Results in Physics 7 (2017) 3163–3175
Contents lists available at ScienceDirect
Results in Physics journal homepage: www.journals.elsevier.com/results-in-physics
Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows S.M. Moawad a,⇑, O.H. El-Kalaawy a, H.M. Shaker b a b
Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Future High Institute of Engineering in Fyoum, Ministry of High Education, Fyoum, Egypt
a r t i c l e
i n f o
Article history: Received 28 March 2017 Received in revised form 16 August 2017 Accepted 17 August 2017 Available online 21 August 2017 Keywords: Magnetohydrodynamics Axisymmetric plasma Resistivity Incompressible flows Exact equilibria Magnetic confinement devices
a b s t r a c t In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD) are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Ó 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction MHD equilibrium is one of the basic objectives in astrophysical and geophysical problems, plasma confinement systems and fusion research. The mathematical complexity of the MHD equations has stood in the way of understanding hydromagnetic phenomena, e.g. stellar winds [1–4], solar prominence magnetic fields [5–8], and plasma confinement devices [9–11]. They are still waiting general solutions for which few representative classes of MHD steady state flows has been achieved. MHD equilibria with incompressible flows in cylindrical and axisymmetric domains have been carried out by many authors [12–32]. The equilibrium of a toroidal plasma was found that it is governed by a second-order elliptic differential equation for the poloidal magnetic flux function include five surface quantities along with an algebraic relation for the pressure [12–15]. The poloidal and toroidal plasma rotation can be obtained in experiments like the electric tokamak [33], the Joint European Torus (JET) [34], and the National Spherical Tokamak Experiment [35]. A general theory of axisymmetric MHD equilibria with relativistic flows was developed and applied to disks associated with rotating magnetized stars and black holes by Lovelace et al. [36]. Bogoyavlenskij [37] demonstrated the existence of exact axisymmetric ⇑ Corresponding author. E-mail address:
[email protected] (S.M. Moawad).
equilibria in the magnetostatic case. Astrophysical jets were modelled by an exact axisymmetric equilibrium of plasma in the gravitational field of an attracting center [38]. Intrinsic symmetries of the ideal MHD equilibrium equations were introduced for the divergence-free plasma flows [39]. Magnetic dipole equilibria with flow effects was studied by Catto and Krasheninnikov [40]. Axisymmetric stellar wind equilibria with both open and closed magnetic field regions were examined by Keppens and Goedbloed [41]. The derivation of the equilibrium equations of MHD plasmas has been extensively discussed in the literature by many authors [13,19,42–44]. A similar analysis was investigated for a system with translational and axial symmetry by Goedbloed and Lifschitz [45]. Many attempts has been made over the past years to investigate different cases of the problem of finding general solutions to MHD equations by means of essential mathematical simplifications. Magnetostatic case, force-free field condition, parallel flow and field condition and other similar conditions on the symmetry and the physics of the problem were imposed to make the mathematics tractable. The problem of finding exact solutions of MHD equations in the presence of flow has been carried out by many authors [15–18,30,31,46–48]. Numerical solutions of MHD boundary layer flow of two dimensional tangent hyperbolic fluid towards a stretching sheet were discussed in [49]. The nonexistence of static axisymmetric equilibria with constant resistivity was suggested in [44,50].
http://dx.doi.org/10.1016/j.rinp.2017.08.033 2211-3797/Ó 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
3164
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
In the present work we consider the problem of finding nonlinear equilibria to resistive MHD of axisymmetric incompressible flows. The paper is organized as follows: In Section ‘‘Non-parallel ideal MHD flows”, we explain how to obtain the equilibrium physical variables of non-parallel ideal MHD flows besides finding exact solutions to the equations governing these flows. In Section ‘‘Parallel resistive MHD flows” we consider the basic equations and investigate the problem formulation of the equilibrium equations of resistive incompressible MHD flows in the steady state. In Sect ion ‘‘Nonlinear axisymmetric equilibria for parallel resistive MHD flows”, we obtain nonlinear equilibria to the equilibrium equations of the MHD flows presented in Section ‘‘Parallel resistive MHD flows”. Results and discussion are investigated in Section ‘‘Results and discussion”. Finally, the conclusion of the paper is presented in Section ‘‘Conclusion”.
with the following expression for the pressure:
2 v U0 H : P ¼ ps ðwÞ q þ 2 q
The dash denotes differentiation with respect to w. The functions X and ps are arbitrary functions of w (surface quantities) and the symbol M denotes the poloidal Alfvénic Mach number which is defined by
M2 ¼
1
The ideal MHD incompressible flows are governed by the following set of equations, written in the steady-state and quite simple units: the mass conservation equation:
I 1
the momentum equation:
qðv rÞv ¼ rP þ j ^ B;
ð2Þ
ðG0 Þ
r ^ E ¼ 0;
2
q
Z
! þ r2 G0 U0 ¼ XðwÞ:
w
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 M 2 ðuÞdu;
the divergence-free Gauss law:
r B ¼ 0;
ð5Þ
Ohm’s law for MHD:
E þ v ^ B ¼ 0;
ð6Þ
where q; v ; P; B and j stand as usual for the mass density, flow velocity field, gas pressure, magnetic field and current density. We use the cylindrical coordinates ðr; /; zÞ so with the aid of Eq. (4) the fields B, j and v are expressed as
B ¼ Ir/ þ r/ ^ rw;
ð7Þ
j ¼ M wr/ r/ ^ rI;
ð8Þ
1
q
ðHr/ þ r/ ^ rGÞ;
q ¼ qðwÞ;
ð9Þ
with the stream functions wðr; zÞ, Iðr; zÞ, Gðr; zÞ and Hðr; zÞ. Here, D is the elliptic operator defined by
r D r r 2 : r
ð15Þ
1 d X2 D Uþ 2 dU 1 M2
!
" # 2 dps r4 d dU q þ þr ¼ 0: dU 2 dU dU 2
ð16Þ
Several classes of exact solutions to Eq. (16) can be derived for some choices of M, as we show later. Moreover, we show how to obtain the associated physical quantities of the full MHD system (1)–(6). Construction for the equilibrium physical variables In this subsection we explain how to obtain the equilibrium physical variables, B; j; E; r; P and q for the MHD system (1)–(6). From Eq. (15) we have
Q
dw 1 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : dU 1 M2
ð17Þ
Hence,
and
v¼
M 2 < 1:
Eq. (10) is reduced to
Ampére’s law:
ð4Þ
ð14Þ
0
ð3Þ
r ^ B ¼ j;
ð13Þ
For the above MHD flows, there are six surface quantities GðwÞ; UðwÞ; XðwÞ; qðwÞ; ps and MðwÞ five of them are arbitrary. The solution w can be determined from Eq. (10), that can be solved analytically. Under the transformation [14,15]:
UðwÞ ¼
Faraday’s law:
ð12Þ
ðIG0 HÞ ¼ U0 ;
qr2
ð1Þ
v 2p ðG0 Þ2 ¼ ; q v 2Ap
where v p and v Ap are the poloidal flow velocity and Alfvén velocity, respectively. In [8] it is shown the functions G, U, X, q, I and H are provided the following two relations:
Non-parallel ideal MHD flows
qr v ¼ v rq ¼ 0;
ð11Þ
2
The electric field is expressed by E ¼ rU. Using Eqs. (7)–(9), the MHD system (1)–(6) is reduced to the following generalized Grad-Shafranov equation [13]: 0 1 1 X2 ð1 M ÞD w ðM2 Þ jrwj2 þ 2 2 1 M2 ! 0 2 r 4 qðU0 Þ þ ¼ 0; 2 1 M2 2
!0
0 XG0 U0 þ r ps 1 M2
jrwj2 ¼ Q 2 jrUj2 ;
D w ¼ Q D U þ
dQ jrUj2 : dU
ð18Þ ð19Þ
To express the physical quantities in terms of the new variable U we introduce the following new vector:
¼ r/ ^ rU: B
ð20Þ
From Eqs. (9) and (20), the velocity field reads
v¼
1
q
Hr/ þ
dG B ; dU
ð21Þ
2
ð10Þ
Using Eqs. (13) and (17)–(19), the equilibrium physical variables v ; B; j; P can be expressed as
þ Ir/; B ¼ QB
ð22Þ
3165
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
v
G0 1 B dG dU r2 ¼ B r 2 U0 r/ ¼ r/ ; Q q dU q dU
ð23Þ
dQ dI Q D U þ jrUj2 r/ B; dU dU
j¼
ð24Þ
Table 2 The magnetic field and velocity field corresponding to the choices of Mach number dG r 2 ddUU r/ is used. described in Table 1. A new vector field, v H ¼ qB dU B
1
B pffiffiffiffiffiffiffiffi 1e2 p3ffiffi 2
2
dU E¼ rU; dU
ð25Þ
" # " 2 2 # 1 1 B2 dG dU dU 2 þr q : P ¼ ps ðUÞ þH Q 2Q q dU dU dU
ð26Þ
Exact solution classes In this subsection we consider some nonlinear cases of Eq. (16). We introduce a new variable depends on r and z to obtain several classes of exact solutions to Eq. (16). Consequently, we obtain the associated physical quantities to the full MHD system (1)–(6). Using the representations:
!
¼ f ðUÞ;
dps ¼ gðUÞ; dU
" 2 # 1 d dU ¼ hðUÞ; q 2 dU dU
ð27Þ
1
@ 2 U 1 @U @ 2 U þ 2 ¼ f ðUÞ r 2 gðUÞ r4 hðUÞ: @r 2 r @r @z
ð28Þ
Consider now the following new variable:
n ¼ ar2 þ vðzÞ;
ð29Þ
3 4
1 þ I r/ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B 2
5 6
þ Ir/ secðUÞB eU þ I r/ pffiffiffiffiffiffiffiffiffiffi B
1
ð23UÞ3 p3 ffiffi 2
þ Ir/
cosðUÞv H pffiffiffiffiffiffiffiffiffiffi 2U e
e2U 1
v3 ¼
vH
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 U 2 Þv H qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ð1 UÞ2 v H
eU
1
vH
rffiffiffiffiffiffiffi pffiffiffi k coshðc3 azÞ; a
ð33Þ
where c1 , c2 , and c3 are integration constants. Inserting Eqs. (29) and (30) into Eq. (28) yields
d2 U dU 1 þ f ðUÞ þ ðn vÞgðUÞ 4aðn vÞ þ av2 þ k þ av dn a dn2 1 þ 2 ðn vÞ2 hðUÞ a ¼ 0:
ð34Þ
Equating the coefficients of like powers of v in both sides of Eq. (34) we get
v0 : ð4an þ kÞ v1 : 4a v2 :
dn
2
dn2
2
d U dn2
2
d U
2
d U
¼
þa
1 1 þ f ðUÞ þ ngðUÞ þ 2 n2 hðUÞ ¼ 0; a a
ð35Þ
dU 1 2 gðUÞ 2 nhðUÞ ¼ 0; dn a a
ð36Þ
1 hðUÞ: a3
ð37Þ
Substitution of Eq. (37) into Eq. (36) yields
with
2 dv ¼ av2 þ k; dz
ð30Þ
where a and k are real constant, that has the following general solutions: if k > 0 and a > 0,
rffiffiffi pffiffiffi k sinhðc1 azÞ; ¼ a
ð31Þ
if k > 0 and a < 0,
v2
þ I r/ B
ð23UÞ3 1 pffiffiffiffiffiffiffiffiffiffiffi ffiB ð1U 2 Þ
in Eq. (16), it is re-written as:
v1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 e2 v H
þ Ir/
1ð1UÞ
With aid of Eq. (15) we can obtain exact solutions to the original Eq. (10). Table 1 shows some solutions uðr; zÞ corresponding to solutions wðr; zÞ in accordance with choices for the Mach number. The physical quantities v ; B; j and P can be obtained using Tables 2 and 3.
1 d X2 2 dU 1 M2
v
No.
rffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffi k ¼ sinðc2 azÞ; a
ð32Þ
gðUÞ ¼
1 dU ð4 2nÞhðUÞ þ a2 : a dn
ð38Þ
Substitution of Eqs. (38) and (37) into Eq. (35) yields
f ðUÞ ¼
1 2 4a2 4 k dU hðUÞ an n þ n þ : a2 a2 a dn
ð39Þ
To seek solutions satisfy Eqs. (35)–(37), first we solve Eq. (37) by putting the solution as UðnÞ ¼ a þ bðFðnÞÞc where a and b are real constants to be determined later. The function FðnÞ expresses a trigonometric or hyperbolic function, and c is a real constant. The constant c can be determined according to the choice of the function FðnÞ. We consider
hðUÞ ¼ A þ B UðnÞ þ C ðUðnÞ aÞn ;
if k < 0 and a > 0,
ð40Þ
Table 1 Some choices for the Mach number and corresponding quantities w; Q and dQ =dU as functions of U. No.
M
wðUÞ
Q ðUÞ
dQ =dU
1
e ¼ const
1 pffiffiffiffiffiffiffiffi U 1e2
1 pffiffiffiffiffiffiffiffi 1e2
0 p ffiffiffi 3 2ð2 3UÞ4=3
2
pffiffiffiffi w
3
sinðwÞ
sin1 ðUÞ
cosðwÞ
1
4
1 ð1 32 UÞ cos
ð1 UÞ
1
5
tanhðwÞ
sinh
6
sechðwÞ
cosh
2=3
½tanðUÞ
1
ðeU Þ
p ffiffiffi 3 2ð2 3UÞ1=3
1 pffiffiffiffiffiffiffiffiffiffiffi ffi 2
3=2
1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ð1UÞ2
Uð1 U 2 Þ 3=2 ðU 1Þ 2U U 2
secðUÞ
secðUÞ tanðUÞ
e pffiffiffiffiffiffiffiffiffiffi e2U 1
ð1U Þ
U
eU 3=2 ð1þe2U Þ
3166
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175 Table 3 The gas pressure and axial electric current corresponding to the choices of Mach number described in Table 1. No.
P
rj/ q
1
h
dG 2
U 2 r 2 ddU
i
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi U H 1 e2 ddU
2 3 4 5 6
B2
where A , B , C and n are real constants, and FðnÞ ¼ sin n; 2 . Hence we obtain four classes cos n; sinh n; cosh n. In this case c ¼ 1n of exact solutions to Eq. (37) as shown in Tables 4 and 5. For these solutions, the constants A , B and C are determined in Table 5. Using Eq. (39), the function gðUÞ is determined for each solution U i , i ¼ 1; . . . ; 4 as:
" !# 1n 2 1 1 U 1 a hðU 1 Þ 4 2 sin gðU 1 Þ ¼ a b qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þn 18a2 þ ðU 1 aÞ 2 b1n ðU 1 aÞ1n ; 1n
1 pffiffiffiffiffiffiffiffiffiffiffi ffi D U þ 2 ð1U Þ
UjrUj2
3=2
ð1U 2 Þ
2
Uj 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D U þ ðU1Þjr 2 2 3=2 ð2UU Þ
1ð1UÞ
secðUÞD U þ secðUÞ tanðUÞjrUj2 e pffiffiffiffiffiffiffiffiffiffi D U e2U 1 U
eU jrUj2 3=2 ðe2U 1Þ
Table 5 The constants A , B and C appeared in Eq. (40) for each solution U i , i ¼ 1; . . . ; 4 in Table 4. U
FðnÞ
U1
sin n
U2
cos n
U3
sinh n
U4
cosh n
A ; B ; C 3 A ¼ 4aa 2 , B ¼
ð1nÞ
3 A ¼ 4aa 2 , B ¼
ð1nÞ
ð41Þ
" !# 1n 2 1 1 U 2 a hðU 2 Þ 4 2 cos gðU 2 Þ ¼ a b qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þn 18a2 ðU 1 aÞ 2 b1n ðU 1 aÞ1n ; 1n
A ¼
4aa3 , ð1nÞ2
B ¼
A ¼
4aa3 , ð1nÞ2
B ¼
4a3 , ð1nÞ2 4a3 , ð1nÞ2
3 4a 2 , ð1nÞ
4a3 , ð1nÞ2
C ¼ 2a C ¼
ð1þnÞb1n ð1nÞ2
2a3 ð1þnÞb1n ð1nÞ2
C ¼ 2a C ¼ 2a
3
3
3 ð1þnÞb1n
ð1nÞ2
ð1þnÞb1n ð1nÞ2
2
3 !2 1n 1n 2 2 1 4a2 4 k5 1 U 2 a 1 U 2 a 4 f ðU 2 Þ ¼ 2 cos þ cos þ hðU 2 Þ a a2 a b b
ð42Þ
" !# 1n 2 1 1 U 3 a hðU 3 Þ 4 2 sinh gðU 3 Þ ¼ a b qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þn 18a2 ðU 3 aÞ 2 b1n þ ðU 3 aÞ1n ; 1n
þ
1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þn 2a U2 a 2 1n cos1 ðU 2 aÞ 2 b1n ðU 2 aÞ ; 1n b ð46Þ
2
ð43Þ
" !# 1n 2 1 1 U 4 a hðU 4 Þ gðU 4 Þ ¼ 4 2 cosh a b qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þn 18a2 ðU 4 aÞ 2 ðU 4 aÞ1n b1n : 1n
3
!2 1n 1n 2 2 1 4a2 4 k 1 U 3 a 1 U 3 a f ðU 3 Þ ¼ 4 2 sinh þ sinh þ 5hðU 3 Þ b b a a2 a þ
1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1þn 2a 1 U 3 a ðU 3 aÞ 2 b1n ðU 3 aÞ1n ; sinh 1n b ð47Þ
ð44Þ
The function f ðUÞ is determined from Eq. (39) for each solution U i , i ¼ 1; . . . ; 4 of Table 4, respectively, as: 2 3 !2 1n 1n 2 2 1 4a2 4 k5 1 U 1 a 1 U 1 a 4 f ðU 1 Þ ¼ 2 sin þ sin þ hðU 1 Þ a a2 a b b
1 pffiffiffiffiffiffiffiffi D U 1e2 p3ffiffi p3ffiffi 2 2D U þ 2jrUj4=3 ð23UÞ1=3 ð23UÞ
ps 2 ð1 e Þ q2 dU þ h 2 2 2=3 1=3 i B dG 2 dU 2 dU p3ffiffi p3ffiffi ps q2 ð23UÞ H ð23UÞ dU q2 dU þ r dU 4 2 h 2 2 i p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi
dG U 2 H 1 U 2 dU þ r 2 ddU ps q2 ð1 U 2 Þ qB2 dU dU h 2 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi U 2 i dG U ps q2 ð2U U 2 Þ qB2 dU þ r 2 ddU H 2U U 2 ddU h 2 2 i
2 q dG U U ps 2 cos2 ðUÞ qB2 dU þ r 2 ddU H cosðUÞ ddU h pffiffiffiffiffiffiffiffiffiffi i q e2U 1 B2 dG 2 2 dU 2 e2U 1 dU ps 2 e2U H eU dU q2 dU þ r dU 2
1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1þn 2a 1 U 1 a 1n sin ðU 1 aÞ 2 b1n ðU 1 aÞ ; 1n b
2 f ðU 4 Þ ¼ 4
3
!2 1n 1n 2 2 1 4a2 4 k 1 U 4 a 1 U 4 a cosh þ cosh þ 5hðU 4 Þ a2 a2 a b b
þ
1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1þn 2a 1 U 4 a 1n ðU 4 aÞ 2 ðU 4 aÞ b1n ; cosh 1n b ð48Þ
One can use solutions Uðr; zÞ in Tables 4 and 5 to find the physical variables of the original MHD equations. ð45Þ
Parallel resistive MHD flows The problem formulation of equilibrium equations
Table 4 Solutions for Eq. (37) where hðUÞ ¼ A þ B UðnÞ þ C ðUðnÞ aÞn . The vector field pffiffi pffiffi pffiffiffi is used when n ¼ ar 2 þ v1 ðzÞ, BH ¼ rk BH ¼ rk coshðc1 azÞer 2aez , pffiffiffiffiffi pffiffiffiffiffiffiffi cosðc2 azÞer 2aez is used when n ¼ ar 2 þ v2 ðzÞ and BH ¼ k sinh r pffiffiffi ðc3 azÞer 2aez is used when n ¼ ar2 þ v3 ðzÞ. B
FðnÞ
UðnÞ
sin n
U 1 ¼ a þ bðsin nÞ1n
cos n
1þn 2b 1n 1n cos n sin
U 2 ¼ a þ bðcos nÞ
2b 1n sin n cos1n nBH
sinh n
U 3 ¼ a þ bðsinh nÞ1n
cosh n
2 1n
2
2 1n 2
U 4 ¼ a þ bðcosh nÞ
nBH
1þn
1þn 2b 1n nBH 1n cosh n sinh 1þn H 2b 1n sinh n cosh nB 1n
ps R gðU 1 ÞdU 1 R gðU 2 ÞdU 2 R gðU 3 ÞdU 3 R gðU 4 ÞdU 4
The MHD equilibrium states of a plasma with scalar conductivity are governed by Eqs. (1)–(5) and Ohm’s law for resistive MHD:
Eþv^B¼
j
r
;
ð49Þ
where r denotes conductivity. We consider, here, MHD flows under the following field-aligned condition on the fields v and B:
v¼
K
q
B;
ð50Þ
3167
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
where K is a function of r and z. Also, the flow density q is a variable function depends upon r and z. Using Eqs. (1) and (5), the divergence of Eq. (50) implies K ¼ KðwÞ and q ¼ qðwÞ. The toroidal component, the component along B and the component perpendicular to magnetic surface for both of the momentum Eq. (1) and Ohm’s law (49) yield the following equations [48]: 0 1 1 X2 ð1 M ÞD w ðM 2 Þ jrwj2 þ 2 2 1 M2
2
P ¼ ps ðwÞ
qv 2 2
¼ ps
!0 þ r2 p0s ¼ 0;
K 2 B2 ; 2q
D w ; Vc !
rðr; wÞ ¼ 1
K
2
q
ð51Þ
ð52Þ ð53Þ
I ¼ XðwÞ;
ð54Þ
To obtain the solution wðr; zÞ of the original Eq. (51), the Mach number should be chosen as a function of w using Table 1. The corresponding magnetic field, conductivity, axial electric current density, gas pressure and electric field are described in Tables 6 and 7. Nonlinear axisymmetric equilibria for parallel resistive MHD flows In this section we consider some nonlinear cases of the equilibrium equations given in Section ‘‘Parallel resistive MHD flows”. We obtain the magnetic flux and the other physical quantities of the full MHD system (1)–(5) and Eq. (49). Case 1: Put the choices:
1 d X2 2 dU 1 M2
!
¼ k1 Uðr; zÞn ;
dps ¼ k2 Uðr; zÞm ; dU
ð61Þ
in Eq. (56), we get the nonlinear partial differential equation
@ 2 U 1 @U @ 2 U þ 2 ¼ k1 U n r 2 k2 U m ; @r 2 r @r @z
where V c is the constant toroidal loop voltage divided by 2p and the electric field is expressed as E ¼ rU þ V c r/. XðwÞ is a function defined later (see Eq. (55) below). Previously, special cases of ideal incompressible MHD equilibria were investigated by Avinash et al. [51] and Andruschenko et al. [52]. The Mach number M can be represented by the functions K and q as follows:
where k1 , k2 , n and m are real constants. We seek solutions to Eq. (62) by considering the following constraint assumption:
K M ¼ pffiffiffiffi :
where a is real constant and g is a function of z. Using expression (63) into Eq. (62), we get
ð55Þ
q
From the analysis above, we have four surface quantities (K; q; X and ps ) are provided for the above MHD flows. The surface quantity XðwÞ is identified from the toroidal component of the momentum conservation Eq. (2). From Eq. (54) we find that the function I is a surface quantity, I ¼ IðwÞ. Also, from Eqs. (54) and (55) we find that the Mach number is a surface quantity, M ¼ MðwÞ. Therefor, we have six surface quantities, KðwÞ; qðwÞ; XðwÞ; ps ðwÞ; IðwÞ and MðwÞ, for the MHD flows considered here. Biased on the definition pffiffiffiffi of the Mach number ðM ¼ K= qÞ and Eq. (54), four of these six quantities remain arbitrary in w. The solution w can be determined from Eq. (51), that can be solved analytically. Using the Eq. (15), Eq. (51) is reduced to
1 d X2 D Uþ 2 dU 1 M 2
!
þ r2
dps ¼ 0: dU
ð56Þ
Eq. (51) with the relation of pressure in Eq. (52) are BernoulliGrad-Shafranov system. Several classes of exact solutions to Eq. (51) can be derived for some choices of M as we show later. Moreover, we show how to obtain the associated physical quantities to the full MHD system (1)–(5) and Eq. (49).
ð62Þ
n ¼ 9ar 2 þ gðzÞ;
ð63Þ
"
2 # 2 2 dg d U d g dU 36aðn gÞ þ þ dz dn2 dz2 dn ¼ k1 U n
k2 ðn gÞU m : 9a
ð64Þ
Now, we seek solutions to Eq. (64) such that the function gðzÞ satisfies the following equation:
2 dg ¼ 4k1 g þ b; dz
ð65Þ
that has the general solution
gðzÞ ¼
i 1 h 2 4k1 ðz þ cÞ2 b ; 4k1
ð66Þ
where k1 and b are real constants, and c is the integration constant. Inserting Eq. (65) into Eq. (64) yields
½36aðn gÞ þ 4k1 g þ b
2
d U 2
dn
þ 2k1
dU k2 ¼ k1 U n ðn gÞU m : dn 9a ð67Þ
The equilibrium physical variables Using Eqs. (17)–(20), the conductivity, electric current density field, gas pressure and electric field can be expressed as
rj 1 dQ r¼ /¼ Q D U þ jrUj2 ; dU Vc Vc j ¼ V c rr/
dI B; dU
K 2 ðUÞB2 K2 P ¼ ps ðUÞ ¼ ps 2 Q 2 jrUj2 þ I2 ; qðUÞ r q E¼
dI B þ V c r/: r dU
ð57Þ
ð58Þ
Table 6 The magnetic field, conductivity and axial electric current density corresponding to the choices of Mach number described in Table 1. No.
B
V c r ¼ rj/
1
1 þ I r/ pffiffiffiffiffiffiffiffi B 1e2 p3ffiffi 2 þ Ir/ B ð23UÞ1=3
1 pffiffiffiffiffiffiffiffi D U 1e2 p3ffiffi p3ffiffi 2 2D U þ 2jrUj4=3 ð23UÞ ð23UÞ1=3
2 3
ð59Þ
ð60Þ
1 þ Ir/ pffiffiffiffiffiffiffiffiffi B 1U 2
4
1 þ Ir/ pffiffiffiffiffiffiffiffiffiffiffi ffiB
5
secðUÞ þ Ir/ B eU þ I r/ pffiffiffiffiffiffiffiffiffiffi B
6
2UU 2
e2U 1
1 pffiffiffiffiffiffiffiffiffiffiffi ffi D U þ 2 ð1U Þ
1 pffiffiffiffiffiffiffiffiffiffiffi ffi 2UU 2
D Uþ
UjrUj2 ð1U 2 Þ
3=2
ðU1ÞjrUj2 3=2
ð2UU 2 Þ
secðUÞD U þ secðUÞ tanðUÞjrUj2 e pffiffiffiffiffiffiffiffiffiffi D U e2U 1 U
eU jrUj2 3=2 ðe2U 1Þ
3168
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
Table 7 The gas pressure and electric field corresponding to the choices of Mach number described in Table 1. No.
P
1
ps
2
ps
3
h
2
h
ps
i
2 k ðUÞ B I2 2qðUÞ 1e2 þ r 2 h i p ffiffi 2 3 2 k ðUÞ 4B I2 2qðUÞ ð23UÞ2=3 þ r2
ps 2kqðUÞ ðUÞ
4
2
2
þ rI 2
B 1U 2
h
2 2 k ðUÞ B 2qðUÞ 2UU 2
r/ þ
2
6
pffiffiffiffiffiffiffiffi 1e2 BdI=dU D U 4=3
ð23UÞ BdI=dU pffiffi r/ þ p3ffiffi2ð23UÞ D Uþ 32jrUj2
i
2 3=2
Bð1U Þ dI=dU r/ þ ð1U 2 ÞD UþUjrUj2
i
þ rI 2 h i 2 2 k ðUÞ 2 ps 2qðUÞ B sec2 ðUÞ þ rI 2 h 2U 2 i 2 e B I2 ps 2kqðUÞ ðUÞ e2U 1 þ r2
5
ps ¼ ps1 ¼ A1 þ
VcE 2
2 3=2
ð2UU Þ BdI=dU r/ þ ð2UU 2 ÞD UþðU1ÞjrUj2
cosðUÞ r/ þ DBðdI=dUÞ UþtanðUÞjrUj2
ðe2U 1Þ
3=2
BdI=dU
r/ þ eU ðe2U 1ÞD UeU jrUj2
Equating the coefficients of like powers of g in both sides of Eq. (67) we get
g0 : ð36an þ bÞ
2
d U
þ 2k1
dn2
dU k2 ¼ k1 U n nU m ; dn 9a
ð68Þ
2
d U
k g : ð36a þ 4k1 Þ 2 ¼ 2 U m : 9a dn 1
ð69Þ
To find solution satisfies both of Eqs. (68) and (69), we substitute Eq. (69) into Eq. (68) which yields 2
ðb þ 4k1 nÞ
d U dn2
þ 2k1
dU þ k1 U n ¼ 0: dn
Using the transformation
Integrating the second part of Eq. (61) with respect to u, the static pressure is obtained as
ð70Þ
2
" # 1 32 2 1n 3 3 ð1 nÞ 2 2 5: w1 ðr; zÞ ¼ 1 41 9ar þ k1 ðz þ cÞ 2 2ð1 þ nÞ
KðU 1 Þ B qðU 1 Þ " p ffiffiffi # 3 KðU 1 Þ k1 2ðn 1ÞU n1 ; 9ae ¼ I r/ þ ðc þ zÞe r z 1 qðU 1 Þ ðn þ 1Þð2 3U 1 Þ3 r
v¼
Substituting this solution into Eq. (71) we find that the constants N and a must be related to the constants n and k1 by the following relations:
1 ; 1n
a¼
9að1 nÞ2 ðk1 9aÞ
2ð1 þ nÞ2 " pffiffiffi 3 2 K 2 ðU 1 Þ 4B
2
ð1 nÞ 8k1 ð1 þ nÞ
1 #1n
:
ð73Þ
# I2 ; þ 2qðU 1 Þ ð2 3U 1 Þ23 r 2
ð81Þ
" pffiffiffi # p ffiffiffi 3 3 2D U 1 2jrU 1 j2 1 ; r¼ þ V c ð2 3U 1 Þ1=3 ð2 3U 1 Þ4=3
ð82Þ
j/ ¼
" pffiffiffi # p ffiffiffi 3 3 1 2 D U 1 2jrU 1 j2 ; þ r ð2 3U 1 Þ1=3 ð2 3U 1 Þ4=3
D U 1 ¼ k1 U n1
m ¼ 2n 1;
jrU 1 j2 ¼
9anð1 nÞ2 ðk1 9aÞ ð1 þ nÞ2
:
ð75Þ
Using the transformation v ¼ b þ 4k1 n, Eq. (63) and Eq. (66) into Eq. (72), we obtain the following exact solution class for Eq. (72):
" U1 ¼
9anð1 nÞ2 ðk1 9aÞr2 ð1 þ nÞ2
U 2n1 ; 1
2 1n 2 2 2 2 U 2n 1 ½81a r þ k1 ðc þ zÞ : nþ1
ð84Þ
ð85Þ
Case 2: Consider the following choices
and
k2 ¼
ð83Þ
where
To satisfy both of Eqs. (68) and (69), we substitute the solution (72) into Eq. (69). Therefor we have the following relations between the constants n; m; a; k1 and k2 :
ð74Þ
ð80Þ
U 2n 1
1
ð72Þ
ð79Þ
pffiffiffiffi Using Eq. (50) and the choice M ¼ w, the velocity and magnetic fields, gas pressure, conductivity and axial current density are obtained as
ð71Þ
U ¼ U 1 ¼ avN :
N¼
ð78Þ
dom of the functional dependence of M 2 on w to obtain exact solutions wðr; zÞ to Eq. (51). This is shown in Table 1. If we choose pffiffiffiffi M ¼ w as shown in Table 1, then w ¼ 1 ½1 ð3=2ÞU2=3 . Hence, we obtain exact solution to Eq. (51) as follows:
Eq. (71) has a solution of the form
"
U 2n 1 ;
one takes n ¼ 2; 3 and m ¼ 3; 5 for [41], X 2 =ð1 M 2 Þ ¼ const and m ¼ 1 for [48], n ¼ 3 and m ¼ 7 for [53,54]. We can use the free-
P ¼ A1 þ
d U dU 1 n 2v 2 þ þ U ¼ 0: dv dv 8k1
2ð1 þ nÞ2
where A1 is the integration constant. Some solutions of the equilibrium equations of resistive MHD flows were obtained in [18,48,53,54]. Such solutions can be obtained again as special cases of the solution class in Eq. (76) if
v ¼ b þ 4k1 n, Eq. (70) becomes
2
9að1 nÞ2 ðk1 9aÞ
1 #1n ð1 nÞ2 : ½9ar 2 þ k1 ðz þ cÞ2 2ð1 þ nÞ
ð76Þ
!
¼ k1 f ðUÞ;
dps ¼ k2 f ðUÞ: dU
ð77Þ
ð86Þ
For these choices, we seek exact solutions to Eq. (56) using two transformations as we explain in the following two subcases. Case 2.1: Insert Eq. (86) into Eq. (56), we get
@ 2 U 1 @U @ 2 U þ 2 ¼ k1 f ðUÞ k2 r 2 f ðUÞ; @r 2 r @r @z
is given by For this solution, the quantity B
1 ¼ n 1 U n k1 ðc þ zÞ er 9aez ; B nþ1 1 r
1 d X2 2 dU 1 M 2
ð87Þ
where f ðUÞ is a function of U. Substituting Eqs. (63) and (65) into Eq. (87), we obtain
3169
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
½36aðn gÞ þ 4k1 g þ b
2
d U dn2
þ 2k1
dU k2 þ k1 f ðUÞ þ ðn gÞf ðUÞ ¼ 0: dn 9a ð88Þ
Equating the coefficients of like powers of g in both sides of Eq. (88), we get 2
d U
g0 : ð36an þ bÞ
dn2
þ 2k1
dU k2 þ k1 f ðUÞ þ nf ðUÞ ¼ 0; dn 9a
ð89Þ
" pffiffiffi # p ffiffiffi 3 3 1 2D U 2 2jrU 2 j2 ; r¼ þ V c ð2 3U 2 Þ1=3 ð2 3U 2 Þ4=3
ð101Þ
" pffiffiffi # p ffiffiffi 3 3 2 D U 2 2jrU 2 j2 1 j/ ¼ ; þ r ð2 3U 2 Þ1=3 ð2 3U 2 Þ4=3
ð102Þ
where
D U 2 ¼
2
d U
k g : ð4k1 36aÞ 2 2 f ðUÞ ¼ 0: 9a dn 1
ð90Þ
2
9að4k1 36aÞ d U : k2 dn2
ð91Þ
Substituting Eq. (91) into Eq. (89), we get 2
ð4k1 n þ kÞ
d U dn2
þ 2k1
dU ¼ 0; dn
ð92Þ
where k ¼ b þ 9ak1 ð4k1 36aÞ=k2 . Integration of Eq. (92) yields
ð93Þ
where c1 and c2 are the constants of integration. Therefore after using Eq. (63), we obtain the following exact solution class for Eq. (87).
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi U 2 ðr; zÞ ¼ c1 4k1 ½9ar2 þ k1 ðz þ cÞ2 þ k b þ c2 :
ð94Þ
From Eq. (91) we get,
k2 ðU 2 c2 Þ
3
:
ð95Þ
ð96Þ
Integrating the second part of Eq. (86) with respect to U, the static pressure is obtained as 2
ðU 2 c2 Þ2
ð104Þ
ð105Þ
@2U @2U k2 þ 4 a x þ k þ x f ðUÞ ¼ 0: 1 @z2 @x2 a
;
ð97Þ
where A2 is the integration constant. As mentioned in the text after Eq. (78) we can use the freedom of the functional dependence of M 2 on w to obtain exact solutions pffiffiffiffi wðr; zÞ to Eq. (51). If the Mach number M is chosen as M ¼ w then from Table 1 the solution wðUÞ is given by w ¼ 1 ½1 ð3=2ÞU2=3 . Hence we obtain an exact solution class to Eq. (51) as:
2 1 3 3 w2 ðr; zÞ ¼ 1 1 c1 ½4k1 ð9ar 2 þ k1 ðz þ cÞ2 Þ þ k b2 : 2
ð98Þ
Therefore the velocity field, gas pressure, conductivity and axial current density are obtained, respectively, as
KðU 2 Þ B qðU 2 Þ " !# pffiffiffi 2 2 KðU 2 Þ 16 3 2c41 k1 k1 ðc þ zÞ2 2 ; 81a þ ¼ Ir/ þ 1 qðU 2 Þ r2 ðU 2 c2 Þ2 ð2 3U 2 Þ3
v¼
ð99Þ " pffiffiffi # 2 2 3 2 72að9a k1 Þc41 k1 k ðU 2 Þ I2 4B 2 ; þ P ¼ A2 2qðU 2 Þ ð2 3U 2 Þ23 r 2 k2 ðU 2 c2 Þ2
ð106Þ
Equating the coefficients of like powers of x in both sides of Eq. (106), we get
x0 :
@2U þ k1 f ðUÞ ¼ 0; @z2
ð107Þ
x1 :
@2U k2 þ f ðUÞ ¼ 0: @x2 4a2
ð108Þ
From Eqs. (107) and (108), we have
2 k1 ðc þ zÞ 2 ¼ 4k1 c1 B er 9aez : r ðU 2 c2 Þ
ps ¼ ps2 ¼ A2
2
½81a2 r 2 þ k1 ðc þ zÞ2 :
x ¼ ar 2 ;
is given by For solution (95), the quantity B
72að9a k1 Þk1 c41
ðU 2 c2 Þ2
Case 2.2: In this subcase we consider the same choices shown in Eq. (86) but we use a different method to find exact solutions to Eq. (94). We present a new independent variable x as a quadratic function of r only where the stream function n is considered as a function of x and z. For this consideration we put
2
144ak1 c41 ð9a k1 Þ
16k1 c41
where a is a real number. Inserting expression (105) into Eq. (86), we obtain
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi U ¼ U 2 ¼ c1 4k1 n þ k þ c2 ;
f ðUÞ ¼ f ðU 2 Þ ¼
ð103Þ
2
jrU 2 j2 ¼
From Eq. (89), we have
f ðUÞ ¼
2
144að9a k1 Þk1 c41 ðk1 þ k2 r 2 ÞðU 2 c2 Þ3 ; k2
ð100Þ
2
@ U @2U ¼ l2 2 ; 2 @x @z where
ð109Þ
l2 ¼ k2 =ð4a2 k1 Þ. The general solution of Eq. (109) is
zÞ ¼ u ðz þ lxÞ þ u ðz lxÞ; Uðx; zÞ ¼ Uðx; 1 2
ð110Þ
where u1 and u2 are arbitrary functions. If f ðUÞ is a linear function of U, several exact solutions can be derived from the general solution in Eq. (110) when the functions u1 and u2 are chosen. In Table 8 are considered when several nonlinear cases for the function f ðUÞ u2 ¼ 0. The function f ðUÞ in Table 8 is determined using Eqs. (107) and (110) which imply 2 2 2 ¼ 1 @ U ¼ 1 @ U ¼ 1 @ u1 f ðUÞ ¼ f ðUÞ k1 @z2 k1 @z2 l @x2
¼
1 @ 2 u1 : l @x2
ð111Þ
and static pressure for solutions U 1 U 14 , which The quantity B are shown in Table 8, are obtained in Table 9. One can use [Tables zÞ in 1, 6, 7] to obtain the solution wðr; zÞ for each solution Uðr; Table 8 and the corresponding other physical variables of the original MHD Eqs. (1)–(5). A solution presented in [55,56] can be 4 of 3 and U obtained as a special case of the solution classes U Table 8 if one takes n ¼ 1. Case 3: Insert the following choices:
1 d X2 2 dU 1 M2
!
¼ f ðUÞ;
dps ¼ gðUÞ; dU
ð112Þ
3170
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
in Eq. (56), we get 2
2
@ U 1 @U @ U þ 2 ¼ f ðUÞ r 2 gðUÞ: @r 2 r @r @z Using Eq. (18) and
2 dg dz
ð113Þ
¼ 4ag þ b, Eq. (112) becomes
2
d U
dU 1 ¼ f ðUÞ ðn gÞgðUÞ: ½36aðn gÞ þ 4ag þ b 2 þ 2a dn 9a dn ð114Þ Equating the coefficients of like powers of g in both sides of Eq. (114) we get
g0 : ð36an þ bÞ
2
d U dn2
þ 2a
dU 1 ¼ f ðUÞ ngðUÞ; dn 9a
1 g : 2 ¼ gðUÞ: 288a2 dn
ð118Þ
where a and b are real constants to be determined later. The function FðnÞ expresses a trigonometric or hyperbolic function, and c is a real constant. The constant c can be determined according to the choice of the function FðnÞ. It can be any real number according to the form of the function gðuÞ and the choice of the function FðnÞ as shown in Table 10. For applying the solution method presented in Eq. (118) and Table 10, we consider the following examples.
gðUÞ ¼
n¼8 X
eighth
degree
an U n1 :
and
ð119Þ
n¼1
Table 8 Exact solutions of Eq. (106) for several nonlinear forms of the function f ðUÞ. The parameters used are l2 ¼ k2 =ð4a2 k1 Þ and n is any real number. No.
zÞ ¼ u ðx; zÞ Uðr; 1
k1 f ðUÞ
1
1 ¼ ðlar 2 þ zÞn U
n nðn 1ÞU 1
2
2 jÞ nðn 1Þðln jU
3
2 ¼ eðlar þzÞ U 3 ¼ sinn ðlar 2 þ zÞ U
4
4 ¼ cosn ðlar 2 þ zÞ U
5
5 ¼ tann ðlar 2 þ zÞ U
6
6 ¼ secn ðlar 2 þ zÞ U
2
n
7
7 ¼ cscn ðlar 2 þ zÞ U
8
8 ¼ cotn ðlar 2 þ zÞ U
9
9 ¼ sinh ðlar 2 þ zÞ U
10
10 ¼ coshn ðlar 2 þ zÞ U
11
11 ¼ tanhn ðlar 2 þ zÞ U
12
12 ¼ sechn ðlar 2 þ zÞ U
13
13 cschn ðlar 2 þ zÞ U
14
14 ¼ cothn ðlar 2 þ zÞ U
n
n2
n2 n
2 jÞ þ n2 ðln jU
2ðn1Þ n
2 U
3 n2 U nðn 1ÞU 3 n2 n
4 n n2 U nðn 1ÞU 4 n2
nþ2
5 n þ 2n2 U n þ nðn 1ÞU nðn þ 1ÞU 5 5 n2
6 n2 U nðn þ 1ÞU 6
6
;
a4 ¼
6
;
a6 ¼
b 4480a2 a3 b 128a2
32a2 ð28a6 b6 Þ b6
4480a2 a4 b6 2688a2 a2 6
b
;
; ;
a7 ¼
896a2 a b6
;
8 þ nðn 1ÞU n n þ 2n2 U nðn þ 1ÞU 8 8
n2
9 þ n2 U nðn 1ÞU 9
32a2 ð4a7 þ ab6 Þ 6
b
11 þ nðn 1ÞU n n 2n2 U nðn þ 1ÞU 11 11 nþ2
14 þ nðn 1ÞU n n 2n2 U nðn þ 1ÞU 14 14
n2
:
ð121Þ
ð122Þ
ð123Þ
ð124Þ
ð125Þ
1152aa2 ð1 nÞ
2
;
B¼
1152a2 2
ð1 nÞ
;
C¼
;
C¼
;
C¼
576a2 ð1 þ nÞb1n ð1 nÞ2
:
ð126Þ
:
ð127Þ
For FðnÞ ¼ sinh n:
1152aa2 ð1 nÞ
2
;
B¼
1152a2 2
ð1 nÞ
576a2 ð1 þ nÞb1n ð1 nÞ2
For FðnÞ ¼ cosh n:
nþ2
13 n þ n2 U nðn þ 1ÞU 13
b6
Example 2. gðUÞ ¼ A þ BUðnÞ þ CðUðnÞ aÞn where A; B; C, are real constants, n is not positive integer and FðnÞ ¼ sin n; cos n; sinh n; cosh n. 2 . Hence we obtain four In this situation, from Table 10, c ¼ 1n classes of exact solutions to Eq. (116) as shown in Table 12. For these solutions, the constants A, B and C are determined as follows. For FðnÞ ¼ sin n; cos n:
n2
12 n þ n2 U nðn þ 1ÞU 12
32a2 ð28a6 þ b6 Þ
; a2 ¼
" # 3 n¼8 X 1 1 U 4 a f ðU 4 Þ ¼ 4a cosh þb an U n1 4 288a2 b n¼1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2a þ 3 ðU 4 aÞ b6 ðU 4 aÞ6 : 3b
A¼
n2
ð120Þ
" # 3 n¼8 X 1 1 U 3 a 4a sinh þ b an U n1 f ðU 3 Þ ¼ 3 288a2 b n¼1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2a þ 3 ðU 3 aÞ ðU 3 aÞ6 þ b6 ; 3b
n2 n
10 n þ n2 U nðn 1ÞU 10
:
b6
" # 3 n¼8 X 1 1 U 1 a f ðU 1 Þ ¼ 4a sin þb an U n1 1 2 288a b n¼1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2a þ 3 ðU 1 aÞ ðU 1 aÞ6 b6 ; 3b " # 3 n¼8 X 1 1 U 2 a 4a cos þ b an U n1 f ðU 2 Þ ¼ 2 2 288a b n¼1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2a 3 ðU 2 aÞ ðU 2 aÞ6 b6 ; 3b
nþ2
nþ2
a2 ¼
The function f ðUÞ is determined from Eq. (117) for each solution U i ; i ¼ 1; . . . ; 4 of Table 11, respectively, as
7 n n2 U nðn þ 1ÞU 7
nþ2
2688a2 a5
A¼
nþ2 n
nþ2
b
;
ð116Þ
To seek solutions satisfy both of Eqs. (115) and (116), we apply a solution method that constructed in [31]. For such method we put
UðnÞ ¼ a þ bðFðnÞÞc ;
6
For FðnÞ ¼ sinh n; cosh n, the constants ai ; i ¼ 3; . . . ; 8 are the same as described in Eq. (120) while a1 and a2 are determined as:
ð117Þ
of
a5 ¼
a1 ¼
1 dU ð4an þ bÞgðUÞ 2a : 288a2 dn
Example 1. gðUÞ is a polynomial FðnÞ ¼ sin n; cos n; sinh n; cosh n. Consider the polynomial
a3 ¼
32a2 ð4a7 ab6 Þ
a8 ¼
Substitution of Eq. (116) into Eq. (115) yields
f ðUÞ ¼
a1 ¼
ð115Þ
2
d U
1
In this situation from Table 10 we get c ¼ 1=3. Using Eqs. (118) and (119) into Eq. (116) we obtain four classes of exact solutions to Eq. (116) (see Table 11). For these solutions the coefficients ai ; i ¼ 1; . . . ; 8 appeared in Eq. (119) are determined as follows. For FðnÞ ¼ sin n; cos n:
A¼
1152aa2 ð1 nÞ
2
;
B¼
1152a2 2
ð1 nÞ
576a2 ð1 þ nÞb1n ð1 nÞ2
:
ð128Þ
3171
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175 Table 9 14 shown in Table 8. The symbols v , and static pressure for solutions U 1 U The quantity B i i ¼ 1; . . . ; 14 denote integration constants and the vector quantity B is defined as B ¼ er 2larez . No.
B
1
n r
2
n r
3
ps
lar þ z 2
n1
B
n1 ðlar2 þzÞn e B
n1 n 2 sin l a r þ z cos l ar2 þ z B r
lar2 þ z
4
nr cosn1
5
n1 n r tan
6
n nþ1 r sec
7
nr cscnþ1
8
nr cotn1
9
n r
sinh
10
n r
cosh
11
n r
tanh
12
nr sech
13
nr csch
14
nr coth
lar2 þ z sec2 lar2 þ z B
lar2 þ z sin lar 2 þ z B
lar2 þ z cos lar2 þ z B
n1
lar2 þ z csc2 lar2 þ z B
lar2 þ z cosh lar 2 þ z B
n1
lar2 þ z sinh lar 2 þ z B
n1
lar2 þ z sech2 lar2 þ z B
nþ1
lar 2 þ z sinh lar2 þ z B
nþ1
FðnÞ ¼ tan n; cot n; tanh n; coth n
gðUÞ is a polynomial of degree n
gðUÞ is a polynomial of second or third degree c2 2 c ¼ 2 for n ¼ 2, c ¼ n ) c ¼ 1n, for an integer n > 1,
c ¼ 2, for n ¼ 1. c¼
2 1n,
n is not
cþ2 c ¼m
c
3 1 2
1 3 4
1 1
1 2 2 3
3 2 4 3
4
.. .
.. .
2 3
13
U 2 ¼ a þ bðcos nÞ
sinh n
f ðU 4 Þ ¼
6 .. .
Using Eq. (117), the function f ðUÞ is determined for each solution U i , i ¼ 1; . . . ; 4 of Table 12, respectively, as
" # 1n 2 1 1 U 1 a f ðU 1 Þ ¼ 4a sin þ b gðU 1 Þ 288a2 b 1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4ab 2 ðU 1 aÞ ðU 1 aÞn1 bn1 ; 1n " # 1n 2 1 1 U 2 a 4a cos þ b gðU 2 Þ f ðU 2 Þ ¼ 288a2 b 1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4ab 2 þ ðU 2 aÞ ðU 2 aÞn1 bn1 ; 1n " # 1n 2 1 1 U 3 a f ðU 3 Þ ¼ 4a sinh þ b gðU 3 Þ 288a2 b 1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4ab 2 ðU 3 aÞ bn1 þ ðU 3 aÞn1 ; 1n
U 1 ¼ a þ bðsin nÞ
cos n
13
U 3 ¼ a þ bðsinh nÞ
ð129Þ
b3 ¼
13
4 3
U n1 þ h1
n¼1 n
U n2 þ h2
cosh n csch nB
n¼1 n
U n3 þ h3
n¼1 n
U n4 þ h4
Pn¼8 an
Pn¼8 an
sinh nsechnB
" # 1n 2 1 1 U 4 a 4a cosh þ b gðU 4 Þ 288a2 b 1n qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4ab 2 ðU 4 aÞ bn1 ðU 4 aÞn1 : 1n
ð132Þ
576a2 ða3 þ ab2 Þ 2
b
1728a2 a 2
b
;
;
b4 ¼
b2 ¼ 576a2 b2
576a2 ð3a2 þ b2 Þ b2
:
; ð133Þ
For FðnÞ ¼ tanh n; coth n:
b1 ¼ ð131Þ
3b 3b
n¼1 n
Pn¼8 an
P n1 Example 3. gðUÞ ¼ n¼4 where bi , i ¼ 1; . . . ; 4 are real n¼1 bn U constants and FðnÞ ¼ tan n; cot n; tanh n; coth n. In this situation, from Table 10, c ¼ 1. Hence we obtain four classes of exact solutions to Eq. (116) as shown in Table 13. For these solutions, the constants bi , i ¼ 1; . . . ; 4 are determined as follows. For FðnÞ ¼ tan n; cot n:
b1 ¼
ð130Þ
U 4 ¼ a þ bðcosh nÞ
ps Pn¼8 an
4 b 3 3 cos ncsc nB 4 b 3 3 sin n sec nB
13
cosh n
a positive integer
B
UðnÞ
sin n
gðUÞ ¼ A þ BU þ CðU aÞn þ DðU aÞm c2 c ¼n
Table 11 Solutions for Eq. (116) where g(U) is a polynomial of eight degree and and the static FðnÞ ¼ sin n; cos n; sinh n; cosh n. The corresponding vector field B pressure ps are determined. A new vector field, B ¼ 2a ðz þ cÞer 18aez , is used. The r parameters hi , i ¼ 1; . . . ; 4 are integration constants and n ¼ 9ar 2 þ aðz þ cÞ2 . FðnÞ
c ¼ 1 for n ¼ 3.
gðUÞ ¼ A þ BU þ CðU aÞn
c2 c ¼n)
lar2 þ z csch2 lar2 þ z B
Table 10 Determination of c for solution (118). The parameters A, B and C are real constants. FðnÞ ¼ sin n; cos n; sinh n; cosh n
lar2 þ z cosh lar2 þ z B
n1
2ðn1Þ
2
þ v1
n2kk12 U 22 ðlnðU 2 ÞÞ n þ v2 2ðn1Þ 2 n2kk12 U 3 n U 23 þ v3 2ðn1Þ 2 n2kk12 U 4 n U 24 þ v4 2ðnþ1Þ 2ðn1Þ 2 n2kk12 U 5 n þ U 5 n þ 2U 25 þ v5 2ðnþ1Þ 2 n2kk12 U 6 n U 26 þ v6 2ðnþ1Þ 2 n2kk12 U 7 n U 27 þ v7 2ðnþ1Þ 2ðn1Þ 2 n2kk12 U 8 n þ U 8 n þ 2U 28 þ v8 2ðn1Þ 2 n2kk12 U 9 n þ U 29 þ v9 2ðn1Þ 2 n2kk12 U 10n þ U 210 þ v10 2ðnþ1Þ 2ðn1Þ 2 n2kk12 U 11n þ U 11n 2U 211 þ v11 2ðnþ1Þ 2 n2kk12 U 12n þ U 212 þ v12 2ðnþ1Þ 2 n2kk12 U 13n þ U 213 þ v13 2ðnþ1Þ 2ðn1Þ 2 n2kk12 U 14n þ U 14n 2U 214 þ v14
lar2 þ z sin lar 2 þ z B
2ðn1Þ
2
n2kk12 U 1 n
b3 ¼
576a2 ða3 ab2 Þ 2
b
1728a2 a b2
; b2 ¼
; b4 ¼
576a2 b2
:
576a2 ð3a2 b2 Þ b2
; ð134Þ
3172
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
Table 12 Solutions for Eq. (116) where gðUÞ ¼ A þ BUðnÞ þ CðUðnÞ aÞn . A; B; C are real constants, n is not a positive integer and FðnÞ ¼ sin n; cos n; sinh n; cosh n. The parameters qi , i ¼ 1; . . . ; 4 are integration constants and n ¼ 9ar2 þ aðz þ cÞ2 . FðnÞ
B
UðnÞ
sin n
U 1 ¼ a þ bðsin nÞ
cos n
U 2 ¼ a þ bðcos nÞ1n
2 1n 2
sinh n
U 3 ¼ a þ bðsinh nÞ
cosh n
2 1n
2b 1n 2b 1n
2 1n
U 4 ¼ a þ bðcosh nÞ
Using Eq. (117), the function f ðUÞ is determined for each solution U i , i ¼ 1; . . . ; 4 of Table 12, respectively, as
f ðU 1 Þ ¼
1 2a 1 U 1 a þ b gðU 1 Þ ½b2 þ ðU 1 aÞ2 ; 4a tan 288a2 b b
ð135Þ
1 4a cot1 f ðU 2 Þ ¼ 288a2
U2 a 2a þ b gðU 2 Þ þ ½b2 þ ðU 2 aÞ2 ; b b ð136Þ
f ðU 3 Þ ¼
1 2a 1 U 3 a 4a tanh þ b gðU 3 Þ ½b2 ðU 3 aÞ2 ; 288a2 b b ð137Þ
f ðU 4 Þ ¼
ps C AU 1 þ B2 U 21 þ 1þn ðU 1 aÞ1þn þ q1
1þn 2b 1n nB 1n cos n sin 1þn 2b 1n sin n cos1n nB
1 2a 1 U 4 a þ b gðU 4 Þ ½b2 ðU 4 aÞ2 : 4a coth 288a2 b b ð138Þ
One can use Tables 1, 6 and 7 to obtain the solution wðr; zÞ for each solution Uðr; zÞ in Tables 11–13 and the corresponding other physical variables of the original MHD Eqs. (1)–(5) and (49). Results and discussion It should be pointed out that Eqs. (29) and (63) constrain the solution class, in which Eqs. (29) and (63) actually define the shape of the flux surfaces, since the L.H.S of Eq. (29) or Eq. (63) is eventually a constant along the flux surface, by construction. Eq. (51) is identical in form to the corresponding ideal equilibrium equation. Also, the resistive effect (Eq. (53)) decouples from the rest of the equations which govern the ideal MHD equilibrium. Therefore, the equilibrium solutions found here are effectively the ideal MHD solutions. The only difference is that the plasma conductivity, or the toroidal loop voltage if the latter is also allowed to be a two-dimensional function of ðr; zÞ, has been specifically chosen to satisfy Eq. (53). The requirement of a constant conductivity can be include the existence of the resistive MHD equilibrium solution here by taking M ¼ const, ps ¼ const and X 2 / w. These choices imply, form Eq. (51), D w ¼ const which is equivalent to the conductivity being constant from Eq. (53). Previously, in [48] it is shown that the axisymmetric MHD equilibrium states with finite resistivity and flows parallel to the magnetic field are governed by a second-order partial differential equation for the poloidal magnetic flux function coupled with a Bernoulli type equation for the plasma density. For incompressible flows that partial differential equation becomes elliptic and decouples from the Bernoulli equation [13]. The equilibrium presented in [48] was a solution for linear type of that equation where the 2 d X s choices 12 dU ¼ const and dp ¼ const were considered. Here, dU 1M 2 we have considered several nonlinearities in the equilibrium equations for finding exact equilibria to the governing equations. These nonlinearities are polynomials, fractional functions and algebraic functions of the magnetic flux. Also, solutions were constructed
1þn 1n
cosh n sinh sinh n cosh
1þn 1n
C AU 2 þ B2 U 22 þ 1þn ðU 2 aÞ1þn þ q2
nB
C AU 3 þ B2 U 23 þ 1þn ðU 3 aÞ1þn þ q3
nB
C AU 4 þ B2 U 24 þ 1þn ðU 4 aÞ1þn þ q4
Table 13 Solutions for Eq. (116) where g(U) is a polynomial of fourth degree and FðnÞ ¼ tan n; cot n; tanh n; coth n. The parameters li , i ¼ 1; . . . ; 4 are integration constants and n ¼ 9ar 2 þ aðz þ cÞ2 . FðnÞ
Uðr; zÞ
B
tan n
U 1 ¼ a þ b tan n
b sec2 nB
cot n
U 2 ¼ a þ b cot n
bcsc nB
tanh n
U 3 ¼ a þ b tanh n
coth n
U 4 ¼ a þ b coth n
ps
2
Pn¼4 bn
bsech nB 2
b csch nB
U n1 þ l1
n¼1 n
U n2 þ l2
n¼1 n
U n3 þ l3
n¼1 n
U n4 þ l4
Pn¼4 bn
2
n¼1 n
Pn¼4 bn
Pn¼4 bn
by many authors [11,13,15,35,52] can be recovered as special cases of the solutions we presented. From the physical point of view we just describe the characteristics of one the obtained equilibria and its relevance to axisymmetric confinement systems. The toroidal equilibria depends crucial on the existence of magnetic surfaces. It is known that such surfaces in general do not exist in three dimensional toroidal geometry without any symmetry. As a matter of fact to construct tokamak or reversed-field pinch equilibria, closed toroidal magnetic surfaces can be well defined for these confinement systems because of axial symmetry. Confinement of plasma requires magnetic field with poloidal and toroidal components. Taking also into account the fact that the poloidal flow in the edge region of these systems plays a role in the transition from the low-confinement mode to the high-confinement mode, in the present paper we have obtained MHD equilibria with flows having non-vanishing poloidal components in addition to toroidal ones. The solutions obtained here have well defined magnetic surfaces which would be described by the relation wðx; yÞ ¼ const. Fig. 1(a)–(f) with the values of parameters listed in their captions show magnetic flux surfaces for the first solution class presented in Table 4 with Mach number given in Table 1. We have used the function v3 in Eq. (33). They describe O-shaped field lines which are formed providing a strong toroidal magnetic field in the plasma. Magnetic field structures for the poloidal field are shown in Fig. 2(a)–(f). These structures may help in the formation and stability of plasma on the hot magneto-fluid inside a device. Finally, the solutions obtained here may be of some relevance to axisymmetric confinement systems. Conclusion The equilibrium properties of some non-parallel ideal and some parallel resistive MHD plasmas with incompressible flows are investigated. In our study, we addressed many nonlinear issues of equations of motion and dealt with more than nonlinear term in the same equation. Transformation properties of a generalized Grad-Shafranov equation are analyzed for many cases with spatial symmetry in a framework that makes it possible to recover both the magnetized static and dynamic limits. The analysis of the symmetry properties of the Grad-Shafranov equation that describes axisymmetric MHD plasma equilibria without flows was developed in previous papers [57–61]. In partic-
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
3173
Fig. 1. Contour plots of magnetic surfaces describe plasma in axisymmetric confinement systems. The magnetic surfaces are plotted for the first solution class presented pffiffiffiffi in Table 4 with Mach number given in Table 1. The values of parameters used are: a ¼ 0; b ¼ 1; n ¼ c3 ¼ 0 with n ¼ r 2 þ cosh z and v3 ¼ cosh z. (a) M ¼ const, (b) M ¼ w, (c) M ¼ sinðwÞ, (d) M ¼ cosðwÞ, (e) M ¼ tanhðwÞ and (f) M ¼ sechðwÞ.
ular, in [57], conditional symmetries were introduced for the GradShafranov equation. The presence of such symmetries made it possible to identify some additional classes of solutions which describe D-shaped toroidal plasma equilibria. In [58], an analysis of the symmetry properties of some partial differential equations of relevance for plasma physics, including the Grad-Shafranov equation as a special case, has been performed. The present paper is devoted to the investigation of generalized forms of the Grad-
Shafranov equation that describes axisymmetric plasma equilibria in the presence of poloidal and toroidal incompressible flows. We have proposed constraint assumptions to deal with many cases of the equilibrium equations in the presence of mass flows. So, the results obtained in the above references can be recovered in our treatment. Also, linear magnetostatic and MHD equilibria were investigated in [18,46,48,53–56] can be recovered by the solutions obtained here.
3174
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175
Fig. 2. Ellipsoidal contour plots of the poloidal magnetic field for the fist solution in Table 4 with Mach number given in Table 1. The same parameters of Fig. 1 are used.
Examples of the obtained solutions to magnetic confinement fusion devices are discussed in which they are relevant to the study of stability of plasmas in laboratory. Acknowledgments The authors would like to thank the referee for his constructive and useful comments, which helped in putting the manuscript into its final form.
References [1] Krasnopolsky R, Li Z, Blandford RD. Magneto-centrifugal launching of jets from accretion disks. 2. Inner disk – driven winds. Astrophys J 2003;595:631–42. [2] Ouyed R, Clarke DA, Pudritz RE. Numerical simulations of astrophysical jets from Keplerian disks with periodic ejection. Astrophys J 2003;582:292–319. [3] Casse F, Keppens R. Radiatively inefficient magnetohydrodynamic accretionejection structures. Astrophys J 2004;601:90–103. [4] Nakamura M, Meier DL. Poynting flux–dominated jets in decreasing density atmospheres. I. The nonrelativistic current driven kink instability and the formation of wiggled structures. Astrophys J 2004;617:123–54.
S.M. Moawad et al. / Results in Physics 7 (2017) 3163–3175 [5] Low BC, Zhang M. The hydromagnetic origin of the two dynamical types of solar coronal mass ejections. Astrophys J 2002;564:53–6. [6] Zhang M, Low BC. Magnetic energy storage in the two hydromagnetic types of solar prominenc. Astrophys J 2004;600:1043–51. [7] Kumar N, Kumar P, Kumar A, Chauhan R. Role of equilibrium plasma flow on damping of slow MHD waves. Indian J Phys 2011;85:1879–86. [8] Chandra S. Investigation of diffusivity and viscosity in solar plasma. Indian J Phys 2013;87:601–6. [9] Ap Kuiroukidis. Stable non-separable tokamak equilibria with parallel flows. Plasma Phys Control Fusion 2010;52:015002–11. [10] Tsui KH, Navia CE, Serbeto A, Shigueoka H. Tokamak equilibria with non fieldaligned axisymmetric divergence-free rotational flows. Phys Plasmas 2011;18:072502–9. [11] Shi B. Semi-analytic approach to diverted tokamak equilibria with incompressible toroidal and poloidal flows. Nucl Fusion 2011;51:023004–12. [12] Throumoulopoulos GN, Pantis G. Magnetohydrodynamic equilibria of a cylindrical plasma with poloidal mass flow and arbitrary cross sectional shape. Plasma Phys Control Fusion 1996;38:1817–23. [13] Tasso H, Throumoulopoulos GN. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows. Phys Plasmas 1998;5:2378–83. [14] Simintzis Ch, Throumoulopoulosand GN, Pantis G. Analytic magnetohydrodynamic equilibria of a magnetically confined plasma with sheared flows. Phys Plasmas 2001;8:2641–8. [15] Throumoulopoulos GN, Poulipoulis G, Pantisand G, Tasso H. Exact magnetohydrodynamic equilibria with flow and effects on the Shafranov. Phys Lett A 2003;317:463–9. [16] Khater AH, Moawad SM. Exact solutions for axisymmetric ideal magnetized plasma steady state with incompressible poloidal flow. Phys Plasmas 2004;11:3015–22. [17] Khater AH, Moawad SM. Equilibrium properties and exact solutions for twodimensional nonlinear force-free magnetic fields with mass flow. Phys Plasmas 2005;12:052902–11. [18] Khater AH, Moawad SM. Exact equilibria for nonlinear cylindrical ideal magnetohydrodynamic plasma with steady incompressible flow and arbitrary cross sectional shape. Phys Plasmas 2009;16:052504–11. [19] Guazzotto L, Betti R. Magnetohydrodynamics equilibria with toroidal and poloidal flow. Phys Plasmas 2005;12:056107. [20] Petrie GJA, Tsinganos K, Neukirch T. Steady 2D prominence-like solutions of the MHD equations with field-aligned compressible flow. Astron Astrophys 2005;429:1081–92. [21] Throumoulopoulos GN, Tasso H, Poulipoulis G. Magnetohydrodynamic ‘cat eyes’ and stabilizing effects of plasma flow. J Phys A: Math Theor 2009;42:335501–12. [22] Andreussi GN, Morrison PJ, Pegoraro F. MHD equilibrium variational principles with symmetry. Plasma Phys Control Fusion 2010;52:055001–23. [23] Ap Kuiroukidis, Throumoulopoulos GN. Symmetric and asymmetric equilibria with non-parallel flows. Phys Plasmas 2012;19:022508. [24] Sahu B, Roychoudhury R. Effect of finite ion temperature on arbitrary amplitude dust ion acoustic solitary waves in quantum plasma. Indian J Phys 2012;86:401–5. [25] Jawad AJ, Johnson S, Yildirim A, Kumar S, Biswas A. Soliton solutions to coupled nonlinear wave equations in (2+1)-dimensions. Indian J Phys 2013;87:281–7. [26] Noreen S, Hayat T, Alsaedi A, Qasim M. Mixed convection heat and mass transfer in peristaltic flow with chemical reaction and inclined magnetic field. Indian J Phys 2013;87:889–96. [27] Garai S, Banerjee D, Janaki MS, Chakrabarti N. Shear flow instability in incompressible dusty plasma with a density dependent viscosity. Indian J Phys 2016;90:717–24. [28] Moawad SM. Equilibrium properties variational principles and linear stability for steady-state two-dimensional ideal gravitating plasma of a barotropic compressible flow. Can J Phys 2012;90:305–12. [29] Moawad SM. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field. J Plasma Phys 2013;79:873–83. [30] Moawad SM. Exact equilibria for nonlinear force-free magnetic fields with its applications to astrophysics and fusion plasmas. J Plasma Phys 2014;80:173–95. [31] Moawad SM. Trigonometric and hyperbolic functions method for constructing analytic solutions to nonlinear plane magnetohydrodynamics equilibrium equations. Phys Plasmas 2015;22:022130.
3175
[32] Moawad SM, Ibrahim DA. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows. Phys Plasmas 2016;23:082502. [33] Toylor RJ, Gauvreau JL, Gilmore PA, Gourdain Lafontesse DJ, Schmitz LW. Initial plasma results from the Electric Tokamak. Nucl Fusion 2002;42:46–51. [34] Erents SK, Chankin AV, Matthews GF, Stangeby PC. Parallel flow in the JET scrape-off layer. Plasma Phys Control Fusion 2000;42:905–15. [35] Ono M, Kaye SM, Peng YKM, Barnes G, Blanchard W, Carter MD, et al. Studies of the m/n = 2/1 neoclassical tearing mode onset and structure in the national sphereical torus experiment. Nucl Fusion 2000;40:557–91. [36] Lovelace RVE, Mehanian C, Mobarry CM, Sulkanen ME. Theory of axisymmetric magnetohydrodynamic flow: disks. Astrophys J Suppl Ser 1986;62:1–37. [37] Bogoyavlenskij OI. Astrophysical jets as exact plasma equilibria. Phys Rev Lett 2000;84:1914–7. [38] Bogoyavlenskij OI. MHD model of astrophysical jets. Phys Lett A 2000;276:257–66. [39] Bogoyavlenskij OI. Infinite symmetries of the ideal MHD equilibrium equations. Phys Lett A 2001;291:256–64. [40] Catto PJ, Krasheninnikov SI. Toroidal field effects on dipole equilibrium and stability at finite plasma pressure. Phys Plasmas 2000;7:1452–8. [41] Keppens R, Goedbloed JP. Stellar winds, dead zones, and coronal mass ejections. Astrophys J 2000;530:1036–48. [42] Hameiri E. The equilibrium and stability of rotating plasmas. Phys Fluids 1983;26:230–7. [43] Del Zanna L, Chiuderi C. Exact solutions for symmetric magnetohydrodynamic equilibria with mass flow. Astron Astrophys 1996;310:341–50. [44] McClements KG, Thyagaraja A. Azimuthally symmetric magnetohydrodynamic and two-fluid equilibria with arbitrary flows. Mon Not R Astron Soc 2001;323:733–42. [45] Goedbloed JP, Lifschitz A. Stationary symmetric magnetohydrodynamic flows. Phys Plasmas 1997;4:3544–64. [46] Bogoyavlenskij OI. Exact axially symmetric MHD equilibria. C R Math Acad Sci Series I 2000(331):569–74. [47] Gourdain PA, Leboeuf JN. Contour dynamics method for solving the GradShafranov equation with applications to high beta equilibria. Phys Plasmas 2004;11:4372–82. [48] Throumoulopoulos GN, Tasso H. On axisymmetric resistive MHD equilibria of an axisymmetric toroidal plasma with flow. Phys Plasma 2000;64:601–12. [49] Akbar NS, Nadeem S, Haq RU, Khan ZH. Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys 2013;87:1121–4. [50] Montgomery D, Bates JW, Lewis HR. Resistive magnetohydrodynamic equilibria in a torus. Phys Plasmas 1997;4:1080–6. [51] Avinash K, Bhattacharyya SN, Green BJ. Axisymmetric toroidal equilibrium with incompressible flows. Plasma Phys Control Fusion 1992;34:65. [52] Andruschenko ZHN, Cheremnykh OK, Edenstrasser JW. Effect of plasma flow on the equilibrium of an axisymmetric toroidal magnetic trap. J Plasma Phys 1997;58:421–32. [53] Kuiroukidis AP, Throumoulopoulos GN. An analytic nonlinear toroidal equilibrium with flow. Plasma Physics Control Fusion 2014;56:075003–19. [54] Cicogna G, Pegoraro F. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach. Phys Plasmas 2015;22:022520–8. [55] Throumoulopoulos GN, Tasso H. On axisymmetric resistive magnetohydrodynamic equilibria with flow free of Pfirsch-Schlüter diffusion. Phys Plasmas 2003;10:2382–8. [56] Atanasiu CV, Günter S, Lackner K, Miron IG. 30th EPS Conference on Contr. analytical solutions to the Grad-Shafranov equation for diverted plasmas. Fusion Plasma Phys. St. Petersburg, ECA, vol. 27A; 2003. P-2.104. [57] Cicogna G, Pegoraro F, Ceccherini F. Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation. Phys Plasmas 2010;17:102506. [58] Cicogna G, Ceccherini F, Pegoraro F. Applications of symmetry methods to the theory of plasma physics, symmetry, integrability and geometry: methods and applications (SIGMA) 2006;2:017. [59] White RH, Hazeltine RD. Symmetry analysis of the Grad-Shafranov equation. Phys Plasmas 2009;16:123101. [60] Cicogna G. Symmetry classification of quasi-linear PDE’s containing arbitrary functions. Nonlinear Dyn 2008;51:309–16. [61] Cicogna G. Addendum to: symmetry classification of quasi-linear PDE’s. II: an exceptional case. Nonlinear Dyn 2012;67:2909–12.