Microelectron.Reliab., Vol. 33, No. 5, pp. 729-740, 1993.
0026-2714/9356.00+.00 © 1993PergamonPressLtd
Printedin GreatBritain.
SHOCK MODELS AND TESTING FOR THE RENEWAL MEAN REMAINING LIFE CLASSES A. M. ABOUAMMOH, A. N. AHMED and A. M. BARRY Department of Statistics and Operations Research, College of Science, King Sand Universi~, Riyadh 11451, Saudia Arabia
(Re~ived for pubgcanon 20 December 1991) ABSTRACT
The namely
paper
considers
two
classes of life
distributions;
the new better than renewal used in expectation
harmonic
new
better
corresponding
dual
than
renewal
used
in
classes are also studied.
and
the
expectation.
The
It is known
that
ageing properties of these classes are preserved for the survival function
when
occurrence
a
device is subjected to discrete
shocks
follows the homogeneous Poisson process.
whose
A model
of
accumulated additively damages that cause the failure of a device if
exceeds a random threshold is
test
statistics
properties
are
also
investigated.
Empirical
for testing exponentiality versus these established.
Simulated value of the
ageing
tests
for
small sample sizes are calculated.
I. I N T R O D U C T I O N Different ageing criteria are used to describe the deterioration life
(position ageing) in
the
or the improvement
engineering or biological
(negative ageing)
systems.
For
detailed
accounts of these criteria we refer to Bryson and Siddiqui Rolski Singh
(1975),
Barlow and Proschan
(1986) and Abouammoh The
mean
distribution
life (MRL)
unique,
function
see Swartz
the
MRL
(1981), Gupta and Gupta ageing
engineering
and
Kocher and
properties
determines
(1973,
Researchers such as Hollander and Proschan, Muth Wellner
(1969),
(1988).
remaining
function
(1981), Desphande,
of
Theorem
the 2).
(1977), Hall and
(1983) have refered to the use of
in
biometry,
reliability analysis.
actuarial
science,
Further the renewal
concept arizes in model building for maintenance and
MRL
replacement
pokicies. Abouammoh et al.
(1991) have
classes as follows
729
introduced
two
renewal
MRL
730
A . M . ABOUAMMOH et al.
D e f i n i t i o n I.I.
A life d i s t r i b u t i o n F on (0,-),
w i t h F(0-) =
is c a l l e d new b e t t e r than renewal used in e x p e c t a t i o n i
I t
D
(NBRUE)
0 if
Q
I x
F ( u ) d u dx
~ ~ I F(u)du, t
t
~ 0
(i.i)
m
where
~ =
I F(u)du < 0
Relation
(1.1)
E(Tw-t
m . is e q u i v a l e n t to stating that
i T w > t)
(1.2)
~ ET
where
T w is the renewal random v a r i a b l e w i t h d i s t r i b u t i o n W(t) = t ~-I I F ( t ) d u and d e n s i t y function w(t) = ~-1 F(t), t 2 0 (is 0 a s s u m e d to exist). D e f i n i t i o n 1.2. is
A life d i s t r i b u t i o n F on
(0, ®),
with F(O-)
c a l l e d h a r m o n i c new b e t t e r than renewal used
(HNBRUE)
in
=
0
expectation
if D
I t
@
~
I x
F ( u ) d u dx
m
~ I ; 0 x
F ( u ) d u dx e - t / ~ ,
t
~ 0
(1.3)
This r e l a t i o n can be w r i t t e n in the form t ; [uw(u)] -I du 0
t -I The
===> NBRUE
t
2 0.
(1.4)
c o r r e s p o n d i n g dual classes NWRUE and HNWRUE,
stands for worse, (i.i) and
~ ~-i ,
where
W
can be d e f i n e d by r e v e r s i n g the i n e q u a l i t i e s in
(1.3), respectively. (NWRUE) = => H N B R U E
It has been shown that NBUE
(NW-UE)
(HNWRUE).
In section 2 the renewal M R L ageing p r o p e r t i e s are shown to be p r e s e r v e d for the s u r v i v a l to
function w h e n a device is s u b j e c t e d
d i s c r e t e shocks that o c c u r a c c o r d i n g to a h o m o g e n e o u s Poisson
processes.
In section 3
the p r e s e r v a t i o n s
of
the
cunumulative
d a m a g e m o d e l s for the renewal M R L p r o p e r t i e s are discussed. statistics
for
and the H N B R U E simulated
t e s t i n g e x p o n e n t i a l i t y v e r s u s the NBRUE
Test
(NWRUE)
(HNWRUE) p r o p e r t i e s are e s t a b l i s h e d in s e c t i o n and
v a l u e s for the p e r c e n t i l e s of the test are calculated.
Some c o m m e n t s and d i s c u s s i o n are p r e s e n t e d in s e c t i o n 5.
2. ~ H O M O G R N R O U 8
In
this
section
d i s t r i b u t i o n H, i.e. H(t) sequence according
of to
shock
POI88ON
8HOCK MODEL
we study the shock model
for
the
life
= 0 for t<0; of a device s u b j e c t e d to a
o c c u r r i n g randomly in
time.
a h o m o g e n e o u s Poisson process with
Shocks constant
arrive mean
731
Sh~k models ~ d ~stmg
value
~.
In particular suppose Pk be the probabilities
surviving the first k shocks, survival
probability
of
not
k = 0,I,... where Pk = 1 - Pk" The
H(t)
= l-H(t) that
the
device
survives
untill time t can be given by
H(t) =
~ e- ~t ( ~t)k - - Pk" k=O k!
(2.1)
Model (2.1) has been considered by Eeary, (1973)
Marshall and
Proschan
where they proved that H(t) inherits the discrete
property of Pk if Pk has IFR, Klefsjo
(1981)
similar
IFRA,
ageing
NBU and NBUE properties.
result has been proved
for
the
In
HNBUE
property. Now
we
consider the shock model (2.1) when the amount
shocks Pk' k=0,1,..,
of
follow the discrete NBRUE, NWRUE, HNBRUE and
HNWRUE properties.
Definition 2.~. A discrete distribution {Pk ) or its survival probability Pk=i=~+iPi , k = 0,1,... where Pi is the probability mass function and T 0 = 1, is said to have NBRUE (NWRUE) property if i
i
m
E E P I ~ (2) ~ E P~, j=k i=j j=k ~
k=0,1 . . . . .
(2.2)
g
where
~=
E~.
j--0 ]"
Deflnlt1~n 2.~.
A discrete
distribution (Pk}
or
its
survival
k--0,1 ....
(2.3)
probability Pk is said to have HNBRUE (HNWRUE) if
PI
~ (2) (1-1/
j=k i Note
PI, i
that the life distribution Pk has both NBRUE (HNBRUE)
and NWRUE (HNWRUE) properties iff Pk = 1-qk, for k = 0,1,... 0 ~ q
and
~ 1, i.e., is geometric. Now
we can prove that the survival function H(t) in
model
(2.1) inherits the discrete NBRUE property of Pk, k=O,1 . . . .
Theorem ~:},~ The survival function H(t) in (2.1) is k-0,1,..,
is discrete NBRUE.
NBRUE if Pk,
732
A . M . ABOUAMMOH et al.
Pzoofz
U s i n g model
(2.1) we have
i
wH =
I H(t)dt 0 e EP
=
1 --
k
k=0 =
° ;
(~t) k
e -~t
k! 0
1
m
m
-
E
Pk
k=0
I
where
a is the mean of the discrete We n e e d
is NBRUE,
to
show that
if
Pk satisfies
relation
(2.2),
then
H
i.e. m
m
m
2 ; H(u)dudx
~ wH
tx
The L.H.S.
d i s t r i b u t i o n Pk"
/ H(u)du,
t
~ 0.
(2.5)
t
of -
(2.5)
is
-_
°
*
®
(~U) k
- k!
I 2 H ( U ) d U d X = I E Pk I t X t k=0 X
e -~/ e -~/ du dx
(by using model
(2.1)),
4
1
- *
k (~)J - - e
=o
=
(by using
-~
j,
=o
dx
(5.4) of Barlow and Proschan, 1981, p.74),
=
1
-
-
~
- (~x) j ;
e -~x
j=0 t 1 -
®
j
E
E
1
.
--
E
(
j!
.
e
E
EP
.
j
~2 j=E0 i=0 .
*
-
~
o -'~u
lj=o
~ e
t
dx
EP_.
( ~x) J k
- - e
-M:
)
j!
( ~)i
)
-~
i! ( ~)J
--Pj j!
m
= - I H(u)du, ~t (by model 2.1), =
~I
2 H(u)du. t
This p r o v e s the theorem,
J
j=k
• _ ( ~x)J E ( , E Pi - - e - ~ t i=0 i=j j!
,
=
® e -~x
%2 i=0 j=i k=j 1 7
~P-. j=k J
( ~x)J
~2 j=O i=0
=
dx
j!
o
For the dual class NWRUE we state the following.
Shock models and testing
T h e o r e m 2.4. The survival if Pk, k=0,1,..,
function H(t)
T h e o r e m 2.5. The survival HNBRUE
in
model
(2.1)
is
NWRUE
has the discrete NWRUE.
Next we c o n s i d e r model
the
733
property
given by relation
(2.1)
for the HNBRUE property.
function H(t) given
if Pk'
k=0,1,..,
in mode
(2.1)
has the discrete
has
HNBRUE
(2.3).
P~OO$: We have found that = -
is
the mean of the life distribution H,
~ = £ - -Pk k=0
where
is
the
mean of the d i s t r i b u t i o n Pk" Now we need to show that ; • ; "H ( u ) d u d x t x
~ e-~t/~
(2.6)
(u)du dx.
;';H
0 x
C o n s i d e r the L. H. S. of
(2.6)
, • • . ,f~u~ k ; I H ( u ) d u dx = E P k 2 I - - e t x k =0 t x k! %
G
~
du dx,
(by using model • E
=
k=0 =
1 - Pk
"k I
~
1
-
-
E
1
-~x
- (%x) j ;
- - e
•
-~x
dx
j! j
(%X) i
E
- - e
--
%2 j=E0 i=0
i!
-%x
EP k k=j
~
E Pk
k=j
1 • -_ ( ~)J = -Z E EP k - - e %2 i=0 j=i k=j j! 1
dx
t j=0 j !
j=0 t =
(~x) J E - - e
(2.1)),
-~t
• ® ® ( %x) J E (i-i/~) i E __EjPI -j!- e i=0 j=0 k
t
(by the HNBURE property of Pk ), Now tion
by changing the order of the summation and using rela-
(3.4)
of
Barlow and Proschan
(2.6) and hence the theorem T h e o r e m ~.7. The survival if the discrete
survival
(1981, p. 74) we get relation
is proved.
function H(t) function Pk,
D in model k=0,1,..,
(2.1)
is
HNWRUE
has the discrete
HNWRUE property. The
Proofg
proof
of
proof can be carried out in parallel
Theorem
2.6.
o
steps
to
the
734
A . M . ABOUAMMOrl et al.
3.
Let that
DI~AGB
CUMULATZ~
MODZL
Pk be the p r o b a b i l i t y of s u r v i v i n g k
shocks,
shocks cause damage and the damages a c c u m u l a t e
suppose
additively.
If the a c c u m u l a t e d damage exceeds a critical t h r e s h o l d the device or the system, withstand random
fails.
shocks
D i f f e r e n t units d i f f e r in t h e i r a b i l i t y to
and
variable.
hence the t h r e s h o l d is a s s u m e d
to
a
Let the t h r e s h o l d has the d i s t r i b u t i o n F w h e r e
F(x) = 0 for x<0.
A s s u m e the damages X1,
X2,...
from s u c c e s s i v e
shocks are i n d e p e n d e n t w i t h life d i s t r i b u t i o n s F1, F2,... also
be
independent
of the t h r e s h o l d X.
Now
the
and the
probability
of
s u r v i v i n g k shocks is P k : P(
k E Xi i=l
~ X),
k = 1,2 ....
(3.1)
T h i s m e a n s that m
Pk = 0/ F I * ' ' ' * F k ( X ) d F ( x ) "
(3.2)
F u r t h e r assume that Xj follows a gamma d i s t r i b u t i o n w i t h d e n s i t y i i-i b a xa fi(x) -
e -bx,
x>0, a i > 0,
(3.3)
F(a i) for i = 1,2,...,
then
(3.1) has the form Ak-i
m
Pk = b
I F(x) 0
e -bx
(bx) F(Ak)
dx,
(3.4)
k w h e r e A k =i~lai , k=l,2 .... Esary et al. k=O,l,.., Fi
(1973)
have
studied
model
and
is d i s c r e t e NBU for all choices of Ei,
is d e c r e a s i n g in i for all x
k 0,
and P r o s c h a n
A k = k and F is DMRL (1981)
have
They,
(NBUE), proved
i=i,2,.., w h e r e Results
(3.4) for the IFR,
in particular, then Pk,
Pk,
in
also c o n s i d e r e d A - H a m e e d
(1973) have c o n s i d e r e d model
and the NBU properties.
showed
iff F is NBU.
this c o n t e x t for IFR and IFRA have been
Klefsjo
(3.1)
IFRA
have p r o v e d that if
k=0,1,..,
the latter result
is D M R L for
(NBUE).
the
HNBUE
property. Next
we
prove
the
same
result
for
the
renewal
mean
r e m a i n i n g classes.
T h e o r e m 3.i. Let the survival p r o b a b i l i t y Pk be g i v e n for k=l,2,..,
and P0=I.
NBRUE
if A k = k a n d
(HNBRUE)
The sequence Pk' F is NBRUE
k=0,1,..,
(HNBRUE).
by
(3.4)
is d i s c r e t e
Shock models and testing
Proof:
We prove
the N B U R E
the t h e o r e m
735
for the w i d e r
c a s e can be p r o v e d
in a s i m i l a r
class
HNBURE
whereas
procedure.
N o w we n e e d
k=0,1,...
(3.5)
to s h o w ®
-
i
r ~ Pi j=k i=j
k
•
E
~ (i - ,) ~ P-., ~ j=O i=j J
Note that m
~=
EP k k=l i
= 1 +
2"~ (x) e_bX ? {b 0 k=l
(bx) k-I -
-
dx},
(k-l) !
(by using model
3.4).
(bx) k-I = 1 + b
I F(x) ~ e -bx 0 k=l
-
dx
-
(k-l) !
Q
= 1 +b
I F(x) dx 0
= 1 + b
uF .
N o w the L.H.S.
of
(3.5)
__~jPl = 9
i =
is
E E b ; ' F ( x ) e -bx 9=k i=9 0 E.
~. e_bX
I . bF(X)
j=k 0
=
(bx) - - i-i (i-l) !
(bxli-i -
i=9
-
dx
dx
(i-l) !
x b J - l u j-2 ~ I bF(x)[/ e-bUdu]dx j=k 0 0 (9-2)! by using
(3.4)
of B a r l o w
,
and P r o s c h a n
(1981,p.74),
= b2
. . bJ-2uJ-2 ; E 0 9=k (9-2)!
--b 2
- u b k - 2 y k-3 ; ; e-bYdy 0 0 (k-2) ! ®
=
b 2
®
I 0
b 2
I
I =
[ ;®/'F(x)dx yu
e -by
[e-Y/PF
k-3 -by (l+i/b ~ - e (k-3) !
(by)
1 = b 2 (i +
-k )
b ~F (l
-
_)k
• I 0
. Z k-I
1 b 2
dy]du
(by) k-3
0
=
[ 2"F(x)dx]dy u
e -by
0 b2
[ I F(x)dx]du u
k-3
(by)
- -
I
e -bu
l®2~(x)dx 0 u • ® I ; F(x)dx 0 u
z k-I
Q
e -z (k-l) ! •
du dy
@
I I F(x)dx 0 u m_
- e -z [ I I F ( x ) d x 0 (k-l) ! 0 u by u s i n g (3.6). I
du]dy
dy]
dy
736
A. M. ABOUAMMOH et al,
Consider
the quantity ®
® ® ® bJ-2uJ-2 E Pk = b2 I E i=j 0 j=0 (j-2) !
j=0
(in p a r a l l e l = b2 Now
by using
satisfied.
to the first four s t e p s of
(3.7)),
I I F ( x ) d x du 0 u
(3.7)
and
(3.8)
(3.8)
the r e q u i r e d
result
(3.5)
is
can
be
[]
Now
we
obtained
® I F ( x ) d x du. u
e -bu
state
the
by r e v e r s i n g
following
all
result whose
inequalities
proof
in the p r o o f
of
Theorem
3.1. 3.2.
Theorem
is d i s c r e t e 4. T E S T I N G
The discrete NWRUE
section
Ho:
F(t)
VERSUS
NBRUE AND HNBRUE
we s t u d y the p r o b l e m
has
=
t
(3.4)
(HNWRUE) .
CLI%SSES
of t e s t i n g I 0,
I > 0
been
or H N B R U E
considered
and Doksum
Hollander
and
(1969)
Proschan
a = NBUE and
distributions ~ t(2 ) Let consider
a
(1985),
random
F with
F(t)
sample
an N B R U E
Therefore
of
~ t <
various
and Pyke
this p r o b l e m
for
this p r o b l e m
I [ I t t
size
observations
life
of d e v i a t i o n
=
for
sample
n
from
(1967)
A = IFR. for
a
=
(1983)
life t n. Let
from F w i t h t(0 ) = 0.
distribution,
then
from e x p o n e n t i a l i t y
®
the
tl, t2,...,
one
of the
may
form
m
I F(u)dudx x
-
, $ F(u)du] t
F(t)dt,
®. N o t e t h a t u n d e r the null h y p o t h e s i s
u n d e r HI: ~ ( F )
This
respectively.
independent
be
a measure
authors
Proschan
considered
~... ~ t(n ) be the o r d e r e d
~(F)
wherease
considered
(1981)
®
0
by d i f f e r e n t
respectively.
& = H N B U E have b e e n s t u d i e d by K l e f s j o
and B a s u a n d E b r a h i m i Consider
properties,
of life d i s t r i b u t i o n s .
and B i c k e l
DMRL.
4,
NBRUE
ageing properties
where
g i v e n by
if A k = k and F is N W R U E
= l - e x p ( - kx),
F(t)
a denotes
problem
t(l )
k=0,1,..,
the alternative HI:
where
(HNWRUE)
EXPONENTIALITY
In t h i s
versus
s u r v i v a l Pk,
H0:
(4.1) ~(Fn)=0
< 0, s i n c e F is a s s u m e d to be c o n t i n u o u s .
one may consider
t(l ) , . . . , t ( n ) to be d i s t i n c t .
®
Since
~(t) =
I F(u)du t
+ F(t),
then relation
(4.1)
can h a v e
the f o r m ®
=
®
I [ I ~(x)F(x)dx 0 t
, F(t) ~(t) ]F(t)dt.
(4.2)
Shock models and testing
TO
find the empirical value
of
737
~(F)
we replace F(t),
~
and
by their sample values
~(t)
Fn(t) = n-l(n-j+l),
t(j_l)
n n = n -I ? t = n -I r t-. j:l (j) j=l j
t
<
t(j),
'
and n ~(t) : (n-j+l) -I. E.(t(i)-t i 1=3 respectively.
), for t(j_l ) < t i ~ t(j)
Hence the empirical value of (4.2) n
n
n
% ( F n ) = n-2{ k=l r (n-k+l)[ j=k E (tfi)-t "J (j-l) ) i__Ej(t(i) -tz)][ t(k) -t(k_l)] n (4.3)
-tj:E1 (n-j+l) 2 (t (j) -t (j_l)) )
where t(j_l ) ~ t i < t(j). Similarly deviation
if
F
is
life
HNRUE
distribution,
then
the
from exponentiality o
m
(F) : I F(t) I I tx t
m
o
F(u)du dx - ~ t / ~ I I F(u)du dx]dt 0x (4.4)
This is equivalent to .
~(F)
=
®
IF(t) 0
®
I ,(x)F(x)dx d t t
®
I ~(x)F(x)dx IF(t) 0 0
e-t/~dt, (4.5)
The empirical values of h(Fn)
= n-21
~(F)
in (4.5) continue the form
n n n E (n-k+l) (t(k)-t(k_l))_.=Ek(t(j)-t(j_l))i_E_.(t(i )-t~j~ k=l 9 =9 n
n
- [j=El(n-j+l ) (t(j)-t(j_l)
i Ej (t(i)-tz)
]
n [ ~ (n-k+l)(t(k)-t(k_l)) k=l
exp(-t(k ) It),
n where t(j_l ) < t i ~ t(j) and t = E ti/n. i=l To
make the test statistics
~
and
~
are scale
invariant
we consider the versions Mi(n )
The
~(Fn)/t
,
i = 1,2.
believed
to
have asymptotic normality under some suitable transformation.
In
order
to
new
=
test statistics Ml(n ) and M2(n ) are
support this belief we present Tables 1 and 2 for
lower and upper percentile points
= = 0.01,
and M2(n ) for n = 2, 5(5), 30(10),
60. Each
the
0.05, 0.i0, of Ml(n ) reported
percentile
738
A . M . ABOUAMMOHet al.
is
the mean
of f o u r r e p e t i t i o n s
the percentiles tends
to
be
for the distribution symmetric
percentiles
are negative
lues
sample
of t h e
for
large values
the
percentiles
that
moves results
size
Table
zero where
Therefore
fact
statistic
Ml(n )
lower
transformation form.
statistics
and
to
Table
M2(n ) .
sample
symmetric.
this trend
Other
size n ~ 8
normality 2
(not r e p o r t e d
for e v e n as l a r g e
presents
It
the
indicates for
small
distribution
here)
sample
upper
for all va-
o f M 2 ( n ) is s k e w e d t o t h e r i g h t
For larger
size
simulated as
I00.
I. C r i t i c a l v a l u e s for N B R U E s t a t i s t i c Percentile
n
the
In
respectively
b e of l i n e a r
for t h e H N B R U E
to be more
of t h e N B R U E
and positive,
of n m i g h t
n<7.
confirm
around
size.
the distribution
sample
for i000 o b s e r v a t i o n s .
0.01
0.05
0.01
Points 0.i0
0.05
0.01
2
-0.8450
-0.1778
-0 0739
0.1141
0.2754
0.9340
5
-0.5664
-0.2666
-0
1397
0 4185
0.7794
1.8076
i0
-0.5471
-0.2261
-0
1400
0 4149
0.6925
1.3230
15
-0.3912
-0.2126
-0 1270
0 3833
0.6194
1.3708
20
-0.3173
-0.1749
-0 1 1 0 6
0 3564
0.5460
1.1901
25
-0.3241
-0.1529
-0
1052
0 3352
0.4857
1.0162
30
-0.3390
-0.1452
-0 0958
0 3026
0.4270
0.8089
40
-0.2453
-0.1391
-0 0 8 6 1
0.2508
0.3552
0.6494
50
-0.1984
-0.1259
-0 0 8 5 1
0.2165
0.3187
0.5493
60
-0.1906
-0.1093
-0 0754
0.1937
0.2810
0.5205
T a b l e 2. C r i t i c a l v a l u e s
I n
I
for H N B R U E s t a t i s t i c
Percentile
Points
0.01
0.05
0.01
0.i0
0.05
0.01
2
0.0000
0.0000
0.0001
0.i109
1.2341
0.7891
5
-0.0050
0 0003
0.0015
0.1296
0.2106
0.5039
I0
-0.0445
-0 0134
-0.0059
0.0792
0.1155
0.2528
15
-0.0595
0 0268
-0.0159
0.0654
0.1018
0.2020
20
-0.0714
-0 0358
-0.0245
0.0554
0.0841
0.1387
25
-0.0933
-0 0469
-0.0290
0.0554
0.0849
0.1311
30
-0.0838
-0 0493
-0.0331
0.0493
0.0755
0.1402
40
-0.0672
-0 0442
-0.0322
0.0497
0.0726
0.1116
50
-0.0732
-0 0 4 6 5
-0.0342
0.0454
0.0671
0.1213
60
-0.0824
-0 0492
-0.0380
0.0379
0.0588
0.0948
739
Sh~k models ~ d ~sting
AQknowledaement:
The
authors
are
grateful
to
Professor
A.
Khalique for his constructive comments on the simulation part.
REFERENCES Abouammoh,
A. M.
(1988). On
life. Statist. Abouammoh,
A. M.,
ageing
the
criteria
Prob. Lett.,
Ahmed,
A.
concepts
N.
of the mean remaining
6, 205-211.
and
Barry, A. M.
(1991).
based on comparisons with the
Two
renewal
mean remaining life. Submitted for publication. Barlow,
R. E.
(1968). Likelihood ratio for restricted families of
probability distributions.
Ann. Math. Statist.,
39, 547-
460. A-Hameed,
M. S.
and
models. Barlow,
R. E.
Proschan,
Stoch.
and
Reliability
F.
(1973).
process. Appl.,
Proschan, and
F.
Life
Nonstationary
shock
1, 383-404.
(1981).
Statistical
Testing.
To Begin
Theory With
of
Silver
Spring MD. Bickel,
P. and Doksum, K.
(1969). Tests o n monotone
based on normalized spacings.
Ann.
failure rate
Math. Statist.,
40,
216-235. Bryson, M. C. and Siddiqui,
M. M.
(1969).
ing. J. Amer. Statist. Assoc., Deshpande,
J. N., Kochar,
Some
criteria of age-
64, 1472-1483.
S. C. and Singh, H.
(1986).
Aspects of
positive ageing. J. Appl. Prob., 22, 748-758, Esary, J. D.,
Marshall,
A. W.
and
models and wear processes. Gupta,
P. L. and Gupta, R. C. life
Proschan, Ann. Prob.,
(1983). On
Hall, W. J. and
Statist.
Theor. Meth.,
Wellner,
J. A.
North-Holland,
M. and Proschan,
(1981).
F.
B.
moment of residual
residual
life.
M. Csorgo et. al.
In
(eds.)
(1981). Tests for the mean residual
HNBUE
survivals
under
some shock
models.
8, 39-47.
(1983). Some tests against
time of test transform. 907-927.
results.
62, 585-593.
Scand. J. Statist., Klefsjo,
I, 627-649.
169-184.
life. Biometrika, B.
Shock
12, 449-461.
(1981). Mean
statistics and related Topics.
Klefsjo,
the
(1973).
in reliability and some characterization
Commun.
Hollander,
F.
ageing based on the total
Comm. Statist. Theor. Meth.,
12,
740
A . M . ABOUAMMOH et al.
Muth,
E.J.
(1977).
derived
Reliability
from
the
mean
models
with
Proschan,
Rolski,
T.
Inst., Swartz,
G. B. Trans.
C. P. Tsokos and
(1967). Tests for m o n o t o n e failure rate.
5th B e r k e l e y Symp.,
(1975).
In The
(eds) A c a d e m i c Press.
F. and Pyke, R. Proc.
memory
residual life function.
Theory and A p p l i c a t i o n s of Reliability, I. N. Shimi
positive
3, 293-312.
Mean residual life.
Bull.
Intern.
Statist.
46, 266-270. (1973). The m e a n residual life time function. Reli, R-22,
108-109.
IEEE