wF Ž f , . . . , f . dt n

1

q

Hc

d

< w < dt F

b

Hd < w < dt F

q

F

 

Hc

d

Hc

< wf 1 < dt

d

,..., < w < dt

b

b



Hc

d

< wf 1 < dt q

Hc

d

< w < dt q

q

< wf n < dt

d

< w < dt

Hd < wf < dt n

,...,

Hd < w < dt n

1

d

b

1

c

Hc

Hc

Hd < wf < dt

Ha wF Ž f , . . . , f . dt = F

s

723

b

Hd < w < dt

žH

d

c

< w < dt q

b

Hd < wf < dt 1

b

,...,

Hd < w < dt

0 0

b

Hd < w < dt

Hc

d

Hc

/ b

wf n < dt q

Hd < wf < dt

d

Hd < w < dt

< w < dt q

n

b

0

c

Ha wF Ž f , . . . , f . dt n

1

q

Hc

b

< w < dt F



Hc

b

Hc

< wf 1 < dt

b

,..., < w < dt

Hc

b

Hc

< wf n < dt

b

< w < dt

0

s AŽ c . .

The first inequality is a result of the given inequality Ž2.2.. The second inequality is Jensen’s inequality Ž2.1. applied on c F t F d to the given concave function < F Ž x 1 , . . . , x n .< on Ž x 1 , . . . , x n . g R n. The third inequality follows again from the concavity of < F Ž x 1 , . . . , x n .< on Ž x 1 , . . . , x n . g R n. The inequality AŽ d . F AŽ c . becomes equality only if the arguments of Hac wF Ž f 1 , . . . , f n . dt and of wF Ž f 1 , . . . , f n . on w c, d x are the same, < wf i <, i s 1, . . . , n, are constants on w c, d x, < F Ž f 1 , . . . , f n .< s < F Ž< f 1 <, . . . , < f n <.< on w c,d x, and if d - b, Hcd < f i w < dt s Hdb < f i w < dt, i s 1, . . . , n. EXAMPLE 1. Sharpening Holder’s Inequality. Let F Ž x 1 , . . . , x n . s ¨ n ai Ł is1 x i , x i g C, i s 1, . . . , n, where a i G 0, i s 1, . . . , n, Ý nis1 a i F 1, a0 s 1 y Ý nis1 a i .

ABRAMOVICH, MOND, AND PECARIC ˇ ´

724

Let f i Ž t ., i s 0, 1, . . . , n, be a complex integrable function on the real interval a F t F b. Then

AŽ c . s

s

n

c

fi Ž t .

ž /

Ha f Ž t . is1 Ł 0

c

ai

dt q

f0 Ž t .

n

n

Ha is0 Ł

Ž t . dt q Ł

f ia i

is0

žH c

b

Hc

b

n

< f 0 Ž t . < dt Ł is1



< f i Ž t . < dt

b

< f 0 Ž t . < dt

Hc Hc

ai

b

0

ai

< f i Ž t . < dt

/

n is a decreasing function in c, a F c F b, because F s Ł is1 x ia i , x i ) 0, n a i ) 0, i s 1, . . . , n, Ý is1 a i - 1, is a concave function. The case n s 1, a1 s 1r2 was considered in w4x, and the case n s 1, 0 - a1 - 1 was considered in w1x. Analogous results for the discrete case are obvious.

EXAMPLE 2. Sharpening Minkowski’s Inequality. Let F Ž x 1 , . . . , x n . s a. a Ž1 q Ý nis1 x 1r , a G 1. i n As F is a concave function for Ž x 1 , . . . , x n . g Rq , we get under the same conditions as in Example 1 on f i Ž t ., i s 1, . . . , n, and on w Ž t . s f 0 Ž t . that AŽ c . s

c

Hd f Ž t . 0

q

Hc

s

c

b

ž

n

1q

a

1ra

ž / / f0 Ž t .

n

Hc

b

dt 1ra

a

< f i Ž t . dt <

  00

< f 0 Ž t . < dt 1 q

Ý

is1

n

ž

Ý is1

fi Ž t .

1ra

Hd Ý Ž f Ž t . . i

is0

a

Hc

b

< f 0 Ž t . dt <

n

dt q

ž Ý žH is0

c

b

a

1ra

< f i Ž t . < dt

/

/

is a decreasing function in c, d F c F b. Analogous results are obvious for the discrete case.

3. SHARPENING A MAJORIZATION THEOREM In w6x the following majorization theorem was proved. THEOREM A w6 Theorem 3x. Let f and grf be increasing functions on Ž0, 1.. Let w ) 0 and let g ) 0 or f ) 0. Let also fw and gw be integrable functions on w0, 1x and H01 fw dtrH01 gw dt G 0.

SHARPENING JENSEN’S INEQUALITY

725

Let F be a conca¨ e function. Then for e¨ ery k ) 0 1

1

H0

F Ž kg . w dt F

1

H0

H0

gw dt

 0

F k

f w dt.

1

Ž 3.1.

fw dt

H0

Specifically, if g Ž t . is a conca¨ e function satisfying g Ž0. F 0 H01 g Ž t . w Ž t . dt G 0 we get the inequality 1

1

H0

F Ž g Ž t . . w Ž t . dt F

1

H0

F

H0



g Ž t . w Ž t . dt 1

H0

and

0

t w dt. tw Ž t . dt

In the following theorem we sharpen this Majorization Theorem as was done for Theorem 1. THEOREM 2. Let f ) 0 and grf be increasing functions on Ž a, b .. Let fw and gw be integrable on w a, b x. Also, let w ) 0 and Hab g Ž t . w Ž t . dt G 0. Let F Ž t . be a conca¨ e function and let

BŽ c. s

c

Ha

F Ž g . w Ž t . dt q

Hc

b

F

Hc

b

gw dt

 0  0 Hc

b

f w Ž t . dt.

Ž 3.2.

fw dt

Then B Ž c . is a decreasing function of c, a F c F b, and

BŽ c. F

c

Ha F Ž g . w Ž t . dt q Hc

b

Hc

wŽ t. F

b

Hc

gw dt

b

dt.

Ž 3.3.

w dt

In the special case that g Ž t . is a con¨ ex function on w0, b x, g Ž0. F 0, and H0b g Ž t . w Ž t . dt G 0 we get that

BŽ c. s

c

H0

F Ž g . w Ž t . dt q

is a decreasing function of c, 0 F c F b.

Hc

b

F

Hc

b

gw dt

 0 Hc

b

t w dt

tw dt

Ž 3.4.

ABRAMOVICH, MOND, AND PECARIC ˇ ´

726

Proof. Let a F c - d F b b

BŽ d. s

d

Ha

F Ž g . w Ž t . dt q

b

Hd F

Hd gw dt

 0 b

f w dt

Hd fw dt

b

s

F

c

Ha F Ž g . w Ž t . dt q Hc c

Ha F Ž g . w Ž t . dt q Hc

d

b

F Ž g . w Ž t . dt q

F

Hc

b

b

Hd F

 0 b

Hd

f w dt

fw dt

gw dt

 0 Hc

Hd gw dt

b

f w dt s B Ž c . .

Ž 3.5.

fw dt

To prove Ž3.5., let us define

¡g Ž t . ,

cFt-d

~ Hd gw dt f, b fw dt H ¢d

d F t - b.

b

GŽ t . s

We shall see that GŽ t . plays the same role as g Ž t . in Theorem 4. In order to show that GŽ t .rf Ž t . is increasing on Ž c, b . it is enough to show that b

g Ž dq . f Ž dq .

F

Hd gw dt b

.

Hd fw dt

Let us assume that b

g Ž dq . f Ž dq .

)

Hd gw dt b

.

Hd fw dt

Because grf is increasing we therefore get g Ž t .Hdb fw dt ) f Ž t .Hdb gw dt, d F t F b which by integration on w d, b x leads to a contradiction. Also, Hcb GŽ t . w Ž t . dt s Hcb g Ž t . w Ž t . dt ) 0 and therefore we get the inequality in Ž3.5. by Theorem A. Thus the assertion that B Ž c . is decreasing is proved. By applying Jensen’s inequality to B Ž c . we get Ž3.3.. In case g Ž t . is a convex function for t G 0 satisfying g Ž0. F 0 we get that B Ž c . defined in Ž3.4. is decreasing because g Ž t .rt is increasing for t ) 0.

SHARPENING JENSEN’S INEQUALITY

727

By a similar proof as those of Theorems 1 and 2 we get THEOREM 3. Let F Ž t . be a complex function defined on C and let < F Ž t .< F < F Ž< t <.<. Let < f Ž t .<, < g Ž t .rf Ž t .< be increasing functions on the real inter¨ al a F t F b then c

Ha F Ž g Ž t . . w Ž t . dt

q

Hc

b

Hc



F

b

< gw < dt

b

< fw < dt

Hc

0

< f Ž t . < w Ž t . dt

is decreasing with c, a F c F b. Moreo¨ er, c

Ha

F Ž g Ž t . . w Ž t . dt q

c

F

Ha

Hc

b

F



F Ž g Ž t . . w Ž t . dt q

Hc

b

< gw < dt

b

< fw < dt

Hc Hc

b

0

< f Ž t . < w Ž t . dt

< w Ž t . dt < F

Hc

b

< gw < dt

 0 Hc

b

.

< w < dt

EXAMPLE 3. In this example we use the obvious discrete version of Theorem 2. Let 0 - f i s d irwi and g irf i s x ird i , i s 1, . . . , n, be increasing sequences such that n

d i s x 1, n s

Ý

x irn,

wi ) 0, i s 1, . . . , n.

is1

Define n

x mq 2 , n s

xi

Ý ismq2

nymy1

.

Let F Ž t . be a concave function. Then, n m

B Ž m. s

Ý

F

is1 m

s

Ý is1

F

xi

ž / ž /

is decreasing with m.

wi xi

wi

n

wi q

Ý

F

ismq1



n

wi q

Ý ismq1

F

ž

xi

Ý ismq1

Ž n y m . x 1, n x mq1, n wi

/

wi ,

?

x 1, n wi

0

wi

0FmFn

728

ABRAMOVICH, MOND, AND PECARIC ˇ ´

The special case F Ž t . s t 1r p , p ) 1, n

B Ž n. s

Ý is1

F

xi

ž / wi

n

wi F

Ý is1

F

x 1, n

ž / wi

wi

was dealt with in w2x for positive x i , i s 1, . . . , n. REFERENCES 1. S. Abramovich, B. Mond, and J. E. Pecaric, inequality, J. Math. Anal. ˘ ´ Sharpening Holder’s ¨ Appl. 196 Ž1995., 1131]1134. 2. D. C. Barnes, Supplements of Holder’s inequality, Canad. J. Math. 34, No. 3 Ž1984., ¨ 405]420. 3. P. S. Bullen, D. S. Mitrinovic, ´ and P. M. Vasic, ´ ‘‘Means and Their Inequalities,’’ Reidel, DordechtrBostonrLancasterrTokyo, 1988. 4. J. W. Hovenier, Sharpening Cauchy’s inequality, J. Math. Anal. Appl. 186 Ž1994., 156]160. 5. D. S. Mitrinovic, ´ J. E. Pecaric, ˘ ´ and A. M. Fink, ‘‘Classical and New Inequalities in Analysis,’’ Kluwer Academic, DordrechtrBostonrLondon, 1993. 6. J. E. Pecaric ˘ ´ and S. Abramovich, On new majorization theorem, Rocky Mountain J. Math., in press.