Accepted Manuscript SHRIMP U–Pb zircon geochronology of the granitoids of the Imiter Inlier: Constraints on the Pan-African events in the Saghro massif, Anti-Atlas (Morocco)
Bouchra Baidada, Moha Ikenne, Pierre Barbey, Abderrahmane Soulaimani, Brian Cousens, Faouziya Haissen, Said Ilmen, Abdelkhalek Alansari PII:
S1464-343X(18)30315-7
DOI:
10.1016/j.jafrearsci.2018.10.008
Reference:
AES 3343
To appear in:
Journal of African Earth Sciences
Received Date:
30 January 2018
Accepted Date:
19 October 2018
Please cite this article as: Bouchra Baidada, Moha Ikenne, Pierre Barbey, Abderrahmane Soulaimani, Brian Cousens, Faouziya Haissen, Said Ilmen, Abdelkhalek Alansari, SHRIMP U–Pb zircon geochronology of the granitoids of the Imiter Inlier: Constraints on the Pan-African events in the Saghro massif, Anti-Atlas (Morocco), Journal of African Earth Sciences (2018), doi: 10.1016/j. jafrearsci.2018.10.008
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT 1
SHRIMP U–Pb zircon geochronology of the granitoids of the Imiter Inlier: Constraints
2
on the Pan-African events in the Saghro massif, Anti-Atlas (Morocco)
3 4 5
Bouchra BAIDADA a *, Moha IKENNE b, Pierre BARBEY c, Abderrahmane SOULAIMANI a,
6
Brian COUSENS d, Faouziya HAISSEN e, Said ILMEN f, Abdelkhalek ALANSARI a,
7 8 9
a
Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Prince
10
Moulay Abdellah Boulevard, P.O. Box 2390, 40 000 Marrakech, Morocco
11
b
12
P.O. Box 28/S, 80 000 Agadir, Morocco
13
c Université
14
d
15
1125 Colonel By Drive Ottawa, Ontario, K1S5B6, Canada
16
e
LGCA, Département de Géologie, Université Hassan II de Casablanca, Morocco
17
f
Managem Group, Twin Center, 20100Casablanca, Morocco
LAGAGE Laboratory, Department of Geology, Faculty of Sciences, Ibn Zohr University, de Lorraine, CNRS, CRPG, F-54000 Nancy, France
Ottawa-Carleton Geoscience Centre, Department of Earth Sciences Carleton University,
18 19 20 21 22 23 24 25 26 27 28 29 30 31
* Corresponding author : Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad
32
University, Prince Moulay Abdellah Boulevard, P.O. Box 2390, 40 000 Marrakech, Morocco,
33
[email protected]
34 1
ACCEPTED MANUSCRIPT 1
Abstract
2
This study presents new U–Pb zircon ages for three granitoid bodies in the Imiter inlier at the
3
eastern part of the Moroccan Anti-Atlas chain, which is located in the northwestern edge of
4
the West African Craton (WAC). Analyzes of zircon grains yield the following ages: 538 ± 6
5
and 575 ± 10 Ma for the Igoudrane massif, 567 ± 6 Ma for the nearby Bou Teglimt
6
granodiorite, and 582 ± 6 Ma for the Bou Fliou granite. These new data reveal that the
7
Igoudrane massif is younger than previously thought (677 Ma), and that all the granitoids in
8
the Imiter area are Ediacaran in age and are related to the Ouarzazate Group. Sm-Nd isotopic
9
data yield negative εNd(t) values (-4.5 to -0.2) and TDM model ages of 1.04 to 1.82 Ga. These
10
data indicate the presence of an inherited Paleoproterozoic to Archaean component in some
11
zircon grains and show that generation of the parent magmas involved a Neoproterozoic
12
juvenile contribution and recycling of an older crustal component.
13
These new data allow reinterpreting the geochemical and isotopic data of the granitoids, and
14
revisiting the structural significance to the Igoudrane massif, which was assumed until now to
15
be coeval with the major Pan-African event of the Central Anti-Atlas. They also bring
16
significant constraints to discuss the context and age of deposition of the Saghro Group,
17
which is still a matter of debate. All these data provide evidence of an emplacement of the
18
Imiter granitoids in a subduction complex, which affected all of the Anti-Atlas chain during the
19
Late Proterozoic time.
20 21 22
Keywords: Imiter; Anti-Atlas; Morocco; Granitoids; Zircon U–Pb geochronology; Ediacaran;
23
Pan-African
24
2
ACCEPTED MANUSCRIPT 1 2
1. Introduction
3 4
At the northwestern border of the West African Craton, Precambrian rocks of the Anti-
5
Atlas chain record a polycyclic, Eburnean and Pan-African, evolution (Leblanc, 1975;
6
Hassenforder, 1987; Saquaque et al, 1989; Gasquet et al., 2004, 2008; Thomas et al., 2002,
7
2004; Ennih and Liégeois, 2008). During the last twenty years, numerous studies have
8
described the lithostratigraphy of the Precambrian rocks in the Anti-Atlas Mountains (Thomas
9
et al., 2004 ; Gasquet et al., 2005), and various geodynamic models (Ennih et Liégeois, 2001;
10
Gasquet et al., 2005; Benziane, 2007; Walsh et al., 2012) have been proposed for the Pan-
11
African orogeny. These geodynamic reconstructions suppose that the southwestern and the
12
northeastern domains of the Anti-Atlas, separated by ophiolitic complexes along the Anti-
13
Atlas Major fault, experienced a common geological history until the end of the Ediacaran.
14
The basement of the Anti-Atlas, unconformably overlain by Proterozoic rocks of the Anti-
15
Atlas, is sub-divided into two lithostratigraphic assemblages: the Anti-Atlas and Ouarzazate
16
Supergroups. The Lower Anti-Atlas Supergroup consists of Tonian quartzite and limestone
17
series of the Tachdamt–Bleïda platform, and of the Cryogenian ophiolitic complex of the
18
Bou-Azzer–Siroua inliers intruded by various Pan-African granitoids (Clauer, 1974; Leblanc,
19
1975; Saquaque et al., 1992; Bouougri et al., 1994; Mouttaqi, 1997). The Ediacaran
20
Ouarzazate Supergroup comprises the Saghro–Bou Salda and the Ouarzazate Groups. The
21
Saghro–Bou Salda Group and the equivalent Tiddiline and Anezi series correspond to the
22
latest deposits of the Pan-African mountain building. In the Imiter inlier, exposed in the
23
easternmost part of the Anti-Atlas chain (Fig. 1), the Saghro Group consists of a thick
24
volcano-sedimentary series (Thomas et al., 2004; Michard al., 2017) deformed by NNE-
25
trending, mostly upright folds with axial-planar slaty cleavage developed under low-grade
26
metamorphic conditions. In the Siroua and Saghro inliers, the older (620–610 Ma) rocks of
27
the Saghro Group (Liégeois et al., 2006; Abati et al., 2010, 2012) were folded at ca. 610–580
28
Ma at the onset of the WAC Cadomian orogenic events (Hefferan et al., 2014; Michard et al.,
29
2017). The deformed Saghro Group rocks were intruded by numerous plutonic bodies
30
previously considered to be Cryogenian (e.g., Igoudrane massif at 677 Ma; Schiavo et al.,
31
2007) to Ediacaran (e.g., Bou Teglimt, Taouzzakt; Mrini, 1993; De Wall et al., 2001;
32
Cheilletz et al., 2002; Massironi et al., 2007; Errami et al., 2009).
33
3
ACCEPTED MANUSCRIPT 1
The age and geodynamic significance of the Saghro Group is still a subject of debate
2
(Michard et al., 2017; and references therein). The supposed Paleoproterozoic age of the
3
Imiter orthogneiss in the Boumalne inlier (Hindermeyer, 1953; Choubert et al., 1974) is now
4
considered Middle Proterozoic (Dal Piaz et al., 2007). The Saghro Group, assumed to be
5
Cryogenian ocean-basin filling series older than 610 Ma (Thomas et al., 2004), was folded and
6
metamorphosed to the lower greenschist facies during the Pan-African major event (ca. 680–
7
600 Ma; Leblanc and Lancelot 1980; Fekkak et al., 2000; Thomas et al., 2004). The
8
occurrence of assumed Cryogenian intrusions crosscutting the Boumalne and Imiter inlier
9
metasediments has been considered as an argument against an age younger than 630 Ma for
10
the Saghro Group (Dal Piaz et al., 2007; Schiavo et al., 2007). However, recent
11
geochronological determinations from detrital zircons gave younger ages (630-610 Ma) for
12
this Group (Liégeois et al., 2006; Abati et al., 2010, 2012). As a consequence, the plutonic
13
ages available in the Imiter inlier, especially those of intrusions supposed to be Cryogenian,
14
are inconsistent with the younger age of the Saghro Group. Moreover, we note that in the
15
western Saghro massif, plutonic rocks previously considered to be Cryogenian yielded
16
Ediacaran ages (Walsh et al., 2012), such as the Bouskour granite (570 ± 5 Ma) and the
17
Wizergane granodiorite (576 ± 5 Ma). Hence, the presence of Cryogenian granitoids in the
18
Saghro Group is a question we address in this work.
19 20
In this work, we present new zircon U–Pb radiometric age data, obtained by the Sensitive
21
High Resolution Mass Spectrometry (SHRIMP) method, for plutonic rocks that occur in the
22
Imiter inlier. These new ages directly constrain the timing of magmatism in the eastern Anti-
23
Atlas during the Ediacaran epoch.
24 25
2. Geological setting
26 27
The Anti-Atlas belt consists of two contrasting domains occurring on both sides of the Anti-
28
Atlas Major Fault (AAMF; Choubert, 1947) (Fig. 1).
29
(i) In the southwestern cratonic domain, several inliers expose a Paleoproterozoic basement,
30
which consists of siliciclastic sedimentary sequences, recrystallized under low-grade
31
metamorphic conditions during the Eburnean orogeny (Aït Malek et al., 1998; Thomas et al.,
32
2002; Gasquet et al., 2004; Soulaimani et al., 2014 Blein et al., 2014), and intruded by syn- to
33
late-kinematic granitoids that induced thermal metamorphic aureoles (Ikenne et al., 1997;
34
Mortaji et al, 2000). 4
ACCEPTED MANUSCRIPT 1
(ii) In the northeastern Pan-African mobile domain, the oldest rocks are Cryogenian to Lower
2
Ediacaran; they outcrop in several inliers surrounded by a thick volcaniclastic series
3
belonging to the Upper Ediacaran Ouarzazate Group.
4
Along the AAMF, from the Bou Azzer to the Siroua inliers, complex slices of Cryogenian
5
meta-ophiolites and oceanic arc units were stacked during various orogenic events of the Pan-
6
African cycle (760-600 Ma) (Saquaque et al., 1989; Samson et al., 2004; D’Lemos et al.,
7
2006; Gasquet et al., 2008; El Hadi et al., 2010; Hefferan et al., 2014; Blein et al., 2014).
8 9
The basements of the Anti-Atlas, unconformably overlain by Proterozoic rocks of the Anti-
10
Atlas are sub-divided into two lithostratigraphic assemblages: the Anti-Atlas and Ouarzazate
11
Supergroups. The magmatic rocks in the Ouarzazate Group consist of calc-alkaline
12
(Taouzzakt and Bou Teglimt) and high-K calc-alkaline (Oussilkane, Igoudrane, Arharrhitz,
13
Bou Gafer) plutonic to subvolcanic intrusions, which are partly intrusive in the widespread
14
Ouarzazate Group series. The Taouzzakt granodiorite has been dated at 572 ± 5 Ma and the
15
associated Takhatert Rhyolite at 550 ± 3 Ma (SIMS U-Pb zircon data) (Cheilletz et al., 2002).
16
The Imiter epithermal Ag–Hg deposit, hosted in black shales and volcanic rocks of Middle
17
and Late Neoproterozoic age, is genetically related to the 550 Ma rhyolitic domes and dikes
18
(Levresse, 2001; Cheilletz et al., 2002; Levresse et al., 2004). This late-orogenic context
19
evolved into a rift setting during the Late Ediacaran to Cambrian transition (Buggisch and
20
Sieger, 1988; Piqué et al., 1999; Benssaou and Hamoumi, 2003; Soulaimani et al., 2014). In
21
the Imiter area, deposition of the Ouarzazate group series was controlled by both ENE
22
sinistral strike slip faults (El Boukhari et al., 2007; Malusà et al., 2007; Massironi and
23
Moratti, 2007) and E-trending fault systems (Ouguir et al., 1996; Cheilletz et al., 2002;
24
Levresse et al., 2004). These fractures served as hydrothermal conduits leading to the world-
25
class Imiter Ag-Hg deposits (Gaouzi et al., 2011).
26 27
3. Petrography
28 29
Four petrographic units belonging to three granitoid massifs of the Imiter Inlier were selected
30
for SHRIMP dating (Fig. 2). Field data, mode of occurrences and petrography of these
31
different granitoids are reported in Baidada et al. (2017). In this paper, we focus on the
32
description of the analyzed samples:
33
(1) Two samples were collected in the Igoudrane massif. Sample IGO-20 (quartz diorite;
34
GPS: N 31, 365596; W 5, 669578) consists of sericitized plagioclase, small interstitial quartz 5
ACCEPTED MANUSCRIPT 1
grains, abundant biotite and green hornblende; epidote and chlorite are secondary phases.
2
Sample IGO-23 (granodiorite; GPS: N 31, 36083; W 5, 695086) collected in the western part
3
of the massif, consists of quartz, plagioclase, K-feldspar, amphibole, biotite and opaque;
4
zircon and apatite are the accessory phases (Fig. 3C and D).
5
(2) One sample has been sampled in the Bou Teglimt intrusion. The sample BT-3 (GPS: N
6
31,317406; W 5,721142) is a mesocratic porphyritic granodiorite comprised of large biotite
7
crystals (up to 3 cm in length) within a matrix of quartz, plagioclase, K-feldspar, biotite,
8
amphibole, and secondary chlorite, epidote and sericite (Fig. 3B).
9 10
(3) One granite sample GB-1 (GPS: N 31, 315094; W 5, 731944) has been collected in the
11
Bou Fliou intrusion. It consists of a leucocratic, medium- to coarse-grained rock composed of
12
quartz, alkali feldspar, plagioclase, biotite, zircon, apatite and opaque minerals (Fig. 3A).
13 14
4. SHRIMP U–Pb zircon data
15 16
4.1. Analytical methods
17 18
Zircon grains were separated by panning, first in water and then in ethanol. The concentrate
19
was purified by hand picking. About 20–35 zircons grains of each sample plus several grains
20
of the TEMORA-1 standard (for isotope ratios; Black et al., 2003), one grain of the SL13
21
zircon standard (for U concentration, Claoué-Long et al., 1995), plus a few grain of the REG
22
zircon (plenty of common lead, for calibrating the masses) were cast in a 3.5 cm diameter
23
epoxy mount (megamount), polished and documented using optical (reflected and transmitted
24
light) and scanning electron microscopy (secondary electrons an cathodoluminescence). After
25
extensive cleaning and drying, mounts were coated with ultra-pure gold (8–10 nm thick).
26
Zircons were analyzed by the sensitive high-resolution ion microprobe (SHRIMP) at the
27
IBERSIMS laboratory, Granada University (Spain). Each selected spot was rastered with the
28
primary beam for 120 s prior to the analysis, and then analyzed 6 scans, following the isotope
29
peak sequence 196Zr2O, 204Pb, 204.1background, 206Pb, 207Pb, 208Pb, 238U, 248ThO, 254UO. Every
30
mass in every scan is measured sequentially 10 times with the following total counting times
31
per scan: 2 s for mass 196; 5 s for masses 238, 248, and 254; 15 s for masses 204, 206, and
32
208; and 20 s for mass 207. The primary beam, composed of 16O16O+, is set to an intensity of
33
about 5 nA, with a 120 μm Kohler aperture, which generates 17 × 20 micron elliptical spots
34
on the target. The secondary beam exit slit is fixed at 80 μm, achieving a resolution of about 6
ACCEPTED MANUSCRIPT 1
5000 at 1% peak height. Further details on calibration and data reduction procedures are
2
found on the IBERSIMS Web site
3
(http://www.ugr.es/~ibersims/ibersims/Zircon_U_Pb_analysis_files/SHRIMP_geocron_meth
4
od.pdf).
5 6
4.2. Analytical results
7 8
Zircon grains separated from all granitoids correspond to small (50-200 μm), prismatic or
9
acicular, euhedral crystals. Under the cathodoluminescence microscope, they show a regular,
10
thin oscillatory zonation (Fig. 4), that may surround inherited cores. These features are
11
suggestive of a magmatic origin. Geochronological data are given in Tables 1, 2 and
12
presented in Figs. 5, 6 and 7.
13 14
Twenty-three analyses were obtained on twenty zircon grains (rims and cores) from the
15
sample GB-1 (Bou Fliou granite). The dated zircon grains have Th and U contents of 18–175
16
ppm and 44–935 ppm, respectively; Th/U ratios range between 0.19 and 0.51, indicative of a
17
magmatic origin. All analyses are concordant or nearly concordant, with the exception of one
18
discordant point, which may be attributed to partial loss of radiogenic Pb (Fig. 5a) and has not
19
been taken into account for age calculation. These data yield a 206Pb/238U weighted mean date
20
of 582 ± 6 Ma (MSWD = 0.9, n = 22), interpreted as the age of magma emplacement and
21
crystallization.
22 23
Thirty-two analyses were carried out on thirty zircon grains from the sample BT-3 (Bou
24
Teglimt granodiorite). One analysis of an inherited core, with U and Th contents of 97.3 and
25
0.3 ppm respectively, yielded a concordant age of 2960 Ma (Fig. 5b). The other 29
26
concordant analyses show Th and U contents of 18–200 ppm and 77–288 ppm, respectively,
27
with Th/U ratios of 0.14–0.86. These data yield a mean concordant date of 567 ± 6 Ma
28
(MSWD = 1.8, n = 29) (Fig. 5b), interpreted as the age of emplacement of the granodiorite.
29 30
A total of 53 spots were analyzed on 31 zircons from the Igoudrane granodiorite sample IGO-
31
23. Their Th and U contents are 277–1428 ppm and 20–1185 ppm, respectively; their Th/U
32
ratios range from 0.11 to 1.42. Most analyses are concordant (Fig. 6) and yield a date of 575 ±
33
10 Ma (MSWD = 2.4, n = 38) interpreted as the age of emplacement of the granodiorite. A
34
few older ages were obtained from inherited cores, one being concordant at 2450 Ma (Fig. 6). 7
ACCEPTED MANUSCRIPT 1 2
A total of 32 spots were analyzed on 25 zircons from the Igoudrane quartz diorite sample
3
IGO-20. The zircon grains have Th and U contents of 24–64 ppm and 48–417 ppm,
4
respectively; and Th/U ratios between 0.14 and 0.62. Apart from a few old ages obtained from
5
inherited cores (Fig. 7a), the other analyses show a bimodal distribution (Fig. 7b), the two
6
principal populations yielding 206Pb/238U dates of 538 ± 6 Ma (MSWD = 0.4, n = 13) and 587
7
± 6 Ma (MSWD = 0.7, n = 14). The significance of this bimodal age distribution will be
8
discussed below.
9 10
5. Nd isotopic compositions
11 12
Sm-Nd isotopic data from Baidada et al. (2017) have been reassessed based on the new zircon
13
U–Pb ages (Table 2). The εNd(t) values range from -3.85 to -4.47 for the Bou Fliou granite,
14
from -3.12 to -3.42 for the Bou Teglimt granodiorite, from -2.33 to -2.35 for the Igoudrane
15
granodiorite, and from -2.45 to -0.21 for the Igoudrane quartz-diorite. TDM model ages range
16
from 1.04 to 1.82 Ga. As formerly suggested (Baidada et al., 2017), these data indicate a
17
mixture of mantle and crust sources, with a decreasing proportion of crustal components from
18
the older rocks (Bou Fliou granite) to the younger ones (Igoudrane quartz diorite).
19 20
6. Discussion
21 22
6.1. Ediacaran Magmatism
23 24
According to the new zircon U–Pb ages obtained in this work, the emplacement ages of the
25
Imiter granitoids are all younger than 600 Ma (i.e. Ediacaran), with a significantly younger
26
age for the Igoudrane Complex than previously reported (Schiavo et al., 2007). The two dates
27
obtained on the Igoudrane quartz-diorite are more difficult to interpret. A plausible
28
interpretation is that the younger date (538 ± 6 Ma) represents the age of magma emplacement
29
and crystallization, whereas the older date (587 ± 6 Ma) could represent a zircon fraction
30
inherited from the surroundings, and possibly from the Bou Fliou granite dated at 582 ± 6 Ma.
31
The age of 567 ± 6 Ma we obtained on the Bou Teglimt granodiorite is similar within
32
analytical error to the age of 576 ± 5 Ma obtained by De Wall et al. (2001).
33
8
ACCEPTED MANUSCRIPT 1
Our radiometric ages of the Imiter granitoids are similar to the age of the neighboring
2
Taouzzakt granodiorite (573 ± 4 Ma) located to the west of the Imiter inlier (Cheilletz et al.
3
(2002). Moreover, numerous plutonic bodies that have been dated in the Saghro massif
4
(zircon U–Pb, SHRIMP) give ages between 588 and 556 Ma (Walsh et al., 2012).
5
Comparable Ediacaran ages were obtained from several granite bodies and rhyolite dikes, as
6
the Bouskour granite (570 ± 5 Ma), the Wizergane granodiorite (576 ± 5 Ma), the voluminous
7
Isk-n-Alla granite (559 ± 5 Ma), the Tagmout gabbro (556 ± 5 Ma) (Fig.8), and the
8
Bouskour–Sidi Flah (563 ± 7 Ma) and Timijt (562 ± 5 Ma) rhyolitic dyke swarms. On the
9
whole, these data show the existence of an important Ediacaran magmatic episode belonging
10
to the Ouarzazate Group (Table. 4).
11 12
Sm-Nd isotopic data yield negative εNd(t) values (-4.5 to -0.2) and TDM model ages of 1.04 to
13
1.82 Ga. These data indicate the presence of an inherited Paleoproterozoic to Archaean
14
component in some zircon grains of the Bou Teglimt and Igoudrane granodiorites show that
15
generation of the parent magmas involved a Neoproterozoic juvenile contribution and
16
recycling of an older crustal component (El Bahat et al., 2013; Kouyaté et al., 2013; Youbi et
17
al., 2013; Ikenne et al., 2017). These results also confirm the existence of a cratonic basement
18
beneath the eastern Anti-Atlas, implying that the northern border of the West African Craton
19
must be placed further north, as suggested previously (Ennih and Liégeois, 2001; Gasquet et
20
al., 2008).
21 22
6.2. Geodynamic context
23
The tectonic context of the Ediacaran Ouarzazate Gp in the Anti-Atlas is still a matter of debate
24
(see discussion in Soulaimani et al., 2018), although it is well admitted that the Ouarzazate plutonic
25
and volcanic rocks belong to high-K calc-alkaline, to alkaline, and eventually to shoshonitic magmatic
26
series (Gasquet et al., 2005, 2008). Thus, based on discrimination diagrams applied to the
27
geochemistry of the volcanic and plutonic rocks, (Bajja, 1998; El Baghdadi et al., 2003; Walsh et al.,
28
2012) proposed that the Ouarzazate Gp. would be linked to an Andean-type arc. In contrast, most
29
authors defined the Ediacaran magmatism as post-collisional or post-orogenic (Gasquet et al., 2005,
30
2008; Pouclet et al., 2007; Thomas et al., 2002; Toummite et al., 2012; Belkacim et al., 2017). In other
31
words, the debate is whether Ediacaran magmatism is to be associated with a contemporary
32
subduction or to a previous Pan-African subduction processes.
33
In fact, post-collisional granitic rocks are difficult to categorize in a specific tectonic
34
setting (Pearce 1996, Liégeois et al., 1998). Liégeois et al. (1998) noted that high-K and
9
ACCEPTED MANUSCRIPT 1
shoshonitic calc-alkaline magmatism is a characteristic of post-collisional tectonic environments at
2
the end of orogenic events, with emplacement of A-type granitic rocks. Moreover, recent studies
3
(e.g. Hooper et al., 1995; Marquez et al., 1999; Morris et al., 2000) argue that the calc-
4
alkaline signature of magmas is not systematically linked to contemporary subduction but can
5
be inherited and generated in a non-subduction environment.
6
In this work, all the Imiter Ediacaran granitoids studied, according to the discrimination
7
diagram Zr+Nb+Ce+Y vs. FeO*/MgO (Whalen et al. 1987), occupy I/S type granites field with a
8
tendency to overlap the field of fractionated granites. This feature has already been shown by
9
Walsh et al. (2012) for most of the Ediacaran granitoid and felsic volcanic rocks of the
10
western part of Jbel Saghro inlier (see also Baidada et al., 2017; El Baghdadi et al. 2003;
11
Benziane, 2007). Besides, according to Errami et al., (2009) and Baidada et al. (2017), all the Imiter
12
Ediacaran granitoids show a geochemical signature representing arc-related magmas. In the Imiter
13
inlier, Ikenne et al. (2007) reported that mafic dykes also show volcanic arc geochemical
14
signatures even though they are considered to be associated with Early Cambrian rifting
15
(Benssaou and Hammoumi, 2001; Faik et al., 2001; Soulaimani et al., 2003). In the Sirwa
16
inlier (Central Anti-Atlas), the granitoids and the volcanic rocks of the Tifnoute valley show
17
geochemical arc signatures (Toummite, 2012b; Belkacim et al., 2017).
18
In the light of the above, our data are more in line with the occurrence of a
19
contemporaneous subduction process during the Late Ediacaran in the eastern Anti-Atlas (e.g.
20
Walsh et al., 2012, Hefferan et al., 2014, and Soulaimani and Hefferan, 2017). This
21
geodynamical context involves the plunging of oceanic lithosphere southward beneath the
22
Avalonian-Cadomian arc and the crust of the West African Craton. Two stages are
23
considered, which correspond to the two late stages of Walsh et al. (2012):
24
(1) Formation of a continental volcanic arc (615- 560 Ma): During the ultimate stages
25
of the Pan-African tectonism, the Eastern Anti-Atlas is considered as a continental volcanic
26
arc marked by the development of Ediacaran plutonic and volcanic magmatism, of calc-
27
alkaline nature (Thomas et al., 2002; Gasquet et al., 2005; 2008; Benziane, 2007, Walsh et al.,
28
2012; Blein et al., 2014a and b). Volcanic arc signatures characterize the Saghro massif in
29
general and of the Imiter inlier in particular (Taouzzakt granodiorite, Bou Teglimt
30
granodiorite, Bou Fliou granite and the volcanic series of the Late Neoproterozoic) (Cheilletz
31
et al., 2002, Errami et al., 2009, Walsh et al., 2012; et al., 2017). This period has long been
32
considered post-collisional with respect to the arc – continent collision of the major Pan-
33
African events (760-650 Ma). However, both our data and those of El Baghdadi et al. (2003)
34
and Benziane (2007) favor a model involving southward subduction of oceanic crust beneath 10
ACCEPTED MANUSCRIPT 1
the crust of theWAC, in a setting comparable to an Andean-type active margin (Thompson et
2
al., 1984; Wilson, 1989). In this context, a transpressivesubduction related tectonic event
3
culminatedin the Saghro inlier, with the development of fracture cleavage associated with
4
weak folding and block faulting,referredto as the PA3 by Walsh et al. (2012).
5 6
(2) Evolution from NE–SW transpression to NW–SE transtension (560-540 Ma): According
7
to Walsh et al., (2012) and references therein, the post-tectonic deposits of the upper part of
8
the Ouarzazate Supergroup began at about 560 Ma. The evolution from NE–SW transpression
9
to NW–SE transtension may be related to oblique convergence and eventual departure of the
10
Cadomian crustal fragment to the paleo-west (Walsh et al., 2012). The ages obtained from the
11
Igoudrane massif (quartz dioriteat 538 Ma) and its high-K calc-alkaline affinity are consistent
12
with the hypothesis of Walsh et al. (2012).These authors further suggest that the highly
13
potassic shoshonitic calc-alkaline plutonism and volcanism mark the final stage of the Pan-
14
African Orogeny (PA3) in a post-collisional context related to either modification of the
15
margin of the West African Craton or formation of a continental volcanic arc above a short-
16
lived south-dipping subduction zone. The first metallogenic manifestations appear at the end
17
of this episode in association with the emplacement of the granitoids (Levresse, 2001;
18
Gasquet et al., 2005).
19 20
7. Conclusion
21 22
In this study, we provide new in situ zircon U–Pb ages of the three granitoids of the Imiter
23
inlier: 538 ± 6 and 575 ± 10 Ma for the Igoudrane massif, 567 ± 6 Ma for the Bou Teglimt
24
granodiorite, and 582 ± 6 Ma for the Bou Fliou granite. These data lead us to conclude that:
25
- The Igoudrane Complex, younger than previously reported;
26
- All the granitoids of the Imiter area were emplaced during the Ediacaran, probably in
27
relation to a subduction context;
28
- The presence of inherited zircons of Neoarchean to Paleoproterozoic ages (2500–1900 Ma)
29
confirms the existence of an Eburnean cratonic basement beneath the eastern Anti-Atlas.
30
- the Ediacaran magmatic rocks of the Imiter inlier demonstrate a subduction generated
31
volcanic arc geochemical signature, indicating Pan African orogenic activity continued to the
32
Ediacaran-Cambrian boundary.
33
11
ACCEPTED MANUSCRIPT 1
Acknowledgements. This work was funded by the project “The geological heritage of
2
Saharan provinces and adjacent regions (Bas Drâa and Ifni)” supported by the Academy
3
Hassan II for Science and Technology. It is part of the PhD thesis of Bouchra Baidada.
4
Fernando Bea and Pilar Montero are thanked for their helpful and constructive comments on
5
the geochronological results. The authors also acknowledge the support of the “département
6
de géologie” (FST-Errachidia) and the “département de géologie” (FSSM-Marrakech). This
7
manuscript greatly benefited from comments of Kevin Hefferan and an ‘‘anonymous’’
8
reviewer as reviewers and J.P. Liégeois as associate editor which have greatly contributed to
9
the improvement of this paper.
10 11
References
12 13 14
Abati, J., Aghzer, A.M., Gerdes, A., Ennih, N., 2010. Detrital zircons of neoproterozoic sequences of the Moroccan Anti-Atlas belt. Precambrian Res. 181, 115-128.
15
Abati, J., Aghzer, A.M., Gerdes, A., Ennih, N., 2012. Insights on the crustal evolution of the
16
West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt,
17
Precambrian Research. 212–213, 263-274.
18
Ait Lahna, A., Tassinari, C.C.G., Youbi, N., Admou, H., Mata, J., Bouougri, El H., Chaib, L.,
19
Ernst, R.E., Söderlund, U., Boumehdi, M.A., Bensalah, M.K., Aarab, El. M., 2016.
20
Refining the Stratigraphy of the Taghdout Group by Using the U-Pb Geochronology of the
21
Taghdout Sill (Zenaga inlier, Anti-Atlas, Morocco). Acta Geologica Sinica (English
22
Edition), 90 (supp. 1): 1.
23
Aït Malek, H., Gasquet, D., Bertrand, J.M., Leterrier, J., 1998. Géochronologie U–Pb sur
24
zircon de granitoïdes éburnéens et panafricains dans les boutonnières protérozoïques
25
d’Igherm, du Kerdous et du Bas Draa (Anti-Atlas occidental, Maroc). Comptes Rendues
26
Académies Sciences, Paris, 327, pp. 819–826.
27
Baidada, B., Cousens, B., Alansari, A., Soulaimani, A., Barbey, P., Ilmen, S., Ikenne, M.,
28
2017. Geochemistry and Sm-Nd isotopic composition of the Imiter Pan-African granitoids
29
(Saghro massif, eastern Anti-Atlas, Morocco): Geotectonic implications. J. Afr. Earth Sci.
30
127, 99-112.
31
Bajja, A., 1987. Nouvelles données pétrographiques et géochimiques sur les formations
32
volcaniques précambriennes du Jbel Saghro (Anti-Atlas marocain), basaltes en coussin du
33
P.II et volcanites de la série d’Ouarzazate (P.III). PhD thesis. Univ. Nancy I, France, 225p.
12
ACCEPTED MANUSCRIPT 1 2
Barodi, B., Belkasmi, A., Bouchta, R., Qadrouci, A., 1998. Les minéralisations argentifères du Maroc: cas du gisement d’Imiter. Chron. Rech. Min. 531-532, 77-92.
3
Belkacim, S., Gasquet, D., Liégeois, J.P., Arai, S., Ghalan, H., Ahmed, H., Ishida, Y., Ikenne,
4
M., 2017. The Ediacaran volcanic rocks of the Ouarzazate Group (Anti-Atlas, Morocco):
5
clinopyroxene composition, whole-rock geochemistry and Sr - Nd isotopes constraints
6
from the Ouzellarh-Siroua salient (Tifnoute valley). J. Afr. Earth. Sci. 127, 113-135
7
Ben Chraâ M. (1997) Etude du volcanisme du Néoproterozoïque terminal de la boutonnière
8
d'Aguerzoula-Bachkoune, Anti-Atlas central, Maroc. Lithostratigaphie, pétrographie,
9
géochimie et implications géodynamiques. Thèse de 3ème cycle, Université Cadi Ayyad,
10
Marrakech, 231p. M.
11
Benssaou, N. Hamoumi, 2003. The Lower-Cambrian western Anti-Atlasic graben: tectonic
12
control of paleogeography and sequential organisation, C. R. Geoscience, 335, 297–305.
13
Benssaou, M., Hamoumi, N., 2004. Les microbialites de l’Anti-Atlas occidental (Maroc):
14
marqueurs stratigraphiques et témoins des changements environnementaux au Cambrien
15
inférieur, C. R. Acad. Sci. Paris 336, 109-116.
16
Benziane, 2007 Lithostratigraphie et évolution géodynamique de l’Anti-Atlas (Maroc) du
17
Paléoprotérozoïque au Néoprotérozoïque : exemples de la boutonnière de Tagragra de Tata
18
et du Jbel Saghro. PhD thesis. Université de Savoie CISM, Chambéry, France, 320 pp.
19
Blein, O., Baudin, T., Chévremont, P., Soulaimani, A., Admou, H., Gasquet, D., Cocherie, A.,
20
Egal, E., Youbi, N., Razin, Ph, Bouabdelli, M., Gombert, Ph, 2014. Geochronological
21
constraints on the polycyclic magmatism in the Bou Azzer-El Graara inlier (central Anti-
22
Atlas Morocco), J. Afr. Earth Sci. 99, 287-306.
23
Bouougri, E., Saquaque, A., Chbani, B., 1994. Caractérisation sédimentologique et évolution
24
paléogéographique de la couverture du Precambrian II Inférieur de la boutonnière de Bou
25
Azzer El Graâra (Anti-Atlas, Maroc). Comptes Rendus Académie Sci. Paris 319, 423-426.
26
Buggisch, W., Siegert, R., 1988. Paleogeography and facies of the ‘‘grès terminaux’’
27
(uppermost Lower Cambrian, Anti-Atlas/Morocco). In: Jacobshagen, V.H. (Ed.), The Atlas
28
System of Morocco. Studies on its Geodynamic Evolution. Lect. Not. Earth Sci. 15, pp.
29
107–121.
30 31
Burkhard M., Caritg S., Helg U., Robert-Charrue C., Soulaimani A., 2006. Tectonics of the Anti-Atlas of Morocco. C. R. Geoscience 338, 11–24.
32
Cheilletz A., Levresse, G., Gasquet, D., Azizi-Samir, M.R., Zyadi, R., Archibald, D.A.,
33
Farrar, E., 2002. The giant Imiter silver deposit: Neoproterozoic epithermal mineralization
34
in the Anti-Atlas, Morocco: Miner. Mineralium Deposita 37, 772–781. 13
ACCEPTED MANUSCRIPT 1 2
Choubert G., 1947. L’accident majeur de l’Anti-Atlas. Comptes Rendus Hebdomadaires des Seances de l’Académie des Sciences 224 (16), 1172–1173.
3
Choubert, G., Faure-Muret, A., Hassenforder, B., Jeannette, D., 1974. Nouvelle interprétation
4
du Précambrien ancien de l’Anti-Atlas (Maroc). Comptes Rendus Hebd. Séances
5
l’Académie Sci. Ser. Sci. Nat. 278 (17), 2095-2098.
6
Clauer, N., 1974. Utilisation de la méthode rubidium-strontium pour la datation d’une
7
schistosité de sédiments peu métamorphises: application au Précambrien II de la
8
boutonnière de Bou Azzer-El Graara (Anti-Atlas, Maroc). Earth and Planetary Science
9
Letters 22 (4), 404–412.
10
Clauer, N., 1976. Géochimie isotopique du strontium des milieux sédimentaires. Application
11
à la géochronologie de la couverture du craton ouest africain. Sci. Géologiques Mémoires.
12
Strasbourg 45, 256.
13
D'Lemos, R.S., Inglis, J.D., Samson, S.D., 2006. A newly discovered orogenic event in
14
Morocco: Neoproterozoic ages for supposed Eburnean basement of the Bou Azzer inlier,
15
Anti-Atlas Mountains. Precambrian Res. 147, 65-78.
16
Dal Piaz, G.V., Malus_a, M.G., Eddebbi, A., El Boukhari, A., Ellero, A., Laftouhi, N.,
17
Massironi, M., Ouanaimi, H., Pertusati, P.C., Polino, R., Schiavo, A., Taj Eddine, K.,
18
Vison_a, D., 2007. Carte Géologique du Maroc au 1/50.000, feuille de Taghazout. Notes
19
Mém. Serv. Géol. Maroc. 519.
20
De Wall, H., Kober, B., Errami, E., Ennih, N., Greiling, R.O., 2001. Age de mise en place et
21
context géologique des granitoïdes de la boutonnière d’Imiter (Saghro oriental, Anti-Atlas,
22
Maroc): 2ème Colloque International, vol. 10–12. Magmatisme, Métamorphisme et
23
Minéralisations Associées, Marrakech, 19 pp.
24
El Baghdadi, M., El Boukhari, A., Jouider, A., Benyoucef, A., Nadem, S., 2003. Calcalkaline
25
arc I-type granitoid associated with S-type granite in the Pan-African belt of eastern Anti-
26
Atlas (Saghro and Ougnat, South Morocco). Gondwana Res 6, 557-572.
27
El Bahat, A., Ikenne, M., Soderlund, U., Cousens, B., Youbi, N., Ernst, R., Soulaimani, A., El
28
Janati, M., Hafid, A., 2013. U-Pb Baddeleyite Ages and Geochemistry of Dolerite Dykes
29
in the Bas Draa Inlier of the Anti-atlas of Morocco: Newly Identified 1380 Ma Event in the
30
West African Craton. Lithos 174, 85-95.
31
El Boukhari, A., Musumeci, G., Algouti, A., Cerrina Feroni, A., Ghiselli, F., Ottria, G.,
32
Ouanaimi, H., Pertusati, P., Taj-Eddine, K., Vison_a, D., 2007. Carte Géologique du
33
Maroc au 1/50000, feuille Imi n’Ouzrou - notice explicative. Notes Mém. Serv. Géol.
34
Maroc. 517 bis. 14
ACCEPTED MANUSCRIPT 1
El Hadi, H., Simancas, F., Martìnez-Poyatos, J., Azor, A., Tahiri, A., Montero, P., Fanning,
2
C.M., Bea, F., Gonz_alez-Lodeiro, F., 2010. Structural andgeochronological constraints on
3
the evolution of the Bou AzzerNeoproterozoic ophiolite (Anti-Atlas, Morocco).
4
Precambrian Res. 182, 1-14.
5
Ennih, N., Liégeois, J.P., 2001. The Moroccan Anti-Atlas: the West African craton passive
6
margin with limited Pan-African activity. Implications for the northern limit of the craton.
7
Precambrian Research 112, 291–304.
8
Ennih, N., Liégeois, J.P., 2008. The Boundaries of the West African Craton, with Special
9
Reference to the Basement of the Moroccan Metacratonic Anti-Atlas Belt. Special
10
Publications 2008, 297. Geological Society, London, pp. 1–17.
11
Errami, E., Bonin, B., Laduron, D., Lasri, L., 2009. Petrology and geodynamic significance of
12
the post-collisional Pan-African magmatism in the Eastern Saghro area (Anti-Atlas,
13
Morocco). J. Afr. Earth Sci. 55, 105-124.
14
Faik F., Belfoul M-A., Bouabdelli M. and Hassenforder B., 2001. The structures of the Late
15
Neoproterozoic and Early Palaeozoic cover of the Tata area, western Anti-Atlas, Morocco:
16
polyphased deformation or basement ⁄cover interactions during the Variscan orogeny? J.
17
African Earth Sci., 32: 765-776.
18
Fekkak A., Boualoul, M., Badra, L., Amenzou, M., Saquaque, A., El Amrani, I.Z., 2000.
19
Origine du du matériel détritique et context géotectonique du bassin précambrien de Kelaat
20
Mgouna (Anti- Atlas, Maroc). Journal African Earth Sciences 30/2, 295–311
21
Gaouzi, A., Maacha, L., Ennaciri, A., Gmira, A., Maamar, B., Zouhair, M., Saquaque, A.,
22
2011. Mine d’argent d’Imiter (Anti-Atlas oriental, Maroc). In: Michard, A., Saddiqi, O.,
23
Chalouan, A., Rjimati, E.C., Mouttaqi, A. (Eds.), Nouveaux guides géologiques et miniers
24
du Maroc e Volume 9, Les principales mines du Maroc. Notes Mém. Serv. Géol. Maroc,
25
vol. 564, pp. 45-52.
26
Gasquet, D., Ch_evremont, P., Baudin, T., Chalot-Prat, F., Guerrot, C., Cocherie, A., Roger,
27
J., Hassenforder, B., Cheilletz, A., 2004. Polycyclic magmatism in theTagragra d’Akka
28
and Kerdous-Tafeltast inliers (Western Anti-Atlas, Morocco). J. Afr. Earth Sci. 39, 267-
29
275.
30
Gasquet, D., Levresse, G., Cheilletz, A., Azizi-Samir, M.R., Mouttaqi, A., 2005. Contribution
31
to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with
32
the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian
33
transition. Precambrian Res. 140, 157-182.
15
ACCEPTED MANUSCRIPT 1
Gasquet, D., Ennih, N., Liégeois, J.P., Soulaimani, A., Michard, A., 2008. The Pan- African
2
belt. In: Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (Eds.), Continental
3
Evolution: the Geology of Morocco. Lecture Notes Earth Sci., vol. 116, pp. 33-64.
4
Hamoumi, N. 2001. The Gondwana platform during ordovician times : climatic, eustatic and
5
geodynamic evolution, Field trip guide book, official Business meeting and field excursion
6
of
7
stratigraphy/IUGS, Morocco 2001, 40p.
subcommission
on
Ordovician
Stratigraphy,
International
commission
8
Hassenforder, B., 1987. La Tectonique Panafricaine et Varisque de l’Anti-Atlas dans le
9
Massif du Kerdous (Maroc). Thèse de doctorat ès-Sciences. Université de Strasbourg, p.
10 11 12
220. Hawkins M.P., Smith M., Powell J.H., & Waters C.N., 2001). Carte géologique du Maroc au 1/50 000, feuille Al Youn Daraa. Notes et Mem. Serv. Geol. Maroc, n° 407.
13
Hefferan, K., Soulaimani, A., Samson, S.D., Admou, H., Inglis, J., Saquaque, A., Heywood,
14
N., 2014. A reconsideration of Pan African Orogenic Cycle in the Anti- Atlas Mountains,
15
Morocco. J. Afr. Earth Sci. 98, 34-46.
16
Hefferan, K.P., Admou, H., Hilal, R., Karson, J.A., Saquaque, A., Juteau, T., Bohn, M.M.,
17
Samson, S.D., Kornprobst, J.M., 2002. Proterozoic blueschist-bearing mélange in the Anti-
18
Atlas Mountains, Morocco. Precambrian Research 118, 179–194.
19 20 21 22
Hindermeyer, J., 1953. Le Précambrien III du Sarhro. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 237 (17), 1024–1026. Hoepffner, C., Soulaimani, A., Piqué, A., 2005. The Moroccan hercynides. J. Afr. Earth Sci. 43, 144-165.
23
Hooper P.R., Bailey D.G. and Mccaley Holder G.A., 1995. Tertiary calc-alkaline magmatism
24
associated with lithospheric extension in the Pacific Northwest. J. Geophys. Res. 100:
25
10,303- 10,319.
26
Ighid, L., Saquaque, A., Reuber, I., 1989. Plutons syn-cinématiques et la déformation
27
panafricaine majeure dans le Saghro oriental (boutonnière d’Imiter, Anti-Atlas, Maroc).
28
Comptes Rendus l’Académie Sci. Paris 309, 615-620.
29
Ikenne, M., Gasquet, D., Barbey, P., Macaudière, J., 1997. Relations entre déformation,
30
métamorphisme et magmatisme dans le Paléoprotérozoïque du massif du Bas-Draa (Anti-
31
Atlas occidental, Maroc). C.R. Acad. Sci. 324 (série II), 237-243.
32
Ikenne, M., Soderlund, U., Ernst, R.E., Pin, C., Youbi, N., El Aouli, E.H., Hafid, A., 2017. A
33
c. 1710 Ma mafic sill emplaced into a quartzite and calcareous series from Ighrem, Anti-
16
ACCEPTED MANUSCRIPT 1
Atlas Morocco: evidence that the Taghdout passive margin sedimentary group is nearly 1
2
Ga older than previously thought. J. Afr. Earth Sci. 127, 62-76.
3
Ikenne, M., Ennaciri, Ao., Cousens, B., Ouguir, H., Ziyadi, R., Mouhagir, M., Gaouzi, A.,
4
2007. Géochimie et Isotopes de Nd des Roches filoniennes Néoprotérozoïque de la
5
boutonnière d’Imiter. Communication orale, Congrès international, 3MA, Mai 2007.
6
Faculté des Sciences Fès, Dhar El Mahraz.
7 8
Irvine, T. N., & Baragar, W. R. A., 1971 A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-48.
9
Kouyaté, D., Soderlund, U., Youbi, N., Ernst, R., Hafid, A., Ikenne, M., Soulaimani, A.,
10
Bertrand, H., El Janati, M., Chaham, K., 2013. U-Pb baddeleyite and zircon ages of 2040
11
Ma, 1650 Ma and 885 Ma on dolerites in the West African Craton (Anti- Atlas inliers):
12
possible links to break-up of Precambrian supercontinents. Lithos 174 (1), 71-84.
13
Leblanc, M., Lancelot, J.R., 1980. Interprétation géodynamique du domaine Panafrican
14
(Précambrian terminal) de l’Anti-Atlas (Maroc) à partir de données géologique et
15
géochronologique. Canadien Journal of Earth Science 17, 142–155.
16 17
Leblanc, M., 1975. Ophiolites précambriennes et gîtes arséniés de cobalt (Bou-Azzer, Maroc). Notes Mém. Serv. Géol. Maroc. 280, 306.
18
Levresse, G., 2001. Contribution à l’établissement d’un mode génétique des gisements
19
d’Imiter (Ag-Hg), Bou Madine (Pb-Zn-Cu-Ag-Au) et Bou Azzer (Co-Ni-As-Au-Ag) dans
20
l’Anti-Atlas marocain. PhD thesis. INPL, Nancy, France.
21
Levresse, G., Cheilletz, A., Gasquet, D., Reisberg, L., Deloule, E., Marty, B., Kyser, K., 2004.
22
Osmium, sulphur and helium isotopic results from the giant Neoproterozoic epithermal
23
Imiter silver deposit, Morocco: evidence for a mantle source. Chem. Geol. 207, 59-79.
24
Liégeois, J.P., Fekkak, A., Bruguier, O., Errami, E., Ennih, N., 2006. In: The Lower
25
Ediacaran (630-610 Ma) Saghro Group: an orogenic transpressive basin development
26
during the early metacratonic evolution of the Anti-Atlas (Morocco). IGCP-485 4th
27
Meeting, Algiers, abstr, vol. 57.
28
Liégeois, J.P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin for post-collisional
29
high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of
30
sliding normalization. Lithos 45, 1–28.
31
Linnemann, U., Francisco P., Teresa E. J., Kerstin D., Axel G., 2008. The Cadomian Orogeny
32
and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by
33
LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and
34
Bohemian Massifs). Tectonophysics 461, 21–43. 17
ACCEPTED MANUSCRIPT 1
Maloof, A.C., Schrag, D.P., Crowley, J.L., Bowring, S.A., 2005. An expanded record of Early
2
Cambrian carbon cycling from the Anti-Atlas margin, Morocco. Canadian Journal of Earth
3
Sciences 42 (12), 2195–2216.
4
Malus_a, M., Polino, R., Cerrina Feroni, A., Ferrero, A., Ottria, G., Baidder, L., Musumeci,
5
G., 2007. Post-Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova 19, 481-
6
489.
7
Marini, F., Ouguir, H., 1990. Un nouveau jalon dans l’histoire de la distension
8
prépanafricaine au Maroc : le Précambrien II des boutonnières du Jbel Saghro nord-
9
oriental (Anti-Atlas, Maroc). C.R. Acad. Sci. Paris 310, 577-582
10
Márquez A., Oyarzun R., Doblas M. and Verma S.P., 1999. Alkalic (OIB-type) and calc-
11
alkalic volcanism in the Mexican volcanic belt: a case for plume-related magmatism and
12
propagating rifting at an active margin? Geology, 27: 51-54.
13
Massironi, M., Moratti, G., Algouti, A.H., Benvenuti, M., Dal Piaz, G.V., Eddebbi, A., El
14
Boukhari, A.,Laftouhi, N., Ouanaimi, H., Schiavo, A., Taj Eddine, K., Visonà, D., 2007.
15
Carte Géologique du Maroc au 1/50.000, feuille de Boumalne. Notes Mém. Serv. Géol.
16
Maroc. 521
17
Michard A., Soulaimani A., Ouanaimi H., Raddi Y., Aït Brahim L., Rjimati E.C., Baidder L.,
18
Saddiqi O., 2017. Saghro Group in Ougnat Massif (Morocco), an evidence for a
19
continuous Cadomian basin along the northern West African Craton. C.R. Geoscience,
20
349, 81-90. Morris G.A., Larson P.B. and. Hooper P.R., 2000. ‘Subduction Style’
21
magmatism in a non-subduction setting: the Colville Igneous Complex, NE Washington
22
State, USA. J. Petrol., 41: 43-67.
23
Mortaji, A., Ikenne, M., Gasquet, D., Barbey, P., Stussi, J.M., 2000. Les granitoïdes
24
paléoprotérozoïques des boutonnières du Bas Draa et de la Tagragra d’Akka (Anti-Atlas
25
occidental, Maroc) : un élément du puzzle géodynamique du craton ouest- africain. J. Afr.
26
Earth Sci. 31, 523-538
27
Mouttaqi, A., 1997. Hydrothermalisme et minéralisations en relation avec le rifting
28
protérozoïque supérieur: exemple du gisement de cuivre de Bleïda (Anti-Atlas), Maroc.
29
Unpublished Thesis. University of Marrakech, Maroc, p. 310.
30
Mrini, Z., 1993. Chronologie (Rb-Sr, U-Pb), traçage isotopique (Sr-Nd-Pb) des sources des
31
roches Magmatiques éburnéennes, panafricaines et hercyniennes du Maroc. Université
32
Cadi Ayad, Marrakech, p. 227. Thèse Doctorats Sciences.
33
Ouguir, H., Macaudière, J., Dagallier, G., 1996. Le Protérozoïque supérieur d’Imiter, Saghro
34
oriental, Maroc : un contexte géodynamique d’arrière-arc. J. Afr. Earth Sci. 22, 173-189. 18
ACCEPTED MANUSCRIPT 1
Ouguir, H., Macaudière, J., Dagallier, G., Qadrouci, A., Leistel, J.M., 1994. Cadre structural
2
du gîte Ag-Hg d’Imiter (Anti Atlas, Maroc); implication métallogénique. Bull. Soc.
3
Géologique Fr. 165, 233-248.
4
Oukassou, M., Saddiqi, O., Barbarand, J., Sebti, S., Baidder, L., Michard, A., 2013. Post-
5
Variscan exhumation of the Central Anti-Atlas (Morocco) constrained by zircon and
6
apatite fission-track thermochronology. Terra Nova 25, 151-159.
7
Ruiz G.M.H., Sebti S., Negro F., Saddiqi O., Frizon de Lamotte D., Stockli D., Foeken J.,
8
Stuart F., Barbarand J., Schaer J.P. 2011. From central Atlantic continental rift to Neogene
9
uplift – western Anti-Atlas (Morocco). Terra Nova 23:35–41
10
Samson S.D., Inglis J.D., D’Lemos R.S., Admou H., Blichert-Toft J., Hefferan K. 2004.
11
Geochronological, geochemical and Nd-Hfisotopic constraints on the origin of
12
Neoproterozoic plagiogranitesin the Tasriwine ophiolite, Anti-Atlas orogen, Morocco.
13
Precambrian Res 135:133–147
14
Saquaque, A., Admou, H., Cisse, A., Benyoussef, A., Reuber, I., 1989. Les intrusions calco-
15
alcalines de la boutonnière de Bou-Azzer-El Graâra (Anti-Atlas) : marqueurs de la
16
déformation panafricaine majeure dans un contexte de collision d’arc. C. R. Acad. Sci.
17
Paris 308, 1279-1283.
18
Saquaque, A., Benharref, M., Abia, H., Mrini, Z., Reuber, I., Karson, J.A., 1992. Evidence for
19
a Panafrican volcanic arc and wrench fault tectonics in the Jbel Saghro, Anti- Atlas,
20
Morocco. Geol. Rundsch. 81, 1-13.
21
Schiavo, A., Taj Eddine, K., Algouti, A.H., Benvenuti, M., Dal Piaz, G.V., Eddebbi, A., El
22
Boukhari, A., Laftouhi, N., Massironi, M., Moratti, G., Ouanaimi, H., Pasquaré, G.,
23
Visonà, D., 2007. Notice explicative. Carte Géologique du Maroc au 1/50.000, feuille
24
d’Imiter. Notes Mém. Serv. Géol. Maroc. 518 bis, 1-96.
25
Soulaimani, A., Michard, A., Ouanaimi, H., Baidder, L., Raddi, Y., Saddiqi, O., Rjimati, E.C.,
26
2014. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and
27
Alpine cycles in the Anti-Atlas (Morocco). J. Afr. Earth Sci. 98, 94-112.
28
Soulaimani,
A.,
Bouabdelli,
M.,
Piqué,
A.,
2003.
L’extension
continentale
au
29
Néoprotérozoïque supérieur-Cambrien inférieur dans l’Anti-Atlas (Maroc). Bull. Soc.
30
Géol. Fr. 174, 83-92.
31
Soulaimani, A., Ouanaimi, H., Saddiqi, O., Baidder, L., Michard, A., 2018. The Anti-Atlas
32
Pan-African Belt (Morocco): Overview and Pending Questions. C. R. Geosci. 350, 279–
33
88. https://doi.org/10.1016/j.crte.2018.07.002.
19
ACCEPTED MANUSCRIPT 1
Thomas, R.J., Chevallier, L.P., Gresse, P.G., Harmer, R.E., Eglington, B.M., Armstrong,
2
R.A., de Beer, C.H., Martini, J.E.J., de Kock, G.S., Macey, P.H., Ingram, B.A., 2002.
3
Precambrian evolution of the Sirwa window, Anti-Atlas Orogen, Morocco. Precambrian
4
Res. 118, 1-57.
5
Thomas, R.J., Fekkak, A., Ennih, N., Errami, E., Loughlin, S.C., Gresse, P.G., Chevallier,
6
L.P., Liégeois, J.P., 2004. A new lithostratigraphic framework for the Anti-Atlas Orogen,
7
Morocco. J. Afr. Earth Sci. 39, 217-226.
8
Thompson, R.N., Morrison, M.A., Hendry, G.L., Parry, S.J., 1984. An assessment of the
9
relative roles of crust and mantle in magma genesis: an elemental approach. Philosophical
10
Transactions of the Royal Society of London Mathematical and Physical Sciences, A310,
11
549–590.
12
Toummite, A., Liégeois, J.P., Gasquet, D., Bruguier, O., Beraaouz, E.H., Ikenne, M., 2012a.
13
Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute
14
Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting.
15
Mineral. Petrol. 107 (5), 1-25.
16
Toummite, A., 2012b. Les granitoïdes du protérozoïque terminal de la vallée de Tifnoute
17
(anti-Atlas Central): Un exemple d'un magmatisme post-collisionnel d'origine juvénile
18
dans
19
Unpublished Thesis, University of Innou Zor , Agadir, Morocco, p.
un
contexte
métacratonique:
Géochimie-Géochronologie-Isotopes
Sr-Nd.
20
Tuduri, J., 2005. Processus de formation et relations spatio-temporelles des minéralisations à
21
or et argent en contexte volcanique Précambrien (Jbel Saghro, Anti-Atlas, Maroc).
22
Implications sur les relations déformation-magmatisme-volcanisme-hydrothermalisme
23
Unpublished Thesis, University of Orléans, France.
24
Tuduri J., Chauvet A., Barbanson L., Labriki M., Dubois M., Trapy P. H., Lahfid A., Poujol
25
M., Melleton J., Badra L., Ennaciri A., Maacha L., 2018. Structural control, magmatic-
26
hydrothermal evolution and formation of hornfels-hosted, intrusion-related gold deposits:
27
Insight from the Thaghassa deposit in Eastern Anti-Atlas, Morocco. Ore Geology Reviews,
28
doi: https://doi.org/10.1016/j.oregeorev.2018.04.023
29
Walsh, G.J., Benziane, F., Aleinikoff, J.N., Harrison, R.W., Yazidi, A., Burton, W.C., Quick,
30
J.E., Saadane, A., 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou
31
Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambr. Res. 216, 23-
32
62.
33 34
Whalen J. B., Currie K. L., and Chappell B. W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419. 20
ACCEPTED MANUSCRIPT 1 2
Wilson, M., 1989. Igneous Petrogenesis: a Global Tectonic Approach. Unwin Hyman Ltd., London (466 pp.).
3
Youbi, N., Kouyate, D., Soderlund, U., Ernst, R.E., Soulaimani, A., Hafid, A., Ikenne, M., El
4
Bahat, A., Bertrand, H., Rkha Chaman, K., Ben Abbou, M., Mortaji, A., El Ghorfi, M.,
5
Zouhair, M., El Janati, M., 2013. The 1750 Ma magmatic event of the west African Craton
6
(Anti-Atlas, Morocco). Precambrian Res. 236, 106-123.
7
21
ACCEPTED MANUSCRIPT Figure captions Fig. 1. Geological map of the Anti-Atlas belt in the West African Craton (WAC) showing the location of the studied area (modified from Gasquet et al., 2008). Fig. 2. (A) Geological map of the studied area; (B) Enlarged map of the Bou Fliou granite area (modified from Ouguir et al., 1994; Tuduri, 2005). Fig. 3. Field photographs of granitoid samples selected for geochronology: (A) Bou Fliou granite composed of quartz, plagioclase and biotite; (B) Bou Teglimt granodiorite composed of large biotite crystals within a matrix of quartz, plagioclase, biotite and amphibole; (C) Igoudrane granodiorite composed of quartz, plagioclase, K-feldspar, amphibole and biotite; and (D) Igoudrane quartz diorite composed of plagioclase, quartz, abundant biotite and green hornblende Fig. 4. Cathodoluminescence (CL) images of selected analyzed zircon grains. Analytical spots indicated by red circles, with corresponding 206Pb/238U ages.
Fig. 5. SHRIMP U–Pb Concordia diagrams and weighted ages for samples GB-1 and BT-3. Common lead uncorrected. All red and grey spots localized far from the cluster are excluded from age calculation. Fig.6. SHRIMP U–Pb Concordia diagrams and weighted ages for samples IGO-23. Common lead uncorrected.
206Pb/238U
Concordia age calculated for data with discordance < 5 %. All red spots
localized far from the cluster are excluded from age calculation. Fig.7. (a) SHRIMP U–Pb Concordia diagrams and weighted ages for samples IGO-20. Common lead uncorrected. 206Pb/238U Concordia age calculated for data with discordance < 5 %. (b) Density plot for concordant 206Pb/238U ages; interval = 10 Ma. All red spots localized far from the cluster are excluded from age calculation.
Fig. 8. Simplified geologic map of a nine-quadrangle area in the central part of the Jebel Saghro inlier and in the northern part of the Bou Azzer–El Graara inlier, showing available U–Pb zircon ages
22
ACCEPTED MANUSCRIPT (Geology of the three unmapped sheets is simplified from the 1:1,000,000 Geologic Map of Morocco (Maroc Service Géologique, 1985; Walsh et al, 2012).
Table captions Table.1 Zircon U/Pb isotope composition of Bou Fliou granite (GB-1) and Bou Teglimt granodiorite (BT-3) Errors are at one sigma level (1σ) Table.2 Zircon U/Pb isotope composition of Igoudrane granodiorite (IGO-23) and Igoudrane quartz diorite (IGO-20). Errors are at one sigma level (1σ) Table. 3 Sm–Nd isotopic data for the studied granitoids samples of the Imiter inlier with Nd(t) and TDM recalculated according to the new U–Pb ages obtained in this study. Table. 4 The ages (U / Pb on zircons) of the different granitoids and volcanic rocks in the Saghro massif.
23
ACCEPTED MANUSCRIPT Highlights: - We provide new zircon ages for the granitoids of the Imiter inlier (Saghro, Eastern AntiAtlas), - The crystallization age of the Igoudrane massif (575 ± 10 Ma) is younger than previously thought, - The granitoids in the Imiter inlier are Ediacaran to Lower Cambrian in age (538– 582 Ma), - An Archean to Paleoproterozoic basement is present under the Eastern Anti-Atlas,
Table.1 Zircon U/Pb isotope composition of Bou Fliou granite (GB-1) and Bou Teglimt granodiorite (BT-3) Errors are at one sigma level (1σ) Samples
U (ppm)
Th (ppm)
Th/U
Pb207/Pb206
±err
Pb207/U235
±err
Pb206/U238
±err
Pb207/Pb206
±err
Pb207/U235
±err
Pb206/U238
±err
Discord %
Age (Ma)
Isotope ratios
Bou Fliou granite GB-1. 1.1
172.3
86
0.51
0.0559
0.00056
0.76435
0.01497
0.09917
0.00163
448.5
22
576.5
8.6
609.5
9.6
-2.0
GB-1. 10.1
144.2
35.8
0.25
0.05965
0.00171
0.79256
0.02638
0.09636
0.0016
591.1
60.8
592.6
15
593
9.4
-2.6
GB-1. 11.1
68.9
20.3
0.3
0.05164
0.0016
0.65285
0.03261
0.0917
0.00357
269.3
69.8
510.2
20.2
565.6
21.2
-2.0
GB-1. 12.1
141.7
65.6
0.48
0.05828
0.00074
0.75011
0.01301
0.09334
0.00105
540.3
27.6
568.3
7.6
575.3
6.2
-2.4
GB-1. 13.1
99.5
42.6
0.44
0.05896
0.00296
0.74797
0.04
0.09201
0.00165
565.7
105.8
567
23.5
567.4
9.7
0.0
GB-1. 14.1
59.4
19.7
0.34
0.0571
0.0033
0.74262
0.04683
0.09433
0.00235
495.3
122.6
563.9
27.6
581.1
13.9
-5.6
GB-1. 15.1
59.8
18.8
0.32
0.06108
0.00261
0.79835
0.04338
0.0948
0.00316
642.1
89.4
595.9
24.8
583.8
18.6
1.8
GB-1. 16.1
81.8
34.5
0.43
0.05645
0.00186
0.71229
0.0304
0.09152
0.00245
469.9
71.4
546.1
18.2
564.5
14.5
-1.0
GB-1. 17.1
98.7
39.7
0.41
0.05908
0.00185
0.76931
0.02562
0.09444
0.00104
570.1
66.6
579.4
14.8
581.7
6.1
-0.6
GB-1. 18.1
79.8
34.8
0.45
0.05901
0.00113
0.76259
0.02009
0.09372
0.00166
567.5
41.2
575.5
11.6
577.5
9.8
-2.0
GB-1. 19.1
674.6
131.6
0.2
0.05776
0.00033
0.72892
0.01376
0.09153
0.00161
520.7
12.4
555.9
8.1
564.6
9.5
-1.4
GB-1. 19.2
44.4
15.6
0.36
0.05731
0.00247
0.73525
0.04191
0.09304
0.00345
503.5
92.2
559.6
24.8
573.5
20.4
0.2
GB-1. 2.1
935
175.8
0.19
0.06113
0.00039
0.60948
0.05583
0.07231
0.0066
643.9
13.6
483.2
35.8
450.1
39.9
2.8
GB-1. 2.2
60
20.5
0.35
0.05584
0.00366
0.73618
0.05516
0.09561
0.00345
446.1
139.6
560.2
32.8
588.6
20.3
-2.6
GB-1. 20.1
115.9
29
0.26
0.05478
0.00066
0.69384
0.02
0.09186
0.00238
403.5
26.6
535.1
12.1
566.5
14.1
-2.6
GB-1. 3.1
90.5
36.5
0.41
0.05719
0.00289
0.73739
0.04675
0.09351
0.00355
499.1
107.6
560.9
27.7
576.2
20.9
-1.6-
GB-1. 4.1
67.8
26.2
0.4
0.06074
0.00275
0.78376
0.05266
0.09359
0.00464
629.9
94.6
587.6
30.4
576.7
27.3
5.2
GB-1. 5.1
67.2
25.5
0.39
0.06049
0.0038
0.80997
0.05385
0.09711
0.00211
621.3
129.8
602.4
30.6
597.4
12.3
-1.4
GB-1. 6.1
61.3
19.8
0.33
0.05797
0.00167
0.75869
0.03641
0.09491
0.00363
528.9
61.6
573.3
21.3
584.5
21.4
-1.0
GB-1. 7.1
152.8
34.4
0.23
0.06035
0.00164
0.822
0.02556
0.09878
0.00146
616.1
57.6
609.2
14.4
607.3
8.6
-2.4
GB-1. 7.2
137.1
35.3
0.26
0.0564
0.00105
0.71327
0.02473
0.09172
0.00266
468.1
40.8
546.7
14.8
565.7
15.7
-2.4
GB-1. 8.1
69
30.2
0.45
0.05669
0.00231
0.71061
0.04322
0.09091
0.0041
479.5
87.6
545.1
26
560.9
24.2
-1.0
GB-1. 9.1
52.2
19
0.37
0.0535
0.00233
0.71206
0.03641
0.09653
0.00257
349.9
95.6
546
21.9
594.1
15.2
-2.8
Bou Teglimt granodiorite BT-3-1.1
170.7
77.3
0.46
0.05854
0.00059
0.7201
0.01598
0.08921
0.00173
550.3
21.8
550.7
9.5
550.8
10.2
2.0
BT-3-10.1
243.4
33.3
0.14
0.05961
0.0009
0.81239
0.02865
0.09884
0.00313
589.5
32.6
603.8
16.2
607.6
18.4
0.0
BT-3-11.1
130.3
30.3
0.24
0.05627
0.00069
0.6833
0.02642
0.08807
0.00322
463.1
26.8
528.8
16.1
544.1
19.1
-4.0
BT-3-12.1
152
32.3
0.22
0.06529
0.00193
0.83311
0.0326
0.09254
0.00234
783.9
61
615.3
18.2
570.5
13.8
-0.4
BT-3-13.1
88.2
27.1
0.32
0.06042
0.00198
0.74494
0.03551
0.08942
0.00308
618.7
69
565.3
20.9
552.1
18.2
1.4
BT-3-14.1
122.2
32.9
0.28
0.05526
0.00087
0.72756
0.02007
0.09549
0.00213
422.7
34.8
555.1
11.8
588
12.6
-5.0
BT-3-15.1
151.8
54.6
0.37
0.06031
0.0008
0.73984
0.02242
0.08897
0.0024
614.7
28.4
562.3
13.2
549.5
14.3
0.8
BT-3-16.1
86.9
23.3
0.28
0.05757
0.00094
0.75007
0.01673
0.09449
0.0014
513.5
35.4
568.3
9.8
582.1
8.3
-1.8
BT-3-16.2
239.5
200.8
0.86
0.06017
0.00066
0.80294
0.02811
0.09678
0.0032
609.7
23.6
598.5
16
595.5
18.8
4.0
BT-3-17.1
148.3
63.6
0.44
0.05874
0.00079
0.76913
0.02098
0.09496
0.00223
557.5
29.2
579.3
12.1
584.8
13.1
-1.2
BT-3-18.1
77
18.1
0.24
0.05852
0.0012
0.76099
0.01846
0.09431
0.00118
549.5
44
574.6
10.7
580.9
6.9
-2.2
BT-3-19.1
237.5
72.5
0.31
0.05873
0.00063
0.75071
0.01824
0.09271
0.00199
557.1
23.2
568.6
10.6
571.5
11.7
-0.4
BT-3-2.1
97.3
27.5
0.29
0.21926
0.00471
17.60998
0.67751
0.58249
0.01847
2975.3
34.2
2968.7
37.7
2958.9
75.7
0.6
BT-3-20.1
143.2
39.1
0.28
0.05951
0.00034
0.74828
0.01284
0.0912
0.00144
585.7
12.4
567.2
7.5
562.6
8.4
0.4
BT-3-21.1
80.8
32
0.41
0.05885
0.00116
0.76007
0.01907
0.09367
0.00141
561.7
42.4
574.1
11.1
577.2
8.3
-2.6
BT-3-22.1
80.3
20.8
0.27
0.06169
0.00168
0.76722
0.03505
0.0902
0.00329
663.3
57.6
578.2
20.4
556.7
19.5
3.4
BT-3-23.1
210.2
95.4
0.47
0.06046
0.00091
0.77928
0.02887
0.09349
0.00314
619.9
32.2
585.1
16.6
576.1
18.5
-0.8
BT-3-24.1
117.8
27.2
0.24
0.06019
0.00131
0.75952
0.02045
0.09152
0.0014
610.3
46.6
573.7
11.8
564.5
8.3
-1.2
BT-3-25.1
183.2
87.2
0.49
0.05955
0.00068
0.77386
0.0334
0.09425
0.00391
587.3
24.6
582
19.3
580.6
23.1
1.4
BT-3-26.1
145.7
32.2
0.23
0.05781
0.00106
0.76118
0.02795
0.09549
0.00302
522.7
39.6
574.7
16.3
587.9
17.7
-0.8
BT-3-27.1
127.7
30.9
0.25
0.05898
0.00112
0.66874
0.03368
0.08223
0.00382
566.3
41
519.9
20.7
509.4
22.8
1.6
BT-3-28.1
178.8
38.6
0.22
0.06101
0.00156
0.6503
0.02726
0.0773
0.00256
639.7
53.8
508.7
17
480
15.3
0.8
BT-3-29.1
174.8
64.9
0.38
0.05838
0.00068
0.70243
0.0157
0.08726
0.00163
544.1
25.4
540.2
9.4
539.3
9.7
0..2
BT-3-3.1
210.8
69.6
0.34
0.05922
0.00087
0.74512
0.01582
0.09126
0.00135
575.1
31.8
565.4
9.3
563
8
-0.8
BT-3-30.1
204.9
111
0.56
0.0587
0.00097
0.74437
0.044
0.09196
0.00521
556.1
35.6
565
26
567.1
30.8
3.4
BT-3-4.1
152.3
40.7
0.27
0.05775
0.00129
0.70429
0.02504
0.08845
0.00243
520.3
48.2
541.3
15
546.4
14.5
-2.4
BT-3-5.1
138.4
29.7
0.22
0.05659
0.0014
0.69671
0.02709
0.08929
0.00266
475.7
53.8
536.8
16.3
551.3
15.7
-0.2
BT-3-6.1
138.5
48.1
0.36
0.05967
0.00033
0.76463
0.01431
0.09294
0.00163
591.7
12
576.7
8.3
572.9
9.6
0.6
BT-3-7.1
97.6
24
0.25
0.0585
0.00142
0.71712
0.02587
0.08891
0.00235
548.3
52.4
549
15.4
549.1
13.9
-2.0
BT-3-7.2
288
89.1
0.32
0.05955
0.00073
0.76598
0.01386
0.09328
0.00119
587.5
26.4
577.5
8
574.9
7
-1.0
BT-3-8.1
156.6
52.6
0.34
0.06017
0.00096
0.77281
0.02212
0.09315
0.00219
609.7
34.2
581.4
12.8
574.1
12.9
-0.6
BT-3-9.1
192.2
140.5
0.75
0.05942
0.00108
0.74853
0.02187
0.09137
0.00207
582.5
38.8
567.4
12.8
563.6
12.2
2.0
Table.2 Zircon U/Pb isotope composition of Igoudrane granodiorite (IGO-23) and Igoudrane quartz diorite (IGO-20). Errors are at one sigma level (1σ) Samples
U (ppm)
Th (ppm)
Th/U
Pb207/Pb206
±err
Pb207/U235
±err
Pb206/U238
±err
Pb207/Pb206
±err
Isotope ratios
Pb207/U235
±err
Pb206/U238
±err
Discord %
535.5
11.4
-1.0
Age (Ma)
Igoudrane granodiorite IGO-23-1.1
438.58118 164.14767 0.38394916
0,05578
0,00030 0.66613221 0.01541411 0.08661743 0.00192362
518.40002
9.5
IGO-23-1.2
61.384216
44.63689
0.7459783
0,05889
0,00151 0.74975675 0.02255734 0.09233017 0.00141039 563.29999 54.799999 568.09998
13.2
IGO-23-10.1
743.93945
92.78743
0.12795007
0,05828
0,00024 0.74049878 0.01163907 0.09214831
IGO23-10.2
146.54666 34.973789 0.24482498
0,05894
0,00076 0.77657783 0.01363224 0.09555227 0.00108307 565.09998 27.799999
IGO-23-11.1
213.83253 56.382095 0.27049324
0,05994
0,00068 0.76942307 0.01313749 0.09310445 0.00113744 601.29999
24.4
579.40002
IGO-23-12.1
713.08752
84.22541
0.12116838
0,05816
0,00024 0.74724346 0.01481245 0.09318797 0.00177581 535.70001
9,0
566.59998 8.6000004 574.40002
IGO-23-12.2
186.1721
164.48837 0.90637845
0,05709
0,00065 0.73637253 0.01196285 0.09355276 0.00103008 494.89999
25,0
560.29999
IGO-23-13.1
354.62491 51.290489 0.14837357
0,05752
0,00040 0.73776329 0.01376555
15.2
IGO-23-13.2
192.46228 85.739136 0.45700657
0,06820
0,00069
IGO-23-14.1
274.95801 33.455971 0.12482347
IGO-23-14.2
540.29999
12,0
9,0
562.70001 6.8000002 568.20001 583.5
8,0
7.8000002 588.29999 6.4000001 7.5
573.90002 6.6999998
-0.6 -1.0 0.0 -0.4 -2.0
6.0999999
1.4
561.09998 8.1000004 573.40002 9.3000002
-0.8
20.799999 903.79999 9.1000004 915.90002 9.1999998
-2.0
511.5
0.02183629 0.15265895 0.00164315
874.5
0,05674
0,00060 0.74741036 0.01144193 0.09553415 0.00099176
481.5
115.05006 99.564705 0.88778448
0,05665
0,00123 0.76787519 0.02058854 0.09830825 0.00150996 477.89999 47.200001
IGO-23-15.1
561.82568 102.70641 0.18753611
0,05596
0,00037 0.55297583 0.00530379 0.07167085 0.00042495 450.70001
IGO-23-15.2
79.172462 52.092705
0.6749813
0,05592
0,00190 0.80514711 0.03077014 0.10442863
IGO-23-16.1
332.7851
53.670036 0.16544627
0,05767
0,00038 0.73541307 0.00814184 0.09248653 0.00074733 517.29999
0.0017802
569.29999 8.3000002
10.5
0.00157703
1.4354397
0.0930234
0.0013575
443.5
23.4
14.6
576.5
566.70001 6.5999999 588.20001 5.9000001 578.5
11.9
604.5
446.89999 3.4000001 446.20001
449.10001 73.800003 599.70001 14.4
7,0
17.4
640.29999
-2.8
8.8999996
-1.8
2.5
1.8
10.4
2.8
559.70001 4.6999998 570.20001 4.4000001
-1.2
IGO-23-16.2
22.005051 20.595795 0.96016341
0,06160
0,00373
0.26425752 0.13335131 0.03004435 660.29999
124.6
769,0
134.3
807,0
173.2
10.6
IGO-23-16.3
269.2674
66.940651 0.25503227
0,05700
0,00049 0.72901881 0.02054104 0.09276767 0.00246628 491.29999
19,0
556,0
12.2
571.90002
14.6
-2.2
IGO-23-16B.1 442.00131 55.243412 0.12821709
0,05732
0,00028 0.72302377 0.02466766 0.09148949 0.00307179 503.70001
10.8
552.5
14.7
564.29999
18.1
-1.0
1.1325855
IGO-23-17.1
532.11694 62.747177 0.12096955
0,05696
0,00034 0.74173349 0.01757127 0.09443794 0.00213863 490.10001
13.2
563.40002
10.3
581.70001
12.6
-1.8
IGO-23-17.2
156.93701 35.168888 0.22989112
0,05696
0,00077 0.73714417 0.01945311 0.09386609 0.00210514 489.89999
29.4
560.70001
11.4
578.40002
12.5
-0.8
IGO-23-18.1
201.97925 60.606087 0.30782115
0,05680
0,00067 0.73344481 0.02380336 0.09365346 0.00281088 483.70001
26,0
558.59998
14.1
577.09998
16.6
-1.2
IGO-23-19.1
114.94692 83.225082 0.74275547
0,06617
0,00053
0.05787544 0.12411213 0.00624871 811.70001 16.799999 768.79999
27.9
754.20001 35.900002
IGO-23-2.1
212.09399 42.986332 0.20791747
0,05580
0,00090 0.70307457 0.01711508 0.09138134 0.00163605
10.2
563.70001 9.6999998
1.1322867
444.5
35.400002 540.59998
-2.8 0.2
1.4194522
0,05749
0,00172 0.73310274 0.03361148 0.09249239 0.00320169 510.29999 64.199997 558.40002
19.9
570.29999
19,0
-10.4
24.492119 0.16867359
0,05710
0,00127 0.73825687 0.02639603 0.09376314 0.00260831
495.5
48.200001 561.40002
15.5
577.79999
15.4
-1.2
IGO-23-22.1
243.25687 38.791721 0.16359232
0,05708
0,00049 0.76130891 0.01296354
494.5
18.799999 574.79999
7.5
595.29999 8.1000004
IGO-23-23.1
194.54201 53.660828 0.28296515
0,05686
0,00044 0.74076849 0.01976934 0.09448718 0.00239048 486.10001
17,0
562.90002
IGO-23-24.1
302.38834 46.352077
0,05987
0,00068 0.74204803 0.01483509 0.08989664 0.00144794 598.70001
24.4
563.59998 8.6999998 554.90002
IGO-23-20.1
111.82587 154.72986
IGO-23-21.1
148.9595
0.1572509
0.096741
0.0013762
11.6
582,0
-1.2
14.1
-3.4
8.5
0.6
25.700001
2132.3
37.799999
13.4
0.01946597 0.08403516 0.00216123 554.90002 26.200001 526.70001
11.9
520.20001
12.9
1.0
0.01110439 0.09036879 0.00124664 550.09998
556.20001
6.5
557.70001 7.4000001
5.2
0.00323333 565.70001 9.3999996 572.90002
15.5
574.70001
0.0
534.79999
13.4
542.20001 7.1999998
3.2
46,0
512.40002
13.4
496.70001
1.6
11.4
584.29999
14.6
580.40002 17.799999
0.4
0.00077686 561.70001
10.8
554.5
4.5
552.79999 4.5999999
7.6
0,05937
0,00032 0.71367407 0.01251415 0.08717671 0.00141915 580.90002
11.6
546.90002 7.4000001 538.79999 8.3999996
2.2
326.35043 36.502468 0.11474322
0,05653
0,00068 0.73263717 0.01907982 0.09399747 0.00214537 473.29999 26.200001 558.09998
11.2
579.09998
12.6
-2.6
IGO-23-3.2
150.88242 27.863773
0.1894481
0,05788
0,00087 0.75754428 0.01472371 0.09491663 0.00111075
8.5
584.5
6.5
-1.2
IGO-23-30.1
233.78363 36.588741 0.16055444
0,05993
0,00053 0.73241043 0.01384807 0.08863208 0.00144682 601.09998
19,0
558,0
8.5
2.8
IGO-23-31.1
256.36404 34.436874 0.13780202
0,06031
0,00063 0.79274553 0.02755812 0.09533226 0.00314262 614.70001
22.4
592.70001
18.5
1.2
IGO-23-31.2
179.64691 52.766373 0.30131897
0,05844
0,00094 0.67632288
IGO-23-4.1
334.37735
0.15612653
0,05858
0,00034 0.73141873 0.01345269 0.09054934 0.00154844 551.70001
IGO-23-4.2
726.89648 1185.0453
1.672443
0,05878
0,00035 0.77490669
IGO-23-5.1
457.63095
0.12924382
IGO-23-5.2
IGO-23-24.2
118.09701 80.231323
0.6969378
0,18925
0,00332
10.229697
0.2802701
IGO-23-25.1
171.23013
26.17053
0.15679106
0,05867
0,00071
0.6798293
IGO-23-25.2
601.13422 434.80072
0.7420066
0,05854
0,00031
0.7294482
IGO-23-26.1
795.54852 81.602211 0.10522629
0,05896
0,00026 0.75802875 0.02663245
0.0932451
IGO-23-26.2
80.109795 56.674072 0.72575122
0,05730
0,00164 0.69327813
0.022211
0.08775114 0.00121147 503.10001
62,0
IGO-23-27.1
372.44766 196.33777 0.54078865
0,05943
0,00128 0.65634787
0.0216579
0.08010487 0.00198659 582.70001
IGO-23-28.1
252.23225 31.592953 0.12849274
0,05989
0,00032 0.77801013 0.02551981 0.09421834 0.00303127
IGO-23-28.2
290.70584 230.08493
0,05885
0,00029 0.72656637 0.00773135
IGO-23-29.1
286.10629 40.667103 0.14581586
IGO-23-3.1
0.811939
0.39203766 0.00813506
0.0895348
2735.7
599.5
525.5
28.4
11.6
2455.8
32.599998 572.59998
8.1999998 547.40002 15.7
587,0
19.1
11.8
9.3999996 519.59998 7.9000001
-0.8
12.4
557.40002 7.9000001 558.79999 9.1999998
1.8
0.09561297 0.00128865 558.90002
12.8
582.59998 6.8000002 588.59998
1.6
0,05876
0,00049 0.79238921 0.01104108 0.09780976 0.00103817 558.09998
18,0
201.49777 143.15477 0.72882718
0,05927
0,00062 0.79476821 0.01724551 0.09724826 0.00181706 577.09998
22.6
IGO-23-6.1
248.02892 30.918865 0.12788223
0,05840
0,00052 0.78381824 0.01881361 0.09733959 0.00214427 544.90002 19.200001 587.70001
10.8
IGO-23-6.2
651.01715 353.66663 0.55730206
0,07216
0,00018
14.8
50.88908
57.6549
82.76696
1.6221459
0.015484
0.0117302
0.08394099 0.00133338 546.09998 34.799999
524.5
592.5
6.1999998 601.59998 6.0999999
0.2
598.79999
12.6
-1.4
973.70001
20.9
0.2
11.7
-1.4
615.79999
12.9
-0.6
566.79999 8.3999996 576.79999
10,0
1.2
IGO-23-7.1
704.59015
0.1205062
0,05922
0,00026 0.73789853
IGO-23-7.2
171.86244 101.32413 0.60481274
0,05884
0,00079 0.81323791 0.02115076 0.10023995 0.00219967 561.09998 29.200001 604.29999
IGO-23-8.1
464.9101
60.791386 0.13414116
0,05792
0,00032 0.74748951 0.01438135 0.09359907
IGO-23-8.2
56.658859
44.14259
0.79924321
0,16056
0,00078
IGO2-3-9.1
468.26407
68.00145
0.14897601
0,05811
0,00054 0.70877069
0.0139174
IGO-23-9.2
225.68384 44.147213 0.20067433
0,07632
0,00189
0.04060299 0.11819661 0.00248659
1103.5
48.599998 820.59998
18.5
720.20001
0,05555
0,00125 0.63883686 0.04157383 0.08340729 0.00508574
434.5
49.200001 501.60001
26.1
516.40002 30.299999
10.272705
1.2438271
0.09037286 0.00197652 575.09998 9.8000002 561.20001 9.8000002 557.70001
0.0016936
0.15903938 0.46403602 0.00661464 0.0884542
526.70001 2461.5
12,0
8.1999998 2459.6001
0.00149595 534.09998 20.200001
-1.4
10.7
593.90002 9.8000002 598.29999
0.03810829 0.16304538 0.00376282 990.29999 5.1999998 978.79999 0.0166854
7.5
544,0
11.9
2457.3999 29.200001
-5.0
8.3000002 546.40002 8.8999996
-1.4
14.4
14.4
-0.2
Igoudrane quartz diorite IGO20-1.1
181.90628 24.024824 0.13548821
0.4
IGO-20-1.2
114.57558 52.269859 0.46800256
0,11543
0,00054
0.15819998 0.34273013 0.00972925
1886.7
8.3999996
1893.5
25.200001
1899.8
46.900002
-0.8
IGO-20-10.1
155.95726 36.159321 0.23785026
0,05588
0,00085 0.72396803 0.01471357 0.09396604 0.00122336
447.5
33.400002
553,0
8.6999998
579,0
7.3000002
-0.6
IGO-20-11.1
417.41281 56.209682 0.13814473
0,05898
0,00054 0.74878168 0.01710151 0.09207559 0.00189445 566.29999
20,0
567.5
10,0
567.79999
11.2
-1.6
5.4548249
10,0
2.2
594.5
16.799999 602.09998
19.6
-0.8
551,0
36.799999 568.79999 45.799999
238.10974 59.069324 0.25449181
0,05834
0,00049 0.71689051
IGO-20-12.1
174.80499 34.292252
0.2012478
0,05897
0,00084 0.79593372 0.02944955 0.09789395 0.00332138 565.90002 30.799999
IGO-20-13.1
365.34204 60.357292 0.16948023
0,05665
0,00074 0.72048962 0.06111331 0.09223744 0.00772242 478.10001
28.6
IGO-20-13.2
66.176048 28.708536 0.44504014
0,05847
0,00087 0.78775412
32,0
IGO-20-14.1
125.05512 25.546968 0.20956892
0,05645
0,00123 0.74848491 0.02495598 0.09616737 0.00240836 470.10001 47.400002 567.29999
IGO-20-15.1
155.9782
0.27492869
0,05913
0,00054 0.76599789 0.01064008 0.09395651 0.00092373 571.90002
IGO-20-16.1
140.36986 25.849321 0.18891406
0,06133
0,00109 0.75238121 0.01856079 0.08896887 0.00148809 650.90002 37.799999 569.59998
IGO-20-17.1
332.17001 57.147148 0.17649122
0,05816
0,00034 0.76752877 0.02976689 0.09570966 0.00365328 535.90002
0.4375222
0,16237
0,00366
IGO-20-18.1
217.58681 33.502083 0.15795313
0,05997
0,00066 0.72114152 0.01391204 0.08720873 0.00134341 602.70001
IGO-20-19.1
206.76587 34.106659 0.16921906
0,06084
0,00069 0.71321011 0.01946058 0.08501865 0.00208622 633.70001 24.200001 546.70001
IGO-20-19.2
48.571823 13.735045 0.29009128
0,05881
0,00272 0.67175704 0.04749278 0.08283684 0.00442142 560.29999 97.599998 521.79999 29.299999
IGO-20-2.1
263.9953
45.423119 0.17651016
0,05685
0,00063 0.76382411 0.01836903 0.09744087 0.00204674 485.89999
IGO-20-2.2
74.509369 44.833847 0.61728269
0,06630
0,00085
IGO-20-20.1
224.16647 40.271427 0.18429574
0,05939
IGO-20-21.1
219.08081 64.519241 0.30211613
IGO-20-22.1
IGO-20-17.2
106.958
41.8018
45.616756
8.8264723
0.015123
550.29999
IGO-20-11.2
0.0165024
0.08911894 0.00169478 542.70001 18.200001 548.79999
0.09771071 0.00140402
0.25301436 0.39424703 0.00684517
547.5
2480.5
19.6
12.6 37.599998 23.6
601,0
8.3000002
-1.4
591.90002
14.2
-1.4
6.1999998 578.90002
5.5
-0.2
589.90002 9.3999996
577.5
14.6
10.8
549.40002 8.8000002
26.5
551.29999 8.1999998 11.6
0.2
21.5
-1.4
2142.5
31.700001
8.0
539,0
8,0
1.2
526,0
12.4
2.8
513,0
26.299999
-7.4
12,0
-2.6
578.29999 17.200001 589.20001 2320.2
-1.2
576.20001
10.6
599.40002
1.3182641
0.04967311 0.14421232 0.00508221 815.70001 26.799999 853.79999
22,0
868.40002 28.700001
-0.2
0,00078
0.7218442
0.01541068 0.08814923 0.00145462
581.5
28,0
551.79999 9.1999998 544.59998 8.6000004
-1.4
0,05904
0,00041
0.6970343
0.01810811 0.08562727 0.00211924
568.5
15.2
158.63551 31.766792 0.20542908
0,05836
0,00057 0.69333363 0.01668742 0.08616956
IGO-20-3.1
264.46539 44.248825 0.17164132
0,05735
0,00036 0.76387548
0.0198068
0.09659599 0.00240672 505.10001
IGO-20-3.2
174.78325 71.104713 0.41733766
0,25715
0,00057
19.374191
1.0360144
0.54642117 0.02912797
IGO-20-4.1
147.7119
23.457777 0.16291472
0,05755
0,00058 0.69194043
0.0244568
0.08720139 0.00293954 512.70001 21.799999
IGO-20-5.1
230.89627 41.468838 0.18424423
0,05884
0,00061 0.70552659 0.03385613 0.08696268 0.00406269 561.29999
IGO-20-5.2
155.70769 45.787544 0.30166593
0,05746
0,00055
IGO-20-6.1
302.39218 43.286514 0.14684901
0,05791
0,00038 0.79237562 0.01818475 0.09923155
IGO-20-6.2
129.90086 27.476669 0.21699065
0,05769
IGO-20-7.1
251.30295 33.626446 0.13726896
IGO-20-8.1
0.6772722
0.0018706
24.4
9,0
10.9
529.59998
12.6
1.2
10.1
532.79999
11.1
-0.4
576.20001
11.4
594.40002
14.1
-1.2
3.5999999 3060.6001
53,0
2810.3
122.6
8.2
534,0
14.8
539,0
17.5
1.4
542.09998
20.4
537.5
24.1
0.4
537,0
543.09998 21.200001 534.79999
3229.3
13.6
22.4
0.03637406 0.08549236 0.00450801 509.10001 20.799999 525.09998 22.200001 528.79999 26.799999 0.0021527
609.90002
0,00057 0.75874364 0.01197765 0.09538953 0.00111922 517.90002 21.799999 573.29999
7,0
587.29999 6.5999999
-1.2
0,05778
0,00038 0.70091879 0.02129875 0.08797763
12.8
543.59998
1.4
210.49734 37.106083 0.18083706
0,05859
0,00065 0.75750995 0.01556037 0.09377072 0.00158107 551.90002 24.200001 572.59998 9.1000004 577.79999 9.3000002
-0.2
IGO-20-8.2
62.56673
37.587868 0.61630148
0,11179
0,00138
5.1047506
0.19052833 0.33117938 0.01160301
IGO-20-9.1
324.40631 47.592266 0.15049985
0,05851
0,00058
0.7519291
0.01647477 0.09321276 0.00178733 548.70001
521.5
1828.7
14.4
14.4
22.200001 21.6
592.5
539.29999
12.6
-3.4
10.3
0.0025897
526.5
0.4
15.4
32.200001
1844.1
56.400002
-0.4
569.29999 9.6000004
574.5
10.5
-0.4
1836.9
Table. 3 Sm–Nd isotopic data for the studied granitoids samples of the Imiter inlier with Nd(t)and TDM recalculated according to the new U–Pb ages obtained in this study. Sample
Age (Ma)
Nd
Sm
43Nd/144Nd
(ppm)
(ppm)
(measured)
2
147Sm/144Nd
143Nd/144Nd
(t)
Nd(t)
TDM
Bou Teglimt Granodiorite BT-1
567
18.35
4.2
0.512261
0.000006
0.1386
0.511737
-3.15
1792
BT-2
567
18.09
3.83
0.512223
0.000012
0.128
0.5117397
-3.12
1641
BT-3
567
17.98
3.83
0.512211
0.00002
0.129
0.5117245
-3.42
1680
BT-4
567
14.59
3.3
0.512241
0.000008
0.1367
0.5117256
-3.39
1788
Bou Fliou granite GB-1
582
16.25
3.15
0.51213
0.000014
0.1171
0.5117153
-3.85
1590
GB-2
582
16.6
3.21
0.512121
0.000009
0.1169
0.5117
-4.15
1557
GB-3
582
14.57
2.94
0.512136
0.000012
0.1221
0.5116966
-4.24
1677
GB-4
582
19.77
3.61
0.51208
0.000024
0.1105
0.5116822
-4.47
1573
Igoudrane quartz-diorite IGO-12
538
23
4.72
0.512231
0.000012
0.1242
0.5116798
-2.35
1606
IGO-14
538
19.37
4.21
0.51227
0.00001
0.1314
0.511695
-4.02
1824
IGO-16A
538
24.65
5.52
0.512207
0.000008
0.1354
0.5116065
-2.35
1484
IGO-20
538
21.17
4.21
0.512237
0.000012
0.1204
0.5117032
-2.33
1478
Igoudrane granodiorite IGO-22
575
18.68
3.65
0.512221
0.000009
0.1183
0.5116957
-1.95
1540
IGO-23
575
17.2
3.63
0.51227
0.000012
0.1275
0.5117094
-1.91
1606
IGO-24
575
15.19
3.35
0.512299
0.000016
0.1334
0.5117074
-2.45
1617
IGO-26
575
12.96
2.79
0.51226
0.000012
0.1302
0.5116819
-0.21
1037
ACCEPTED MANUSCRIPT Table. 4 The ages (U / Pb on zircons) of the different granitoids and volcanic rocks in the Saghro massif
Bouskour granite Iknioun granodiorite
Saghro Massif
Igoudrane massif
Taouzzakt granodiorite Wizergane granodiorite Bou Fliou granite Bou Teglimt granodiorite Isk'n Alla granite Zouzmitane granite Tagmout Monzogabbros Arharrhitz Pluton Oussilkane Pluton Bouskour Rhyolite Timijt rhyolite Takhatert Rhyolite Jebel n'Habab (Andesite)
Quartz diorite Granodiorite
Age (U/Pb; zircon) 572 570 565 563 538
±
References
5 5 5 6.3
Benziane et al., 2007 Walsh et al., 2012 De Wall et al. 2001 Tuduri et al., 2018 6 This study
575 555 573 576
10 7 4 5
This study De Wall et al., 2001 Cheilletz et al., 2002 Benziane et al., 2007
582 576 567 555 562 559 588 563 571 596 564 562 558 550 570
6 7 6 4 5 5 6 5 22 20 7 5 4 3 7
This study De Wall et al. 2001 This study De Wall et al., 2001 Benziane et al., 2007 Walsh et al., 2012 Benziane et al. 2007 Benziane et al., 2007 Schiavo et al., 2007 Schiavo et al,. 2007 Walsh et al., 2012 Walsh et al., 2012 Benziane et al., 2007 Cheilletz et al., 2002 Hawkins et al., 2001