Soliton, rational and special solutions of the Korteweg–de Vries hierarchy

Soliton, rational and special solutions of the Korteweg–de Vries hierarchy

Applied Mathematics and Computation 217 (2010) 1774–1779 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homep...

170KB Sizes 0 Downloads 4 Views

Applied Mathematics and Computation 217 (2010) 1774–1779

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Soliton, rational and special solutions of the Korteweg–de Vries hierarchy Nikolai A. Kudryashov Department of Applied Mathematics, National Research Nuclear University ‘‘MEPHI”, 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation

a r t i c l e

i n f o

a b s t r a c t Soliton, rational and special solutions for any member of the Korteweg–de Vries hierarchy are presented. It is shown that the soliton solutions are found by means of the Hirota formulae with change of the dispersion relation, special solutions for the Korteweg–de Vries hierarchy are expressed via the transcendents of the first and the second Painlevé hierarchies and rational solutions of members for the Korteveg–de Vries hierarchy can be presented using the Yablonski–Vorobév polynomials. Ó 2009 Elsevier Inc. All rights reserved.

Keywords: Nonlinear evolution equation Korteweg–de Vries equation Korteweg–de Vries hierarchy Soliton Self-similar solutions Rational solutions First Painlevé hierarchy Second Painlevé hierarchy

1. Introduction Any member of the Korteweg–de Vries hierarchy can be written in the form [1–3]

@u @ þ Lnþ1 ½u ¼ 0; @t @x

n ¼ 1; 2; . . . ;

ð1:1Þ

where Lnþ1 ½u is the Lenard operator that is determined by the following recursion formula [1–3]

! @ @u þ2 Ln ½u; þ 4u @x @x @3x @3

@Lnþ1 ½u ¼ @x

L1 ½u ¼ u:

ð1:2Þ

Assuming n ¼ 1; n ¼ 2 and n ¼ 3 in Eq. (1.1) we have the following formulae

L2 ½u ¼ uxx þ 3 u2 ;

ð1:3Þ

L3 ½u ¼ uxxxx þ 10uuxx þ 5 u2x þ 10 u3 ; L4 ½u ¼ uxxxxxx þ 14uuxxxx þ 28 ux uxxx þ

ð1:4Þ 21 u2xx

2

þ 70 u uxx þ

70 uu2x

4

þ 35 u

ð1:5Þ

and so on. Substituting (1.3) into (1.1) we have the famous Korteweg–de Vries equation [4–6]

ut þ 6 u ux þ uxxx ¼ 0:

ð1:6Þ

Expressions (1.4) and (1.5) allow us to obtain the Korteveg–de Vries equations of the fifth-order and the seventh-order

ut þ 10 u uxxx þ 20 ux uxxx þ 30 u2 ux þ uxxxxx ¼ 0; 3

ut þ 140 u ux þ

70 u u2x

þ

70 u3x

ð1:7Þ 2

þ 280 u ux uxx þ 70 u uxxx þ 70 uxx uxxx þ 42 ux uxxxx þ 14 u uxxxxx þ uxxxxxxx ¼ 0:

ð1:8Þ

Eq. (1.1) was firstly introduced in [1]. It is well known that the Cauchy problem for all members of this hierarchy can be solved by means of the inverse scattering transform. E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.11.024

1775

N.A. Kudryashov / Applied Mathematics and Computation 217 (2010) 1774–1779

The aim of this paper is to present soliton, rational and special solutions for any member of the Korteweg–de Vries hierarchy. The paper is organized as follows. In Section 2 we present soliton solutions for any member of the Korteweg–de Vries hierarchy. In Section 3 we consider the self-similar solutions of the Korteweg–de Vries hierarchy and demonstrate that rational solutions of the Korteweg–de Vries hierarchy are expressed via the Yablonski–Vorob’ev polynomials and special solutions can be found taking into account the first and the second Painlevé hierarchies.

2. Soliton solutions of any member for the Korteweg–de Vries hierarchy It is well known that the soliton of the Korteweg–de Vries Eq. (1.6) takes the form [4–6] 2

3

2

u1 ðx; tÞ ¼ 2 k cosh ðk x  4 k t þ u0 Þ;

ð2:1Þ

where k and u0 are arbitrary constants. Let us show that the soliton for any member of the Korteweg–de Vries hierarchy is expressed by formula 2

2nþ1

2

un ðx; tÞ ¼ 2 k cosh ðk x  22n k

t þ u0 Þ;

ð2:2Þ

We can see that solution (2.2) is the traveling wave solution of Eq. (1.1). So we can look for the solitary wave solutions of Eq. (1.1) in the form

n ¼ x  xn t

un ðx; tÞ ¼ U n ðnÞ;

ð2:3Þ

Substituting (2.3) into Eq. (1.1) we have the nonlinear ordinary differential equation

Lnþ1 ½U n   xn U n þ C 1 ¼ 0;

n ¼ 1; 2; . . .

ð2:4Þ

where C 1 is constant of integration. We are interested in solitary wave of the Korteweg–de Vries hierarchy and we assume C 1 ¼ 0. Substituting expression (2.2) into (2.4) we obtain that soliton solution (2.2) satisfy Eq. (1.1). Therefore soliton solutions for any member of the Korteweg–de Vries hierarchy is expressed by formula (2.2). To look for multi soliton solutions for any member of the Korteweg–de Vries hierarchy we can use the Hirota method [7]. We have found that multi soliton solutions for any member of the Korteweg–de Vries hierarchy is expressed by formula ðnÞ

un ¼ 2

@ 2 ln F N ðx; tÞ ; @x2

N ¼ 1; 2; . . .

ð2:5Þ 2nþ1

ðnÞ

where function F N ðx; tÞ is determined by the Hirota formulae in the case xi ¼ ki ðnÞ

F 1 ðx; tÞ ¼ 1 þ expðh1 Þ;

2nþ1

h1 ¼ k1 x  k1

ðnÞ

. Using F N ðx; tÞ in the form

ð0Þ

t þ u1

ð2:6Þ

we obtain one soliton solutions (2.2) for any member of the Korteweg–de Vries hierarchy. In the case N ¼ 2 we take ðnÞ

F 2 ðx; tÞ ¼ 1 þ expðh1 Þ þ expðh2 Þ þ hi ¼ ki x 

2nþ1 ki t;

ðk1  k2 Þ2 ðk1 þ k2 Þ2

expðh1 þ h2 Þ;

ð2:7Þ

ði ¼ 1; 2Þ:

and we have two soliton solution. At N ¼ 3 we have three soliton solutions by formula (2.5) for any member of the Korteweg–de Vries hierarchy if we take ðnÞ F 3 ðx; tÞ in the form ðnÞ

F 3 ðx; tÞ ¼ 1 þ expðh1 Þ þ expðh2 Þ þ expðh3 Þ þ þ

ðk2  k3 Þ2 ðk2 þ k3 Þ

2nþ1

hi ¼ ki x  ki

t;

2

expðh2 þ h3 Þ þ

ðk1  k2 Þ2 ðk1 þ k2 Þ

2

expðh1 þ h2 Þ þ

ðk1  k2 Þ2 ðk1  k3 Þ2 ðk2  k3 Þ2 2

2

ðk1 þ k2 Þ ðk1 þ k3 Þ ðk2 þ k3 Þ

2

ðk1  k3 Þ2 ðk1 þ k3 Þ2

expðh1 þ h3 Þ

expðh1 þ h2 þ h3 Þ;

ð2:8Þ

ði ¼ 1; 2; 3Þ:

We do not give the proof these formulae for the soliton solutions but we have checked these formulae for the first, the second, the third and the fourth members of the Korteweg–de Vries hierarchy and we obtain that the solutions satisfy members of the Korteveg–de Vries hierarchy. These formulae are really the soliton solutions of the Korteweg–de Vries hierarchy. Taking into account the above mentioned formulae for one, two and three soliton solutions we can write soliton solutions for other members of the Korteweg–de Vries hierarchy. We note that the wave velocity of solitons is increased at ki > 1 with growth of the order of members for the Korteweg–de Vries hierarchy. In the case ki < 1 we obtain another case. However the phase shift in the case of interaction of solitons for all members of the Korteweg–de Vries hierarchy is the same.

1776

N.A. Kudryashov / Applied Mathematics and Computation 217 (2010) 1774–1779

Taking into account the above mentioned soliton solutions for members of the Korteweg–de Vries hierarchy we can write soliton solutions for the Korteweg–de Vries hierarchy in the form M @u @ X þ an Lnþ1 ½u ¼ 0; @t @x n¼1

n ¼ 1; 2; . . . :

ð2:9Þ

Soliton solutions of hierarchy (2.9) are also determined by formulae (2.5)–(2.8) where variable hi is given by formula

hi ¼ ki x 

M X

an ki2nþ1 t; i ¼ 1; 2; 3; . . .

ð2:10Þ

n¼1

We checked some of these solutions and we observe that these solutions satisfy the Korteweg–de Vries hierarchy. 3. Rational and special solutions for any member of the Korteweg–de Vries hierarchy Let us look for self-similar solutions for members of the Korteweg–de Vries hierarchy taking into account the following variables [8]

uðx; tÞ ¼

1 2 2nþ1

ð2nt þ tÞ

FðzÞ;



x 1

ð2nt þ tÞ2nþ1

ð3:1Þ

:

Substituting (3.1) into Eq. (1.1) we obtain equation with respect to FðzÞ in the form

d ðLnþ1 ½FÞ  2 F  z F z ¼ 0: dz

ð3:2Þ

Assuming

F ¼ vz  v2;

ð3:3Þ

where v ðzÞ is a new variable, we obtain the following equalities

    d d d 1  2v þ 2v L n ½ v z  v 2   z v  dz dz dz 2    h d d d zi ¼  2v þ 2v Ln ½F  : dz dz dz 2

d ðLnþ1 ½FÞ  2 F  z F z ¼ dz



ð3:4Þ

From Eq. (3.4) we can see that if FðzÞ is the solution of the hierarchy

Ln ½F 

z ¼ 0; 2

n ¼ 1; 2; . . .

ð3:5Þ

then we obtain special solutions for any member of the Korteweg–de Vries hierarchy (1.1) by formula (3.1). This solution for the KdV equation takes the trivial form u ¼ x=ð3 tÞ but the special solution of the fifth-order Korteweg–de Vries equation is expressed via the transcendent of the first Painlevé equation. Hierarchy (3.5) was introduced in [8] and was called as the first Painleve hierarchy. Indeed assuming n ¼ 2 in (3.5) we have the first Painleve equation

F zz þ 3 F 2 

z ¼ 0: 2

ð3:6Þ

In the case n ¼ 3 from Eq. (3.5) we obtain

F zzzz þ 10F F zz þ 5 F 2z þ 10 F 3 

z ¼ 0: 2

ð3:7Þ

Taking into account the operator L4 ½u in (3.5) we have the sixth-order nonlinear ordinary differential equation

F zzzzzz þ 14 F F zzzz þ 28 F z F zzz þ 21 F 2zz þ 70 F 2 F zz þ 70 F F 2z þ 35 F 4 

z ¼ 0: 2

ð3:8Þ

It was proved that equations of hierarchy (3.5) did not have the first integrals in polynomial form [9,10] and apparently all members of this hierarchy determine new transcendental functions similar to Painleve transcendents. However there are not the proof of irreducibility for these equations. Equations of hierarchy (3.5) were considered in many works (see Refs. [11–16]). Consider the first equality in Eq. (3.4). Let v ðzÞ be solution of hierarchy



 d þ 2v Ln ½v z  v 2   z v  bn ¼ 0; dz

ð3:9Þ

where bn is arbitrary constants. Hierarchy (3.9) is the second Painlevé hierarchy [17–22]. Assuming n ¼ 1 in (3.9) we obtain the second Painlevé equation

1777

N.A. Kudryashov / Applied Mathematics and Computation 217 (2010) 1774–1779

v zz  2 v 3  z v  b1 ¼ 0;

ð3:10Þ

Solutions of Eq. (3.10) are the Painlevé transcenedents. However this equation has the rational and special solutions at integers and at half integers values of b1 . In the case n ¼ 2 and n ¼ 3 we have the fourth-order and sixth-order nonlinear differential equations

v zzzz  10 v zz v 2  10 v 2z v þ 6 v 5  z v  b2 ¼ 0; v zzzzzz  56 v v z v zzz  42 v v 2zz þ 70 v 4 v zz  70 v 2z v zz þ 140 v 2z v 3  20 v 7  14 v 2 v zzzz  z v  b3 ¼ 0:

ð3:11Þ ð3:12Þ

Apparently the members of the second Painlevé hierarchy determines the transcendental functions similar to the Painlevé equations because equations of these hierarcies do not have the first integrals in the polynomial forms [9]. Special solutions of the second Painleve hierarchy can be found taking into account Eq. (3.4) and the transcendents by the first Painleve hierarchy. However solutions FðzÞ in (3.1) can also be found using formula (3.3) and taking into account the solutions of the second Painlevé hierarchy. Let us look for the rational solutions for any member of the Korteveg–de Vries hierarchy Eq. (1.1) using the formula 2

FðzÞ ¼ 2

d ln yðzÞ 2

dz

;



x 1

ð2nt þ tÞ2nþ1

ð3:13Þ

:

From Eq. (3.2) we have the hierarchy

" #   2 d d ln y 1 d ln y : z ¼ Lnþ1 2 2 dz dz 2 dz

ð3:14Þ

From hierarchy (3.14) at n ¼ 1 we obtain the nonlinear differential equations for the Yablonskii–Vorobév polynomials: y ¼ Q ð1Þ m ðzÞ [23–25]

y yzzzz  4yz yzzz þ 3 y2zz  yyz  zyzz þ zy2z ¼ 0: At n ¼ 2 and n ¼ 3 we also have the equations for the Yablonskii–Vorobév polynomials yðzÞ ¼ form

ð3:15Þ Q ð2Þ m

and yðzÞ ¼

Q ð3Þ m

y2 yzzzzzz  6yyz yzzzz þ 5yyzz yzzzz þ 10y2z yzzzz  20yz yzz yzzz þ 10y3zz  yz y2  zyzz y2 þ zy2z y ¼ 0;

in the

ð3:16Þ

y4 yzzzzzzzz  8y3 yz yzzzzzzz þ 28y2 y2z yzzzzzz þ 7y3 y2zzzz  56yy3z yzzzzz þ 112yy2z y2zzz þ 28y2 y2zz yzzzz þ 28yy4zz þ 56y2z y3zz þ 56y4z yzzzz  112y3z yzz yzzz þ 28yy2z yzz yzzzz  56y2 yz yzzz yzzzz  112yyz y2zz yzzz  yz y4  zyzz y4 þ zy2z y3 ¼ 0:

ð3:17Þ

These special polynomials are associated with the rational solutions of the second Painlevé hierarchy [26,27]. ln y Assuming w ¼ d dz we have that hierarchy (3.14) is reduced to equation

  dðz wÞ dw : ¼ Lnþ1 dz dz

ð3:18Þ

All members of hierarchies (3.14) and (3.18) are integrable, because they are obtained from the Korteweg–de Vries hierarchy. Assuming n ¼ 1, n ¼ 2 and n ¼ 3 from (3.18) we obtain the integrable nonlinear differential equations

wzzz þ 3 w2z  w  z wz ¼ 0 wzzzzz þ 10wz wzzz þ

5w2zz

þ

ð3:19Þ 10w3z

 w  zwz ¼ 0

wzzzzzzz þ 14wz wzzzzz þ 28wzz wzzzz þ 21w3zzz þ 70w2z wzzz þ 70wz w2zz þ 35w4z  w  zwz ¼ 0

ð3:20Þ ð3:21Þ

Special polynomials Q ðnÞ m ðzÞ can be found taking into account the differential–difference hierarchy [27]

Table 3.1 The Yablonskii–Vorobev polynomials Q ð1Þ m ðzÞ. ð1Þ

Q 0 ¼ 1, ð1Þ

Q 1 ¼ z, ð1Þ

Q 2 ¼ z3 þ 4, ð1Þ

Q 3 ¼ z6 þ 20z3  80, ð1Þ

Q 4 ¼ ðz9 þ 60z6 þ 11200Þz, ð1Þ

Q 5 ¼ z15 þ 140z12 þ 2800z9 þ 78400z6  313600z3  6272000, ð1Þ

Q 6 ¼ z21 þ 280z18 þ 1848z15 þ 627200z12  17248000z9 þ 1448832000z6 þ 19317760000z3  38635520000, ð1Þ

Q 7 ¼ ðz27 þ 504z24 þ 75600z21 þ 5174400z18 þ 62092800z15 þ 13039488000z12  828731904000z9  49723914240000z6  3093932441600000Þz.

1778

N.A. Kudryashov / Applied Mathematics and Computation 217 (2010) 1774–1779

Table 3.2 ð2Þ The Yablonskii–Vorobev polynomials Q m ðzÞ. ð2Þ

Q 0 ¼ 1, ð2Þ

Q 1 ¼ z, ð2Þ

Q 2 ¼ z3 , ð2Þ

Q 3 ¼ zðz5  144Þ, ð2Þ

Q 4 ¼ z10  1008z5  48384, ð2Þ

Q 5 ¼ z15  4032z10  3048192z5 þ 146313216, ð2Þ

Q 6 ¼ zðz20  12096z15  21337344z10  33798352896z5  4866962817024Þ, ð2Þ

Q 7 ¼ z3 ðz25  30240z20  55883520z15  1182942351360z10 þ 701543488297107456Þ.

Table 3.3 ð3Þ The Yablonskii–Vorobev polynomials Q m ðzÞ. ð3Þ

Q 0 ¼ 1, ð3Þ

Q 1 ¼ z, ð3Þ

Q 2 ¼ z3 , ð3Þ

Q 3 ¼ z6 , ð3Þ

Q 4 ¼ z3 ðz7 þ 14400Þ, ð3Þ

Q 5 ¼ zðz14 þ 129600z7  373248000Þ, ð3Þ

Q 6 ¼ z21 þ 648000z14  24634368000z7  35473489920000, ð3Þ

Q 7 ¼ z28 þ 2376000z21  825251328000z14  30436254351360000z7 þ 43828206265958400000.

" ðnÞ ðnÞ Q mþ1 Q m1

¼

ðnÞ 2 zðQ m Þ

ðnÞ

2 2ðQ ðnÞ m Þ Ln



2

#

2

d

ðln Q ðnÞ m Þ 2

dz

ð3:22Þ

:

ðnÞ

Assuming Q 0 ¼ 1 and Q 1 ¼ z from (3.22) we have special polynomials Q ðnÞ m at m > 1. Some of few special polynomials ð2Þ ð3Þ Q ð1Þ m ; Q m and Q m are given in Tables 3.1, 3.2 and 3.3. Using the Yablonskii–Vorobev polynomials we can find the rational solutions of the Korteweg–de Vries hierarchy (1.2) by the formula



2

ðnÞ d ln Q m ðzÞ

2 ðð2n þ 1ÞtÞ

2 2nþ1

2

dz

;



x 1

ð3:23Þ

:

ðð2n þ 1ÞtÞ2nþ1

The four rational solutions of the Korteweg–de Vries equation (hierarchy (1.2) at n ¼ 1) take the form [28]

2 ; x2 xðx3 þ 24tÞ

u1 ðx; tÞ ¼  u2 ðx; tÞ ¼ 6

ðx3 þ 12tÞ2

u3 ðx; tÞ ¼ 12 u4 ðx; tÞ ¼ 

ð3:24Þ ð3:25Þ

;

xðx9 þ 43200 t3 þ 5400 x3 t2 Þ ðx6  60x3 t þ 720t 2 Þ2 20

ð3:26Þ

;

x2 ðx9 þ 180 x6 t þ 302400 t3 Þ2  ½x18 þ 144 x15 t  2116800 x9 t3 þ 22680 x12 t 2  152409600 x6 t 4 þ 9144576000 t 6 :

ð3:27Þ

The four rational solutions of the fifth-order Korteweg–de Vries equation (hierarchy (1.2) at n ¼ 2) can be written in the form

2 ; x2 6 u2 ðx; tÞ ¼  2 ; x 12ðx10 þ 2160 x5 t þ 86400 t 2 Þ u3 ðx; tÞ ¼  ; ðx5 þ 720tÞ2 x2

u1 ðx; tÞ ¼ 

u4 ðx; tÞ ¼ 

20 x3 ðx15 þ 5040 x10 t þ 23587200 x5 t 2  12192768000 t 3 Þ ðx10  5040 x5 t  1209600 t 2 Þ2

ð3:28Þ ð3:29Þ ð3:30Þ :

ð3:31Þ

N.A. Kudryashov / Applied Mathematics and Computation 217 (2010) 1774–1779

1779

The four rational solutions of the seventh-order Korteweg–de Vries equation (hierarchy (1.2) at n ¼ 3) can be given as the following

2 ; x2 6 u2 ðx; tÞ ¼  2 ; x 12 u3 ðx; tÞ ¼  2 ; x 20ðx14  362880 x7 t þ 3048192000 t2 Þ : u4 ðx; tÞ ¼  x2 ðx7 þ 100800 tÞ2

u1 ðx; tÞ ¼ 

ð3:32Þ ð3:33Þ ð3:34Þ ð3:35Þ

The rational solutions of the Korteweg–de Vries hierarchy can also be presented if we use the polynomial with respect to x and t by the formula ðnÞ Pm ðx; tÞ ¼ ðð2n þ 1ÞtÞ





m2 þm 4nþ2

Q ðnÞ m ðzÞ;



x 1

:

ðð2n þ 1ÞtÞ2nþ1

ð3:36Þ

Using these polynomials we obtain rational solutions of the Korteweg–de Vries hierarchy (1.1) by formula ðnÞ um ðx; tÞ ¼ 2

@ 2 ln PðnÞ m ðx; tÞ : @x2

ð3:37Þ

Rational solutions of the Korteweg–de Vries hierarchy (2.9) can be found by formula (3.23), if we take into account the generalized Yablonski–Vorobév polynomials [29]. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]

P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467–490. M.J. Ablowitz, P.A. Clarkson, Solitons Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. N.A. Kudryashov, Analytical theory of nonlinear differential equations, Moskow–Igevsk, Institute of computer investigations, 2004 (in Russian). D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves, Phil. Mag. 39 (1895) 422–443. N.J. Zabuski, M.D. Kruskal, Integration of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240–242. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation, J. Math. Phys. 19 (1967) 1095–1097. R. Hirota, Exact solution of the Korteweg–de Vries for multiple collisions of solutions, Phys. Rev. Lett. 27 (1971) 1192–1194. N.A. Kudryashov, The first Painleve and the second Painleve equations of higher order and some relations between them, Phys. Lett. A 224 (1997) 353– 360. N.A. Kudryashov, On new transcendents defined by nonlinear ordinary differential equations, J. Phys. A.: Math. Gen. 31 (1998) 129–137. N.A. Kudryashov, M.B. Soukharev, Uniformization and transcendence of solutions for the first and second Painleve hierarchies, Phys. Lett. A 237 (1998) 206–216. U. Mugan, F. Jrad, Painleve test and the first Painleve hierarchy, J. Phys. A. Math. Gen. 32 (1999) 7933–7952. N.A. Kudryashov, Fourth-order analogies to the Painleve equations, J. Phys. A.: Math. Gen. 35 (2002) 4617–4632. N.A. Kudryashov, One generalization of the second Painleve hierarchy, J. Phys. A.: Math. Gen. 35 (2002) 93–99. N.A. Kudryashov, Amalgamations of the Painlevé equations, J. Math. Phys. 40 (2003) 6160–6178. A.H. Sakka, Backlund transformations for the first and second Painleve hierarchies, SIGMA 5 (2009) 024. doi: 10.2842/sigma.2009.024. Y. Adjabi, F. Jrad, A. Kessi, U. Mugan, Third order differential equations with fixed critical points, Appl. Math. Comput. 208 (2009) 238–248. H. Airault, Rational solutions of Painlevé equations, Stud. Appl. Math. 61 (1979) 31–53. N.A. Kudryashov, Two hierarchies of ordinary differential equations and their properties, Phys. Lett. A (1999) 173–179. N.A. Kudryashov, Some fourth ordinary differential equations which pass the Painleve test, J. Nonlinear Math. Phys. 8 (2001) 172–177. U. Mugan, F. Jrad, Painlevé test and higher order differential equations, J. Nonlinear Math. Phys. 9 (3) (2002) 282–310. A.H. Sakka, Schlesinger transformations for the second member of PII and PIV hierarchies, J. Phys. A. Math. Theor. 40 (2007) 7687–7697. P.A. Clarkson, G.V. Filipuk, The symmetric fourth Painlevé hierarchy and associated special polynomials, Stud. Appl. Math. 121 (2) (2008) 157–158. A.I. Yablonskii, On rational solutions of the second Painlevé equations, Vesti Akad. Nauk BSSR, Ser. Fiz. Tkh. Nauk 3 (1959) 30–35 (in Russian). A.P. Vorob’ev, On rational solutions of the second Painlevé equations, Differ. Eqns. 1 (1965) 79–81 (in Russian). P.A. Clarkson, Remarks on the Yablonskii–Vorob’ev polynomials, Phys. Lett. A 319 (2003) 137–144. M.V. Demina, N.A. Kudryashov, The Yablonskii–Vorob’ev polynomials for the second Painlevé hierarchy, Chaos, Solitons and Fractals 32 (2) (2007) 526–537. M.V. Demina, N.A. Kudryashov, Special polynomials and rational solutions of the hierarchy of the second Painlevé equation, Theor. Math. Phys. 153 (1) (2007) 1398–1406. H. Airault, H.P. McKean, J. Moser, Rational and elliptic solutions of the Korteveg–de Vries equation and a related many-body problem, Commun. Pure Appl. Math. 30 (1977) 95. N.A. Kudryashov, M.V. Demina, The generalized Yablonski–Vorobév polynomials and their properties, Phys. Lett. A 372 (2008) 4885–4890.