369 ~NALYSIS
OF
ACRYLIC
FOR
232TH
AND
238U
DAUCHTERS
C.M. M I L T O N
E.D. EARLE, ~ N D R . J . E . D E A L (Atomic Energy of Canada, Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario K0J
SIHfiL~-HINERAL OXYOEN IgOTOP'E TllE~MOHETRY JAMES R. O~NEIL, Du[It. G e o l . S c i . , U n i v . of Michigan. A n n A r b o r , HI 4 8 1 0 9 - I 0 6 3 WILLIAM J . PICKTIIORN, U.S. G e n t . S u r e , , Menlo PO~R, CA, 0 4 0 2 5
1J0) The
Gamma
and
beta
rays
from
208T1
the ends of the Th and U decay potential sources of background neutrino detector proposed for Sudbury, Ontario. To eliminate completely, the 232Th end 238U vessel housing the however reductions if it c a n b e s h o ~ m
and
21&Bi
near
chains are in the hea~ ware a d e e p m i n e in this background in t h e a c r y l i c
D20 should be at fg.g-1 levels to < 1 0 "12 g . g - 1 a r e a c c e p t a b l e that their decay chains a r e i:,
secular equilibrium. Concentrations of these two elements in s a m p ] ~ of acrylic were measured by mass spectroscopy at three
laboratories.
We
have
obtained
good
agreements
with their results by alpha following chemical separation of U, T h a n d R a in t h e a s h f r o m a 10 k g s a m le. In addition the values 234U 230Th 2~6Ra, and 228Th ~32Th have indicated that both chains sre
spectrometry
essentially in secular equilibrium. Large samples, counting times in excess of two weeks, and the application of clean room techniques have enabled us to achieve a sensitivity o f 5 x 1 0 "13 g.g~l for both 238U and 232Th.
isotopic
dlfterenL
compositions
of
oxygen
in
or B t r u o t u r a l sites 1, or m i n e r a l s s h o u l d be d i f f e r e n t bocnuoc the v i b r a t i o n a l frequencies and frcquoncy a h l f t a a e B o c l a t e d ~ I t h t h e h o n d a to oxygen at the v a r l o u a 81tOS are d l f f e r c n t . 3 h o u l d a m i n e r a l form In I n t e r n a l oxygen isotope equilibrium and r c t a i n t h e s e compoaltlone after formation, the isotopic /'ractlonatlen b e t w e e n oxygon Jn ono s a t e and the others, olther Indlvlduolly or In oomblnmtlon, could provide a sensitive 5Ingle-mineral thermometer, Attempts were po~itlon9
molecules
made p r e v i o u s l y to dotcrmlne the oxygen ISOtOpe fraotlonatlons b e t w e e n t o e a n d PO. i n apalitc8 and b o t w c o n a i u m l n o e i l l c a t c oxygen
and 011 i n h y d r o u s
minoral~, but the methods are uuopeet, i n d e e d t h e number o f I m p o r t a n t mlnerole f o r which s u c h dctermlnallons have any c h a n c e of o u c c o n a I s vary llmltcd. ~e have d e v e l o p e d a t e c h n i q u e of a n a l y s i s of a l u n l t e . KAIe(SO*}*(OlI)~, whcreby the i s o t o p i c componltteno o f t h e S04 and OH g r o u p s Jan be d e t e r m i n e d s e p a r a t e l y and u~ed
unamblguou61y. Normally oxyRen bonded to hydro~on in OH g r o u p s s h o u l d be t s o t o p i c a l l y lighter t h a n o x y g e n b o n d e d to o t h o r e l e m e n t a ( 5 1 , AI, c , S, O L C . ) and d r a m a t i c a l l y so a t low tomperaturoa of f o r m a t i o n . NO n u p e r £ e n e alunlte analyzed to d a t c Io in I n t e r n a l ~-o
an~ l h c s o . - o l l f r a c t l o n a t l o n a for Iho~c low t e m p e r a t u r e m l n e r a l a v a r y from - I . 5 3.2 perml/. ][ypog0ne nlunltco, on t h e o t h e r h a n d , a p p e a r to bc I s o t o p l c a l l y well behaved With internal fraotlonatlonl of 5 , 0 to lO,O pormll that are c.rrelatcd well with temperaturcl determined from phaso e q u i l i b r i a conelderetlone, T h e s e r e ~ u l t ~ have b o t h praotlcal and t h e o r e t i c a l lntcreet,
equilibrium to
: ~L"
AYDA T LAKE
D:AGE~ESIS
AND
eE~ArED
ENV[#ONMENTAL
ASPECTS.
~
~O~A~!~.
and
G,
Y.F.
GAIL-A~D,
L.
PHILI°~E,
~ABOUILLE
C.
MICMAmD.
+Laboratoire de anO I . P . G , P * ,
Geochlm:e
PARIS,
EutrophlSation
Eau.,
des
Paris 7
Untvers*te
~ANCE)
processes
a,e
closely
iimkeO
~ith
nutrients c~ncentrat~ons in ~ater but it appears, fol ~o~z~q ~ a ~ y authors, that o r t h o p h o s p h a t e (S,R,P.) is tme main i : ~ l t l n g ~actor, Our s t u c l e s O~evlouslw c~esente~
~
chemlstrles a
the ~ater ~ol~mn emphasize Of ~artlcJlate
large ~art of the ~ sca~enqe~
t~es
the
sediment-~ate~ onto
~uanti~
a complete <¢¢Ie,
these
t.o and
~l~es
elements in
of
e~:~it
iron o~Ides
the
a ~ulte
o~
s~mQtlon
has
related
DO~h m a j o r ~]ear
m~e~al~sat~on. ~-a-~t:tat~eelv
(SWI) entraooeo order
to
the chemical
Dehav10~r
O~
investigated
pore
~ater.
minor
While
~i~or just
~n t h e
sed~
Concent,atiom
elements
in
Ocmlnate~
ieadin 9 to the
~e~uce~
or
in
c~emlstrv
3~lolzers
red
oartlcules,
bee~
and
couple~
The~efore~
in the O.Ic zone
interface
~dsorbed
~ent
the
iron an~ S.~.P..
Dy
~ater
the
organic
electron
Dro-
~ore
~on-
~atter
accepters
Delo~ tme swl
:~O3,
are 50~,
Meant t~e ma~n codex ~e~CtlOnS are the Fe(IIl~ O~ideS ,eOuctlon a~d ~e~ha~OQe~es;s. The S.~.~. Oro~11e is
~,~:~e d i ~ e c e ~ ~
the
from
~edlme~t
the others an~ suggests o i ~ s l o n to the ,ater c~lumm in addition to
OCSSl~Ie a~so~Dtlom ~
a~thi~enlE
mineral ~reci¢;tatlon
at ~eoth. 5cm ~eic. the SWI. Crom this ~acQe set 0¢ ~ata, a s s ~ g s t e a ~ ~ t a t e . ~e are a~le to ~er~ve +tce~++metric a ~ Oia~enezlc ~ode~s ~n~c~ aLlo. ~s to ~a,~ify
~ne
Jie-~ts • ~.es
~la~enetlc
~rocesses.
Concentration
~ra
at the SWI are Jsed to =alcJlate d~r+~s~g o+ ~ut+~e~ts, F~r S~P ~t ~a~ e~aluate~ to ~oc
+~xs
+or t~e .PoLe !a+e
m3~al
to
t~e~
the
t:on
~o
the
~p,xt
~eOime~t the
"i,~*
acts
e~t~o~Pisat~
s~r*ace ~
as
the
a~d r~¢er
a reservoir process
is
appro*~.at~vety
La
Vevre.
anO ~s q u i t e
its
T~ere
=~ntr:bu impor~art,
R O O M - T E M P E R A T U R E E Q U A T I O N OF STATE OF CaSiO3 PEROVSKITE M, T A R R I D A and P. RICHET. (Institut de Physique du Globe, 4 place Jussieu, 75005 Paris) C a l c i u m has a significant abundance in the lower m a n t l e , the " m i n e r a l o g y o f w h i c h s h o u l d c o n s i s t mainly o f ( M g , F e ) S i O 3 perovsklte. C a l c i u m , however, has a very limited solubility in this phase and its likely host in the m a n t l e is C a S i 0 3 with a cubic perovskite structure as s y n t h e s i z e d by L i e (1975). L i t t l e is known about the p h y s i c a l properties of this perovskite because it transforms to an amorphous p h a s e when q u e n c h e d to 1 bar. In this study we have d e t e r m i n e d the equation o f state of C a S i O 3 perovskite, a property o f basic geophysical importance. A w o l l a s t o n i t e g l a s s s t a r t i n g p r o d u c t has been laser heated at 950 Kbar in a diamond anvil cell with a s m a l l a m o u n t o f ruby included for p r e s s u r e measurements. Six r e f l e c t i o n s , all o f w h i c h are consistent with the reported c u b i c cell o f CaSiO3 perovskite, are a p p a r e n t in the p o w d e r diffraction patterns o b t a i n e d with a standard X - r a y generator. Prom these observations the lattice p a r a m e t e r o f the s y n t h e s i z e d p e r u v s k i t e has been m e a s u r e d from 170 Kbar, the pressure in the cell after the synthesis, to more than 5 0 0 Kbar. Equations of state have been fitted to the compression data to derive the l - b a r volume and the bulk m o d u l i , K o and K'o. T h e s e r e s u l t s will be presented and discussed, together with some implications.