Solvent extraction of gold

Solvent extraction of gold

Tdantu. Vol. 13. pp. 535-540 PergamonPress, 1976.Printedm Great Bntain SOLVENT EXTRACTION OF GOLD N. R. DAS and S. N. BHATTACHARYYA Nuclear Chemi...

573KB Sizes 15 Downloads 303 Views

Tdantu.

Vol. 13. pp. 535-540 PergamonPress, 1976.Printedm Great Bntain

SOLVENT

EXTRACTION

OF GOLD

N. R. DAS and S. N. BHATTACHARYYA Nuclear Chemistry Division, Saha Institute of Nuclear Physics, 92. Acharya Prafulla Chandra Road. Calcutta-700009, India (Rrceiurd

Summary-The

Liquid-liquid combines

to concentrate segregate complex

extraction,

in favourable

a high degree of selectivity minute

the minor mixtures.

amounts

from

I5 May 1915. Accepted

It is sometimes

1976)

separation of gold by solvent extraction

circumstances, and

constituents possible

is reviewed.

extraction is particularly well suited for the purification of radioisotopes. This review will be confined to the liquid-liquid extraction of gold, of which no comprehensive recent survey is available. though Beamish et al. earlier made a general review of the methods of separation and calorimetric determination of gold.23 Studies on the solvent extraction of gold as its chloride complex were first reported by Lenher and Kao’ in 1926. They examined the extraction of gold into various esters, especially ethyl acetate. By this method gold can easily be separated from other elements, e.g., Na, K, Mg, Ba, Fe, Al, Sr, Ca, Cr. Mn, Co, Ni, Zn, Hg, Cu. Cd, Pd, Bi, Sb, As, and Sn.. Use of ethyl acetate as an extractant for gold from hydrochloric acid medium was studied by several other workers, who separated it from irradiated copper,24 platinum,25 refined silver,*‘j fission products,*’ irradiated biological materials,*’ rocks, minerals,2g,30 sulphide ores, meteorites,31 petrochemicals3 * and seawater.33 Ethyl acetate is, however, seldom used nowadays, because of its solubility in water. Ether also finds application as a good extractant for gold.34.35 It is particularly useful in extracting gold from nitric acid solution; the distribution coefficient is dependent on the acid concentration. The effects of temperature and salting-out agents have been studied and the complex HAu(NO,), has been postulated.36s37 Methyl isobutyl ketone (MIBK) has been found to be very useful in extracting gold from waste cyanide solution.38 Here Au(I) is initially oxidized to Au(II1) by permanganate in hydrochloric acid medium. The method is, however, not free from interferences. Along with gold. Cr(VI), Mo(VI), Ga(III), As(V), Sb(V), Sn(IV), Se(IV), Te(IV) and Ge(IV) are also partially extracted. The extraction of Au(II1) by MIBK at different hydrochloric acid concentrations has been studied.3ym43 The distribution of the gold depends on the concentrations of both the gold and the hydrochloric acid, without a definite dependence on either alone. If an excess of hydrobromic acid is present, MIBK is very efficient.44 Maeck et a1.45 examined the extraction of Au(II1) as a quaternary ammonium salt (tetrapropylammonium) from ayrru regia medium into MIBK. A coloured complex is formed and is the

with the ability

of material

the major

26 Jamary

to of

to find

conditions

such that a particular constituent of a mixture is removed exclusively and essentially quantitatively in a single extraction. Also it is easier than precipitation for handling large samples. The extracted metal ion is usually incorporated in a neutral chelate molecule or an ion-association complex. Ion-association systems may be of different types, but that in which the solvent plays a specific role is particularly important. The metal ion forms an anionic complex with anions such as chloride or nitrate, which then “associates” with a protonated oxygen-containing organic solvent such as an ether. The classic example of such a system is the extraction of iron from 6M hydrochloric acid with ether, where the complex HFeCl,(C2HJ20 is formed.’ A similar type of behaviour is also observed for gold.2,3 The formation of an extractable species by a suitable solvent would therefore depend on the efficiency of formation of such ion-association systems. The strength of the solute-solvent interaction will determine the extraction efficiency of the solvent used, or rather the distribution coefficient of the solute. It would be of great value to an analytical chemist to know beforehand the order of distribution coefficients of different solutes in various solvents. Some generalizations have been made by Morrison and Freiser.4 In a homologous series, the lower members are more efficient solvents than the higher ones.5*6 A knowledge of the dissociation constant of the solvent complex in the organic phase is important since this may also affect the distribution coefficient.h-2’ Further, the two phases must separate quickly and efficiently, and this is dependent on several factors. Thus quick separation of phases is ensured by a larger interfacial tension** between them, low viscosity of the organic phase, high density difference between the two solvents, and low solubility of the organic solvent in the aqueous phase. Radiochemical, calorimetric and various spectrometric methods (such as atomic absorption and flame emission) complement solvent extraction since the organic phase may be analysed directly. Solvent 535

536

N. R. DAS and S. N. BHATTACHARYYA

basis of a spectrophotometric determination. A complete recovery of Au(III) directly from aquu reyitr (diluted) medium with MIBK was reported4’ recently. the only interferences being due to the partial extraction of Ag. As and Sb. Tributyl phosphate (TBP) in xylene, chloroform or iso-octane, and trioctylphosphine oxide (TOPO) in chloroform also find wide application” in the extraction of gold. The species that is extracted is supposed to be of the form [H30+.3R,P0.yH,0][AuXi], where R is the butoxy or octyl group and X is chlorine or bromine. A solution of 50?, TBP in toluene was found48 to extract gold quantitatively from 3M hydrochloric acid containing lithium chloride as salting-out agent. The great potentiality of alkylphosphine oxides as analytical extractants has been utilized4Y in extracting Au(I) with tri-n-octylphosphine oxide or 2-ethyl-n-hexylphosphine oxide in cyclohexane. at different hydrochloric acid concentrations. The extraction of gold(l) cyanide into organic solvents’” containing tertiary amines has been studied. to occur in the organic phase Au(I) is reported”‘,” as HAUL, which is solvated with one molecule of tertiary amine. The extraction is dependent on the pH of the aqueous phase. The extraction of Au(I) cyanide by a series of quaternary ammonium salts has also been examined”3.‘4 and a trioctylmethyl ammonium salt was observed to be the most effective extractant. Groenewald5’ described a very sensitive method for extraction of gold from its cyanide solution into a di-isobutyl ketone solution of trioctylamine (TOA) or trioctylmethylammonium chloride (TOMA). Ca and Mg (2 x IO-“h!) and Cu, Fe, Zn and Mn (2 x 10-3- 5 x IO-‘M) do not interfere. The solvent n-butyl acetate containing trioctylamine has also been founds’ suitable for the extraction of Au(I) cyanide directly. The aqueous phase has to be adjusted to pH 4 to ensure quantitative extraction. A highly selective method for the extraction of Au(II1) from sulphuric acid into a chloroform solution of trioctylamine (TOA) has been described by Adam and PIibil.” Murphy and Affsprung5’ observed that a gold chloride complex forms a precipitate with tetraphenylarsonium chloride, which can be extracted with chloroform. The extracted species is supposed to be the ion-pair [(C,H,), As’][AuCI,]. Interference due to iron is suppressed by means of fluoride and none of the platinum metals interferes when present in concentration one tenth that of the gold. The same reagent has been recommended ” for the substoichiometric determination of gold after neutron activation. The presence of Sb, Te and nitrate, however. hindered the extraction. By using tetraphenylarsonium chloride Alimarin and Perezhogin”’ determined traces of gold in Pb, Bi, Cu and Zn. No interference was observed even when the primary base metals or osmium were present to the extent of - 1 g. The authors were able to determine 5 x IO- ” g of gold with an error of

about _+5;6 by using the substoichiometric principle in neutron-activation analysis. In a study by Rakovskii et aL6’~“* the large organic tetraphenylguadinium cation (TPG) was used for substoichiometric extraction of gold as [Au(SCN),][TPG+] into chloroform. but it was observed that the presence of Pd hindered the separation of the phases. No such problem occurred in the substoichiometric extraction of AuCl, with TPG in I ,2-dichloroethane. A solution of tetrabutylammonium perchlorate in chloroform can be used as an ion-association extractant for tetrachloroaurate(II1). Bravo and Iwamotoh3 showed that the distribution coefficient can be increased to 3 x lo3 by variation of the 11Bu4N+ICC10~1),,,~[C10~l.,,, ratio. The reagent p-dimethylaminobenzylidenerhodanine in isoamyl acetate was found to be a selective extractant for gold from hydrochloric acid medium by Cotton and Woolf.64 Poluektov,6’ however, preferred to use the reagent in benzene-chloroform medium for separation of gold in presence of a few drops of 1M nitric acid. A method of determination of gold with Cu, Zn or Hg-diethyldithiocarbamate (DDC) in acid medium by means of radiometric titration, using tetrachloromethane as the solvent has been described.“.” End-points corresponding to molar Au:DDC ratios of 1: I and 1:2 were observed on the titration curve of gold(II1) when DDC was used as the titrant. The compounds formed successively are [CI?Au(DDC)] and [Au(DDC),]+Cll. The first compound is completely extracted into trichloromethane or benzene and the extractibility of the second compound increases with increasing solvent polarity. Gold(I) forms only one compound with DDC, AuDDC. For determination of gold present as impurity in beryllium metal, Negina and Zamyatninah8 used the reagent in chloroform. Eugene’” also used Cu- DDC solution for substoichiometric separation of gold isotopes from irradiated meteorites. Selective extraction of gold with a solution of 0.01~-1121 dibutyl sulphide from hydrochloric acid medium has also been reported.‘“.” Either chloroform or benzene may be used as the diluent. Block rt ~1.‘~ also studied the distribution of many metal bromides, including that of gold, at various hydrobromic acid concentrations. The percentage of gold extracted into the organic solvent varies from 99.5% to 99.9% in the hydrobromic acid concentration range ll3M. The extraction properties of a number of elements with dibutyl phosphorothioic acid was studied by Handley.73,74 The relative order of extraction was found to be Pd(II) z Au(II1) > Cu(I) > Hg(I1) > Ag(1) > Cu(I1) > Bi(II1) > Pb(I1) > Cd(I1) > Ni(I1) > Zn(I1). The various systems referred to above are summarized in Table I.

Solvent Table Aqueous

phase

Organic

extraction I. Extraction

phase

2-7M HCl 2M HCl 8M HCl HCI HBr HI 8M HNOs Aqua rrgia HCl 7-7.5M HCl HI IM HCl HCI HCl

Diethyl ether Diethyl ether Diethyl ether Diethyl ether Diethyl ether Diethyl ether Diethyl ether Diethyl ether Isopropyl ether Di-isopropyl ether Methyl isopropyl ether Ethyl acetate Ethyl acetate Ethyl acetate

226M HCI, HN03

Ethyl Ethyl Ethyl Ethyl Ethyl Ethyl

3M HCI H$O,-KI HCI &8M HCI

HCl, HNO,, Ph,iso-PrPCl, HCI 4% HCI HCI Aqua rvgia HCI 0.5-8M HCl HBr 3M HCl

HNO, 7M HCI HCl H$O, H,SO, HISO, O.IM HCl HCI. HBr

0.01 M HCl HCI 0.01 M HCI 5.3M HCl HSCN 0. I -6M HCl 0.551 M HCI HCI

KClO,-KI NaCNS

acetate acetate acetate acetate acetate acetate

Isoamyl acetate Toluene Aliphatic esters Benzene. carbon tetrachloride, n-heptane, chlorobenzene, o-dichlorobenzene, nitrobenzene Carbon tetrachloride Benzene or toluene Butyl acetate Ether or ethyl acetate Isoamyl alcohol Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Methyl-isobutyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, butyl acetate. ethyl acetate Dibenzyl sulphoxide Tribenzylamine (TBA) Di-n-octyl sulphide Dithizone/chloroform Dithizone/chloroform Dithizonejchloroform Dithizone/chloroform Tributyl phosphate/xylene/ carbon tetrachloride/ iso-octane Trioctylphosphine oxide (TOPO)/chloroform Tetrabutylammonium perchlorate/chloroform Tetraphenylarsonium chloride/chloroform Tetraphenylarsonium chloride/benzene Tetraphenylguanidium salt (TPG)/I.2-dichloroethane Tetraphenylguanidium salt (TPG)/chloroform Dibutyl sulphide/chloroform. benzene Dibutyl sulphide/benzene Crystal Violet or Methyl Violet/benzene or toluene

531

of gold systems Sample

References

studied

Rocks, meteorites Quartz Impurities Platinum metals, mercury Aluminium

Platinum Silicon Palladium. platinum Copper Igneous rocks. meteorites and sulphide ores Iridium, platinum Sea-water Marine organisms Biological materials Lead Associated fission products Mercury

Cyanide

lead

waste

93 100 5 75

98 123 80 III 108. 109. 112 110, 113 141 47

Bismuth Ores Low grade

105

27

92 133 135 140 136 46 116-121 39.-4 I 44 38

Silicon Gold alloys Ores Platinum, Ore Ore

1277131 34 81 3. 7. 8. 82 35 xx 36, 37 25 95. 97 94 107 132 24 29-31, 83, 85.-87, 102, 103. 124 84 33 104 2x

ores

63 Platinum

metals,

iron, etc.

58-60, 76

Natural

specimens

61. 62 79 70

Rock samples

71 134

122

538

N. R. DAS and S. N. BHATTACHARYYA Table

Aqueous

phase

HCI HCI HCI H,S04,

HCI

IM HISO,. 0.1M HCIOl

Aqua rrgia

I -7M HCI

PH 4 Aqua regiu 0.12M HCI 0.1M HNO, HBr 6M HCI HCI PH 6 3M HCl HCI HCI

HCl HCN HCI HBr

8M HN03 H,SOh

Organic

l-continued

phase

Sample

Phenyl-r-pyridyl ketoxime/ chloroform Diethyldithiocarbamate/ chloroform Diethyldithiocarbamate/ chloroform Diethyldithiocarbamate/ chloroform Cu. Zn or Hg--diethyl dithiocarbamate/ chloroform or benzene Cupdiethyldithiocarbamate Trioctylamine (TOA) or trioctylmethylammonium chloride (TOMA)/di-isobutyl ketone 2-Ethyl-n-hexylphosphine oxide or tri-n-octyl phosphine oxide/cyclohexane Trioctylamine (TOA)/n-butyl acetate Tetrapropylammonium/methyl isobutyl ketone p-Dimethylaminebenzylidenerhodanine/isoamyl acetate p-Dimethylaminebenzylidenerhodaninefienzene-chloroform Polyoxyethylene glycol/ dichloromethane Polyoxyethylene glycol/ dichloromethane Dibutyl carbitol(diethylene glycol dibutyi ether. butex) Phenylacetic acid (PAA)/chloroform Ethyl acetate Tri-n-butyl phosphate (TBP) Tri-n-octyl phosphine oxide/toluene Mesityl oxide (4-methyl-3penten-2-one) Primene JM-T/xylene Bis( I -isobutyl-3,5-dimethylhexyl)a&ne/kerosene 8.Mercaptoquinoline/chloroform, benzene. (‘I(‘. Iron(II~I,IO-phenanthroline/chloroform Mercaptans, RSH (R = Bu, dodecyl and tert.-dodecyl) O,O,S-Triethyl thiophosphate Tributyl phosphate/carbon tetrachloride Petroleum sulphoxides/C,-C8 alcohols

REFERENCES I. G. R. Hertel and H. M. Clark.

J. Phys. Chew.,

1961,

65. 1930. 2. J. Axelrod and E. H. Swift, J. Am Chrm. Sot, 1940, 62. 33. 3. E. Mylius and C. Huttner. Brr., 1911, 44. 1315. 4. G. H. Morrison and H. Freiser. .Solve~~t Eztractioti i/l Analytical Chemistry% p. 19. Wiley, New York, 1957. 5. V. Lenher and C. H. Kao, .I. PIIJJS. Chem.. 1926, 30. 126. 6. H. Irving. F. J. C. Rossotti and J. P. Williams, J. Chew. Sot.. 1955. 1906. 7. F. Mylius and R. Dietz, Eur., 1898. 31. 3 187.

studied

References 115

Beryllium

6X x9

Biological materials, silica and rocks Biological materials

Meteorites Geological

lead.

90. 96, 126

and tin

66. 67

samples

69 55

49

56. 99 45 64, 7X 65 13X

Precious

metal concentrate

139 144 142 143 145. 146 147 91 77 101 II4

Elements platinum

other than metals

106 14X 149 137

Technological solution

waste

150

8. E. Mylius, Z. Anorg. Chrm.. 191 I. 70. 203. 9. F. J. C. Rossotti, Rec. Trac. Chin?.. 1956, 75. 743. IO. J. Rydberg, Arkiv Krmi, 1955, 8. 101, II3 I 1. J. Saldick. J. Phvs. Chem.. 1956, 60. 500. 12. A. M. Poskanzer, R. Dietz, E. Rudzitis, Jr., J. W. Irving and C. D. Coryell. Proc. 1st UNESCO COH/.. b’.w of Radioisotopes Research. Paris. p. 518. Pergamon Press, Oxford 1957. 13. R. M. Diamond, J. Phys. Chcwl., 1957. 61. 69, 75: 1959. 63. 659. 14. R. M. Diamond and D. G. Tuck, Progr. Itlorg. Chcn~, 1960. 2. 109. 15. D. G. Tuck, J. Inorg. Nucl. Chcm.. 1959. 1 I. 164.

Solvent

extraction

16. H. G. Forsberg, B. Wide11 and L. G. Erwall, J. Chem. Educ., 1960, 31. 44. 17. A. M. Poskanzer. Thesis, M. I. T., 1957. 18. Ya. G. Goroshchenko, M. I. Andreeva, and A. G. Babkin, Zh. Priklad. Khim. 1959, 32, 1904. 19. D. G. Tuck, J. Chem. Sot., 1958, 2783. 20. V. V. Patrushev, G. V. Kuzimichev and V. S. Chikushin. Noo. Teor. Tekhnol. Metall. Protsessov. 1973, 191; Ref. Zh. Khim. 1974, Abstr. No. 2V48.; Chem. Ahstr. No. 1974, 81. 141596h. 21. Y. Marcus, Chem. Rev., 1963, 63. 139. 22. E. W. Berg, Physical and Chemical Methods of Separation, p, 57. McGraw-Hill, New York, 1963. 23. F. E. Beamish and J. C. Van Loon, Recent Advances in the Analytical Chemistry of Noble Metals, Pergamon, Oxford, 1972. 24. T. Nakai, Y. Kamemoto and Ming-Tong Wey, Nippon Kagaku Zasshi, 1962, 83. 1194. 25. D. F. C. Morris and R. A. Killick, Talanta, 1961. 8. 793. 26. 0. E. Zvyagintsev and A. I. Kulak. Zh. Neorgan. Khim., 1957. 2. 1687. 27. G. A. Cowan, L. E. Glendenin, J. S. Gilmore and L. E. Glendenin, Collected Radiochemical Procedures, Los Alamos Scientific Laboratorv _ Report, LA-1721. . 2nd Ed., 1960. 28. D. Gibbons, Intern. J. Appl. Radiation Isotopes, 1958, 4. 45. 29. A. A. Smales, Geochim. Cosmochim. Acta, 1955, 8, 300. 30. E. A. Vincent and A. A. Smales, ibid., 1956, 9. 154. R. R. Keays and S. Hsieh., J. 31. J. H. Crocket, Radioanal. Chem., 1968, 1. 487. Gold, Neutron Activation Analysis 32. G. W..Leddicotte. (Isotope Carrier) Method, Method No. 51 1330, ORNL Master Analytical Manual. 33. R. W. Hummel, Analyst, 1957, 82. 483. 34. M. Vobeckji and 0. Knotek, Chem. &sty, 1964, 58. 15. 35. J. Gaittet, Ann. Chim. (Paris), 1960, 5. 1219; Compt. Rend., 1958, 247. 1861. 36. R. Bock and E. Bock, Z. Anorg. Chem., 1950. 263. 146. and L. G. Sill&n, Suensk Kern. Tidskr., 37. A. Norstrom 1948, 60. 227. C. 38. F. W. E. Strelow, E. C. Feast, P. M. Mathews, J. C. Bothma and C. R. Van Zyl, Anal. Chem.. 1966, 38, 115. Nip39. H. Goto. S. Suzuki, M. Saito and M. Kishimoto, pon Kagaku Zasshi, 1964, 85. 75. 40. N. Ichinose, Tafanta. 1971. 18. 105. U.S. At. Energy Comm. Rrpt., 41. J. J. Pinagian, ORNL-TM-1480, April 1966. November 1966. 42. Idrm, ibid.. ORNL-TM-1664, 43. L. R. P. Butler. J. A. Brink and S. A. Englebrecht, Inst. Mining Met. Trans. Sect. C, 1967, 76. C188. 44. M. C. Greaves, Nature, 1963, 199. 552. M. E. Kussy and J. 45. W. J. Maeck, G. L. Booman, E. Rein, Anal. Chrm., 1961, 33. 1775. Talanta. 1974, 46. N. R. Das and S. N. Bhattacharyya. 21. 896. 47. M. 1. Tocher, D. C. Whitney and R. M. Diamond, J. Phvs. Chem.. 1964. 68. 368. Sepn. Sci., 1970, 48. A. A.. Yadav and S. M. Khopkar, 5. 637. Conference 49. J. C. White, Paper presented at Pittsburg on Analytical Chemistry and Applied Spectroscopy, March. 1957. 50. A. S. Bolerova, A. S. Chernyak, M. I. Druzin and A. V. Chistyakova, Otkrytiya Izobrrt Prom. Obraztsy Tovarnye Znaki, 1973, SO, 85. 51. I. N. Plaksin and G. N. Shivrin, Dokl. Akad. Nauk. SSSR, 1963, 150, 86.

of gold

539

0. I. Zakharov-Nartsissov and A. 52. 0. E. Zvyagintsev, V. Ochkin. Russ. J. Inorg. Chem.. 1961, 6. 1012. and E. 53. G. N. Shivrin, A. S. Basov, B. N. Laskorin M. Shirvina, Tsvel. Metal.. 1966, 39, 15. 54. D. S. Flett and A. Faure. Nat. Inst. Metallurgy, Rex Rept. No. 24, Project No. C92/65, 1966. 55. T. Groenewald, Anal. Chem., 1968, 40, 863; 1969, 41, 1012. 56. R. C. Mallet, .I. D. Taylor and T. W. Steele. Nat/. Inst. Metallurgy, Johannesberg, Res. Rept. No. 24, Project No. C92/65, 1966. 57. J. Adam and R. Piibil. Talanta. 1971, 18. 405. 58. J. W. Murphy and H. E. Affsprung, Anal. Chrm., 1961, 33. 1658. and I. P. Alimarin. Zh. Analit. 59. G. A. Perezhogin Khim., 1965, 20 (No. 8). 793. ibid, 1965, 20. 60 I. P. Alimarin and G. A. Perezhogin, 48. 61. E. E. Rakovskii, G. A. Perezhogin and B. L. Serebryani, Instrumental Methods of Analysis qf the Noble Metals, (in Russian). p. 59. Tsvetmetinformatsiya, Moscow, 1967. 62 E. E. Rakovskii and B. L. Serebryani, Radiochemistry. 1968, 10. 67. 63. 0. Bravo and R. T. Iwamoto, Anal. Chim. Acta, 1967, 41. 209. 64. T. M. Cotton and A. A. Woolf, ibid. 1960. 22, 192. Tr. Vses. Konfirentsii, Anal. Khim. 65. N. S. Poluektov, 1943, 2, 393; Chrm. Abstr., 1945, 39, 3494. 66 F. Kukula and M. Simkova. J. Radioanal. Chrm., 1970. 4. 271. 67 F. Kukula. M. Krivanek and M. Kyrs, ibid., 1969. 3. 43. 68. V. R. Negina and V. N. Zamyatnina. Zh. Analit. Khim., 1961, 16. 209. 69 G. D. Eugene, Thesis, Nucl. Sci. Abstr. No. 26, 11569. 70. I. G. Yudelevich, G. A. Vaal, V. G. Torgov and T. M. Korda, Zh. Analif. Khim., 1970. 25. 872. 71. E. N. Gilbert, G. V. Glukhova, G. G. Glukhov. V. A. Mikhailov and V. G. Torgov, J. Radioanal. Chem., 1971, 8, 39. 12 R. Bock, H. Kusche and E. Bock. Z. Anal. Chrm.. 1953, 138. 167. 73 T. H. Handley and J. A. Dean. Anal. Chem.. 1962, 34. 1312. 74 T. H. Handley. ibid., 1963, 35. 991. 75 A. G. Maddock. W. Smuleck and A. J. Tenth, Trans. Faraday Sot.. 1962. 58. 923. 76 R. W. Burke, Talanta, 1970, 17. 240. 77 T. Ishimori, K. Kimura, E. Nakamura. W. P. Cheng and R. One, J. At. Energy. Sot., Japan, 1961, 3. 698; 1963. 5. 566. .78 J. R. Beevers, Econ. Grol., 1967, 62. 426. 79 E. E. Rakovskii. B. L. Sebryani and B. S. Robinovich. Proc. III Anal. Chem. Conf Budapest. 1970. 153. 80 A. V. Nikolaev. V. G. Torgov, E. N. Gilbert. V. A. Mikhailov. V. A. Pronin. G. G. Stadnikova and I. L. Kotlyarevsky. 1-v. Sibirsk. Ord. Akad. Nauk. SSSR: Ser. Khim. Nauk, 1967, 14, 120. 81 Yu. V. Yakovlev, A. I. Kulak: V. A. Ryabukhin and R. S. Rytchkov. Proc. U.N. Intern. Con{: Peaceful Uses of-At. Energy, 2nd. Geneva, 1958. 28. 496;‘A. I. Kulak, Zh. Analit. Khim.. 1957. 12. 727. 82 E. Glueckaufand H. A. C. McKay. Nafurr. 1950. 165. 126. 83. S. Yajima. Y. Kamemoto. K. Shiba and Y. Onoda, Nippon Kagaku Zasshi, 1961. 82. 194. 84 G. Wilkinson. Phys. Rev., 1949, 75. 1019. 85. J. I. Kim, C. K. Kim and W. P. Chang. Dachan Hwahak Hwoejrr, 1963, 1. 165. 86 G. Stefanov, Z. Zivkov. N. Georgiev, C. Popov, M. Mikhailov, N. Nenov, T. Tomou and J. TGlgyessy. Chrm. Zvesti, 1964. 18. 661.

N. R. DAS and

540

S. N. BHATTACHARYYA

x7. A. Chow and F. E. Beamish. Tulanta, 1963, 10. 888. 88. S. Kitahara, Bull. Inst. Phps. Chem. Research (Tokyo). 1948. 24. 454. 89. H. Bede. 2. Anal. Chem. 1954, 143. 182. 90. D. A. Beardsley, G. B. Briscoe, J. RSiiEka and M. Williams, Talanta, 1965, 12. 829. 91. V. M. Sinde. Sepn. Sci.. 1972. 7. 97. B. M. Strause and M. B. Leboeuf. 92. 8. A. Thompson, Anal. Chem., 1958, 30. 1023. U.S. At. Energy Comm. Rept., 93. W. W. Meinke, AECD-2738. 1949. 94. De Corte. Thesis. State Univ. of Ghent, 1970; Nucl. Sci. Ahstr.. No. 15547, 25. 95. W. A. E. McBryde and J. H. Yoe, Anal. Chew 1956, 20. 790. 96. D. A. Beardsley. G. B. Briscoe, J. RuiiEka and M. Williams, Talanta, 1966, 13. 328. 97. B. J. MacNulty and L. D. Woollard. Anal. Chim. Acta, 1955. 13. 154. 98. P. Mark], Mikrochim. Acta, 1973, 907. 0. I. Zakharov-Nartissov, Zh. 99. 0. E. Zvyagintsev, Prikl. Khim.. 1961, 33. 55. 100. A. R. Byrne, Anal. Chim. Acta, 1972, 59. 91. 101. D. C. Madigan, Aust. Miner. Develop. Lab. Bull., 1968. 6. I. I02 A. R. De Grazia and L. Haskin, Geochim. Cosmochim. Acta, 1964, 28. 559. and H. Brown. Anal. Chrm.. 1950, 103. E. D. Goldberg 22. 308. 104. R. S. Maddock and W. W. Meinke, Progress Report No. 8, Nov. 1958, AECU-4438, p, 68. A. Mizuike and S. Takagi, Bunseki 105. H. Hirano, Kagaku, 1961. IO. 951. Anal. Chim. Acta, 106. E. N. Pollock and S. I. Anderson, 1968, 41. 441. ibid., 1952, 6. 488. 107. P. W. West and J. K. Carlton, 109. H. Fischer, Awew. Chem.. 1934, 47. 685. 109. Idem, ibid., 1937, 50, 919. 110. L. Erdey, G. Rady and V. Fleps, Z. Anal. Chrm.. 1952, 135. I. Tr. Komis. po Ill. S. I. Sinyakova and L. A. Tsvetkova, Analit. Khim., 1960, 12. 191. 112. A. W. Titlev. Anatwt. 1962. 81. 349 113 R. S. Young, ibid.,’ 1951, 76. 49. 114. V. I. Kuznetsov, Yu. A. Bankovskii and A. F. I’evinsh. Zh. Analit. Khim., 1958. 13. 267. 115. B. Sen, .4nal. Chim. Acta, 1959, 21. 35. Talanta, 1974. 21. 116. B. Strong and R. Murray-Smith, 1253. 117. M. A. Hildon and G. R. Sully. Anal. Chim. Acta, 1971, 54. 245. 118.C. Huffman Jr., J. D. Mensik and L. B. Riley, U.S. Grol. Survey Circ.. No. 544, 1967. 119. S. L. Law and T. E. Green, Anal. Chem., 1969, 41.

1008. 120. W. Slavin, Atomic Absorption Spectroscopy, p. 250. Interscience. New York, 1968. 121. C. R. Boswell and R. R. Brooks, Mikrochim. Acta, 1965. 814. J. Radioanal. 122. G. N. Bilimovich and N. N. Churkina, Chem. 1971. 8. 53.

123. I. H. Qureshi. F. I. Nagi, N. Nasra and M. N. Cheema. ihid.. 1971, 7. 221. 124. E. A. Vincent and J. H. Crocket, Gcochim Cosmochim. Acta, 1960, 18. 143. 125. G. H. Morrison, Anal. Chrm., 1964. 36. 93R. 126. D. A. Beardsley, G. B. Briscoe, J. RuiiEka and M. Williams, Talanta, 1967, 14, 879. 127. H. Jaskolska. L. Rowinska and M. Radwan. J. Radioanal. Chrm., 1971. 7. 29. 128. J. Michalik. M. Radwan and B. Rewienska-Kosmik. Isotopenpraxis, 1968, 4. 427. 129. H. Seitner. W. Kiesl, F. Klugcr and F. Hecht, J. Radioanal. Chrm.. 1971, 7. 235. 130. J. C. Laul. D. R. Case, M. Wechter. F. Schmidi-Bleck and M. E. Linschutz. ibid.. 1970. 4. 241. 131. 3. A. Mar&sky. US’. At. Energy Comm. Rcpr. NAS-NS-3043, 191. 132. K. S. Park. R. G. Gijbels and J. Hoste. J. RadioattaL Chrm., 1970. 5. 31. 133. P. Senise and L. R. M. Pitombo, Anal. Chim. Acfa. 1962, 26. 89. 134. I. A. Blyum, A. P. Vasil’eva and R. P. Skrinskay, Tr. Kazakhsk. Nauchn. Issled. Inst. Mineral. Syr’ya, 1961. 5. 265. 135. V. Patrovsky. Collection C:ech. Chrm. Commurt.. 1962, 27. 1705. 136. I. N. Plaksin, Izu. Vysshikh Uchebn. Zavedmii, Tsvettt. Met.. 1961. 4. 87. 137. V. R. Negina, V. N. Zamyatnina, M. A. Presnyakova and L. A. Chikisheva.. Radiokhimiya, 1961. 3. 473. 138. M. Ziegler and H. D. Matschkey. Z. Attat. Chem. 1961, 184. 166. 139. M. Ziegler, ibid., 1961, 182, 166. 140. G. G. Lystsova. Zavodsk. Lab.. 1962, 28. 543. 141. G. Thilliez. Acta Chim. Acad. Sci. Hung.. 1962, 32. 315. 142. R. PIibil and V. Vesely. Talanta, 1972. 19. 825. 143. D. Buksak and A. Chow, ibid., 1972. 19. 1483. 144. D. F. C. Morris and M. A. Khan, ibid., 1968. 15. 1301. 145. E. W. Berg and W. L. Senn, Anal. Chim. Acta, 195X. 19. 12, 289. 146. 4. T. Casey. E. Davies, T. L. Meek and E. S. Wagner in Sotvent Extraction Chemistry, eds. D. Dyrssen. J.-O. Liljenzin and J. Rydberg, p. 327. North-Holland, Amsterdam, 1967. 147. T. Ishimori, K. Kimura, T. Fujino and H. Murakami. Nippon Gertshiryoku Gakkaishi, 1962. 4. I 17. E. 148. V.‘k. Pronin, M. V. Usoltseva, B. A. Trofimov, P. Vyalykh and Z. N. Shastina, Zh. Prikl. Khim., 1973. 46. 2602; Chrm. Ahstr., 1974, 80. 41435. N. A. Abdusalyamov and A. G. 149. K. T. Yuldasheva, Ganiev. Prikt. Yad. Fiz.. 1973. No. 2 92; Chem. Abstr.. 1974. 81. 159686. 150. A. S. Chernyak, G. I. Smirnov, A. S. Bebrova. V. A. Mikhailov, V. G. Torgov, G. Ya. Druzhina and 0. N. Kostromina, Izv. Sib. Otd. Akad. Nauk. SSSR., Ser. Khim. Nauk, 1973, No. 3, 42; Chem. Ahstr. 1974. 80. 17739.