(Solid  +  liquid) equilibria and solid compound formation in (N-methyl-2-pyrrolidinone  +  benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane)

(Solid  +  liquid) equilibria and solid compound formation in (N-methyl-2-pyrrolidinone  +  benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane)

J. Chem. Thermodynamics 2000, 32, 1635–1645 doi:10.1006/jcht.2000.0703 Available online at http://www.idealibrary.com on (Solid + liquid) equilibria ...

160KB Sizes 2 Downloads 73 Views

J. Chem. Thermodynamics 2000, 32, 1635–1645 doi:10.1006/jcht.2000.0703 Available online at http://www.idealibrary.com on

(Solid + liquid) equilibria and solid compound formation in (N-methyl-2-pyrrolidinone + benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane) a ´ Urszula Domanska

Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

and Trevor M. Letcher School of Pure and Applied Chemistry, University of Natal-Durban, Private Bag X10, Dalbridge 4014, Republic of South Africa

(Solid + liquid) phase diagrams have been determined for (N -methyl-2-pyrrolidinone + benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane). Solid addition compounds form with the empirical formulae: {(C5 H9 NO)2 · C6 H6 }, (C5 H9 NO · 2ClC6 H5 ), (C5 H6 NO · Cl2 C6 H4 ), (2C5 H9 NO · Cl3 C6 H3 ). All are congruently melting compounds. Compound formation is attributed to a charge-transfer interaction with the benzene, or chlorobenzene, or 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene acting as electron acceptors and the nitrogen, or oxygen in N -methyl-2-pyrrolidinone c 2000 Academic Press acting as electron donors. KEYWORDS: s.l.e.; NMP; benzene; toluene; 1,1,1-trichloroethane; dichloromethane; congruently melting compounds

1. Introduction N -methyl-2-pyrrolidinone (NMP) is an aprotic and a strongly dipolar substance and has the potential for use in solvent extraction processes for separating polar substances from non-polar ones.(1) (Solid + liquid) phase diagrams have been reported for (NMP + tetrachloromethane,(2) or trichloromethane,(3) or diacetylene,(4) or m-, p-, o-cresol,(5–7) a To whom correspondence should be addressed (E-mail: [email protected]).

0021–9614/00/121635 + 11 $35.00/0

c 2000 Academic Press

1636

U. Doma´nska and T. M. Letcher TABLE 1. Density ρ and refractive index n D of the pure components at T = 298.15 K ρ/kg · dm−3

Component

nD

Expt

Reference 11

Expt

C5 H9 NO

1.02800

1.02790¸

1.46862

1.4680

C6 H 6

0.87367

0.87370¸

1.49790

1.49792

CH3 C6 H5

0.86211

0.86231¸

1.49410

1.49413

(CH3 )3 C6 H3

0.86108

0.86111¸

1.49678

1.49684

C2 H 5 C6 H 5

0.86260

0.86264¸

1.49345

1.49320

ClC6 H5

1.10075

1.10090¸

1.52480

1.52481a¸

1.34250

1.3410b

1.55152

1.5509a,b

Cl3 C6 H3

1.45365

1.4540b

1.57260

1.5710a,b

C2 H3 Cl3

1.32907

1.32928¸

1.43602

1.4359

CH2 Cl2

1.31680

1.31678¸

1.42110

1.42115

Cl2 C6 H4

Reference 11

a At T = 293.15 K; b from reference 12.

275

T/K

265

255

245

235

0

0.2

0.4

0.6

0.8

1

x FIGURE 1. (Solid + liquid) phase diagram for {xC5 H9 NO + (1 − x)C6 H6 }; —, calculated values using equation (1).

or 2,5-dimethylphenol,(8) or 3,4-dimethylphenol).(9) The molecular addition compounds (m-, p-, o-cresol; 2,5-dimethylphenol) melting congruently or incongruently have been reported. The authors attributed the compound formation to a charge-transfer interac-

(Solid + liquid) equilibria for (NMP + an organic solvent)

1637

TABLE 2. (Solid + liquid) phase equilibria: T denotes the melting temperature, δT is the deviation of the experimental temperature from the temperature calculated from equation (1) and x is the mole fraction of NMP x

T /K

δT /K

x

T /K

δT /K

0 0.0214 0.0651

278.70 277.95 275.85

0.00 0.22 0.30

xC5 H9 NO + (1 − x)C6 H6 0.4307 246.95 0.02 0.4514 244.55 −0.21 0.4712 242.85a 0.02 to 0.05b

0.6682 0.6788 0.7056

246.75 246.45 246.35

0.13 −0.15 0.08

0.1133 0.1622

272.65 269.85

−0.18 0.10

0.4814 0.5097

243.15 243.95

−0.02 0.06

0.7401 0.7633

244.95 243.25

−0.06 −0.17

0.2450 0.2075 0.2826 0.3149

263.65 266.85 260.65 257.85

−0.13 0.25 −0.10 −0.15

0.5273 0.5273 0.5540 0.5825

244.45 236.45c 244.95 245.30

0.14 0.03 −0.22

0.7780 0.7851 0.8203 0.8560

242.15a 243.55 244.55 245.65

0.14 to 0.55b 0.56 0.14 −0.16

0.3507 0.3785 0.3995

254.75 252.05 250.25

−0.02 −0.10 0.15

0.6109 0.6319 0.6576

245.95 246.35 246.75

−0.10 −0.01 0.16

0.9023 0.9388 0.9671

247.53 248.65 249.55

0.03 −0.05 0.02

0.6660

246.65d

1

250.40

0.00

0.20 0.10 0.14

x

T /K

δT /K

0.03

xC5 H9 NO + (1 − x)CH3 C6 H5 0.4430 0.4959 0.5231

218.15 222.35 224.55

−0.42 0.12 0.36

0.6570 0.6870 0.7210

233.25 235.35 237.55

−0.34 −0.12 0.07

0.8664 0.9134 0.9512

244.75 246.65 248.35

0.5556

226.75

0.19

0.7606

239.45

−0.17

0.9729

249.35

0.13

0.5979

229.85

0.26

0.7883

240.75

−0.26

0.9893

249.90

−0.12

0.6303

231.75

−0.07

0.8238

242.75

0.08

1

250.40

0.00

0 0.0254 0.0676 0.0976

228.40 224.85 221.35 219.35

0.00 −0.66 −0.12 0.18

0.2958 0.3518 0.4050 0.4492

224.35 227.25 229.65 231.35

−0.14 −0.58 −0.63 −0.55

0.7425 0.7685 0.8196 0.8549

242.85 243.55 245.45 246.35

−0.12 −0.44 −0.21 −0.18

0.1395 0.1604 0.1750 0.1853 0.2056 0.2158 0.2528

217.15 215.95 215.15a 216.75 218.75 220.75 222.65

0.39 0.04 −0.30 to 0.53b −0.53 0.38 1.75 1.13

0.4959 0.5248 0.5574 0.5887 0.6186 0.6374 0.7153

233.35 234.15 235.95 237.15 238.05 238.75 241.65

−0.06 −0.18 0.53 0.60 0.34 0.27 −0.19

0.8850 0.9085 0.9405 0.9609 0.9797 1

247.15 247.55 248.75 249.15 249.65 250.40

0.02 −0.01 0.51 0.31 0.03 0.00

0.3377 0.3665 0.3970

221.70 215.15 217.15

0.00 −0.44 −0.01

0.8012 0.8418 0.8805

241.75 243.75 245.45

0.03 0.28 0.37

xC5 H9 NO + (1 − x)(CH3 )3 C6 H3

xC5 H9 NO + (1 − x)C2 H5 C6 H5 0.5428 227.45 0.68 0.6335 232.85 0.01 0.6813 235.45 −0.26

1638

U. Doma´nska and T. M. Letcher TABLE 2—continued

x

T /K

δT /K

x

T /K

δT /K

x

T /K

δT /K

0.4528

220.65

0.4943

223.55

0.07

0.7126

237.05

−0.39

0.9285

247.55

0.39

0.16

0.7396

238.35

−0.49

0.9761

249.55

0.5183

0.07

225.25

0.19

0.7618

239.65

−0.27

1

250.40

0.00

0

228.05

0.00

0.3305

208.85

0.30

0.5344

215.85

−0.23

0.0299

226.05

0.07

0.3330

209.15c

0.51

0.5802

220.65

0.32

0.0814

222.35

−0.11

0.3532

209.05

−0.15

0.6271

225.35

0.67

0.1259

219.05

−0.40

0.4018

208.55

−0.50

0.6702

229.15

0.25

0.1676

216.95

0.28

0.4324

207.95

0.41

0.7565

235.35

−2.27

0.2459

211.75

0.23

0.4480

206.15a

0.2995

208.15

0.09

0.4540

207.55

0.3100

207.15a

0.4722

209.45

0.02

0.3232

208.35

0.08

0.5020

212.15

−0.68

0

256.15

0.00

0.4214

227.15

0.0333

254.15

0.16

0.4443

224.35

0.0781

251.15

−0.11

0.4829

219.95

0.1307

248.15

0.07

0.4880

218.65a

xC5 H9 NO + (1 − x)ClC6 H5

−0.24 to 0.53b

−0.12 to 0.11b 0.46

0.8167

244.95

2.05

0.9208

247.15

−0.75

0.9586

248.95

0.20

1

250.40

0.00

0.38

0.6156

222.85

−0.05

0.00

0.6566

226.95

0.21

0.29

0.6884

229.50

−0.16 −0.22

xC5 H9 NO + (1 − x)Cl2 C6 H4

−0.3 to 0.07b

0.7247

232.65

0.26

0.7949

238.95

0.36

219.95

−0.01

0.8597

242.95

−0.19

0.5404

219.85

−0.19

0.8945

245.35

0.09

0.5559

219.75

−0.07

0.9335

247.35

−0.02

−0.22

0.5750

219.15a

0.07 to 0.05b

229.35

−0.40

0.5952

220.95

−0.04

0

289.65

0.00

0.5201

261.95

0.0452

287.35

−0.27

0.5417

0.0864

285.35

−0.45

0.5665

0.1296

283.75

−0.15

0.5720

258.15a

0.8203

249.35

0.05

0.1687

282.05

−0.11

0.5904

259.35

0.15

0.8531

246.45

0.00

0.1965

280.95

0.05

0.6194

259.95

−0.27

0.8651

245.35

−0.07

0.2126

280.55

0.39

0.6389

260.35

−0.11

0.8800

244.15a

0.04 to 0.42b

0.3043

276.15

0.47

0.6660

260.85

0.67

0.8969

245.45

0.4337

267.95

−0.24

0.6772

259.85

0.00

0.9345

247.65

0.53

0.4968

263.55

−0.28

0.6970

258.45

−0.56

0.9858

249.85

0.01

1

250.40

0.00

0.1964

243.75

−0.22

0.5200

220.15d

0.2326

241.70

0.10

0.5239

0.2677

239.25

0.04

0.3077

236.65

0.30

0.3616

231.95

0.3898

0.9697

248.95

−0.12

1

250.40

0.00

−0.13

0.7280

257.15

0.05

260.25

−0.13

0.7544

255.25

0.19

258.45

0.12

0.7765

253.05

−0.12

xC5 H9 NO + (1 − x)Cl3 C6 H3

0.29 to 0.03b

0.13

(Solid + liquid) equilibria for (NMP + an organic solvent)

1639

TABLE 2—continued x

T /K

δT /K

x

T /K

δT /K

0 0.0210 0.0388

233.85 229.95 227.25

0.00 0.02 0.03

0.5665 0.5889 0.6438

227.15 229.05 232.35

−0.02 0.20 −0.27

0.0605 0.0680 0.1002

224.55 224.05e 223.55

−0.11 0.08 to 0.18b 0.04

0.3582 0.3700 0.3895

208.45 207.65a 210.15

0.05 0.01 to 0.11b 0.30

0.7580 0.8034 0.8402

239.45 241.95 243.75

0.04 0.09 0.00

0.1367 0.1553 0.2008 0.2330

222.15 221.45 219.05 216.95

−0.04 0.10 0.18 0.08

0.4010 0.4402 0.4549 0.4749

210.65 215.75 216.95 218.95

−0.54 0.18 −0.17 −0.20

0.8741 0.9149 0.9436 0.9664

245.35 247.25 248.35 249.25

−0.04 0.02 −0.05 0.00

0.2442 0.2529

215.95 215.55

−0.18 0.00

0.4881 0.5123

220.65 222.95

0.22 0.28

0.9803 1

249.75 250.40

0.01 0.00

0.2757

213.95

−0.05

0.5418

225.05

−0.15

0.5703 0.6224

207.80 216.55

−0.11 0.23

0.9368 0.9521

246.55 247.55

0.51 0.50

0.6790

224.05

−0.07

0.8712

241.85

0.16

0.9731

248.85

0.39

0.7231 0.7797

229.25 234.40

0.01 −0.31

0.8977 0.9186

243.85 245.05

0.38 −1.77

0.9893 1

249.55 250.40

−0.03 0.00

x

T /K

δT /K

xC5 H9 NO + (1 − x)C2 H3 Cl3 0.2983 212.35 −0.10 0.3273 210.55 0.09 0.3490 208.95 −0.05

xC5 H9 NO + (1 − x)CH2 Cl2 0.8201 238.15 0.14 0.8475 239.95 −0.09

a Eutectic composition and temperature. b The two δT values are the deviations from the intersecting equations at the invariant point. The deviation from the equation for the lower x region is given first. c Metastable melting temperature. d Composition and melting temperature of congruently melting molecular addition compound. e (Solid + solid) phase transition composition and temperature.

tion. In this paper we present similar measurements for (N -methyl-2-pyrrolidinone + benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane). Chlorohydrocarbons include chlorine and hydrogen atoms which can interact with NMP.

2. Experimental The origin of the chemicals and their mass fraction purities were: NMP (Aldrich Chemical Co., 0.995), benzene (Aldrich Chemical Co., 0.999), toluene (Aldrich Chemical Co., 0.995), 1,3,5-trimethylbenzene (Aldrich Chemical Co., 0.98), ethylbenzene (Aldrich Chemical Co., 0.99), chlorobenzene, 1,2-dichlorobenzene and 1,2,4-trichlorobenzene (Janssen Chimica, 0.98), 1,1,1-trichloroethane (Koch-Light Laboratories Ltd., 0.98), dichloromethane (Aldrich Chemical Co., 0.998). NMP, benzene and toluene were fractionally distilled under atmospheric pressure after prolonged reflux over different drying reagents. All liquids were stored over freshly activated molecular sieves of the type

1640

U. Doma´nska and T. M. Letcher TABLE 3. Summary of invariant points x

T /K

Eutectic

0.4712

242.85

Compound (2C5 H9 NO · C6 H6 )a

0.666

246.65

Eutectic

0.778

242.15

Type of invariant point xC5 H9 NO + (1 − x)C6 H6

xC5 H9 NO + (1 − x)(CH3 )3 C6 H3 Eutectic

0.175

215.15

xC5 H9 NO + (1 − x)ClC6 H5 Eutectic

0.310

207.15

Compound (C5 H9 NO · 2ClC6 H5 )a

0.333

209.15

Eutectic

0.448

206.15

xC5 H9 NO + (1 − x)Cl2 C6 H4 Eutectic

0.488

218.65

Compound (C5 H9 NO · Cl2 C6 H4 )a

0.520

220.15

Eutectic

0.575

219.15

xC5 H9 NO + (1 − x)Cl3 C6 H3 Eutectic

0.572

258.15

Compound (2C5 H9 NO · Cl3 C6 H3 )a

0.666

260.85

Eutectic

0.880

244.15

xC5 H9 NO + (1 − x)C2 H3 Cl3 Phase transition

0.068

224.05

Eutectic

0.370

207.65

a Melting temperature of congruently melting molecular addition compound.

0.4 nm (Union Carbide) and were analysed by g.l.c. An analysis, using the Karl–Fisher technique, showed that the water mole fraction content in each of the solvents x (H2 O) was <3 · 10−3 . The densities of all the chemicals were measured, using an Anton Paar DMA 602 vibrating-tube densimeter. The densities of NMP and the other solvents are in satisfactory agreement with the literature values quoted in references 10 and 11, respectively. The characteristic properties of the pure substances are presented in table 1. NMP was stored in a dark bottle in a refrigerator to reduce decomposition. The (solid + liquid) equilibrium temperatures were determined using a dynamic method.(13) Appropriate mixtures of solute and solvent were heated very slowly (less than 1.1 · 10−3 K · s−1 near the equilibrium temperature) with continuous stirring inside a Pyrex glass cell which was placed in a glass thermostat filled with acetone and dry ice. The temperature at which the last crystals disappeared was taken as the temperature of the (solid + liquid) equilibrium. The crystal disappearance temperatures, detected visually, were

(Solid + liquid) equilibria for (NMP + an organic solvent)

1641

TABLE 4. Coefficients Ai for the fitting equation (1). Columns 1 and 2 give the range of x over which the equation applies: σ is the standard deviation of T xmin

x∗

xmax

T∗

A1

A2

A3

A4

A5

A6

σ a /K

xC5 H9 NO + (1 − x)C6 H6 0

0.4712 0

278.70 −0.15770 −0.24832

0.15

0.4712 0.778

0.666 246.65 −0.48342

1.49827

−1.16217

0.85

0.778 1

1

250.40 −0.47093

0.84767

−0.37681

0.26

0.4430 1

1

250.40 −1.35474

xC5 H9 NO + (1 − x)CH3 C6 H5 3.84435

1.34306

−3.83196

0.32

xC5 H9 NO + (1 − x)(CH3 )3 C6 H3 0

0.175 0

0.175 1

1

228.40 −0.52766 250.40 −2.48722

1.16431 15.9937

0.32 66.1171

−45.3545

−47.9814

13.7140

4.17

xC5 H9 NO + (1 − x)C2 H5 C6 H5 0.3377 1

1

250.40 −1.33658

0.310 0

228.05 −0.30447

3.87382

1.43196

−3.96752

0.72

xC5 H9 NO + (1 − x)ClC6 H5 0

0.310 0.448

0.333 209.15

0.448 1

1

0.03942

0.16

0.02297 −0.09620

250.40 −8.45208

0.51

53.5850 −143.861

196.345

−133.429

35.8113

4.52

xC5 H9 NO + (1 − x)Cl2 C6 H4 0

0.488 0

256.15 −0.26305

0.37999

−2.19546

0.488

0.575 0.488 220.15 −1.50943

5.62093

−5.23579

0.575

1

1

250.40 −1.49162

3.69636

−3.07410

0

0.572 0

289.65 −0.15782

5.10263

0.29

−5.11442

0.05 0.86903

0.13

xC5 H9 NO + (1 − x)Cl3 C6 H3 0.572 0.880

0.666 260.85

0.880

1

1

250.40 −0.22782

0

0.068 0

233.85 −0.87639

0.06307

10.2535 −82.5808

0.33

−0.21440 253.568

−374.951

268.927

0.22881

−75.3656

0.30 0.21

xC5 H9 NO + (1 − x)C2 H3 Cl3 0.068 0.370

0.068 224.05

0.370 1

1

250.40 −3.31737

0.5703 1

1

250.40 −4.08183

3.75300

0.09795 −1.37064 16.1813

0.01 1.54327 −34.1965

0.06 37.7962

−21.2678

4.80412 0.30

xC5 H9 NO + (1 − x)CH2 Cl2 14.4639

−19.7531

12.1550

−2.78414

1.65

h i1/2 2 a Given by the equation σ = Pn {(T , here n is the number of experimental points, and expt − Tcalc )i /(n − k)} i=1

k is the number of parameters.

1642

U. Doma´nska and T. M. Letcher

260

250

T/K

240

230

220

210

0

0.2

0.4

0.6

0.8

1

x



FIGURE 2. (Solid + liquid) phase diagram for , {xC5 H9 NO + (1 − x)CH3 C6 H5 }; , {xC5 H9 NO + (1 − x)C2 H5 C6 H5 }; , {xC5 H9 NO + (1 − x)(CH3 )3 C6 H3 }; —, calculated values using equation (1).

250

T/K

240 230 220 210 200 0

0.2

0.4

0.6

0.8

1

x

FIGURE 3. (Solid + liquid) phase diagram for {xC5 H9 NO + (1 − x)ClC6 H5 }; —, calculated values using equation (1).

measured with a platinum resistance thermometer, Gallenkamp Autotherm II, produced by Sanyo Gallenkamp plc, Leicester, U.K. The thermometer was calibrated on ITS-90. The accuracy of the temperature measurements was judged to be ±0.001 K and the

(Solid + liquid) equilibria for (NMP + an organic solvent)

1643

255

T/ K

245

235

225

215

0

0.2

0.4

0.6

0.8

1

x FIGURE 4. (Solid + liquid) phase diagram for {xC5 H9 NO + (1 − x)Cl2 C6 H4 }; —, calculated values using equation (1).

290

280

T/K

270

260

250 240 0

0.2

0.4

0.6

0.8

1

x

FIGURE 5. (Solid + liquid) phase diagram for {xC5 H9 NO + (1 − x)Cl3 C6 H3 }; —, calculated values using equation (1).

reproducibility of the equilibrium temperatures to be ±0.1 K. Mixtures were prepared by mass and the error in the mole fraction was estimated to be less than ±5 · 10−4 .

1644

U. Doma´nska and T. M. Letcher 290

280

T/K

270

260

250

240 0

0.2

0.4

0.6

0.8

1

x

FIGURE 6. (Solid + liquid) phase diagram for , {xC5 H9 NO + (1 − x)C2 H3 Cl3 };

◦, {xC5 H9 NO + (1 − x)CH2 Cl2 }; —, calculated values using equation (1). 3. Results and discussion

Experimental results were obtained over the entire composition range for the six investigated mixtures. For toluene, ethylbenzene and dichloromethane the melting temperatures were lower than 220 K and a different experimental technique, namely d.s.c. calorimetry, was required to obtained the second liquidus curve. The (solid + liquid) equilibrium temperatures are recorded in table 2 and the invariant temperatures in table 3. The phase diagrams are shown in figures 1 to 6. The melting temperatures T were fitted using a leastsquares method to the equation:(14) ) ( n X T = T∗ 1 + a j (x − x ∗ ) j , (1) j=1

x∗

T∗

where and were taken as the stoichiometric composition and melting temperature for the congruently melting compounds and as the melting temperature Tm of pure substances (x ∗ for pure substances is the value of x at Tm ). Excellent fits were obtained for all the mixtures except for {xC5 H9 NO + (1 − x) (CH3 )3 C6 H3 } at x > 0.175 and for {xC5 H9 NO + (1 − x)CH2 Cl2 } at x > 0.5. The parameters of the fitting equation together with the standard deviations (σ ) are given in table 4. Deviations δT = {T − T (calc)} of the individual data points from the fitting equations are given in table 2. The curves in all the six figures were drawn using the fitting equations. It is evident from the phase diagrams that congruently melting solid addition compounds form in four of the mixtures with the empirical formulae: (2C5 H9 NO · C6 H6 ); (C5 H9 NO · 2ClC6 H5 ); (C5 H9 NO · Cl2 C6 H4 ); and (2C5 H9 NO · Cl3 C6 H3 ). For the mixture with 1,1,1-trichloroethane the large inflection in the liquidus curve at x = 0.068 and

(Solid + liquid) equilibria for (NMP + an organic solvent)

1645

T = 224.05 K indicates a (solid + solid) phase transition, characteristic of the pure compound. The eutectic compositions were obtained from the intersection of the melting temperature lines. It is interesting to note that addition compounds contain two, or three cyclic molecules. It is possible that two kinds of charge-transfer interactions contribute to the bonding in these mixtures: one involving the carbonyl oxygen and the other involving electron pair donation from the nitrogen group. An increase in the number of chlorine atoms on the benzene ring from one to three, results in a higher concentration of NMP in solid compound formation x ∗ = 0.333, x ∗ = 0.488 and x ∗ = 0.666 for chloro-, dichloro- and trichlorobenzene, respectively (see figures 3 to 5). On the other hand, replacing the chlorine atoms on the benzene ring by methyl, ethyl, or three methyl groups results in no solid compound formation (see figure 2). Both a congruent 1 : 1 and an incongruent melting compound have been observed by other workers in {xC5 H9 NO + (1 − x)CCl4 }(2) and in {xC5 H9 NO + (1 − x)CHCl3 }.(3) No similar solid compound occurs in the mixture of 1,1,1-trichloroethane and possibly in dichloromethane, suggesting that the chlorine atoms are weaker electron acceptors in dichloromethane than in trichloromethane and in tetrachloromethane. The authors wish to thank the University of Natal and F.R.D. (S. Africa) for financial aid. REFERENCES 1. Letcher, T. M.; Naicker, P. K. J. Chem. Eng. Data 1998, 43, 1034–1038. 2. Che, G. Q.; Ott, J. B.; Goates, J. R. J. Chem. Thermodynamics 1986, 18, 323–330. 3. Che, G. Q.; Huang, Z. Q.; Li, D.; Gu, X. L.; Luo, S. L. J. Chem. Thermodynamics 1996, 28, 159–165. 4. Szahowa, S. F.; Ksodjejewa, S. M.; Seriejewa, L. I. Zh. Phys. Khim. 1971, 45, 330–332. 5. Bugajewski, Z.; Bylicki, A. J. Chem. Thermodynamics 1988, 20, 1191–1194. 6. Bugajewski, Z.; Bylicki, A. J. Chem. Thermodynamics 1989, 21, 37–40. 7. Bugajewski, Z.; Bylicki, A. J. Chem. Thermodynamics 1989, 21, 847–850. 8. Bugajewski, Z.; Bylicki, A. J. Chem. Thermodynamics 1990, 22, 573–576. 9. Bugajewski, Z.; Bylicki, A. J. Chem. Thermodynamics 1991, 23, 901–904. 10. Letcher, T. M.; Doma´nska, U.; Mwenesongole, E. Fluid Phase Equilib. 1998, 149, 323–337. 11. Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties, Methods of Purification. Wiley Interscience: New York. 1986. 12. Aldrich Catalog, 1999–2000. 13. Doma´nska, U. Fluid Phase Equilib. 1986, 26, 201–220. 14. Ott, J. B.; Goates, J. R. J. Chem. Thermodynamics 1983, 15, 267–272. (Received 29 June 1999; in final form 13 April 2000)

WA 99/038