Microelectron.Reliab.,Vol. 33, No. 15, pp. 2217-2224, 1993.
0026-2714/9356.00+.00 © 1993 PergamonPress Ltd
Printed in Great Britain.
SIMULTANEOUSLY ESTIMATING THE THREE WEIBULL PARAMETERS FROM PROGRESSIVELY CENSORED SAMPLES JSUN Y. WONG The University of New Brunswick, P. O. Box 5050, Saint John, New Brunswick, E2L 4L5, Canada
(Receivedfor publication 11 May 1992)
Abstract To e s t i m a t e t h e t h r e e W e i b u l l this
parameters simultaneously,
p a p e r u s e s t h e two common, a l t e r n a t i v e
maximum l i k e l i h o o d
estimation:
maximizing the log
likelihood
solving
approaches t o
one approach o f d i r e c t l y function
and a n o t h e r a p p r o a c h o f
t h e system o f e q u a t i o n s o b t a i n e d from d i f f e r e n t i a t i o n .
Specifically, population,
with one o f
a p r o g r e s s i v e l y c e n s o r e d sample f r o m a W e i b u l l t h e t h r e e e q u a t i o n s from d i f f e r e n t i a t i o n
a two-unknown e x p r e s s i o n f o r expression into
t h e o t h e r unknown.
the log likelihood
gives
Putting this
function helps solve this
e s t i m a t i o n problem. Computer p r o g r a m s and t h e i r e x a m p l e s f r o m an a r t i c l e results
shown i n
outputs for
are presented here.
the numerical The c o m p u t a t i o n a l
t h e s e o u t p u t s a r e compared w i t h
those from the
article. 1. I n t h e method o f maximize t h e
likelihood
approaches.
that
function.
one a p p r o a c h i s
Alternatively,
log
[I,
to
the
e s t i m a t e s can be f o u n d by s o l v i n g t h e
e q u a t i o n s o b t a i n e d by e q u a t i n g t o z e r o a f t e r
differentiation
following
maximum l i k e l i h o o d ,
log likelihood
maximum l i k e l i h o o d
Introduction
p.
51].
T h i s paper uses both o f
Specifically,
this
likelihood
function
each
t h e s e two
p a p e r a t t e m p t s t o maximize t h e w i t h t h e h e l p o f ~he c o n d i t i o n
v - Q o / n , which comes 4tom d i f f e r e n t i a t i o n
lnL=lnC+nlnW+(w- l)~_,/ln(Xl - u ) - n l n v
[2,
p.
98]:
-(l/o)Qo
Address correspondence to: 1418 15th Avenue, San Francisco, CA 94122, U.S.A. 2217
2218
J . Y . Wono where
Qa = E / (x/ - u) wJn + . ~ , r l ( T i - u) w-h
For example, t h i s of
e q u a t i o n v=Qo/n i s
t h e f o l l o w i n g computer program.
used i n
the next l i n e ,
likelihood It
line
Wong [ 3 ]
approach i s
then
538, which c o n t a i n s t h e l o g
have been g r e a t l y guided by t h e ÷ o l l o w i n g
number o f
and Lieberman [ 4 ,
t o a p p l y an a l g o r t i t h m i c
s t o p when i t
finds a local
best of
t i m e s from a v a r i e t y o f
these local
maxima i s
2. Example
1.
This i s
spans.
t h e f o l l o w i n g Type I
"A common
search p r o c e d u r e t h a t w i l l
initial
local
trial
it
t h e n chosen f o r
a
s o l u t i o n s in
maxima as p o s s i b l e .
Wingo's
[2,
p.
The
implementation."
99]
second example.
and t h u s p r o v i d e d c o m p l e t e l y
The r e m a i n i n g 17 i t e m s were s u b j e c t e d t o
c e n s o r i n g scheme:
T4=121 , T5=150;
p.99].
560]:
The Examples from an A r t i c l e
" T h i r t y - t h r e e items f a i l e d determined l i f e
p.
maximum and then t o r e s t a r t
o r d e r t o ~ind as many d i s t i n c t
37 95 117
v is
477
should be p o i n t e d o u t a g a i n t h a t t h e computer programs
q u o t a t i o n from H i l l i e r
failed
This v a l u e f o r
line
function.
h e r e and i n
=99,
expressed i n
k=5~
T1=70, T2=80 , T 3
r1=4 , r2=5 , r3=4 , r4=3 , r 5 = I , "
The hours t o f a i l u r e
of
the t h i r t y - t h r e e
Wingo [ 2 ,
items t h a t
are p r e s e n t e d b e l o w .
55 97 120
64 98 120
72 100 120
74 I01 122
87 102 124
88 102 126
The computer program l i s t e d
89 105 130
91 105 135
92 107 138
94 113 182
below has been o b t a i n e d by using
t h e d a t a p r e s e n t e d above and by using t h e computer program i n Wong [ 3 ] .
Unlike the corresponding l i n e s
[3],
305,
lines
remark l i n e s , reason f o r
307,
308,
as shown i n
309,
310 o f
in
the e a r l i e r
t h e p r e s e n t paper a r e j u s t
t h e computer program l i s t e d
the incapacitation is
paper
t h a t t h e problem o f
below.
The
i n t e r e s t has
Weibull parameters
been r e d u c e d f r o m t h r e e by u s i n g X(1)
to
value. the
v=Qo/n. keep If
value
its
both of
PI
unknowns t o
Therefore, current X(1) of
value,
and
line
for
X(2)
2219
two unknowns,
e x a m p l e , when l i n e X(2)
were to
538 c o u l d
not
should
not
keep t h e i r be
279 IF RND(X)<=.1667 THEN 280 ELSE 283 280 X(K)=(1/IO)*FIX(IO~i(L(K)+RND(X)*U(K))+.5) 281GOTO 300 283 IF RND(X)<=.2 THEN 284 ELSE 287 284 X(K)=(I/IOO)*FIX(IOO*(L(K)+RND(X)*U(K))+.5) 285 SOTO 300 287 IF RND(X)<=.25 THEN 288 ELSE 290 288 X(K)=(1/IOOO)*FIX(IOOO*(L(K)+RND(X)*U(K))+.5) 289 SOTO 300 290 IF RND(X)<=.3333 THEN 292 ELSE 294 292 X(K)=(1/IOOOO)*FIX(IOOOO*(L(K)+RND(X)*U(K))+.5) 293 SOTO 300 294 IF RND(X)<=.5 THEN 296 ELSE 298 296 X(K)=(1/IOOOOO!)*FIX(IOOOOO!*(L(K)+RND(X)*U(K))+.5) 297 GOTO 300 298 X(K)=(L(K)+RND(X)*U(K)) 300 NEXT K 304 X(JJ)-A(aa) 3 0 5 REM K L P S = F I X ( I + K K L L * R N D ( X ) )
371
REM FOR KLAt=I TO KLPS REM KLA2=FIX(I+2*RND(X)) REM X(KLA2)=A(KLA2) REM NEXT KLA1 80TO 371 IF RND(X)<=.5 THEN 353 ELSE 355 x(Ja)=B(da) SOTO 371 X(Jg)=N(aa) REM
381Y(1)=37:Y(2)=551Y(3)=64:Y(4)=72:Y(5)=74 382 Y(6)=87:Y(7)=88:Y(8)=89=Y(9)=91:Y(10)=92 383 Y(11)=94:Y(12)=95=Y(13)=97:Y(14)=98:Y(15)=100 384 Y(Ib)=101:Y(17)=lO2:Y(18)-IO2:Y(19)=105:Y(20)=105 385 Y(21>=107:Y(22)=113:Y(23)=I17:Y(24)=120:Y(25)=120 386 Y(2&)=120:Y(27>=122:Y(28)=I24:Y(29)=126:Y(30)=130 387 Y(31)-135:Y(32)=138:Y(33)=182 430 PSUMI-O 431 FOR I I = l TO 33 433 IF ( Y ( I I ) - X ( 1 ) ) <.0000001 THEN 670 ELSE 434 434 PIDUM=LOG(Y(II)-X(1)) 435 PSUMI=PSUMI+PIDUM 437 NEXT I I 440 PSUM2=O
and
X(2),
instructs
its
current
current
values,
improved.
2&5 I F A ( K ) + ( N ( K ) - B ( K ) ) / H ( K ) A j )' N ( K ) THEN 2 6 6 ELSE 2 6 8 266 U(K)=N(K)-L(K) 2 6 7 GOTO 2 7 2 268 U(K)=A(K)+(N(K)-B(K))/H(K)^a-L(K) 2 7 2 I F YN<5 THEN 2 9 8 ELSE 2 7 4 2 7 4 I F R N D ( X ) < = . 5 THEN 2 9 8 ELSE 2 7 5 275 IF RND(X)<=.1429 THEN 2 7 7 ELSE 2 7 9 277 X(K)=(1/1)*FIX(I*(L(K)+RND(X)*U(K))+.5) 278 GOTO 3 0 0
304
keep
I DEFDBL A,X,P,M,L,U,Z,T,B,N,H,Y 2 DEFINT 1,3,K 5 DIM B ( 1 9 ) , N ( 1 9 ) , A ( 1 9 ) , H ( I ? ) , L ( 1 9 ) , U ( 1 9 ) , X ( I 1 1 1 ) , Y ( 1 1 1 ) 10 X=I 11 FOR 3JaJ=1 TO 9999 14 Z=RND(X) 16 M=-1.701411834&O4692D+38 18 YN=RND(X) 25 B(1)=O:B(2)=O 37 N(1)t36.9999?:N(2)=IO 50 A(1)=O+RND(X)*36.99999:A(2)=O+RND(X)*10 81H(1)=3:H(2)=3 88 FOR aoa=1 TO 1 100 FOR J-1 TO 10 101KKLL=FIX(I+2*RND(X)) 102 FOR gO=O TO 3 228 FOR I=1 TO 10 229 FOR K=I TO 2 230 IF A ( K ) - ( N ( K ) - B ( K ) ) / H ( K ) ^ 3 < B ( K ) THEN 250 ELSE 260 250 L(K)=B(K) 255 80TO 265 260 L ( K ) ' A ( K ) - ( N ( K ) - B ( K ) ) / H ( K ) ~ 3
307 308 309 310 342 352 353 354 355
X(1)
J . Y . WONG
2220
441 FOR IJ-1 TO 33 444 P2DUM=(Y(IO)-X(1))"X(2) 445 PSUM2=PSUM2+P2DUM 447 NEXT la 455 PSUM3=4*(70-(X1))"X(2)+5*(80-X(1))~'X(2)+4*(99-X(1))"X(2)+3*(121-X(1))^X(2)+1 *(150-X(1))^X(2) 477 X(3)=(PSUM2+PSUM3)/(33) 538 P1=O+33*LOG(X(2))+(X(2)-I)*(PSUM1)-33*LOG(X(3))-(I/X(3))*(PSUM2+PSUM3) 544 P=PI 551 IF P-9999999! THEN 702 ELSE 1001 702 NEXT JJ 706 NEXT a 711LPRINT J~JJ,33J,M,PPI,A(1),A(2),A(3) 712 NEXT JJJ 1001 NEXT JJ3J
Running t h i s for
the
earlier
computer
paper
[3]
p r o g r a m on t h e c o m p u t e r s y s t e m used yields
the
following
t h e computer p r o g r a m ' s complete o u t p u t
for
output,
JJJJ=l
which
is
through
JJJJ=15.
1 I 2.050291705114057D-06 2 1 3.524454027284455D-05 3 1 1.329298946806308 4 1 9.570125288197329D-O& 5 I 3.732632541410004 6 1 1.01628340748579&D-05 7 I 1.425898070526219D-05 8 1 5.567388641003852D-06 9 I 1.159815406191492D-05 10 1 3.74121802859597D-07 11 I 2.776736145906438D-05 12 1 5.841272661209895 13 1 3.&17579022680477D-06 14 I 2.314818117~192&&D-05 15 1 1.9667925187775120-05
The b e s t JJJa=lO,
-165.1113595270728 4.351258997796127 -165.1113598067854 4.351242308686784 -165.1239763528754 4.300374561340318 -1&5.1113595899435 4.351229112054059 -165.1544200736304 4.206818337759002 -165.111359595418 4.351219319220474 -165.1113596670459 4.351092147778061 -165.1113595883346 4.351372523349119 -165.11135960696 4.351240151826597 -165.1113595123808 4.351250080665094 -165.1113597437211 4.35124656919086 -165.190260947837 4.12884774518443 -165.111~595396108 4.351230841640509 -165.111~597045414 4.351234641916035 -165.1113596751269 4.351237109587112
solution
p r e s e n t e d above i s
(3.74121802859597D-7
1174&OSO7&.1738&7) w i t h
the
the solution
at
4.351250080665094
log
likelihood
This
log
o~ - 1 6 5 . 4 6 2 0 9 0 8 2 9 4 5 0 8 o b t a i n e d f r o m t h e
solution
presented
3.7596935 p.99] to
our
value
to
Table
3 of
41896335.59999053).
obtain
X(2)
in
likelihood
value of
-165.1113595123808. likelihood
log
-165.1113595270728 1174655579.355544 -165.111~5980&7854 1174559562.420165 -165.1239763528754 877168827.1895478 -165.1113595899435 1174485784.982288 -165.1544200736304 514~0172.0099406 -165.111359595418 1174430229.985157 -165.1113596670459 1173709170.649766 -165.1113595883346 1175299469.800135 -165.11135960696 1174548305.883455 -165.1113595123808 1174605076.173867 -165.1113597437211 1174584032.393056 -165.190260947837 328966910.1432168 -165.111~595396108 1174495838.355542 -165.1113597045414 1174516583.553323 -165.111~596751269 1174530720.83755
and
this X(3),
Wingo
value is
[2,
p.99],
bigger
than the
(14.451684
We used eW=v f r o m e ~ U i / w [ 2 ,
4 1 8 9 6 3 3 5 . 5 9 9 9 9 0 5 3 , where w and v c o r r e s p o n d respectively.
The b i g g e r
log
likelihood
2221
Weibull ~mme~rs v a l u e means t h a t produced [5, In
p.
the 99]
addition,
former the
A shorter this
paper
shorter
is
99], 642].
which
2.
15
6,5 92 124
This
The o t h e r
20 68 95 126
shown
in
to
the
values bigger the output
candidate
only
following are
the
other
table
that
following
"the
for
than
above. the
problem of
includes
example of
from Hatter
the
three
Wingo
[2,
and Moore [ 6 ,
p. p.
Type 1 c e n s o r i n g s were k=3;
T1=30 ,
T2=110,
T3
r2=3 ,
r3=2,"
Wingo
27 68 I00 127
42
42
43
44
48
64
6,5
71 102 134
74 102 149
75 112 152
75 113 153
76 116 161
77 117 168
78 124 205
the
e x a m p l e and i t s
p.99].
preceding program,
output
for
JJJJ=l
a computer program f o r
through
JJJJ=15 a r e
presented below. 1DEFDBL A,X,P,M,L,U,Z~T,B,N,H,Y 2 DEFINT I~J,K 5 DIM B(19),N(19),A(19)~H(19),L(19),U(19),X(1111),Y(111) 10 X-1 11 FOR JJJJ=l TO 9999 14 Z=RND(X) 1& M=-1.701411834&O4692D+38 18 YN=RND(X) 25 B(1)=O:B(2)=O 37 N(1)=14.99999:N(2)=10 50 A(1)=O+RND(X)*14.99999:A(2)=O+RND(X)*10 81H(1)-3:H(2)=3 88 FOR JJJ=! TO I 100 FOR J=l TO 10 101 KKLL=FIX(I+2*RND(X)) 102 FOR JO=O TO 3 228 FOR I=1 TO 10 229 FOR K=I TO 2 230 IF A(K)-(N(K}-B(K))/H(K}~'J < B ( K ) THEN 250 ELSE 260 250 L(K)=B(K) ~ 5 GOTO 265 260 L(K)=A(K)-(N(K}-B(K))/H(K)~J 265 IF A(K)+(N(K)-B(K))/H(K)^J > N(K) THEN 266 ELSE 268 2b& UtK)=N(K)-LtK) 267 GOTO 272
268 272 274 275
have
solutions.
scheme: [2,
to
solution.
t h e a p p e n d i x , which
three
is
data
Modeled a f t e r this
in
first
uses t h e
r 1=2~
latter
likelihood
also
presented
made a c c o r d i n g =165!
log
more l i k e l y
computer program t a i l o r - m a d e
program's
E>:ample
is
data than the
other
-1&5.4620908294508 are
solution
U(K)=A(K}+(N(K)-B(K))/H(K)^J-L(K) IF YN<5 THEN 298 ELSE 274 IF RND(X)<-.5 THEN 298 ELSE 275 IF RND(X)<=.1429 THEN 277 ELSE 279 277 X(K)=(1/1)*FIX(I*(L(K)+RNDtX)*U(K))+.5) 278 GOTO 300 279 IF RND(X)<-.I&b7 THEN 280 ELSE 283 280 X(K}=(1/IO)*FIX(IO*(L(K)+RNDtX)*U(K))+.5) 281GOTO 300 283 IF RND(X)<=.2 THEN 284 ELSE 287
2222
J.Y. Woso
284 X ( K ) = ( 1 / I O O ) * F I X ( I O O * ( L ( K ) + R N D ( X ) * U ( K ) ) + . 5 ) 285 80T0 300 287 IF RND(X)<=.25 THEN 288 ELSE 290 288 X ( K ) = ( 1 / I O O O g * F I X ( I O O O * ( L ( K ) + R N D ( X ) * U ( K ) ) + . 5 } 289 GOTO 300 290 IF RND(X)<=.3333 THEN 292 ELSE 294 292 X ( K ) = ( 1 / I O O O O ) * F I X ( I O O O O * ( L ( K ) + R N D ( X ) * U ( K ) ) + . 5 ) 293 SOTO 300 294 IF RND(X)<=.5 THEN 296 ELSE 298 296 X(K)=(1/IOOOOO!)*FIX(IOOOOO!*(L(K)+RND(X)*U(K))+.5) 297 80T0 300 298 X ( K ) = ( L ( K ) + R N D ( X ) * U ( K ) ) 300 NEXT K 304 X(JO)=A(JJ) 305 REM KLPS=FIX(I+KKLL*RND(X)) 307 REM FOR KLAI=I TO KLPS 308 REM KLA2=FIX(I+2*RND(X)) 309 REM X(KLA2)=A(KLA2) 310 REM NEXT KLA1 342 GOTO 371 352 IF RND(X)<=.5 THEN 353 ELSE 355 353 X(JJ)=B(J3) 354 SOTO 371 355 X ( J J ) = N ( J J ) 371 REM 381 Y ( 1 ) = 1 5 | Y ( 2 ) = 2 0 : Y ( 3 ) = 2 7 : Y ( 4 ) = 4 2 z Y ( 5 ) = 4 2 382 Y ( 6 ) = 4 3 z Y ( 7 ) = 4 4 : Y ( 8 ) = 4 6 : Y ( 9 ) = 6 4 : Y ( 1 0 ) = 6 5 383 Y ( 1 1 ) = 6 5 : Y ( 1 2 ) = b 8 : Y ( 1 3 ) = 6 8 : Y ( 1 4 ) = 7 1 : Y ( 1 5 ) = 7 4 384 Y ( 1 6 ) = 7 5 : Y ( 1 7 ) = 7 5 : Y ( 1 8 ) = 7 6 : Y ( 1 9 ) = 7 7 : Y ( 2 0 ) = 7 8 385 Y ( 2 1 ) = 9 2 : Y ( 2 2 ) = ? 5 : Y ( 2 3 ) = l O O : Y ( 2 4 ) = 1 0 2 : Y ( 2 5 ) = 1 0 2 386 Y ( 2 6 ) = 1 1 2 : Y ( 2 7 ) = 1 1 3 : Y ( 2 8 ) = 1 1 6 : Y ( 2 9 ) - 1 1 7 : Y ( 3 0 ) = 1 2 4 387 Y ( 3 1 ) = 1 2 4 : Y ( 3 2 ) = 1 2 6 : Y ( 3 3 ) = I 2 7 : Y ( 3 4 ) = 1 3 4 z Y ( 3 5 ) = 1 4 9 388 Y ( 3 6 ) = 1 5 2 : Y ( 3 7 ) = 1 5 3 : Y ( 3 8 ) = 1 6 1 z Y ( 3 9 ) = I 6 8 : Y ( 4 0 ) = 2 0 5 430 PSUMI=O 431 FOR I I = l TO 40 433 IF ( Y ( I I ) - X ( 1 ) ) <.0000001 THEN 670 ELSE 434 43~ P I D U M = L O G ( Y ( I I ) - X ( 1 ) ) 435 PSUHI=PSUMI+PIDUM 437 NEXT I I 440 PSUM2=O 441 FOR I J = l TO 40 444 P2DUM=(Y(IJ)-X(1))'~X(2) 4 4 5 PSUM2=PSUM2+P2DUM 447 NEXT I J 455 P S U M 3 = 2 * ( 3 0 - ( X 1 ) ) ~ X ( 2 ) + 3 * ( I 1 0 - X ( 1 ) ) ~ X ( 2 ) + 2 * ( 1 6 5 - X ( 1 ) ) " X ( 2 ) 477 X(3)=(PSUM2+PSUM3)/(40) 538 P I = O + 4 0 * L O G ( X ( 2 ) ) + ( X ( 2 ) - i ) * ( P S U M I ) - 4 0 * L O G ( X ( 3 ) ) - ( 1 / X ( 3 ) ) * ( P S U M 2 + P S U M 3 ) 544 P=PI 551 IF P-9999999! THEN 702 ELSE 1001 702 NEXT JJ 706 NEXT J 711LPRINT J J J J , J J J , M , P P 1 , A ( 1 ) , A ( 2 ) , A ( 3 ) 712 NEXT J J J 1001 NEXT J J J J
1 1 2.357913091620224 2 1 2.699096340758992 3 1 4.863192394855919 4 1 3;40884975818358 5 1 2.201240235859545 6 1 2.131121495518566
7 1 2.083208528841196 8 1 1.906848965665504 9 1 2.100733268033991 10 1 2.922066179195487 11 1 2.478940012239667 12 1 2.530416552527102
-214.4484374097897 2.144978800524872 -214.4490189087053 2.13516540975579 -214.466384802812 2.069063251649742 -214.4519351406668 2.11365492714603 -214.4483366890336 2.149552715383546 -214.448324321151 2.151607312200521 -214.4483273243422 2.152979499188906 -214.4484170375479 2.15831378327574 -214.4483251466083 2.152499582417855 -214.4496773132214 2.128331831663079 -214.4485858409108 2.141467603176874 -214.4486679332387 2.139929195276064
--214.4484374097897. 24652.9~718071963 -214.4490189087053 23367.74120548693 -214.466384802812 Ib348.b?726334849 -214.4519351406668 20797.38863779457 -214.4483366890336 25275.11574199767 -214.448324321151 25559.632554248&3 -214.4483273243422 25751.96555496548 -214.4484170375479 26508.88415460595 -214.4483251466083 25684.17153190432 -214.4496773132214 22519.08064038417 -214.4485858409108 24185.52?95624731 -214.4486679332387 23984.25590097
Weibull parameters 13 I 2.124376730918297 14 1 2.618310159879766 15 1 3.875097994348093
-214.4485241856193 2.151827520473557 -214.4488348680192 2.137372654828837 -214.455232387785 2.099355798578717
Among t h e c a n d i d a t e s o l u t i o n s solution
is
a t JJJJ=13,
2.151827520473557 value of
(4.102572 p.
solution the latter
value is
bigger
p.
99],
which i s
We used ~W=v f r o m
~ ~ 0I/w
18318.509765625~ where w and v
and X(3)~ r e s p e c t i v e l y .
The b i g g e r l o g
means t h a t
t o have p r o d u c e d [ 6 ,
the former
p.99] the data than
solution.
In a d d i t i o n ,
other log
likelihood
- 2 1 4 . 4 5 7 3 3 5 1 2 6 7 3 9 9 a r e a l s o shown i n 3.
the listed
v a l u e s b i g g e r than
t h e o u t p u t p r e s e n t e d above.
Conclusion
The c o m p u t a t i o n a l r e s u l t s that
likelihood
Wingo [ 2 ,
the former solution
more l i k e l y
the log likelihood
-214.4573351267399 o b t a i n e d from
Table 2 of
to obtain this
value of
is
(2.124376730918297
18318.509765625}.
c o r r e s p o n d t o o u r X(2) likelihood
p r e s e n t e d above, t h e b e s t
This log
value of
presented in 2.090069
99]
-214.4483241836193 25589.95824723053 -214.4488348680192 23652.50920500331 -214.455232387785 19251.05726851394
25589.95824723053) w i t h
than the log likelihood
[2,
which i s
-214.4483241836193.
the solution
2223
presented in
this
paper suggest
computer p r o g r a m s can be u s e f u l as models t o
e s t i m a t e f r o m a p r o g r e s s i v e l y c e n s o r e d sample t h e t h r e e W e i b u l l parameters simultaneously. likelihood
function
unknown l i k e l i h o o d function
is
The m a x i m i z a t i o n o f
facilitated
function
the log
by t r a n s f o r m i n g t h e t h r e e -
t o t h e two-unknown l i k e l i h o o d
through substitution.
References 1.
M. J.
C r o w d e r , A.
Analysis of 2.
Reliability
D. R. Wingo,
C. Kimber, and R. L.
Smith,
D a t a , Chapman and H a l l ,
Statistical
London ( 1 9 9 1 ) .
" S o l u t i o n o f t h e Three-Parameter Weibull
E q u a t i o n s by C o n s t r a i n e d M o d i f i e d Q u a s i l i n e a r i z a t i e n ( P r o g r e s s i v e l y Censored S a m p l e s ) " , 22,
No. 2 ,
3.
J.
Y.
pp.
F.
S.
Vol.
R-
9 6 - 1 0 2 (June 1973).
Wong, "A N o t e on S o l v i n g a System R e l i a b i l i t y
Microelectron~ Reliab. 4.
IEEE T r a n s . R e l i a b . ,
Hillier
(to appear).
and G. L.
L i e b e r m a n , In_fir e d u c t i o n t o
M a t h e m a t i c a l Proqramminq, M c 8 r a w - H i l l , New York
(1990).
Problem",
2224
J . Y . WONG
5.
B.
Basic
J.
Bickel
Ideas
and
and K .
A.
Selected
Doksum,
Topics,
Mathematical
Holden-Day,
Statistics:
San
Francisco,
(1977). b.
H.
o÷
the
L.
Hatter
parameters
and
from
643
(November
Appendix:
censored
and of
A.
H.
Moore,
gamma and
samples",
"Maximum l i k e l i h o o d
Weibull
populations
Technometrics,
Vol.
7~
estimation
from No,4~
complete pp.
639-
1965).
S h o r t e r I n p u t and I t s Output f o r
Example 1
1DEFDBL A~X,P~M~L~U~ZqT,B,N,H~Y 2 DEFINT I , J , K 5 DIM B ( 1 9 ) , N ( 1 9 ) ~ A ( 1 9 ) , H ( 1 9 ) ~ L ( 1 9 ) ~ U ( 1 9 ) ~ X ( I 1 1 1 ) ~ Y ( 1 1 1 ) 10 X=I 11 FOR J333=i TO 9999 16 M=-I.701411834604692D+38 25 B(1)=O:B(2)=O 37 N(1)=36.99999:N(2)=15 50 A(1)=O÷RND(X)*36.99999:A(2)=O+RND(X)*I5 81H(1)=3:H(2)=3 88 FOR JJO=1 TO 1 100 FOR J=1 TO 20 102 FOR JO=O TO 3 228 FOR I = I TO 10 229 FOR K=I TO 2 230 IF A ( K ) - ( N ( K ) - B ( K ) ) / H ( K ) ~ J < B(K) THEN 250 ELSE 260 250 L(K)=B(K) 255 GOTO 265 260 L ( K ) = A ( K ) - ( N ( K ) - B ( K ) ) / H ( K ) ~ J 265 IF A ( K ) + ( N ( K ) - B ( K ) ) / H ( K ) " J > N(K) THEN 266 ELSE 268 266 U(K)=N(K)-L(K) 267 GOTO 298 268 U ( K ) = A ( K ) + ( N ( K ) - B ( K ) ) / H ( K ) ' ~ J - L ( K ) 298 X(K)=(L(K)+RND(X)*U
1 1 4.351238068187414 2 1 4.308143269224753 3 1 4.35123801185718
-165.1113595089649 11745~6967.882&36 -165.1217723948011 917424281.653093b -165.111~595089594 1174536648.465566
6.S&~S58441989643D-lO 1.117051563114305 8.431490822631~94D-12