Sinusoidal Steady-State Response of Digital Filters

Sinusoidal Steady-State Response of Digital Filters

APPENDIX SINUSOIDAL STEADY-STATE RESPONSE OF DIGITAL FILTERS D D.1 SINUSOIDAL STEADY-STATE RESPONSE Analysis of the sinusoidal steady-state respons...

65KB Sizes 0 Downloads 49 Views

APPENDIX

SINUSOIDAL STEADY-STATE RESPONSE OF DIGITAL FILTERS

D

D.1 SINUSOIDAL STEADY-STATE RESPONSE Analysis of the sinusoidal steady-state response of the digital filters will lead to the development of the magnitude and phase responses of digital filters. Let us look at the following digital filter with a digital transfer function H(z) and a complex sinusoidal input xðnÞ ¼ VejðΩn + φx Þ ,

(D.1)

where Ω ¼ ωT is the normalized digital frequency, while T is the sampling period and y(n) denotes the digital output, as shown in Fig. D.1. The z-transform output from the digital filter is then given by Y ðzÞ ¼ HðzÞXðzÞ:

(D.2)

jφx

z Since XðzÞ ¼ Ve zejΩ , we have

Y ðz Þ ¼

Vejφx z H ðzÞ: z  ejΩ

(D.3)

Based on the partial fraction expansion, Y(z)/z can be expanded as the following form: Y ðzÞ Vejφx R H ðzÞ ¼ + sum of the rest of partial fractions: ¼ z  ejΩ z z  ejΩ

(D.4)

Multiplying the factor (z  ejΩ) on both sides of Eq. (D.4) yields   Vejϕx H ðzÞ ¼ R + z  ejΩ ðsum of the rest of partial fractionsÞ:

Substituting z ¼ ejΩ, we get the residue as

x (n) Ve j

n j

X ( z)

(D.5)

  R ¼ Vejϕx H ejΩ : y ( n)

x

H ( z)

yss (n)

ytr (n)

Y ( z)

FIG. D.1 Steady-state response of the digital filter.

833

834

APPENDIX D SINUSOIDAL STEADY-STATE RESPONSE OF DIGITAL FILTERS

Then substituting R ¼ VejϕxH(ejΩ) back into Eq. (D.4) results in Y ðzÞ Vejφx H ðejΩ Þ + sum of the rest of partial fractions, ¼ z z  ejΩ

(D.6)

and multiplying z on both sides of Eq. (D.6) leads to Y ðz Þ ¼

Vejφx HðejΩ Þz + z  sum of the rest of partial fractions: z  ejΩ

(D.7)

Taking the inverse z-transform leads to two parts of the solution:

  yðnÞ ¼ Vejφx H ejΩ ejΩn + Z 1 ðz  sum of the rest of partial fractionsÞ:

(D.8)

From Eq. (D.8), we have the steady-state response

  yss ðnÞ ¼ Vejφx H ejΩ ejΩn

(D.9)

ytr ðnÞ ¼ Z 1 ðz  sum of the rest of partial fractionsÞ:

(D.10)

and the transient response

Note that since the digital filter is a stable system, and the locations of its poles must be inside the unit circle on the z-plane, the transient response will be settled to zero eventually. To develop filter magnitude and phase responses, we write the digital steady-state response as    jΩ yss ðnÞ ¼ V H ejΩ ejΩ + jφx + ∠Hðe Þ :

(D.11)

Comparing Eq. (D.11) and Eq. (D.1), it follows that Amplitude of the steady state output Amplitude   of the sinusoidal input V HðejΩ Þ   jΩ  ¼ H e ¼ V

Magnitude response ¼

Phase response ¼

Thus we conclude that

jΩ   jΩ ejφx + j∠Hðe Þ ¼ ej∠Hðe Þ ¼ ∠H ejΩ : ejφx

  Frequency response ¼ H ejΩ ¼ H ðzÞjz¼ejΩ :

Since H(ejΩ) ¼ jH(ejΩ)j ∠ H(ejΩ)

   Magnitude response ¼ H ejΩ    Phase response ¼ ∠H ejΩ :

(D.12)

(D.13)

(D.14)

(D.15) (D.16)

D.2 PROPERTIES OF THE SINUSOIDAL STEADY-STATE RESPONSE From Euler’s identity and trigonometric identity, we know that ejðΩ + k2πÞ ¼ cos ðΩ + k2π Þ + jsin ðΩ + k2π Þ ¼ cosΩ + jsinΩ ¼ ejΩ ,

(D.17)

D.2 PROPERTIES OF THE SINUSOIDAL STEADY-STATE RESPONSE

835

where k is an integer taking values of k ¼ 0,  1,  2, ⋯. Then:

    Frequency response : H ejΩ ¼ H ejðΩ + k2πÞ

(D.18)

       Magnitude frequency response : H ejΩ  ¼ H ejðΩ + k2πÞ 

(D.19)

    Phase response : ∠H ejΩ ¼ ∠H ejΩ + 2kπ :

(D.20)

Clearly, the frequency response is periodical, with a period of 2π. Next, let us develop the symmetric properties. Since the transfer function is written as H ð zÞ ¼

Y ðzÞ b0 + b1 z1 + ⋯ + bM zM , ¼ XðzÞ 1 + a1 z1 + ⋯ + aN zN

(D.21)

Substituting z ¼ ejΩ into Eq. (D.21) yields   b0 + b1 ejΩ + ⋯ + bM ejMΩ H ejΩ ¼ : 1 + a1 ejΩ + ⋯ + aN ejNΩ

(D.22)

Using Euler’s identity, e jΩ ¼ cos Ω  j sin Ω, we have   ðb0 + b1 cosΩ + ⋯ + bM cosMΩÞ  jðb1 sin Ω + ⋯ + bM sinMΩÞ H ejΩ ¼ : ð1 + a1 cosΩ + ⋯ + aN cosNΩÞ  jða1 sin Ω + ⋯ + aN sinNΩÞ

(D.23)

  ðb0 + b1 cos Ω + ⋯ + bM cos MΩÞ + jðb1 sinΩ + ⋯ + bM sinMΩÞ H ejΩ ¼ : ð1 + a1 cosΩ + ⋯ + aN cos NΩÞ + jða1 sinΩ + ⋯ + aN sin NΩÞ

(D.24)

Similarly,

Then the magnitude response and phase response can be expressed as qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðb0 + b1 cos Ω + ⋯ + bM cos MΩÞ2 + ðb1 sin Ω + ⋯ + bM sinMΩÞ2   jΩ  H e  ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 + a1 cos Ω + ⋯ + aN cos NΩÞ2 + ða1 sin Ω + ⋯ + aN sinNΩÞ2    ðb1 sinΩ + ⋯ + bM sin MΩÞ ∠H ejΩ ¼ tan 1 b0 + b1 cosΩ + ⋯ + bM cosMΩ  ða1 sinΩ + ⋯ + aN sin NΩÞ tan 1 1 + a1 cos Ω + ⋯ + aN cos NΩ

(D.25)

(D.26)

Based in Eq. (D.24), we also have the magnitude and phase response for H(e jΩ) as

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðb0 + b1 cos Ω + ⋯ + bM cos MΩÞ2 + ðb1 sinΩ + ⋯ + bM sinMΩÞ2   jΩ  H e  ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 + a1 cos Ω + ⋯ + aN cos NΩÞ2 + ða1 sinΩ + ⋯ + aN sinNΩÞ2    b1 sin Ω + ⋯ + bM sinMΩ ∠H ejΩ ¼ tan 1 b0 + b1 cos Ω + ⋯ + bM cos MΩ  a1 sinΩ + ⋯ + aN sinNΩ :  tan 1 1 + a1 cosΩ + ⋯ + aN cos NΩ

(D.27)

(D.28)

836

APPENDIX D SINUSOIDAL STEADY-STATE RESPONSE OF DIGITAL FILTERS

Comparing (D.25) with (D.27) and (D.26) with (D.28), respectively, we conclude the symmetric properties as   jΩ    jΩ  H e  ¼ H e  

jΩ

∠H e





¼ ∠H e





(D.29) (D.30)