Simulation of binary vapor condensation in the presence of an inert gas

Simulation of binary vapor condensation in the presence of an inert gas

INT. COMM. HEAT MASS TRANSFER 0735-1933~83 $3.00 + .00 Vol. I0, pp. 555-561, 1983 ©Pergamon Press Ltd. Printed intheUnitedStates S I M U L A T I O N ...

180KB Sizes 1 Downloads 106 Views

INT. COMM. HEAT MASS TRANSFER 0735-1933~83 $3.00 + .00 Vol. I0, pp. 555-561, 1983 ©Pergamon Press Ltd. Printed intheUnitedStates

S I M U L A T I O N OF BINARY V A P O R C O N D E N S A T I O N IN THE PRESENCE OF AN INERT GAS* /,

Andrzej Burghardt Polish A c a d e m y of Sciences R e s e a r c h Centre of Chemical E n g i n e e r i n g and E q u i p m e n t Design Gliwice, Baltycka 5, Poland (Cxilil~rLicatedby E. Hahne)

in a reoent publleatlom [1] R.T&ylor and M.K.Neah have e~apamed several me%hods of ~kleulatlng mass transfer rates in a vazAe%y of mm/tlemaponent ooadensatlon design problems. The aim ef their study was to evaluate the explicit methods of detezttning eomposltlon profiles in a ver%leal tube, in whieh a binary vapor i s c o n d e n s i n g i n t h e p r e s e n c e o f noneondensing g a s . Anong e%her explioit methods they amalymed the approximate solution of MaxwellStefan equations for mass transfer in nultieompenen% mixtures eontalnlng one or more inert epeelee given by Burghardt and F~upiezka[2] As a result of their analysis they stated that ,The method of Burghardt and Kruploska [2] is not in exact agreement with the more rigorous medele even if all the binary eoeffielents are equal". Obviously t it Is very difflc~Ll% to reallse at a first glanoe, that the formulae def~-1-~ molam fluxes given by Burghazdt and Krupleska converge %o the exact solution of the Maxwell-Stefan equations for all equal binax7 diffusion coefficients. Therefore it seems useful to prove this convergence in a more detaAled manner [~]. For the steady - state one - dimensional mass transfer in an n..eomponent system at eonstant t e m p e r a t u r e and pressure the MaxwellStefan equations o a ~ be written as :

*Comment to the paper by R. Taylor and M.K. N o a h

555

[i]

556

A. Burghardt

Vol. i0, No. 6

n

d z

e

;~-1

~'~

~¢t

I - 1,2,...n

Oons£dezLa~ a 8 y s t a ,

i n whJ.oh t h e r e

Ls o 1 1 y one L n o r t s p o -

oles,

t h e n o l s : f l u x o f v b t e h 18 equa~ nmaSkt s a d d o l o t L a ~ t h i s speeJ.es "by t h e L z d e x I we os,u ] ~ r : - L t e equa,t:l.o~ ( 1 ) sa f o l l w a

"

Yl

~

" Nt

- t,2,...a-I

t

Sad far~ 1;he t n e x - t s p e e l e 8

:

d YI

n

ds

Let us am~me nov ~mt

o

-31 blaazy dlfl~a£Gm eoeffieisats

are

i.e.

(,) I - tp2t...n - 1,2,...n

:. ~..,. rednoe8 to

~...~.

o, ~ , . ~ , . , ~

.~,~o.

(2) u (3)

:

d s

o

o;B I " 1,2,o.oa,-1

(5)

Vol. i0, No. 6

~I~SATION

.

IN THE PRESENCE OF AN INERT GAS

~tz

557

o2~

where

is the net total

atxt~e

flux. rofJpeo~

to the variables



and 8o e a ~

dAfferentlal the l t a l t m :

ln~e~-ated meperstely v l t h l n •

0

"

"'~

e q u a l : t o n oa~ b e

Yl

"

7:Lo

'

YI

"

YIo

(8)

~'~.

"

~'~.,~ ,

~'i

"

~

(9)

g:L~J..ug : Ylc~ ,. yto ex.p(N~<~'~\o~, / + N%]I~" [1

\ o:~/J

(10)

t - 1,2,.,.n-1 and f o r t h e l n e z ~ m p e o l e s :

\e~J E q u = t l o n (11) 8 1 1 o v s %o e l l n l n a % e t h e n e t t o l ~ l H~ ~ a n e q u s ~ l e n s (10) b y n e a a s o f t h e h o l e / ~ o t t e a s "r31e l n e z ~ s p e o l e s . ? b u s we o b t ~ t = :

7z~ Y : ~ " YAo

+

YIo I - 1,2,...n-1

Fron t h l s equa~£on the n o l a r f l a x

Nl

esm be 4etex'~Lze4 as :

of

A. Burghardt

558

Vol. I0, No. 6

YI# Ylo " Y!o Y$~ Ni

,,

~' Ylm i - 1,2,...n-1

where

yI=

"

yI~

04)

no

In Ylo ~e

set of equatlons

~9

oembe pceHntedlnan

equlvalent form

by InCrodno%ien of the axlthme%Ic mean values of mole fraetAens :

2 i

-

2

1,2,...n-1

glvAng

NI

=

Ylm

i = 1,2,..o~-1

where

i

B e e a u e there is : n

AYl ""

"~he t o n , - Z a

(16)

k' j=1

~"~,.,stoz',,s

iato

/kYS



= 1,2,...n-1

Vol. 10, No. 6

CONDenSATION IN THE P

~

OF AN I ~

CoAS

559

;}=1 N1

S

Ylm t - 1,2~...a-1

~he na~elx no~atlon o f ~heee f e ~

(.).

is z

° [~1. ( , o - , ~ )

(2o)

~rlm ~here the elene~%8 ef the dlfl~usAon eeeffAelen% n a ~ I x

ID] axe as

follows :

D . . ~ C~ +

%)

(~)

D,.~ . ~ %

(,,)

Im a s ~ u t l a r h a r m e r ~he f o z s n ~ a e ~ e f J ~ J ~ n o l a ~ f l u z e e i n a 8 y s % a o f n . o o u p o n e n % e ~ t h / n . n / :tnez~ s p e c i e s oan be olx~84Jtod[4] .

i~

~ . = ~ ~0 . = . . . ~ , ~ ,,~ , i . ~ ~,.!,~.o,,,,~, (4) "- 0 9

°~lm '"

(2o) + (~2) = , l,=~i[I]

~0,, k~.~. ~ , , -

k

~he &pp~oxlna%e 8olu%Ion derived by Bu~gha~% aa~L F~eupioska fer the general ease of dlffe~en% b l ~ d £ 1 ~ l e n eoeffAelen%s d e t e z s t l z e s t h e m o l a r ~vZuxe8 a s :

o[DI

(,, - ,~,)

(,,)

~here ~ae e l e a e n t o o f t h e ~uveree o f t h e d ~ f f n e l o n e o e ~ . c i e n t

b ] " [DI"~

(")

560

A. Burqhardt

Vol. i0, No. 6

1"I

All "

AiJ

=

iz

-.~Sij

t -

1,2p...

"--1

For all equal binary dlff~lon eoeffioieato the inverse diffaslon coefftotent -~trlx l~ke8 the fo~a :

[D]" .

1

-

~2

I -

~2

......

of the

" ~2

e s e e e e e e g o o e e o e e e e o e e e o e e e e o o e e

-

whleh u ~

~-~

-

~-1

......

' " ~-1

J.wver81on given :

b] "

ThAs matrix Is £dea~Aeal wi~h ~atrlx [D1 ~eflned by equations (21) a ~ d (22) VtLteh h a e b e e n obtaAne
VOl. i0, NO. 6

COND~SATICN IN THE PRES~XKIE OF AN INERT G%S

Nomonol&%~LTo o

Mol~ de]~ity

knole/n~ •

of fluJ.d LtX~e

~ % ~ i x of m m l ~ i o ~ o n ~ dii~8£~ ooefflelen~e Diff~sie~ o o o f f ~ o i O ~ o f bi~KE~ pa~T i-~

,.2/, m2/s

Nt

Mola~ flux of spe~Io8 1

~mole/nt2a

N%

Ne% ~o~al nAx~n'e flux

~-mole/n28

Mole ~£'8~%ien of spe~io8 i Ari~hme~io nneam Talue o f mole i ~ i ~ o f speoles i Dis~moe w i ~ t n ~he film

ox-o~ ~ o ~ e n c~

Lo,w~ ot ~t:'u,,:ton p~'~

Na4~/.~ Wol;a~lm

( )

Colmm ~m~

o:t ~m,na,om

[ t. 1

S q u a ~ nm~eix o t ~l.me'malo',,-me..~lz InToz-so o f 8 ~

(...,)

Suboori~8

i t ~ e-

Denotes oomponon~

Z

Denotes iltez~ speo£os

o

I n ~ e r phamo

[1].

. u A MoK. Noah t ~. t T&ylooe 46~p 119621.

[2]

A. Bux-~uued.t amd. R.K~pieLkm.t I.~oC'hom., ~. • 487, 717,

[4]

I.e~'~s. Hea% amd Mama; Tzmmfo~,

1t 97~1. A. ~ n - ~ a r d t

mLct a.T,.z'up:Lom, I j . C ' h e n . , ~. , 43, / t ~ 3 / o

A. I k n . ~ t ;

~

R.T,.z~p£os]m, Ini.(~nem., 4: , 13, / 1 9 7 4 / .

561