Nonlinear Analysis 65 (2006) 802–824 www.elsevier.com/locate/na
Solvability of the Cauchy problem of nonlinear beam equations in Besov spaces Ai Guo a,b,∗ , Shangbin Cui a a Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People’s Republic of China b School of Mathematical Sciences, South China University of Technology, Guangzhou, Guangdong 510633,
People’s Republic of China Received 14 July 2005; accepted 3 October 2005
Abstract In this paper we study solvability of the Cauchy problem of the nonlinear beam equation ∂t2 u + 2 u = ±u p with initial data in Besov spaces. We prove that, for any 1 ≤ q < ∞, the Cauchy problem of this sp s (R n ), where s = n − 4 and equation is locally well-posed in the Besov spaces B˙ 2,q (R n ) and B2,q p 2 p−1 s > s p , and globally well-posed in these spaces if initial data are small. Moreover we obtain scattering sp results in B˙ 2,q (R n ). c 2005 Elsevier Ltd. All rights reserved. Keywords: Beam equations; Cauchy problem; Well-posedness; Besov space
1. Introduction and main result This paper is concerned with the Cauchy problem of the nonlinear beam equation ∂t2 u(x, t) + 2 u(x, t) = ±u p (x, t)
for x ∈ R n , t > 0,
(1.1)
u(x, 0) = u 0 (x), ∂t u(x, 0) = u 1 (x)
for x ∈ R n ,
(1.2)
where is the Laplacian on R n , p is a positive integer, p ≥ 2, and u 0 , u 1 are given functions. Beam equations arise from elasticity theory. We refer the reader to [12,18] for the physical background of such equations. Since beam equations were derived from mechanics long ago, ∗ Corresponding author at: School of Mathematical Sciences, South China University of Technology, Guangzhou, Guangdong 510633, People’s Republic of China. Tel.: +86 208 711 4594; fax: +86 2087 1100 37. E-mail addresses:
[email protected] (A. Guo),
[email protected] (S. Cui).
c 2005 Elsevier Ltd. All rights reserved. 0362-546X/$ - see front matter doi:10.1016/j.na.2005.10.002
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
803
there has been a lot of work on them in the literature concerning various different topics, including the solvability of initial and initial-boundary value problems, the blow-up of solutions, the existence of periodic solutions, and so on. Here we refer the reader to [2,9–11,20] for recent work on beam equations. In this paper we want to establish local and global solvability for the problem (1.1) and (1.2) sp s (R n ), where s = n − 4 , s > s , and 1 ≤ q ≤ ∞. (R n ) and B2,q in Besov spaces B˙ 2,q p p 2 p−1 sp s n s n n s n p ˙ ˙ Note that B2,2 (R ) = H (R ) and B2,2 (R ) = H (R ). Our interest in this topic is motivated 4 by the following observation: s p = n2 − p−1 is the critical index of the Sobolev space H˙ s (R n ) for Eq. (1.1) under a standard scaling argument. More precisely, if u(x, t) solves (1.1) then, 4
for any λ > 0, u λ (x, t) = λ p−1 u(λx, λ2 t) also solves this equation, with initial data u λ (x, 0) satisfying 4
u λ (·, 0) H˙ s = λ p−1
− n2 +s
u(·, 0) H˙ s .
4 The exponent p−1 − n2 + s is zero if and only if s = s p . Thus, as for other nonlinear dispersive equations (cf. [4–7]), we can conjecture that if s > s p then (1.1) and (1.2) is well-posed at least locally in H s (R n ), and if s < s p then it is not well-posed in H s (R n ). In this paper we shall prove the following results. For any n ≥ 1, if p > 1 + n8 then (1.1) and (1.2) is locally well-posed in sp 4 B˙ 2,q (R n ) (1 ≤ q < ∞) and, for n ≥ 3, if s > s p and either n = 3 and p > 1 + n−2 or n ≥ 4 s and p > 1 + n8 then (1.1) and (1.2) is locally well-posed in B2,q (R n ) (1 ≤ q < ∞). If the initial data are small, then the corresponding global well-posedness results hold. Besides, we shall also sp (R n ). prove some scattering results in B˙ 2,q Here, we particularly mention Ref. [11], where the author studied the following initial-value problem:
for x ∈ R n , t > 0, ∂t2 u + 2 u + u = ± f (u) ∂t u(x, 0) = u 1 (x) for x ∈ R n , u(x, 0) = u 0 (x),
(1.3) (1.4)
where f (u) is a nonlinear function that behaves like u p . It was proved that, if either 1 ≤ n ≤ 4 2 n and p > 1 or n ≥ 5 and 1 < p < n+4 n−4 , then local well-posedness holds in H (R ). Note that the condition p < n+4 n−4 (for n ≥ 5) is equivalent to 2 > s p . Hence our result on local well-posedness is compatible with that of Levandosky [11]. We also refer the reader to the related work on nonlinear wave equations (cf. [8,17,19]) and nonlinear Schr¨odinger equations by Planchon [15, 16] and, on generalized KdV equations and generalized Benjamin–Ono equations, Molinet and Ribaud [13,14]. This work is to a large extent inspired by those references. Before stating our main results, we first introduce some notation. For 1 ≤ p < ∞ and q p 1 ≤ q < ∞, we denote by L t L x the function space on R n × [0, +∞) consisting of measurable n functions f = f (x, t) on R × [0, +∞) satisfying the following condition: 1/q f L qt L xp =
+∞
q/ p
Rn
0 q
p
| f (x, t)| p dx
dt
< ∞;
for q = ∞, the space L t L x is defined similarly by replacing the corresponding integral with q p the supremum norm. For 0 < T < ∞, 1 ≤ p < ∞ and 1 ≤ q < ∞, we denote by L T L x the n n function spaces on R × [0, T ] consisting of measurable functions f = f (x, t) on R × [0, T ] satisfying the following condition:
804
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
f L q L xp = T
T
Rn q
| f (x, t)| dx p
0
1/q
q/ p
< ∞;
dt
p
for q = ∞, the space L T L x is defined similarly by replacing the corresponding integral with the supremum norm. We shall use both F and ˆ to denote the Fourier transform in the space variable, namely u(ξ ˆ ) = (Fu)(ξ ), where ξ ∈ R n , and use ∗ to denote convolution. For s ∈ R we denote s by H˙ (R n ) the homogeneous Sobolev space with index s. For 1 ≤ r ≤ ∞, we denote by r the s dual number of r , i.e., 1r + r1 = 1. For s ∈ R and 1 ≤ q ≤ ∞, we use the notations B˙ 2,q (R n ) s and B2,q (R n ) to denote, respectively, the homogeneous and nonhomogeneous Besov spaces with index (s, 2, q), which are defined as follows. First, take a function ψ ∈ S(R n ) such that ˆ − j ξ ) = 1, ∀ξ ∈ R n \ {0}, ψ(2 and suppψˆ = {ξ ∈ R n : 2−1 ≤ |ξ | ≤ 2} j ∈Z
ˆ − j ξ )). Next, for where Z represents the set of all integers. Let ψ0 (x) = F −1 (1 − j ≥1 ψ(2 every j ∈ Z , we denote by j and S0 , respectively, the following convolution operators: ˆ − j ξ ) fˆ(ξ )), j f (x) = F −1 (ψ(2
∀ f ∈ S (R n ),
S0 f (x) = F −1 (ψˆ 0 (2− j ξ ) fˆ(ξ )),
∀ f ∈ S (R n ).
Then s B˙ 2,q (R n ) =
f ∈ S (R n ) : f B˙ s = 2,q
s (R n ) = B˙ 2,∞
and s B2,q (R n ) =
f ∈ S (R n ) : f B˙ s
2,∞
j ∈Z
(2 j s j f L 2 )q
< ∞ , 1 ≤ q < ∞,
= sup(2 j s j f L 2 ) < ∞ , j ∈Z
s = f ∈ S (R n ) : f B2,q
1/q
q S0 f L 2
+ (2 j s j f L 2 )q j ≥1
1/q
< ∞ , 1 ≤ q < ∞.
s (R n ) and B s (R n ) We shall frequently abbreviate the notations L p (R n ), H˙ s (R n ), B˙ 2,q 2,q s s and B2,q . respectively as L p , H˙ s , B˙ 2,q 4 As before, we denote s p = n2 − p−1 , and shall use this notation throughout the whole paper. The first main result of this paper is the following local well-posedness result.
Theorem 1.1. (1) Let n ≥ 1, p ∈ N, p > 1 + n8 and 1 ≤ q < ∞. For any (u 0 , u 1 ) ∈ sp s p −2 ( B˙ 2,q , B˙ 2,q ) there exists a corresponding T > 0 such that the problem (1.1) and (1.2) has a unique solution u in R n × [0, T ] satisfying s p −2 u t ∈ C([0, T ]; B˙ 2,q ).
sp ), u ∈ C([0, T ]; B˙ 2,q
4 or n ≥ 4 (2) Let n ≥ 3, p ∈ N and 1 ≤ q < ∞. If either n = 3 and p > 1 + n−2 s−2 8 s −2 ˙ ˙ H ) and s p < s < s, there exists a and p > 1 + n then, for any (u 0 , u 1 ) ∈ (B2,q , B2,q corresponding T = T (u 0 B s + D −2 u 1 B s ) > 0 such that the problem (1.1) and (1.2) has 2,q
2,q
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
805
a unique solution u in R n × [0, T ] satisfying s−2 s ), u t ∈ C [0, T ]; B˙ 2,q u ∈ C([0, T ]; B2,q H˙ −2 . The second main result is the following global well-posedness result for the small initial-value problem. Theorem 1.2. (1) Let n ≥ 1, p ∈ N and p > 1 + n8 . Then there exists a corresponding δ > 0 sp s p −2 such that, for any (u 0 , u 1 ) ∈ ( B˙ 2,∞ , B˙ 2,∞ ) satisfying u 0 B˙ s p + u 1 ˙ s p −2 ≤ δ, the problem 2,∞
B2,∞
(1.1) and (1.2) has a unique global solution u satisfying s p −2 u t ∈ C([0, +∞); B˙ 2,∞ ).
sp u ∈ C([0, +∞); B˙ 2,∞ ),
(2) Let n ≥ 1, p ∈ N, p > 1 + n8 and 1 ≤ q < ∞. Then there exists a corresponding δ > 0 s s −2 such that, for any (u 0 , u 1 ) ∈ ( B˙ p , B˙ p ) satisfying u 0 ˙ s p + u 1 s p −2 ≤ δ, the problem 2,q
2,q
B2,∞
B˙ 2,∞
(1.1) and (1.2) has a unique global solution u satisfying sp u ∈ C([0, +∞); B˙ 2,q ),
s p −2 u t ∈ C([0, +∞); B˙ 2,q ).
4 (3) Let n ≥ 3, p ∈ N and 1 ≤ q < ∞. If either n = 3 and p > 1 + n−2 or n ≥ 4 and p > s−2 ˙ −2 8 s , B˙ 2,q 1 + n , then there exists a corresponding δ > 0, such that for any (u 0 , u 1 ) ∈ (B2,q H ) and s > s p satisfying u 0 B˙ s p +u 1 ˙ s p −2 ≤ δ, the problem (1.1) and (1.2) has a unique global 2,∞
B2,∞
solution u, satisfying
s−2 s ), u t ∈ L ∞ [0, +∞); B˙ 2,q u ∈ L ∞ ([0, +∞); B2,q H˙ −2 .
We also have the following scattering result. s −2
p p Theorem 1.3. Let n ≥ 1, p ∈ N, p > 1 + n8 and 1 ≤ q < ∞. Let (u 0 , u 1 ) ∈ ( B˙ 2,q , B˙ 2,q ) satisfying u 0 B˙ s p + u 1 ˙ s p −2 ≤ δ, where δ is as in Theorem 1.2(1), and let u(x, t) be the
s
2,∞
B2,∞
+ + ˙ s p ˙ s p −2 solution of (1.1) and (1.2). Then there exists (u + 0 , u 1 ) ∈ ( B2,q , B2,q ) such that, if u L is the solution to the following free beam equation 2 + ∂t2 u + for x ∈ R n , t > 0, L + uL = 0 + + + ∂t u + for x ∈ R n , u L (x, 0) = u 0 , L (x, 0) = u 1
(1.5) (1.6)
then s lim u(t) − u + L (t) B˙ p = 0.
t →+∞
(1.7)
2,q
The organization of this paper is as follows. Section 2 is devoted to establishing some basic estimates for corresponding linear problems. Section 3 aims to establish nonlinear estimates. In the last section, Section 4, we present the proofs of the above results. 2. Linear estimates Consider the following initial-value problem:
806
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
∂t2 u + 2 u = f (x, t) u(x, 0) = u 0 (x),
for x ∈ R n , t > 0, ∂t u(x, 0) = u 1 (x)
(2.1)
for x ∈ R n
(2.2)
where f , u 0 and u 1 are given functions. For t = 0 let 1 it |ξ |2 2 (e + e−it |ξ | )eixξ dξ, G 0 (x, t) = (2π)−n n 2 R 1 2 2 −n G 1 (x, t) = (2π) (eit |ξ | − e−it |ξ | )eixξ dξ. 2 R n 2|ξ | i It is clear that ∂ G 1 (x, t) . ∂t
G 0 (x, t) =
For every t > 0, let W (t) be the operator on S (R n ) defined by W (t)ϕ(x) = G 1 (x, t) ∗ ϕ(x)
for ϕ ∈ S (R n ).
Then, for suitable f , u 0 and u 1 , the unique solution of the problem (2.1) and (2.2) is given by u = v + w, where v is the solution of the problem ∂t2 v + 2 v = 0 v(x, 0) = u 0 (x),
for x ∈ R n , t > 0, ∂t v(x, 0) = u 1 (x)
for x ∈ R , n
(2.3) (2.4)
namely v(x, t) = W˙ (t)u 0 (x) + W (t)u 1 (x),
(2.5)
where W˙ (t) is the operator ∂ G 1 (x, t) ∗ ϕ(x), W˙ (t)ϕ(x) = ∂t and w is the solution of the problem ∂t2 w + 2 v = f (x, t) w(x, 0) = 0,
for x ∈ R n , t > 0,
∂t w(x, 0) = 0
(2.6)
for x ∈ R , n
(2.7)
namely w(x, t) =
t
W (t − τ ) f (x, τ )dτ.
(2.8)
0
Therefore, u(x, t) = W˙ (t)u 0 (x) + W (t)u 1 (x) +
t
W (t − τ ) f (x, τ )dτ.
(2.9)
0
Note that ∂t v(x, t) = W (t)(− 2 u 0 (x)) + W˙ (t)u 1 (x), t ∂t w(x, t) = W˙ (t − τ ) f (x, τ )dτ. 0
(2.10) (2.11)
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
807
Definition 2.1. We say that a pair (γ (r ), r ) is admissible if 1 n 1 1 = − γ (r ) 2 2 r and 2≤r ≤
2n (2 ≤ r ≤ ∞ if n = 1, 2 ≤ r < ∞ if n = 2). n−2
Lemma 2.2 ([3]). Let U (t)ϕ(x) = F −1 (eit |ξ | ϕ(ξ ˆ )) for t > 0 and ξ ∈ R n . We have the following Strichartz estimates: 2
U (t)ϕ L γ (r) L r ≤ Cϕ L 2 , t x t U (t − τ ) f (x, τ )dτ γ (r) 0
Lt
(2.12) ≤ C f L rx
γ (q)
Lt
q
Lx
,
(2.13)
U (t)ϕ L γ (r) B˙ s ≤ Cϕ H˙ s , t r,2 t U (t − τ ) f (x, τ )dτ γ (r) ˙ s ≤ C f L γt (q) B˙ s ,
(2.14)
U (t)ϕ L γ (r) B s ≤ Cϕ H s , t r,2 t U (t − τ ) f (x, τ )dτ
(2.16)
0
Lt
γ (r)
0
Lt
s Br,2
(2.15)
q ,2
Br,2
≤ C f
γ (q)
Lt
Bqs ,2
,
(2.17)
where s ∈ R, and (γ (r ), r ), (γ (q), q) are admissible pairs, and · L γ (r) B˙ s , · L γ (r) B s represent t
r,2
s s ), L γ (r) ([0, ∞); Br,2 ), respectively. the norm in the spaces L γ (r) ([0, ∞); B˙ r,2
t
r,2
Since s p > 0, we can take a real number s0 > 0 sufficiently small such that s0 < min(2, s p ). 2(n+2) 2n(n+2) n n ∗ Let α = 2(n+2) n , β = n+4 and β = n 2 +(8−2s )n+8−4s , namely β ∗ = β + 2 − s0 . 0
0
Corollary 2.3. The following estimates hold: ˙ (t)u 0 + W (t)u 1 L α L α ≤ C(u 0 L 2 + u 1 ˙ −2 ), (2.18) W˙ (t)u 0 + W (t)u 1 L ∞ 2 + W H t x t Lx t W (t − τ ) f (x, τ )dτ ∞ 2 0 Lt Lx t + W (t − τ ) f (x, τ )dτ ≤ C( f L β H˙ −s0 ). (2.19) L αt L αx
0
t
β∗
Proof. Taking r = 2 in (2.12) and r = 2, q = β in (2.13), we get, respectively, U (t)ϕ L ∞ 2 ≤ Cϕ L 2 , t Lx t x U (t − τ ) f (x, τ )dτ 0
2 L∞ t Lx
≤ C f L β L β .
(−t ) ˙ Since W (t) = (−∆)−1 U (t )+U , W (t) = 2i
W˙ (t)u 0 L ∞ 2 ≤ Cu 0 L 2 , t Lx
t
x
U (t )−U (−t ) , 2
we have (2.20)
808
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
W (t)u 1 L ∞ 2 ≤ Cu 1 H ˙ −2 , t Lx t W (t − τ ) f (x, τ )dτ ∞ 2 ≤ C f L βt H˙β−2 ≤ C f L βt H˙ β−s∗ 0 . 0
(2.21) (2.22)
Lt Lx
−s The last inequality follows from the Sobolev embedding: H˙ β ∗ 0 ⊂ H˙ β−2. Next, taking r = α in (2.12), (2.13), and q = β in (2.13), we have
U (t)ϕ L αt L αx ≤ Cϕ L 2 , t U (t − τ ) f (x, τ )dτ 0
≤ C f L β L β .
L αt L αx
t
x
Therefore W˙ (t)u 0 L αt L αx ≤ Cu 0 L 2 , W (t)u 1 L αt L αx ≤ Cu 1 H˙ −2 , t W (t − τ ) f (x, τ )dτ α α ≤ C f L βt H˙ β−2 ≤ C f L βt H˙ β−s∗ 0 . 0
(2.23) (2.24) (2.25)
Lt Lx
Combining (2.20)–(2.25), we obtain the desired estimates (2.18) and (2.19).
3. Nonlinear estimates We shall use the spaces E q , Fq , G q,θ and E q,T , Fq,T , G q,θ,T as our working spaces, which are respectively defined by p E q = C([0, ∞); B˙ 2,q ),
s
Fq = {u(x, t) ∈ S (R n ) : {2 j s p j u L αt L αx }l q < ∞}, G q,θ = {u(x, t) ∈ S (R n ) : {2 j s p j u L p¯ L q¯ }l q < ∞}, t
x
and p E q,T = C([0, T ]; B˙ 2,q ),
s
Fq,T = {u(x, t) ∈ S (R n ) : {2 j s p j u L αT L αx }l q < ∞}, G q,θ,T = {u(x, t) ∈ S (R n ) : {2 j s p j u L p¯ L q¯ }l q < ∞}, T
θ 2
x
= + and θ = 1 − Clearly 0 < θ < 1. where = Note that, for p > q ≥ 1, the following holds: 1 p¯
j ∈Z
1−θ 1 α , q¯
1
p
|a j | p
1−θ α ,
≤
n+4 np .
1 q
|a j |q
j ∈Z
Thus, G q,θ ⊆ G ∞,θ for 1 ≤ q < ∞. We claim that E∞ F∞ ⊂ G ∞,θ .
.
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
809
In fact, from 2 2 jsp j u ∈ L∞ t Lx,
2 j s p j u ∈ L αt L αx , p¯
q¯
by interpolation with parameter θ , we immediately get 2 j s p j u ∈ L t L x . Lemma 3.1. Let u ∈ G ∞,θ . Then the following inequality holds: sup 2 j (s p −s0 ) j (u p ) L β L β ∗ ≤ C sup(2 j s p j u L p¯ L q¯ ) p . x
t
j
t
j
(3.1)
x
∞ ˆ −l Proof. For every j ∈ Z , we denote ψ j (x) = F −1 (1 − l= j +1 ψ(2 ξ )) j ˆ −l ξ )), and define an operator S j : S (R) → S(R) as follows: F −1 ( l=−∞ ψ(2 S j f (x) = F −1 (ψˆ j (ξ ) fˆ(ξ )),
=
∀ f ∈ S (R).
Then, from [13,16], we know that the following identity holds: ∞
u p (x) =
l+1 (u)
l=−∞
p−1
(Sl+1 (u))k (Sl (u)) p−k−1 .
k=0
p−1 Since the support of frequencies of the function l+1 (u) k=0 (Sl+1 (u))k (Sl (u)) p−k−1 is contained in the ball |ξ | ≤ 2 p+l , we get p−1 ∞ p k p−k−1 j (u ) = j l+1 (u) (Sl+1 (u)) (Sl (u)) l= j − p
= j
k=0
l (u)(Sl (u))
+ the rest terms
p−1
l≥ j
≡ I + II.
(3.2)
Using the uniform boundedness of the operators j in L p (R) (1 ≤ p ≤ ∞) and the H¨older inequality, we have l (u)Sl (u) p−1 L β L β ∗ 2 j (s p −s0 ) I L β L β ∗ ≤ C2 j (s p −s0 ) t
x
≤ C2 j (s p −s0 )
l (u) L p¯ L q¯ Sl (u) t
l≥ j
Since Sl u =
l r=−∞
r (u)
r (u) and
β ∗ q¯ ( p−1) q−β ¯ ∗ Lx
≤ C2
β ∗ q¯ ∗ (p q−β ¯
x
t
l≥ j
p−1
x
Lt
β p¯ ( p−1) p−β ¯
β ∗ q¯ ∗ ( p−1) q−β ¯
.
(3.3)
Lx
− 1) > q, ¯ then from the Bernstein inequality ∗
¯ nr( q1¯ − β ∗q−β ) q( ¯ p−1)
r (u) L q¯ , x
we have Sl (u) Lt
β p¯ ( p−1) p−β ¯
β ∗ q¯ ( p−1) q−β ¯ ∗ Lx
≤C
l
r (u)
r=−∞
≤C
l r=−∞
Lt
β p¯ ( p−1) p−β ¯ ∗
2
¯ nr( q1¯ − β ∗q−β ) q( ¯ p−1)
β ∗ q¯ ∗ ( p−1) q−β ¯
Lx
r u L p¯ L q¯ , t
x
(3.4)
810
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
where we have used the fact that θ = 1 −
n+4 np ,
namely
β p¯ (p p−β ¯
− 1) = p. ¯ Note that
−s0 n n(q¯ − β ∗ ) + − ∗ = sp. p − 1 q¯ β q( ¯ p − 1) Therefore Sl (u) Lt
β p¯ ( p−1) p−β ¯
β ∗ q¯ ( p−1) q−β ¯ ∗ Lx
l
≤C
r
2
s0 p−1
2rs p r (u) L p¯ L q¯ t
r=−∞ l
= C2
l
= C2
s0 p−1
s0 p−1
l
−s
2
r=−∞ ∞
0 (l−r) p−1 rs p
2
r (u) L p¯ L q¯ t
s
2
x
0 ) (l−r)(− p−1
x
χ(l−r≥0) 2rs p r (u) L p¯ L q¯ , (3.5) t
r=−∞
x
where χ(l−r≥0) = 1 for l ≥ r , and χ(l−r≥0) = 0 for l < r . From (3.3) it follows that ∞ 2( j −l)(s p −s0 ) 2ls p l (u) p¯ q¯ 2 j (s p −s0 ) I L β L β ∗ ≤ C L L x
t
t
l= j
·
∞
s
2
0 ) (l−r)(− p−1
=C
p−1 χ(l−r≥0) 2rs p r (u) L p¯ L q¯
2( j −l)(s p −s0 ) χ( j −l≤0)2ls p l (u) p¯ q¯ L L
·
∞
x
t
l∈Z
x
t
r=−∞
x
s
2
0 ) (l−r)(− p−1
p−1 χ(l−r≥0) 2rs p r (u) L p¯ L q¯ t
r=−∞
p ≤ C sup 2 j s p j (u) L p¯ L q¯ , t
j
x
x
(3.6)
where χ( j −l≤0) = 1 for l ≥ j , and χ( j −l≤0) = 0 for l < j . The last inequality follows from the fact that s p > s0 and from the Young inequality. Similarly, we also have p 2 j (s p −s0 ) II L β L β ∗ ≤ C sup 2 j s p j (u) L p¯ L q¯ . t
This proves (3.1).
x
t
j
x
4. Proofs of the main results From (2.9), we see that the problem (1.1) and (1.2) is equivalent to the following integral equation: t u(x, t) = W˙ (t)u 0 (x) + W (t)u 1 (x) ± W (t − τ )u p (x, τ )dτ. (4.1) 0
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
811
For a given pair u 0 and u 1 in suitable function spaces, let S be the mapping u → Su defined by t (Su)(x, t) = W˙ (t)u 0 (x) + W (t)u 1 (x) ± W (t − τ )u p (x, τ )dτ 0
≡ uL + uNL,
(4.2)
t
where u L = W˙ (t)u 0 (x) + W (t)u 1 (x) and u N L = ± 0 W (t − τ )u p (x, τ )dτ . Then clearly a solution of (4.1) is a fixed point of the mapping S and vice versa. Thus, to prove Theorems 1.1 and 1.2, we only need to prove that the mapping S has fixed points in suitable function spaces. First we recall a lemma given by Planchon [15]: s,q Lemma 4.1. Let s > 0, E be a Banach space, q ∈ [1, ∞], and define B˙ E by the following condition: s,q iff {2 j s j f E }l q < ∞. f ∈ B˙ E j js ˆ ˙ s,q Then, if f = j f j , where f j ∈ B(0, 2 ) and {2 f j E }l q < ∞, we have f ∈ B E with appropriate norm control.
Using this lemma, we can prove the following preliminary result: Lemma 4.2. Let f k ∈ G ∞,θ for 1 ≤ k ≤ p, then the following inequality holds: p p j (s p −s0 ) sup 2 fk ≤C fk G ∞,θ . j β β∗ j 1 1
(4.3)
Lt Lx
Proof. The proof of this Lemma isessentially routine modifications of Lemma 3.1, therefore we only sketch the proof. Since f k = ∞ j =−∞ j f k , by Lemma 4.1 the key point here is to estimate p 2 j (s p −s0 ) j f k . 1 β β∗ Lt Lx
Applying the H¨older inequality and the Bernstein inequality, we have p p j (s p −s0 ) j (s p −s0 ) f ≤ 2 f j f k β p¯ ( p−1) β ∗ q¯ ( p−1) 2 j k j 1 L p¯ L qx¯ ∗ t β β∗ 1 p−β ¯ q−β ¯ 2 L L Lt Lx
t
≤ 2 j (s p −s0 ) j f1 L p¯ L q¯ x
t
= 2 j s p j f 1 L p¯ L q¯ t
x
= 2 j s p j f 1 L p¯ L q¯ t
≤C
p
x
p
p 2 p
2
q−β ¯ ∗) j ( qn¯ − βn(∗ q( ) ¯ p−1)
Lt ∗
−s
2
j fk
2 ¯ ) 0 + n − n(q−β j ( p−1 ) q¯ β ∗ q( ¯ p−1)
j f k L p¯ L q¯ t
2 j s p j f k L p¯ L q¯ t
2
fk G ∞,θ .
1
This concludes the proof of this lemma.
β p¯ ( p−1) q¯ p−β ¯ Lx
x
x
x
812
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
Similarly, we can also prove the following lemma: Lemma 4.3. Let f 1 ∈ G q,θ (1 ≤ q < ∞) and f k ∈ G ∞,θ for 2 ≤ k ≤ p. Then the following inequality holds: q q1 p p ∞ 2 j (s p−s0 ) fk ≤ f1 G q,θ fk G ∞,θ . (4.4) j β β∗ j =−∞ 1 2 Lt Lx
Proof. By similar calculations as in the proofs of Lemmas 3.1 and 4.2, we have q q1 p ∞ 2 j (s p −s0 ) j fk β β∗ j =−∞ 1
≤
∞
Lt Lx
j =−∞
≤ f 1 G q,θ
2 j s p j f 1 L p¯ L q¯ t
p
p
x
q q1 2 j s p j f k L p¯ L q¯ t
2
x
fk G ∞,θ .
2
This ends the proof of Lemma 4.3.
s ,B ˙ s−2 Lemma 4.4. Let (u 0 , u 1 ) ∈ (B2,q 2,q ν > 0 such that
H˙ −2) and s > s p . Then there exist s p < s < s and
u L Fq,T ≤ C T ν (u 0 B s + (−∆)−1 u 1 B s ). 2,q
(4.5)
2,q
s1 0 ⊂ Lα, ⊂ B˙ α,2 Proof. Since 2 < α, for any 2 < µ < α satisfying 0 < α − µ << 1 we have B˙ µ,2
where s1 = µn − αn . Let γ = γ (µ), namely γ1 = n2 ( 12 − µ1 ); (γ (µ), µ) is an admissible pair. It is clear that γ > α. Thus, from the H¨oder inequality and Lemma 2.2, we get 1 q q jsp u L Fq,T = 2 j u L L αT L αx ≤
j ∈Z
q 1 −1 2 j s p T α γ j u L L γ L α T
j ∈Z
≤C
j ∈Z
≤ CT
T
≤ CT
q
x
q q1 2
jsp
j u L L γ B˙ s1 T
1 1 α−γ
1 1 α−γ
1 1 α−γ
1
µ,2
q 2 j s p (2 j s1 j u 0 L 2 + 2 j (s1−2) j u 1 L 2 )
1
j ∈Z
q 2 j (s p +s1 ) j u 0 L 2 + 2 j (s p −2+s1 ) j u 1 L 2 j ∈Z
q
1 q
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
813
≤ C T ν (u 0 B˙ s + u 1 B˙ s −2 ), 2,q
2,q
ν
≤ C T (u 0 B s + (−∆)−1 u 1 B s ), 2,q
where ν =
−
1 α
2,q
and s = s p + s1 = s p + n( µ1 − α1 ). Hence the desired assertion holds.
1 γ
s −2
p p Lemma 4.5. Let p ∈ N, (u 0 , u 1 ) ∈ ( B˙ 2,q , B˙ 2,q ) and u ∈ G q,θ,T , 1 ≤ q < ∞. Let S be the
s
4 or n ≥ 4 and p > 1 + n8 , nonlinear operator defined by (4.2). If either n = 3 and p > 1 + n−2 then there exists a corresponding ν > 0 such that the following inequality holds:
Su L p L xp ≤ C T ν (u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). p
T
(4.6)
B2,q
2,q
Proof. Since Su = ∞ j =−∞ j Su, from the Minkowski inequality we see that (4.6) follows if we prove that p j Su L p L xp ≤ C T ν (u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). (4.7) T
j ∈Z
B2,q
2,q
We first consider the low frequency terms in the left-hand side of (4.7). Note that the pair (∞, 2) is admissible. Then, from s1 ⊂ B˙ 0p,2 ⊂ L p , B˙ 2,2
where s1 = ( n2 − np ), from Lemma 2.2 and Lemma 6.2.1 in [1], for any s2 ≥ s1 we have j u L L ∞ L xp ≤ C j u L L ∞ B˙ s1 T
T
2,2
≤ C( j W˙ (t)u 0 L ∞ B s2 + j W (t)u 1 L ∞ B s2 ) T
≤ C(2
j s2
T
2,2
j u 0L 2 + 2
j (s2 −2)
2,2
j u 1 L 2 ).
Therefore 1 1 q q q q j (s p −s2 ) j (s −s ) 2 2 p 2 j u L L ∞ B˙ s1 j u L L ∞ L xp ≤C j ∈Z
≤C
T
2
jsp
j ∈Z
T
j ∈Z
j u 0L 2 + 2
j (s p −2)
j u 1L 2
q
1 q
≤ C(u 0 B˙ s p + u 1 ˙ s p −2 ).
(4.8)
B2,q
2,q
Similarly, from Lemma 2.2 and Lemma 6.2.1 in [1] we get j u N L L ∞ L xp ≤ C j u N L L ∞ B s2 ≤ C j u p T
T
≤ C j u p ≤ C2
j (s2 −s0 )
2,2
β
2,2
s −2
L T Hβ2
β
≤ C j u p L β H s2 −s0 T
j u L β L β∗ . p
Thus, from the proof of Lemma 3.1, we have
s −2
2 L T Bβ,2
T
x
β∗
814
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
q 2 j (s p −s2 ) j u N L L ∞ L xp
1
q ≤C 2 j (s p −s0 ) j u p L β L β ∗
q
T
j ∈Z
T
j ∈Z
p−1
1 q
x
p
≤ CuG ∞,θ,T uG q,θ,T ≤ CuG q,θ,T . This, combined with (4.8) and (4.9), yields 1 q q p j (s p −s2 ) 2 j (Su) L ∞ L xp ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). T
j ∈Z
B2,q
2,q
(4.9)
(4.10)
Now let s2 = s1 + n2 . Clearly, s p − s2 = −
n n 4 − + < 0. p−1 2 p
Thus, from (4.10) and the H¨oder inequality, we have −1 j =−∞
j Su L ∞ L xp = T
−1 j =−∞
2− j (s p −s2 ) 2 j (s p −s2 ) j Su L ∞ L xp T
−1
≤
2
j (s p −s2 )
−1
×
q1
T
j =−∞
j Su L ∞ L xp
q
2
− j (s p −s2 )
q
1 q
j =−∞ p
≤ C(u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). B2,q
2,q
This implies, again from the H¨older inequality, that −1 j =−∞
1
p
j Su L p L xp ≤ C T p (u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). T
2,q
B2,q
(4.11)
Next we consider the high frequency terms in the left-hand side of (4.7). Since 4 < p<∞ for n = 3, and n−2 8 1+ < p <∞ for n > 4, n 1+
4 n 2 n n 4 n p−1 − p < min( p , 2 − p ). Take a real number a0 such that a0 ≥ 0 and p−1 − p < 2 n n 2 2n 1 n 1 1 2n a0 ≤ min( p , 2 − p ). Let l = a0 and p1 = n−2a0 . Clearly, l = 2 ( 2 − p1 ) and 2 ≤ p1 ≤ n−2 , so that (l, p1 ) is an admissible pair. Note that, by taking s1 = pn1 − np = n2 − np − a0 (> 0), we have
it follows that
B˙ sp11 ,2 ⊂ B˙ 0p,2 ⊂ L p . Thus, from Lemma 2.2 and Lemma 6.2.1 in [1], we get j u L Ll
T
p
Lx
≤ C j u L L l
T
s B˙ p1 ,2 1
≤ C(2 j s1 j u 0 L 2 + 2 j (s1−2) j u 1 L 2 ).
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
Therefore 2 j (s p −s1 ) j u L L l j ∈Z
≤C
T
j ∈Z
q
1 q
p
Lx
815
q q1
2 j (s p −s1 ) j u L L l ≤C
T
j ∈Z
2 j s p j u 0 L 2 + 2 j (s p −2) j u 1 L 2
q
s B˙ p1 ,2 1
1 q
≤ C(u 0 B˙ s p + u 1 ˙ s p −2 ).
(4.12)
B2,q
2,q
Similarly, from Lemma 2.2 and Lemma 6.2.1 in [1], we get j u N L Ll
T
p
Lx
≤ C j u N L L l
T
≤ C j u p
β
s B˙ p1 ,2
≤ C j u p
1
s −2
L T H˙ β1
s −2
β
1 L T B˙ β,2
≤ C2 j (s1−s0 ) j u p L β L β ∗ . T
x
Thus, from the proof of Lemma 3.1, we have 1 1 q q q q j (s p −s1 ) j (s −s ) p p 0 j u N L L l L xp ≤C j u L β L β∗ 2 2 T
j ∈Z
T
j ∈Z
p−1
x
p
≤ CuG ∞,θ,T uG q,θ,T ≤ CuG q,θ,T . This, combined with (4.12) and (4.13), gives 1 q q p 2 j (s p −s1 ) j (Su) L l L xp ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). T
j ∈Z
B2,q
2,q
(4.13)
(4.14)
4 Next, since l > p and s p −s1 = a0 + np − p−1 > 0, from (4.14) and the H¨oder inequality we have +∞ j =0
j Su L l
p T Lx
=
+∞ j =0
≤
2− j (s p −s1 ) 2 j (s p −s1 ) j Su L l
+∞
2
j (s p −s1 )
j =0
×
p
T
+∞
2
j Su L l
q
Lx
1 q
p T Lx
− j (s p −s1 )
q
1 q
j =0 p
≤ C(u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). B2,q
2,q
Using the H¨older inequality again we obtain +∞ j =0
j Su L p L xp ≤ C T T
( 1p − 1l )
p
(u 0 B˙ s p + u 1 ˙ s p −2 + uG q,θ,T ). 2,q
B2,q
Summing up (4.14) and (4.15), we get (4.6). This completes the proof. We are now ready to prove Theorems 1.1 and 1.2
(4.15)
816
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
sp s p −2 Proof of Theorem 1.2. (1) For a given (u 0 , u 1 ) ∈ ( B˙ 2,∞ , B˙ 2,∞ ) and a positive number a to be specified later, we define a metric space (Ya , d) as follows: ! " Ya = w ∈ E ∞ F∞ : w E∞ + w F∞ ≤ a ,
d(u, v) = u − v E∞ + u − v F∞ . It is clear that (Ya , d) is a nonempty complete metric space. Let S be the mapping defined by (4.2). We prove that, for s suitably chosen a, S maps Ya into itself, and is a contraction mapping when restricted on Ya . By localizing in frequency and using (2.18) we get ˙ (t) j u 0 + W (t) j u 1 L α L α W˙ (t) j u 0 + W (t) j u 1 L ∞ 2 + W t x t Lx ≤ C( j u 0 L 2 + 2−2 j j u 1 L 2 ). Hence jsp 2 j s p j u L L ∞ j u L L αt L αx ≤ C(2 j s p j u 0 L 2 + 2 j (s p −2) j u 1 L 2 ). 2 +2 t Lx
It follows that u L E∞ + u L F∞ ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 ).
(4.16)
B2,∞
2,∞
Similarly, by localizing in frequency and using (2.19) and Lemma 6.2.1 in [1] we get t t j j w(t − τ ) f (x, τ )dτ + w(t − τ ) f (x, τ )dτ ∞ 2 α α 0
≤ C2
−s0 j
0
Lt Lx
Lt Lx
j ( f (x, t)) L β L β ∗ . t
(4.17)
x
Hence jsp 2 j s p j u N L L ∞ j u N L L αt L αx ≤ C2 j (s p −s0 ) j (u p ) L β L β ∗ . 2 +2 t Lx t
x
It follows, from Lemma 3.1, that u N L E∞ + u N L F∞ ≤ C sup 2 j (s p −s0 ) j (u p ) L β L β ∗ ≤
p CuG ∞,θ
≤
j p Cu F∞ E∞
t
≤ Ca
p
for u ∈
x
YaT .
(4.18)
Combing (4.16) and (4.18) we see that, for any u ∈ Ya , Su E∞ + Su F∞ ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 ) + Ca p ≤ C(δ + a p ). 2,∞
(4.19)
B2,∞
−
p
We now take an a > 0 sufficiently small such that Ca p−1 ≤ 14 , and δ ≤ (4C) p−1 . Then we get Su E∞ + Su F∞ ≤ a. Hence S maps Y a into itself. Next we prove that S is a contraction mapping when restricted on Ya . Let u i ∈ YTa , i = 1, 2. From Lemma 4.2 we have Su 1 − Su 2 E∞ + Su 1 − Su 2 F∞ ≤ C2 j (s p −s0 ) j (u 1 − u 2 ) L β L β ∗ t x p−1 p−k−1 = C2 j (s p −s0 ) j (u 1 − u 2 ) u k1 u 2 k=0 p
p
β
β∗
Lt Lx
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824 p−1
817
p−1
≤ C(u 1 G ∞,θ + u 2 G ∞,θ )u 1 − u 2 G ∞,θ ≤
1 (u 1 − u 2 E∞ + u 1 − u 2 F∞ ), 2
and the desired assertion follows. From the Banach fixed point theorem, the assertion (1) immediately follows. sp s p −2 (2) For a given (u 0 , u 1 ) ∈ ( B˙ 2,q , B˙ 2,q ), and the constant C in (4.19), we define a metric space (Y, d) as follows: # Y = w ∈ Eq Fq : w Eq + w Fq ≤ 2C(u 0 B˙ s p + u 1 ˙ s p −2 ), B2,q 2,q $ − 1 w E∞ + u − v F∞ ≤ (4C) p−1 , d(u, v) = u − v Eq + u − v Fq . From Theorem 1.2 (1) we see that Su E∞ + Su F∞ ≤ (4C)
1 − p−1
u E∞ + u F∞ ≤ (4C)
if
1 − p−1
.
Similarly as in the proofs of inequalities (4.16) and (4.18), we have u L Eq + u L Fq ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 ), 2,q
(4.20)
B2,q
p−1
u N L Eq + u N L Fq ≤ CuG ∞,θ uG q,θ .
(4.21)
Combining (4.20) and (4.21), we obtain p−1
Su Eq + Su Fq ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 + uG ∞,θ uG q,θ ). 2,q
(4.22)
B2,q
From Theorem 1.2(1) we see that, for any u ∈ Y , Su Eq + Su Fq ≤ 2C(u 0 B˙ s p + u 1 ˙ s p −2 ). 2,q
B2,q
Hence S maps Y into itself. Moreover, for u i ∈ Y (i = 1, 2), Lemma 4.3 shows that 1 ∞ q q p p 2 j (s p−s0 ) j (u 1 − u 2 ) L β L β ∗ Su 1 − Su 2 Eq + Su 1 − Su 2 Fq ≤ C t
j =−∞
p−1 ∞ p−k−1 2 j (s p −s0 ) j (u 1 − u 2 ) =C u k1 u 2 j =−∞ k=0 p−1
β
x
q q1 β∗
Lt Lx
p−1
≤ C(u 1 G ∞,θ + u 2 G ∞,θ )u 1 − u 2 G q,θ ≤
1 (u 1 − u 2 Eq + u 1 − u 2 Fq ). 2
Thus S is a contraction mapping on Y , and the second assertion of Theorem 1.2 is proved. The third assertion of Theorem 1.2 will be proved later.
818
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
Proof of Theorem 1.1. (1) We replace the time interval [0, ∞) by [0, T ] in all estimates. Since u L Eq,T + u L Fq,T ≤ C(u 0 B˙ s p + u 1 ˙ s p −2 , ) B2,q
2,q
we have, for ( p1 , q1 ) = (∞, 2) and ( p2 , q2 ) = (α, α), 1 ∞ q q 2 j s p j u L L pi L qi < +∞, i = 1, 2. x
T
j =−∞
This implies that there exists jn ∈ N such that, for | j | ≥ jn , 1 q q 1 jsp 2 j u L L pi L qi < δ, T x 2 | j |≥ j
(4.23)
n
where δ is a constant that can be small enough. For this jn we have 1 q q jsp 2 j u L L pi L qi lim = 0. T →0
x
T
| j |< jn
Therefore, there exists T0 > 0 such that, for 0 < T < T0 , 1 q q 1 jsp 2 j u L L pi L qi < δ. T x 2 | j |< j
(4.24)
(4.25)
n
From this inequality and (4.23) and (4.25) we get, for 0 < T < T0 , u L Eq,T + u L Fq,T < δ. Now define a metric space (YaT , d) as follows: ! " YaT = w ∈ E q,T Fq,T : w Eq,T + w Fq,T < a , d(u, v) = u − v Eq,T + u − v Fq,T . Then, by using a similar argument to that used in the proof of Theorem 1.2(1), we get the result of Theorem 1.1(1). (2) If u 0 = u 1 = 0, then it is clear that u = 0 is a solution of (4.1). In what follows we assume that |u 0 | + |u 1 | = 0. For two positive numbers a, T to be specified later, we redefine the metric space (YTa , d) as follows: ! p p s YTa LT Lx : = w ∈ C([0, T ]; B2,q ) Fq,T " s + wG s w Fq,T + wG q,θ,T + w L p L xp + λ(w L ∞ ) < a , B T 2,q q,θ,T T
d(u, v) = u − v Fq,T + u − vG q,θ,T + u − v L p L xp T
s + u − vG s + λ(u − v L ∞ ), q,θ,T T B2,q
where λ =
W (t )u 0 +W (t )u 1 Fq,T
u 0 B s +D −2 u 1 B s 2,q
, and
2,q
wG sq,θ,T = {2 j s j u L p¯ L q¯ }l q T
x
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
with
1 p¯
=
=
1−θ 1 α , q¯
θ 2
+
1−θ α ,
and θ = 1 −
n+4 np .
819
u 0 ˙ s +u 1 ˙ s −2
Let s and ν be as in Lemma 4.4. Then λ ≤ C T ν u
B 2,q
0 B s +D 2,q
B 2,q
−2 u
1 Bs 2,q
. We shall prove that, for
suitably chosen a and T , S maps YTa into itself and is a contraction mapping. We first assume that 0 < T ≤ 1. First, from Corollary 2.3, Lemma 4.4 and the proof of Lemma 3.1 we see that, for any u ∈ YTa s−2 s and (u 0 , u 1 ) ∈ (B2,q , B2,q ), there hold −1 {2 j s p j u L L ∞ u 1 B s ), 2 }l q ≤ C(u 0 s + (−∆) B t Lx 2,q
2,q
u L Fq,T ≤ C T ν (u 0 B s + (−∆)−1 u 1 B s ), 2,q
2,q
p
{2 j s p j u N L L ∞ , 2 }l q ≤ Cu G q,θ,T t Lx p
u N L Fq,T ≤ CuG q,θ,T . Thus, by complex interpolation with θ , we get u L G q,θ,T ≤ C T (1−θ)ν (u 0 B s + (−∆)−1 u 1 B s ), 2,q
u N L G q,θ,T ≤
2,q
p CuG q,θ,T .
It follows that Su Fq,T + SuG q,θ,T ≤ C(T (1−θ)ν (u 0 B s + (−∆)−1 u 1 B s ) + a p ) for u ∈ YTa . 2,q
2,q
(4.26) s , it is clear that Secondly, from the definition of the Besov space B2,q s ≤ S0 (Su) L ∞ L 2x + Su L ∞ B˙ s Su L ∞ T B2,q T
T
2,q
≤ S0 (u L ) L ∞ L 2x + S0 (u N L ) L ∞ L 2x + u L L ∞ B˙ s + u N L L ∞ B˙ 2,q . T
T
T
2,q
T
Since S0 (u L ) L ∞ L 2x T
S0 (u N L ) L ∞ L 2x T
≤ C(S0 (u 0 ) L 2 + S0 (u 1 ) H˙ −2 ) ≤ C(u 0 L 2 + u 1 H˙ −2 ), t p = W (t − τ )u (τ )dτ S 0 L ∞ L 2x
0
T t p ≤ sup W (t − τ )(S0 (u (τ ))dτ ) t ∈[0,T ]
0
L 2x
t ≤ sup
t ∈[0,T ]
(G 1 (·, t − τ ) ∗ ψ0 ) ∗ (u p (τ )) L 2 dτ 0
t ≤ sup
t ∈[0,T ]
(G 1 (·, t − τ ) ∗ ψ0 ) L 2 (u p (τ )) L 1 dτ 0 p
≤ C(T + 1)u L p L p , T
x
820
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
we have p
S0 (Su) L ∞ L 2x ≤ C(u 0 L 2 + u 1 H˙ −2 + (T + 1)u L p L p ). T
T
(4.27)
x
Using Corollary 2.3, and following the proof of Lemma 3.1, we deduce that u L L ∞ B˙ s T
= sup
2,q
t ∈[0,T ]
≤ ≤
q 2 j s j u L L 2
1 q
j ∈Z
q 2 j s (W˙ (t) j u 0 L 2 + W (t) j u 1 L 2 ) j ∈Z
q 2 j s j u 0 L 2 + 2 j (s−2) j u 1 L 2
1 q
1 q
j ∈Z
≤ C(u 0 B˙ s + u 1 B˙ s−2 ), u N L L ∞ B˙ s = sup T
2,q
t ∈[0,T ]
2,q
2,q
q 2 j s j u N L L 2
1 q
j ∈Z
q 2 j (s−s0) j (u p ) L β L β ∗ ≤C t
j ∈Z
1 q
x
p−1
≤ CuG sq,θ,T uG ∞,θ,T . Thus Su L ∞ B˙ s ≤ T
2,q
j ∈Z
1 q
(2 j Su L ∞ L 2x ) js
q
T
p−1
≤ C(u 0 B˙ s + u 1 B˙ s−2 + uG sq,θ,T uG ∞,θ,T ). 2,q
We now estimate
%
(4.28)
2,q
q & q1 j s Su α α 2 . From Corollary 2.3, we see that L L j j ∈Z T x
q 2 j s j u L L αT L αx
1
q ≤ 2 j s j u 0 L 2 + 2 j (s−2) j u 1 L 2
q
j ∈Z
j ∈Z
≤ C(u 0 B˙ s + u 1 B˙ s−2 ),
j ∈Z
2 j s j u N L L αT L αx
q
1 q
2,q
2,q
q 2 j (s−s0) j (u p ) L β L β ∗ ≤C t
j ∈Z
p−1
≤ CuG sq,θ,T uG ∞,θ,T .
x
1 q
1 q
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
821
Therefore, 1 q q p−1 js 2 j Su L αT L αx ≤ C(u 0 B˙ s + u 1 B˙ s−2 + uG sq,θ,T uG ∞,θ,T ). (4.29) 2,q
j ∈Z
2,q
By complex interpolation, from (4.28) and (4.29) we obtain p−1
SuG sq,θ,T ≤ C(u 0 B˙ s + u 1 B˙ s−2 + uG sq,θ,T uG ∞,θ,T ) 2,q
2,q
−1 p s + (−∆) s +a ) ≤ C(u 0 B2,q u 1 B2,q
Hence, using the fact that λ ≤
CT ν
u 0 ˙ s +u 1 ˙ s −2 B 2,q
B 2,q
u 0 B s +D −2 u 1 B s 2,q
≤ 1), we obtain
for u ∈ YTa .
(4.30)
and, particularly, λ ≤ C (for 0 < T
2,q
−1 p s + SuG s s + (−∆) s ) + λa ) ) ≤ C(λ(u 0 B2,q u 1 B2,q λ(Su L ∞ T B2,q q,θ,T
≤ C(T ν (u 0 B s + (−∆)−1 u 1 B s ) + a p ). 2,q
(4.31)
2,q
Finally, from Lemma 4.5 we have, for u ∈ YTa and T ∈ (0, 1] Su L p L xp ≤ C(T ν (u 0 B s + (−∆)−1 u 1 B s ) + a p ). T
2,q
(4.32)
2,q
Combining (4.26), (4.31) and (4.32), we obtain SuYTa ≤ C(T ν (u 0 B s + u 1 B s −2 ) + a p ), 2,q
for u ∈ YTa .
2,q
We now take a > 0 sufficiently small such that Ca k ≤ 14 , and then take T > 0 sufficiently small a a a such that T ν ≤ 4C(u +D −2 u ) . Then we have SuYT ≤ a for u ∈ YT . Hence, S maps 0
YTa
Bs 2,q
1
Bs 2,q
into itself. Next, for u 1 , u 2 ∈ YTa , using Lemma 4.3 and a similar argument as before, we can easily deduce that, by taking T = T (u 0 B s + (−∆)−1 u 1 B s ) smaller as necessary, we have 2,q
2,q
Su 1 − Su 2 Fq,T + Su 1 − Su 2 G q,θ,T ≤
p−1 C(u 1 G q,θ,T
p−1
+ u 2 G q,θ,T )u 1 − u 2 G q,θ,T , p−1
p−1
T
T
s + Su 1 − Su 2 G s λ(Su 1 − Su 2 L ∞ ) ≤ C(u 1 Y a + u 2 Y a )u 1 − u 2 YTa , T B2,q q,θ,T
Su 1 − Su 2 L p L xp ≤ T
p−1 C(u 1 G q,θ,T
p−1 + u 2 G q,θ,T )u 1
− u 2 G q,θ,T .
Summing the above inequalities and using the fact that Ca p−1 ≤ 14 , we get 1 u 1 − u 2 YTa . 2 Thus S is a contraction mapping on YTa , and the assertion (2) follows. The proof of Theorem 1.1 is complete. p−1
p−1
T
T
Su 1 − Su 2 YTa ≤ C(u 1 Y a + u 2 Y a )u 1 − u 2 YTa ≤
We now prove Theorem 1.2 (3). From Theorem 1.1 (2) we know that there exists a unique s ), where T = T (u + u ). Hence, to prove local solution u ∈ C([0, T ]; B2,q 0 Bs 1 B s −2 2,q
2,q
assertion (3) of Theorem 1.2, we only need to prove that, for any given T > 0, this solution u can be extended to the time interval [0, T ]. Following line by line the proof of the nonlinear
822
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
estimate established in Lemma 3.1, we can deduce that, for any µ ∈ [0, s] and T > 0, there holds u L ∞ B˙ µ + uG µ T
2,q
q,θ,T
p−1
≤ C(u 0 B˙ µ + u 1 B˙ µ−2 + uG∞,θ uG µ 2,q
q,θ,T
2,q
).
From the proof of Theorem 1.2 (1) we see that, if u 0 B˙ s p + u 1 ˙ s p −2 < δ, then 2,∞
B2,∞
uG ∞,θ < (4C)−1 . p−1
Thus we have u L ∞ B˙ µ + uG µ 2,q
T
q,θ,T
−1 s + (−∆) s ). ≤ 2C(u 0 B˙ µ + u 1 B˙ µ−2 ) ≤ 2C(u 0 B2,q u 1 B2,q 2,q
2,q
Taking µ = 0 and µ = s, respectively, and then summing the results, we obtain −1 s s + (−∆) s ). u L ∞ ≤ 2C(u 0 B2,q u 1 B2,q T B2,q s This proves that u can be extended to all time intervals [0, +∞), and u ∈ L ∞ ([0, +∞); B2,q ). This proves assertion (3) of Theorem 1.2.
Proof of Theorem 1.3. From the proofs of (3.1) and Theorem 1.2, we see that 1 ∞ q q p−1 2 j (s p −s0 ) j (u p ) L β L β ∗ ≤ CuG ∞,θ uG q,θ < +∞. j =−∞
t
x
Thus there exists jn ∈ N such that, for | j | ≥ jn , 1 q q 1 2 j (s p −s0 ) j (u p ) L β L β ∗ < , t x n | j |≥ j
(4.33)
n
and there exists an increasing sequence of time {Tn } for which q q1 1 j (s p −s0 ) p 2 j (u ) L β < . β∗ n [Tn ,∞) L x | j |< j
(4.34)
n
Let u L ,n be the solution of the free beam equation with the same data as u at t = Tn . Then u − u L ,n has zero data at T = Tn and satisfies ∂t2 (u − u L ,n ) + 2 (u − u L ,n ) = ±u p ,
t > Tn .
Hence (4.17), (4.33) and (4.34) give 1 ∞ q q jsp 2 j (u − u L ,n ) L 2x
j =−∞
q q1
β∗ [Tn ,∞) L x
1
(4.35)
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
823
Next, notice that for m > n, since u(Tm ) = u L ,m (Tm ), we have 1 ∂t (u L ,m (Tm ) − u L ,n (Tm )) ˙ s p −2 < C , B2,q n 1 u L ,m (Tm ) − u L ,n (Tm ) B˙ s p < C . 2,q n From the equality
(4.36) (4.37)
j v(·, t)2H˙ 2 + j ∂t v(·, t)2L 2 = j f 2H˙ 2 + j g2L 2 , x
x
where v(x, t) is the solution of the free beam equation with initial data v(x, 0) = f (x), vt (x, 0) = g(x), and (4.36) and (4.37), we have 1 u L ,m (0) − u L ,n (0) B˙ s p + ∂t (u L ,m (0) − u L ,n (0)) ˙ s p −2 < C . B2,q 2,q n sp s p −2 + Thus {(u L ,n (0), ∂t u L ,n (0))} is a Cauchy sequence in B˙ 2,q × B˙ 2,q . If we let (u + 0 , u 1 ) be the limit, then from (4.35) we conclude that s lim u(t) − u + L (t) B˙ p = 0.
t →+∞
2,q
u+ L (t)
+ is the solution of the free beam equation with initial data (u + The assertion that 0 , u 1 ) is immediate. This proves Theorem 1.3.
Acknowledgement This work is supported by the China National Natural Science Foundation under the grant number 10471157. References [1] J. Bergh, J. L¨ofstr¨om, Interpolation Spaces. An Introduction, in: Grundlehern Math. Wiss., No.223, Springer-Verlag, Berlin, 1976. [2] G. Chen, Z. Yang, Existence and non-existence of global solutions for a class of nonlinear wave equations, Math. Methods Appl. Sci. 23 (2000) 615–631. [3] T. Cazenave, Semilinear Schr¨odinger Equations, Amer. Math. Soc., Providence, 2003. [4] C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. pure Appl. Math. 46 (1993) 527–620. [5] C.E. Kenig, G. Ponce, L. Vega, Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122 (1994) 157–166. [6] C.E. Kenig, G. Ponce, L. Vega, Quadratic forms for the 1-D semilinear Schr¨odinger equation, Trans. Amer. Math. Soc. 348 (8) (1996) 3323–3353. [7] C.E. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (3) (2001) 617–633. [8] M. Keel, C.D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (2) (1995) 357–426. [9] J. Liu, Free vibrations for an asymmetric beam equation, Nonlinear Anal. 51 (2002) 487–497. [10] J. Liu, Free vibrations for an asymmetric beam equation II, Nonlinear Anal. 56 (2004) 415–432. [11] S.P. Levandosky, Decay estimates for fourth order wave equations, J. Differential Equations. 143 (1998) 360–413. [12] J. Marsden, Lecture on geometric methods in mathematical physics, in: CBMS, vol. 37, SIAM, Philadelphia, 1981. [13] L. Molinet, F. Ribaud, On the Cauchy problem for the generalized Korteweg-de Vries equation, Comm. Partial Differential Equations 28 (2003) 2065–2091. [14] L. Molinet, F. Ribaud, Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl. 83 (2004) 277–311.
824
A. Guo, S. Cui / Nonlinear Analysis 65 (2006) 802–824
[15] F. Planchon, Self-similar solutions and semi-linear wave equations in Besov spaces, J. Math. Pures Appl. 79 (2000) 809–820. [16] F. Planchon, Dispersive estimates and the 2D cubic Schr¨odinger equation, J. Anal. Math. 86 (2002) 319–334. [17] H.F. Smith, C.D. Sogge, Global Strichartz estimates for nontrapping perturbations of Laplacian, Comm. Partial Differential Equations 25 (2000) 2171–2183. [18] R. Szilard, Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs, NJ, 1974. [19] T. Tao, Low regularity semi-linear wave equations, Comm. Partial Differential Equations 24 (3–4) (1999) 599–629. [20] B. Wang, Nonlinear scattering theory for a class of wave equations in H s , J. Math. Anal. Appl. 296 (2004) 74–96.