Some Cases of Extensions of Twisted Group Schemes over a Discrete Valuation Ring

Some Cases of Extensions of Twisted Group Schemes over a Discrete Valuation Ring

Journal of Algebra 227, 474᎐498 Ž2000. doi:10.1006rjabr.1999.8086, available online at http:rrwww.idealibrary.com on Some Cases of Extensions of Twis...

157KB Sizes 0 Downloads 11 Views

Journal of Algebra 227, 474᎐498 Ž2000. doi:10.1006rjabr.1999.8086, available online at http:rrwww.idealibrary.com on

Some Cases of Extensions of Twisted Group Schemes over a Discrete Valuation Ring Toshiaki Ohno Department of Mathematics, Faculty of Science and Engineering, Chuo Uni¨ ersity, Tokyo 112, Japan Communicated by Da¨ id Buchsbaum Received May 2, 1996

1. INTRODUCTION Let A be a discrete valuation ring with maximal ideal ᒊ, let K be the field of fractions of A, and let k s Arᒊ. Let G Ž ␭. be the model of ⺗ m, A given by G Ž ␭ . s Spec A X , Ž ␭ X q 1 .

y1

for some ␭Ž/ 0. g A Žcf. w4, 2.5x.. Then there is an exact sequence G Ž ␭ . ª ⺗ m, A ªi#⺗ m, A rŽ ␭ . ª0, 0 ªG x ¬␭ x q 1, where i is the closed immersion i: Spec ArŽ ␭. ¨ Spec A Žcf. w6, 3.1x.. Sekiguchi and Suwa computed several extensions with respect to G Ž ␭., for example, Ext 1 Ž G Ž ␭., G Ž ␮ . ., etc. Žcf. w6᎐9x.. Weisfeiler computed Ext 1 Ž G Ž ␭ ., ⺗ a, A . Žcf. w5x.. Let BrA be an unramified quadratic extension. We denote its Galois group by ⌫ s  e, ␴ 4 . We remark that B s  a q b␪ ¬ a, b g A4 where ␪ 2 y m␪ q n s 0 for some m, n g A and m2 y 4 n g A=. We denote the norm map by Norm: B=ª A=. Let G be the nontrivial BrA-form of ⺗ m . Then by Waterhouse and Weisfeiler Žcf. w4, 2.6x., we get G s Spec A w ␰ , ␶ x r Ž n ␰ 2 y m ␰␶ q ␶ 2 q m2 y 4 n . . 474 0021-8693r00 $35.00 Copyright 䊚 2000 by Academic Press All rights of reproduction in any form reserved.

475

TWISTED GROUP SCHEMES

Let G be the model of G. Then we get G s Spec A w ¨ , w x r Ž ␭ Ž n¨ 2 y m¨ w q w 2 . y Ž m2 y 4 n . ¨ . for some ␭Ž/ 0. g A Žcf. Section 2.2.. Then we have an exact sequence Žcf. Section 2.3. 0ª G ª G ªi#GA rŽ ␭. ª0. Ž x, y . ¬Ž ␭ x q 2, ␭ y q m.. Moreover, we have GB , GBŽ ␭., that is to say, G is the form of GBŽ ␭ . Žcf. Section 2.2.. Then there is the commutative diagram consisting of exact lines Žcf. Section 2.3., GBŽ ␭ . ª⺗ m, B ªj#⺗ m, BrŽ ␭. ª 0 0 ªG x x 0 ª G ª G ª i#GA rŽ ␭ . ª0, x x 0 0, where j is the closed immersion j: Spec BrŽ ␭. ¨ Spec B. Let Ł Br A⺗ m be the Weil restriction of ⺗ m from B to A. Then

Ł ⺗ m s Spec Aw X , Y , Z x r Ž Z Ž X 2 q mXY q nY 2 . y 1 . .

BrA

In this case, we are interested in the several extensions with respect to G and G . The purpose of this paper is to decide the following extension groups. We consider the fppf topology over Spec A and denote the corresponding site by Sch r A . Hence all cohomology groups area fppf cohomologies. In particular, we regard the first cohomology group H 1 Ž X, G . as the set of isomorphism classes of G-torsors over X. We consider only commutative extensions in Sch r A . Our results are as follows. 1. First cohomologies H 1 Ž G , ⺗ m , A . , ⺪r2⺪

Ž cf. 3.1.

H 1 Ž G Ž ␭. , G . , A=rNormŽ B= . = ⺪r2⺪ =

=

H Ž G , G . , A rNormŽ B . 1

H 1 Ž ⺗ a, A , G . , A=rNormŽ B= . .

Ž cf. 3.2. Ž cf. 3.3. Ž cf. 3.4.

476

TOSHIAKI OHNO

2. Extensions Ext 1 Ž G , ⺗ m , A . , ⺪r2⺪

Ž cf. 4.1.

Ext 1 Ž G Ž ␭ . , G . , ⺪r2⺪

Ž cf. 4.2.

Ext 1 Ž G , G . s 0.

Ž cf. 4.3.

3. The model of the Ł Br A ⺗ m , which is the Neron blow-up of ⺗ m, k ´ in Ł Br A ⺗ m , is the nontrivial extension of G by ⺗ m, A Žcf. Section 4.1.. 4. The model of the Ł Br A ⺗ m , which is the Neron ´ blow-up of Gk in Ł Br A ⺗ m , is the nontrivial extension of G Ž ␭ . by G Žcf. Section 4.2.. 5. Any element of Ext 1 Ž⺗ a, A , G . corresponds to the polynomial F Ž a1 , a p , a p 2 , . . . ; X . given in Section 4.4 Žcf. Section 4.4.. The results of 3.1 and 4.1 are suggested by Suwa.

2. FORMS AND MODELS 2.1. The Form of ⺗ m We will review the form of ⺗ m from Waterhouse and Weisfeiler Žcf. w4, 2.6x.. THEOREM 2.1.1.

Let G be the nontri¨ ial BrA-form of ⺗ m . Then G s Spec A w ␰ , ␶ x ,

where 1.

Relation n ␰ 2 y m ␰␶ q ␶ 2 s 4 n y m2 .

2. Comultiplication

␰¬ ␶¬

1 m y 4n 2

1 m y 4n 2

Ž Ž m2 y 2 n . ␰ m ␰ q 2␶ m ␶ y m Ž ␰ m ␶ q ␶ m ␰ . . Ž mn ␰ m ␰ q m␶ m ␶ y 2 n Ž ␰ m ␶ q ␶ m ␰ . . .

3. Counit

␰¬2 ␶ ¬ m.

TWISTED GROUP SCHEMES

477

4. Coin¨ erse

␰¬␰ ␶ ¬ m␰ y ␶ . Proof. The nontrivial action of ⌫ over Bw⺗ m x s Bw T, Ty1 x is given by ␴

Bw T, Ty1 x ª Bw T, Ty1 x. < < j j y1 T ¬ T . Then the ⌫-invariant subring Bw T, Ty1 x ⌫ is given by ⌫

B w T , Ty1 x s A w ␰ , ␶ x , where

␰ s T q Ty1 ␶ s ␪ T q Ž m y ␪ . Ty1 . Hence Aw G x has the form Aw ␰ , ␶ x, and the computations of relation, comultiplication, counit, and coinverse are easy. 2.2. The Model of G We will compute the model of G by using Neron blow-ups Žcf. w4, 2.6x.. ´ Let G be the model of G. Then

THEOREM 2.2.1.

G s Spec A w ¨ , w x , where 1.

Relation

␭Ž n¨ 2 y m¨ w q w 2 . s Ž m2 y 4 n . ¨ , 2. Comultiplication ¨ ¬¨ m1 q1 m¨

q

␭ m y 4n 2

Ž Ž m2 y 2 n . ¨ m ¨ y m¨ m w y mw m ¨ q 2 w m w .

w¬wm1q1mw ␭ q 2 Ž mn¨ m ¨ y 2 n¨ m w y 2 nw m ¨ q mw m w . , m y 4n

478

TOSHIAKI OHNO

3. Counit ¨ ¬0

w ¬ 0, 4. Coin¨ erse ¨ ¬¨ w ¬ m¨ y w,

for some ␭Ž/ 0. g A. Proof. We can get the G by using Neron blow-ups Žcf. w4, Sect. 1x.. Let ´ G1 be the Neron ´ blow-up of the subgroup defined by Ž ␰ , ␶ . s Ž2, m. of the special fiber Gk . Then Aw G1 x has the form A w G1 x s A ␰ , ␶ , ␲y1 Ž ␰ y 2 . , ␲y1 Ž ␶ y m . r Ž n ␰ 2 y m ␰␶ q ␶ 2 qm2 y 4 n . s A ␲y1 Ž ␰ y 2 . , ␲y1 Ž ␶ y m . r Ž n ␰ 2 y m ␰␶ q ␶ 2 q m2 y 4 n . s A w ¨ , w x r Ž ␲ Ž n¨ 2 y m¨ w q w 2 . y Ž m2 y 4 n . ¨ . , where ␰ s ␲ ¨ q 2, ␶ s ␲ w q m. The special fiber of G1 is ⺗ a , and we have k w G1 x , k w ¨ , w xrŽ ¨ .. Let G2 be the Neron blow-up of the subgroup ´ defined by Ž ¨ , w . s Ž␲y1 Ž ␰ y 2., ␲y1 Ž␶ y m.. s Ž0, 0. of the special fiber G1 k . Then Aw G2 x has the form A w G2 x s A ␲y1 Ž ␰ y 2 . , ␲y1 Ž ␶ y m . , ␲y2 Ž ␰ y 2 . , ␲y2 Ž ␶ y m . r Ž n ␰ 2 y m ␰␶ q ␶ 2 q m2 y 4 n . s A ␲y2 Ž ␰ y 2 . , ␲y2 Ž ␶ y m . r Ž n ␰ 2 y m ␰␶ q ␶ 2 q m2 y 4 n . s A w ¨ , w x r Ž ␲ 2 Ž n¨ 2 y m¨ w q w 2 . y Ž m2 y 4 n . ¨ . , where ␰ s ␲ 2 ¨ q 2, ␶ s ␲ 2 w q m. The special fiber of G2 is also ⺗ a . We continue the construction and we get G . The comultiplication is defined so that the morphism G ª G Ž x, y . ¬Ž ␭ x q 2, ␭ y q m. is homomorphism. The computation of counit and coinverse are easy.

479

TWISTED GROUP SCHEMES

PROPOSITION 2.2.2.

G is the form of GBŽ ␭ ..

Proof. We put ¨ sXqY

w s ␪ X q Ž m y ␪ .Y, and we have

␭Ž n¨ 2 y m¨ w q w 2 . y Ž m2 y 4 n . ¨ s y Ž m2 y 4 n . Ž ␭ XY q X q Y . . Then B w G x , B w X , Y x r Ž ␭ XY q X q Y . s B X , yX Ž ␭ X q 1 .

y1

, B X , Ž ␭ X q 1.

y1

s B w G Ž ␭. x .

2.3. Exact Sequence We have an exact sequence 0 ª G ª G ª i#GA rŽ ␭. ª 0, where i is a closed immersion i: Spec ArŽ ␭. ¨ Spec A. Let R be any faithfully flat A-algebra. The maps are G Ž R. ª 0 ªG GŽ R . ª i#GA rŽ ␭ .Ž R . < < j j Ž x, y . ¬Ž ␭ x q 2, ␭ y q m. Ž x⬘, y⬘. ¬Ž x⬘ modŽ ␭., y⬘ modŽ ␭... We obtain a commutative diagram consisting of exact lines, GBŽ ␭ . ª⺗ m, B ªj#⺗ m, BrŽ ␭. ª 0 0 ªG x x 0 ª G ª G ª i#GA rŽ ␭ . ª0, x x 0 0, where j is a closed immersion j: Spec BrŽ ␭. ¨ Spec B.

480

TOSHIAKI OHNO

3. FIRST COHOMOLOGY 3.1. H 1 Ž G , ⺗ m, A . LEMMA 3.1.1. H 1 Ž Spec A, ⺗ m , A . s 0. Proof. Cf. w2, III, 4.10x. COROLLARY 3.1.2.

Let H 1 Ž ⌫, B=. be the group cohomology. Then H 1 Ž ⌫, B= . s 0.

Proof. We note that the extension BrA is unramified. Then we obtain immediately. THEOREM 3.1.3. H 1 Ž G , ⺗ m , A . , H 1 Ž ⌫, ⺗ m , A Ž GBŽ ␭ . . . . Proof. There is the finite Galois covering GBŽ ␭ . ª G with Galois group ⌫, and the ⌫-action on GBŽ ␭ . is given as follows: ␴

Bw X, Ž ␭ X q 1.y1 x ª Bw X, Ž ␭ X q 1.y1 x < < j j Ž X ¬ yX ␭ X q 1.y1 . Then, by Hochschild᎐Serre spectral sequence Žcf. w2, III, 2.20x., we have the exact sequence ⌫

0 ª H 1 Ž ⌫, ⺗ m , A Ž GBŽ ␭. . . ª H 1 Ž G , ⺗ m , A . ª H 1 Ž GBŽ ␭ . , ⺗ m , A . . While we obtain H 1 Ž GBŽ ␭ . , ⺗ m , A . , H 1 Ž GBŽ ␭. , ⺗ m , B . s 0. Then we have H 1 Ž G , ⺗ m , A . , H 1 Ž ⌫, ⺗ m , A Ž GBŽ ␭ . . . .

THEOREM 3.1.4. H 1 Ž G , ⺗ m , A . , ⺪r2⺪.

481

TWISTED GROUP SCHEMES

Proof. In Theorem 3.1.3, we have ⺗ m , A Ž GBŽ ␭ . . sHom A A w T , Ty1 x , B X , Ž ␭ X q 1 .

ž

y1

/ ,B

X , Ž ␭ X q 1.

y1 =

Hence, using Corollary 3.1.2, we get H 1 Ž ⌫, ⺗ m , A Ž GBŽ ␭. . . , H 1 ⌫, B X , Ž ␭ X q 1 .

ž

n

y1 =

/

s  aŽ ␭ X q 1. ¬ ␴ Ž aŽ ␭ X q 1.

n

. aŽ ␭ X q 1.

r  ␴ Ž b Ž ␭ X q 1.

m

n

s 1, a g B=, n g ⺪ 4

. rb Ž ␭ X q 1.

m

¬ b g B=, m g ⺪ 4

, ⺪r2⺪. Then we obtain H 1 Ž G , ⺗ m , A . , ⺪r2⺪.

3.2. H 1 Ž G Ž ␭., G . THEOREM 3.2.1. H 1 Ž G Ž ␭. , G . , A=rNormŽ B= . = ⺪r2⺪. Proof. As in Theorem 3.1.3, we have H 1 Ž G Ž ␭ . , G . , H 1 Ž ⌫, G Ž GBŽ ␭ . . . , where GŽ GBŽ ␭ . . s Hom AŽ Aw ␰ , ␶ x, Bw X, Ž ␭ X q 1.y1 x.. Since m y 2 ␪ g B= Žwe remark that BrA is unramified., for an element of GŽ GBŽ ␭. ., there is a commutative diagram, T ¬ aŽ ␭ X q 1. n < < l l y1 y1 y1 x Ž . w w Ž T q T , ␪ T q m y ␪ T gB T, T ªB X, ␭ X q 1.y1 x ­ ᎐ ␰,

­ ᎐ ␶

D p g Aw ␰ , ␶ x.

Hence we have Hom A A w ␰ , ␶ x , B X , Ž ␭ X q 1 .

ž

y1

n

/

,  Ž a Ž ␭ X q 1 . q ay1 Ž ␭ X q 1 . q Ž m y ␪ . ay1 Ž ␭ X q 1 .

yn

yn

, ␪ aŽ ␭ X q 1.

. ¬ a g B=, n g ⺪ 4

n

.

482

TOSHIAKI OHNO

, Hom B B w T , Ty1 x , B X , Ž ␭ X q 1 .

ž

, B X , Ž ␭ X q 1.

y1 =

y1

/

;

however, we must define a new ⌫-action ␳ in place of ␴ on Bw X, Ž ␭ X q 1.y1 x= so that the following diagram is commutative:

Ž aŽ ␭ X q 1.

n

q ay1 Ž ␭ X q 1 .

yn

, yn

n

␪ a Ž ␭ X q 1 . q Ž m y ␪ . ay1 Ž ␭ X q 1 . . ¬ a Ž ␭ X q 1 . ᎐ l ᎐ < < l Ž ␭. . y1 x= Ž w Ž . G GB ªB X, ␭ X q 1

n





6

6

GŽ GBŽ ␭. . ªBw X, Ž ␭ X q 1.y1 x= < < j j yn n yn y1 Ž ␴ Ž a. Ž ␭ X q 1. q ␴ Ž a. Ž ␭ X q 1. ,¬ ␴ Ž a. y1 Ž ␭ X q 1. 6

6

␪␴ Ž a .

y1

Ž ␭ X q 1.

yn

q Ž m y ␪ . ␴ Ž a. Ž ␭ X q 1.

n

..

Hence, we get H 1 Ž ⌫, G Ž GBŽ ␭ . . . , H 1 ⌫, B X , Ž ␭ X q 1 .

ž

y1 =

n

s  aŽ ␭ X q 1. ¬ ␳ Ž aŽ ␭ X q 1. r  ␳ Ž b Ž ␭ X q 1. n

m

/ n

. aŽ ␭ X q 1.

. rb Ž ␭ X q 1.

s  aŽ ␭ X q 1. ¬ ␴ Ž a.

y1

r  1r␴ Ž b . b Ž ␭ X q 1 .

m

n

s 1, a g B=, n g ⺪ 4

¬ b g B=, m g ⺪ 4

a s 1, a g B=, n g ⺪ 4

2m

¬ b g B=, m g ⺪ 4

, A=rNormŽ B= . = ⺪r2⺪. Then we obtain H 1 Ž G Ž ␭. , G . , A=rNormŽ B= . = ⺪r2⺪.

Remark 3.2.2. Let A be complete and let k be finite field. Then Žcf. w3, V, 2, Remarksx. we get A=rNormŽ B= . s 0.

483

TWISTED GROUP SCHEMES

3.3. H 1 Ž G , G . THEOREM 3.3.1. H 1 Ž G , G . , A=rNormŽ B= . . Proof. As in Theorem 3.1.3, we have H 1 Ž G , G . , H 1 Ž ⌫, G Ž GBŽ ␭. . . , where GŽ GBŽ ␭. . s Hom AŽ Aw ␰ , ␶ x, Bw X, Ž ␭ X q 1.y1 x.. Since m y 2 ␪ g B=, for an element of GŽ GBŽ ␭. ., there is a commutative diagram, T ¬ aŽ ␭ X q 1. n < < l l T q Ty1 , ␪ T q Ž m y ␪ .Ty1 gBw T, Ty1 x ªBw X, Ž ␭ X q 1.y1 x ­ ᎐ ␰,

­ ᎐ ␶

j p g Aw ␰ , ␶ x.

Hence we have Hom A A w ␰ , ␶ x , B X , Ž ␭ X q 1 .

ž

y1

/

n

,  Ž a Ž ␭ X q 1 . q ay1 Ž ␭ X q 1 .

yn

,

n

␪ a Ž ␭ X q 1 . q Ž m y ␪ . ay1 Ž ␭ X q 1 . , Hom B B w T , Ty1 x , B X , Ž ␭ X q 1 .

ž

, B X , Ž ␭ X q 1.

y1 =

y1

yn

. ¬ a g B=, n g ⺪ 4

/

;

however, we must define the new ⌫-action ␳ in place of ␴ on Bw X, Ž ␭ X q 1.y1 x= so that the following diagram is commutative:

Ž aŽ ␭ X q 1.

n

q ay1 Ž ␭ X q 1 .

yn

, yn

n

␪ a Ž ␭ X q 1 . q Ž m y ␪ . ay1 Ž ␭ X q 1 . . ¬ a Ž ␭ X q 1 . ᎐ l ᎐ < < l Ž ␭ . y1 = GŽ GB . ªBw X, Ž ␭ X q 1. x

n





6

6

GŽ GBŽ ␭. . ªBw X, Ž ␭ X q 1.y1 x= < < j j n yn n y1 Ž ␴ Ž a. Ž ␭ X q 1. q ␴ Ž a. Ž ␭ X q 1. ,¬ ␴ Ž a. y1 Ž ␭ X q 1. 6

6

␪␴ Ž a .

y1

n

Ž ␭ X q 1. q Ž m y ␪ . ␴ Ž a. Ž ␭ X q 1.

yn

..

484

TOSHIAKI OHNO

Hence, we get H 1 Ž ⌫, G Ž GBŽ ␭ . . . , H 1 ⌫, B X , Ž ␭ X q 1 .

ž

y1 =

n

s  aŽ ␭ X q 1. ¬ ␳ Ž aŽ ␭ X q 1. r  ␳ Ž b Ž ␭ X q 1. n

m

/ n

. aŽ ␭ X q 1.

. rb Ž ␭ X q 1.

s  aŽ ␭ X q 1. ¬ ␴ Ž a.

y1

m

aŽ ␭ X q 1.

n

s 1, a g B=, n g ⺪ 4

¬ b g B=, m g ⺪ 4 2n

s 1, a g B=, n g ⺪ 4

r  1r␴ Ž b . b ¬ b g B= 4 s  a ¬ ␴ Ž a . s a, a g B= 4 r  ␴ Ž b . b ¬ b g B= 4 s A=rNormŽ B= . . Then we obtain H 1 Ž G , G . , A=rNormŽ B= . .

3.4. H 1 Ž⺗ a, A , G . THEOREM 3.4.1. H 1 Ž ⺗ a, A , G . , A=rNormŽ B= . . Proof. As in Theorem 3.1.3, we have H 1 Ž ⺗ a, A , G . , H 1 Ž ⌫, G Ž ⺗ a, B . . , where GŽ⺗ a, B . s Hom AŽ Aw ␰ , ␶ x, Bw X x.. Since m y 2 ␪ g B=, for an element of GŽ⺗ a, B ., there is a commutative diagram T ¬ a < < l l T q Ty1 , ␪ T q Ž m y ␪ .Ty1 gBw T, Ty1 x ªBw X x ­ ᎐ ␰,

­ ᎐ ␶

D p g Aw ␰ , ␶ x,

where Bw T, Ty1 x s Aw ␰ , ␶ x mA B. Hence we have Hom A Ž A w ␰ , ␶ x , B w X x . ,  Ž a q ay1 , ␪ a q Ž m y ␪ . ay1 . ¬ a g B= 4 , Hom B Ž B w T , Ty1 x , B w X x . , Bw X x s B= ;

=

TWISTED GROUP SCHEMES

485

however, we must define the new ⌫-action ␳ in place of ␴ on B= so that the following diagram is commutative:

Ž a q ay1 , ␪ a q Ž m y ␪ . ay1 . ¬ a < < l l GŽ⺗ a, B . ª B= ␳

6

GŽ⺗ a, B . ªB=. < < j j

6





6



6

Ž ␴ Ž a. q ␴ Ž a. y1 , ␪␴ Ž a. y1 q Ž m y ␪ . ␴ Ž a. . ¬ ␴ Ž a. y1 . Hence, we get H 1 Ž ⌫, G Ž ⺗ a, B . . , H 1 Ž ⌫, B= . s  a ¬ ␳ Ž a . a s 1, a g B= 4 r  ␳ Ž b . rb ¬ b g B= 4 s  a ¬ ar␴ Ž a . s 1, a g B= 4 r  1r␴ Ž b . b ¬ b g B= 4 s A=rNormŽ B= . . Then we obtain H 1 Ž ⺗ a, A , G . , A=rNormŽ B= . .

COROLLARY 3.4.2. H 1 Ž Spec A, G . , A=rNormŽ B= . .

4. EXTENSION 4.1. Ext 1 Ž G , ⺗ m, A . THEOREM 4.1.1.

Let

Ł ⺗ m s Spec Aw X , Y , Z x r Ž Z Ž X 2 q m ␭ XY q n ␭2 Y 2 . y 1 . ,

BrA

486

TOSHIAKI OHNO

where ␭Ž/ 0. g A. Then Ł Br A⺗ m is the nontri¨ ial extension of G by ⺗ m, A : ␣

0 ª ⺗m , A ª



Ł ⺗ m ª G ª 0.

BrA

The homomorphisms ␣ and ␤ are defined by the following ␣ * and ␤ *:

␣ *: A w X , Y , Z x r Ž Z Ž X 2 q m ␭ XY q n ␭2 Y 2 . y 1 . ª A w T , Ty1 x

Ž X , Y , Z . ¬ Ž T , 0, Ty2 . ␤ *: A w w, ¨ x r Ž ␭Ž n¨ 2 y m¨ w q w 2 . y Ž m2 y 4 n . ¨ . ª A w X , Y , Z x r Ž Z Ž X 2 q m ␭ XY q n ␭2 Y 2 . y 1 .

Ž w, y¨ . ¬ Ž XYZ, Y 2 Z . Ž cf. w4, 3.1x.. Proof. We know the nontrivial extension 0 ª ⺗m , A ª

Ł ⺗ m ª G ª 0.

BrA

Then we get Ł Br A⺗ m by the Neron blow-up of ⺗ m, k in Ł Br A ⺗ m . ´ THEOREM 4.1.2. Ext 1 Ž G , ⺗ m , A . , ⺪r2⺪. Proof. In general, there is an exact sequence Žcf. w1, III, 6.2.5x. 0 ª H02 Ž G , ⺗ m , A . ª Ext 1 Ž G , ⺗ m , A . ª H01 Ž G , H 1 Ž ⺗ m , A . . ª H03 Ž G , ⺗ m , A . ª Ext 2 Ž G , ⺗ m , A . , where H 1 Ž⺗ m, A . denotes the presheaf on Sch r A defined by X ¬ H 1 Ž X, ⺗ m, A ., and H02 Ž G , ⺗ m, A ., etc., are the Hochschild cohomology. First, we compute H02 Ž G , ⺗ m, A . and H03 Ž G , ⺗ m, A ..

487

TWISTED GROUP SCHEMES

We use Hopf algebra: ␦2

Bw G Ž ␭ . x mB Bw G Ž ␭. x ª Bw G Ž ␭. x mB Bw G Ž ␭ . x mB Bw G Ž ␭. x n j

Bw T, Ty1 x j Aw T, Ty1 x

p j

q o Aw G x mA Aw G x ª Aw G x mA Aw G x mA Aw G x. After tensoring B, the two cochain is C02 Ž GBŽ ␭. , ⺗ m , B . s Hom B Ž B w T , Ty1 x , B w G Ž ␭. x mB B w G Ž ␭ . x . m

n

,  a Ž ␭ X q 1 . m Ž ␭ X q 1 . ¬ a g B=, m, n g ⺪ 4 . We compute ␦ 2 Ž aŽ ␭ X q 1. m m Ž ␭ X q 1. n .. Then Žwe may assume that the action of G on ⺗ m, A is trivial. m

␦ 2 Ž aŽ ␭ X q 1. m Ž ␭ X q 1.

n

.

m

s Ž a m Ž ␭ X q 1. m Ž ␭ X q 1.

n

.Ž aŽ ␭ X q 1.

m

m Ž ␭ X q 1.

m

m Ž ␭ X q 1.

Ž aŽ ␭ X q 1.

m

n

m Ž ␭ X q 1. m Ž ␭ X q 1.

n

.Ž aŽ ␭ X q 1.

n y1

.

m n

m Ž ␭ X q 1. m 1. s Ž ␭ X q 1.

ym

y1

n

m 1 m Ž ␭ X q 1. .

Hence the cocycle condition implies m s n s 0. Then we have Z02 Ž GBŽ ␭ . , ⺗ m , B . , B=. Hence Z02 Ž G , ⺗ m, A . ; A. The coboundary map is linear with respect to constants, so Z02 Ž G , ⺗ m, A . s B02 Ž G , ⺗ m, A .. Then we obtain H02 Ž G , ⺗ m , A . s 0. Similarly, the three cochain is C03 Ž GBŽ ␭ . , ⺗ m , B . s Hom B Ž B w T , Ty1 x , B w G Ž ␭. x mB B w G Ž ␭ . x mB B w G Ž ␭ . x . l

m

n

,  a Ž ␭ X q 1 . m Ž ␭ X q 1 . m Ž ␭ X q 1 . ¬ a g B=, l, m, n g ⺪ 4 .

488

TOSHIAKI OHNO

We compute ␦ 3 Ž aŽ ␭ X q 1. l m Ž ␭ X q 1. m m Ž ␭ X q 1. n ., then m

l

␦ 3 Ž aŽ ␭ X q 1. m Ž ␭ X q 1. m Ž ␭ X q 1.

n

.

m

l

s Ž a m Ž ␭ X q 1. m Ž ␭ X q 1. m Ž ␭ X q 1.

n

. n y1

m

Ž aŽ ␭ X q 1. l m Ž ␭ X q 1. l m Ž ␭ X q 1. m Ž ␭ X q 1. . m m n Ž aŽ ␭ X q 1. l m Ž ␭ X q 1. m Ž ␭ X q 1. m Ž ␭ X q 1. . m

n y1

n

Ž aŽ ␭ X q 1. l m Ž ␭ X q 1. m Ž ␭ X q 1. m Ž ␭ X q 1. . m n Ž aŽ ␭ X q 1. l m Ž ␭ X q 1. m Ž ␭ X q 1. m 1 . m

m

s a m Ž ␭ X q 1 . m Ž ␭ X q 1 . m 1. Hence the cocycle condition implies a s 1, m s 0. Then we have n

Z03 Ž GBŽ ␭ . , ⺗ m , B . ,  Ž ␭ X q 1 . m 1 m Ž ␭ X q 1 . ¬ l, n g ⺪ 4 . l

Next we compute the element of Z03 Ž G , ⺗ m, A . given by T ¬ Ž ␭ X q 1 . m 1 m Ž ␭ X q 1 . g A w G x mA A w G x mA A w G x . l

n

Then we can easily see that l s n s 0, and there is only a unit element: T ¬ 1. Hence we have ⺪ 30 Ž G , ⺗ m, A . s 0 and H03 Ž G , ⺗ m , A . s 0. Therefore Ext 1 Ž G , ⺗ m , A . , H01 Ž G , H 1 Ž ⺗ m , A . . . Next, we compute H01 Ž G , H 1 Ž⺗ m, A ... We have Žwe may assume that the action of G on H 1 Ž⺗ m, A . is trivial. H01 Ž G , H 1 Ž ⺗ m , A . . , Hom Ayg r Ž G , H 1 Ž ⺗ m , A . . . Moreover, we obtain Hom Ay g r Ž G , H 1 Ž ⺗ m , A . . ; MorA Ž G , H 1 Ž ⺗ m , A . . s H 1 Ž ⺗m , A . Ž G . s H 1 Ž G , ⺗m , A . , ⺪r2⺪.

TWISTED GROUP SCHEMES

489

Hence Ext 1 Ž G , ⺗ m , A . ; ⺪r2⺪. While we have the existence of nontrivial extension in Theorem 4.1.1, Ext 1 Ž G , ⺗ m , A . , ⺪r2⺪.

4.2. Ext 1 Ž G Ž ␭., G . THEOREM 4.2.1.

Let

Ł ⺗ m s Spec

A X , Y , Z, Ž ␭ Z q 1 .

y1

BrA

r Ž X 2 q mXY q nY 2 q Ž m2 y 4 n . Ž ␭ Z q 1 . . , where ␭Ž/ 0. g A. Then Ł Br A ⺗ m is the nontri¨ ial extension of G Ž ␭. by G: ␥

0 ª Gª

Ł

BrA



⺗ m ª G Ž ␭ . ª 0.

The homomorphisms ␥ and ␦ are defined by the following ␥ * and ␦ *:

␥ *: A X , Y , Z, Ž ␭ Z q 1 .

y1

r Ž X 2 q mXY q nY 2 q Ž m2 y 4 n . Ž ␭ Z q 1 . . ª A w ␶ , ␰ x r Ž n ␰ 2 y m ␰␶ q ␶ 2 q m2 y 4 n .

Ž X , Y , Z . ¬ Ž ␶ , y␰ , 0 . ␦ *: A X , Ž ␭ X q 1 .

y1

ª A X , Y , Z, Ž ␭ Z q 1 .

y1

r Ž X 2 q mXY q nY 2 q Ž m2 y 4 n . Ž ␭ Z q 1 . . X ¬ Z. Proof. We know the nontrivial extension 0ªGª

Ł ⺗ m ª ⺗ m , A ª 0.

BrA

490

TOSHIAKI OHNO

Then we get Ł Br A ⺗ m by the Neron blow-up of Gk in Ł Br A ⺗ m . ´ THEOREM 4.2.2. Ext 1 Ž G Ž ␭. , G . , ⺪r2⺪. Proof. There is an exact sequence Žcf. w1, III, 6, 2.5x. 0 ª H02 Ž G Ž ␭ . , G . ª Ext 1 Ž G Ž ␭ . , G . ª H01 Ž G Ž ␭. , H 1 Ž G . . ª H03 Ž G Ž ␭. , G . ª Ext 2 Ž G Ž ␭ . , G . . First, we compute H02 Ž G Ž ␭., G . and H03 Ž G Ž ␭ ., G .. We use Hopf algebra: ␦2

Bw G Ž ␭ . x mB Bw G Ž ␭. x ª Bw G Ž ␭. x mB Bw G Ž ␭ . x mB Bw G Ž ␭. x n j

Bw T, Ty1 x j Aw ␰ , ␶ x

p j

q o Aw G Ž ␭ . x mA Aw G Ž ␭ . x ª Aw G Ž ␭. x mA Aw G Ž ␭. x mA Aw G Ž ␭. x. As in Theorem 4.1.2, we have H02 Ž G Ž ␭. , G . s 0. Similarly, the three cocycle is n

Z03 Ž GBŽ ␭ . , ⺗ m , B . ,  Ž ␭ X q 1 . m 1 m Ž ␭ X q 1 . ¬ l, n g ⺪ 4 . l

We compute the element of ⺪ 30 Ž G Ž ␭., G . given by n

l

␰ ¬ Ž ␭ X q 1. m 1 m Ž ␭ X q 1. q Ž ␭ X q 1.

yl

m 1 m Ž ␭ X q 1.

yn

g A w G Ž ␭ . x mA A w G Ž ␭ . x mA A w G Ž ␭ . x l

␶ ¬ ␪ Ž ␭ X q 1. m 1 m Ž ␭ X q 1. q Ž m y ␪ . Ž ␭ X q 1.

yl

n

m 1 m Ž ␭ X q 1.

yn

g A w G Ž ␭ . x mA A w G Ž ␭ . x mA A w G Ž ␭ . x . Then the cocycle condition implies that l s n s 0, so there is only a unit element, ␰ ¬ 2, ␶ ¬ m. Hence we have Z03 Ž G Ž ␭., G . s 0 and H03 Ž G Ž ␭. , G . s 0.

491

TWISTED GROUP SCHEMES

Therefore Ext 1 Ž G Ž ␭ . , G . , H01 Ž G Ž ␭. , H 1 Ž G . . . Next, we compute H01 Ž G Ž ␭ ., H 1 Ž G ... We have H01 Ž G Ž ␭. , H 1 Ž G . . , Hom Ayg r Ž G Ž ␭. , H 1 Ž G . . . Moreover, we obtain Hom Ay g r Ž G Ž ␭. , H 1 Ž G . . ; MorA Ž G Ž ␭ . , H 1 Ž G . . s H 1 Ž G . Ž G Ž ␭. . s H 1 Ž G Ž ␭. , G . , A=rNormŽ B= . = ⺪r2⺪. Hence Ext 1 Ž G Ž ␭ . , G . ; A=rNormŽ B= . = ⺪r2⺪. Let u: Spec A ª G Ž ␭ . be the neutral element of G Ž ␭.. Then for any element ␸ in Hom Ay g r Ž G Ž ␭ ., H 1 Ž G .., ␸ ( u s 0 g H 1 Ž G .ŽSpec A.. On the other hand, we have Žwe remark that H 1 Ž G .ŽSpec A. s H 1 ŽSpec A, G . , A=rNormŽ B=. Žcf. 3.4.2.. Hom Ay g r Ž G Ž ␭. , H 1 Ž G . .

;

H 1 Ž G . Ž G Ž ␭. .

ª

H 1 Ž G . Ž Spec A .

< j ␸

¬

< j ␸

¬

< j ␸(u

Then we get Ext 1 Ž G Ž ␭. , G . , Hom Ay g r Ž G Ž ␭. , H 1 Ž G . . ; ⺪r2⺪. While we have the existence of nontrivial extension in Theorem 4.2.1, Ext 1 Ž G Ž ␭. , G . , ⺪r2⺪.

4.3. Ext 1 Ž G , G . THEOREM 4.3.1. Ext 1 Ž G , G . s 0. Proof. There is an exact sequence Žcf. w1, III, 6.2.5x. 0 ª H02 Ž G , G . ª Ext 1 Ž G , G . ª H01 Ž G , H 1 Ž G . . ª H03 Ž G , G . ª Ext 2 Ž G , G . . First, we compute H02 Ž G , G . and H03 Ž G , G ..

492

TOSHIAKI OHNO

We use Hopf algebra, ␦2

Bw G Ž ␭ . x mB Bw G Ž ␭. x ª Bw G Ž ␭. x mB Bw G Ž ␭ . x mB Bw G Ž ␭. x n j

Bw T, Ty1 x j Aw ␰ , ␶ x

p j

q o Aw G x mA Aw G x ª Aw G x mA Aw G x mA Aw G x, where Aw G x s Aw ¨ , w x. As in Theorem 4.1.2, we have H02 Ž G , G . s 0. Similarly, the three cocycle is n

Z03 Ž GBŽ ␭ . , ⺗ m , B . ,  Ž ␭ X q 1 . m 1 m Ž ␭ X q 1 . ¬ l, n g ⺪ 4 . l

We compute the element of Z03 Ž G , G . given by n

l

␰ ¬ Ž ␭ X q 1. m 1 m Ž ␭ X q 1. q Ž ␭ X q 1.

yl

m 1 m Ž ␭ X q 1.

yn

g A w G x mA A w G x mA A w G x l

␶ ¬ ␪ Ž ␭ X q 1. m 1 m Ž ␭ X q 1. q Ž m y ␪ . Ž ␭ X q 1.

yl

n

m 1 m Ž ␭ X q 1.

yn

g A w G x mA A w G x mA A w G x .

Then the cocycle condition implies that l s n s 0, so there is only a unit element, ␰ ¬ 2, ␶ ¬ m. Hence we have Z03 Ž G , G . s 0 and H03 Ž G , G . s 0. Therefore Ext 1 Ž G , G . , H01 Ž G , H 1 Ž G . . . Next, we compute H01 Ž G , H 1 Ž G ... We have H01 Ž G , H 1 Ž G . . , Hom Ayg r Ž G , H 1 Ž G . . . Moreover, we obtain Hom Ay g r Ž G , H 1 Ž G . . ; MorA Ž G , H 1 Ž G . . s H 1 Ž G. Ž G . s H 1 Ž G , G. , A=rNormŽ B= . , H 1 Ž G . Ž Spec A . .

493

TWISTED GROUP SCHEMES

Let u: Spec A ª G be the neutral element of G . Then for any element ␸ in Hom Ay g r Ž G , H 1 Ž G .., ␸ ( u s 0 g H 1 Ž G .ŽSpec A.. On the other hand, we have Hom Ay g r Ž G , H 1 Ž G .. ; H 1 Ž G .Ž G . , H 1 Ž G .ŽSpec A.. < j ␸

< j ␸

¬

< j ␸(u

¬

Hence, we get Ext 1 Ž G , G . , Hom Ay g r Ž G , H 1 Ž G . . s 0.

4.4. Ext 1 Ž⺗ a, A , G . THEOREM 4.4.1. Suppose char Ž K . s 0 and char Ž k . s p ) 0. Then an element of Ext 1 Ž⺗ a, A , G . corresponds to F Ž a1 , a p , a p 2 , . . . ; X . s 1 q a1 X q q ap X p q q ⭈⭈⭈ q q

a12 2!

X 2 q ⭈⭈⭈ q

a1 a p pq1

Ž p y 1. !

X pq1 q

Ž p q 2. Ž p q 1.

Ž 2 p y 1 . ⭈⭈⭈ Ž p q 1 .

Ž 2 p . ⭈⭈⭈ Ž p q 1 .

X

2p

q

X py1

a12 a p

a1py 1 a p p!a2p

q ⭈⭈⭈ q

a1py 1

X pq2

X 2 py1 p!a1 a2p

Ž 2 p q 1 . ⭈⭈⭈ Ž p q 1 .

p!a1py 1 a2p

Ž 3 p y 1 . ⭈⭈⭈ Ž p q 1 .

X 2 pq1

X 3 py1

2

2

Ž p! . a3p Ž p! . a1 a3p q X 3p q X 3 pq1 Ž 3 p . ⭈⭈⭈ Ž p q 1 . Ž 3 p q 1 . ⭈⭈⭈ Ž p q 1 . 2

q ⭈⭈⭈ q

Ž p! . a1py1a3p X 4 py1 Ž 4 p y 1 . ⭈⭈⭈ Ž p q 1 . ⭈⭈⭈

494

TOSHIAKI OHNO

a1 a p 2

2

q ap2 X p q

p2 q 1

Xp

2

q1

q ⭈⭈⭈ ,

where pa p s

a1p

Ž p y 1. !

,

p2ap2 s

Ž p! .

py 2

a1p a ppy1

Ž p 2 y 1 . ⭈⭈⭈ Ž p q 1.

,...,

a1 , a p , a p 2 , . . . are nilpotents in BrŽ ␭., and, moreo¨ er,

Ž 2 ␪ y m . a1 , Ž 2 ␪ y m . a p , Ž 2 ␪ y m . a p 2 , . . . g Ar Ž ␭ . . Proof. We obtain the exact sequence 0 ª G ª G ª i#GA rŽ ␭. ª 0 in 2.3, so there is a long exact sequence 0 ª Hom Ay g r Ž ⺗ a, A , G . ª Hom Ayg r Ž ⺗ a, A , G . r

ª Hom Ay g r Ž ⺗ a, A , i#GA rŽ ␭ . . ª Ext 1 Ž ⺗ a, A , G . ª Ext 1 Ž ⺗ a, A , G . ª ⭈⭈⭈ . We know that Ext 1 Ž⺗ a, A , G . s 0, so Ext 1 Ž ⺗ a, A , G . , Hom Ayg r Ž ⺗ a, A , i#GA rŽ ␭ . . rr Ž Hom Ayg r Ž ⺗ a, A , G . . . Since Hom Ay g r Ž⺗ a, A , G . s 0, Ext 1 Ž ⺗ a, A , G . , Hom Ayg r Ž ⺗ a, A , i#GA rŽ ␭ . . s Hom A rŽ ␭ .yH o p f Ž Ar Ž ␭ . w ␰ , ␶ x , A w X x mA Ar Ž ␭ . . , Hom A rŽ ␭ .yH o p f Ž Ar Ž ␭ . w ␰ , ␶ x , Ar Ž ␭ . w X x . , where Hom A rŽ ␭ .yH o p f Ž ArŽ ␭.w ␰ , ␶ x, ArŽ ␭.w X x. denotes the set of ArŽ ␭.Hopf algebra homomorphisms. After tensoring B, there is a commutative diagram, T ¬ fŽ X . < < l l T q Ty1 , ␪ T q Ž m y ␪ .Ty1 gBrŽ ␭.w T, Ty1 x ª BrŽ ␭.w X x ­ ᎐ ␰,

­ ᎐ ␶

D D Ž .w x Ž g Ar ␭ ␰ , ␶ ªAr ␭.w X x.

495

TWISTED GROUP SCHEMES

Hence we have Hom A rŽ ␭.- H o p f Ž Ar Ž ␭ . w ␰ , ␶ x , Ar Ž ␭ . w X x . =

,  f Ž X . ¬ f Ž X . g Br Ž ␭ . w X x , fŽ X. q fŽ X.

y1

,␪fŽ X. q Žm y ␪ . fŽ X.

y1

g Ar Ž ␭ . w X x ,

fŽ X m 1 q 1 m X . s fŽ X . m fŽ X .4. Let f Ž X . s Ý iG 0 a i X i g BrŽ ␭.w X x=. Then the condition f Ž X m 1 q 1 m X . s f Ž X . m f Ž X . implies that f Ž X . has the following style: f Ž X . s 1 q a1 X q

a12 2!

a1 a p

q ap X p q q q q

X 2 q ⭈⭈⭈ q

pq1

a1py 1

X pq1 q

a1py 1 a p

Ž 2 p . ⭈⭈⭈ Ž p q 1 .

a12 a p

Ž p q 2. Ž p q 1.

p!a1 a2p

X2p q

p!a1py 1a2p

Ž 3 p y 1 . ⭈⭈⭈ Ž p q 1 .

X pq2 q ⭈⭈⭈

X 2 py1

Ž 2 p y 1 . ⭈⭈⭈ Ž p q 1 . p!a2p

X py1

Ž p y 1. !

Ž 2 p q 1 . ⭈⭈⭈ Ž p q 1 .

X 2 pq1 q ⭈⭈⭈

X 3 py1

2

2

Ž p! . a3p Ž p! . a1 a3p 3p q X q X 3 pq1 q ⭈⭈⭈ Ž 3 p . ⭈⭈⭈ Ž p q 1 . Ž 3 p q 1 . ⭈⭈⭈ Ž p q 1 . 2

Ž p! . a1py1a3p q X 4 py1 Ž 4 p y 1 . ⭈⭈⭈ Ž p q 1 . ⭈⭈⭈ a1 a p 2

2

q ap2 X p q

p q1 2

Xp

2

q1

q ⭈⭈⭈ ,

where pa p s

a1p

Ž p y 1. !

,

p2ap2 s

Ž p! .

py 2

a1p a ppy1

Ž p 2 y 1 . ⭈⭈⭈ Ž p q 1.

,...,

496

TOSHIAKI OHNO

a1 , a p , a p 2 , . . . are nilpotent in BrŽ ␭.. Hence

fŽ X. q fŽ X.

y1

a12

s2q2 q2 q2 q2

2!

X q ⭈⭈⭈ q2

a1py 1

2

a1 a p pq1

Ž p y 1. !

X py1

X pq1 q ⭈⭈⭈ p!a2p

Ž 2 p . ⭈⭈⭈ Ž p q 1 .

X 2 p q ⭈⭈⭈

p!a1py 1 a2p

Ž 3 p y 1 . ⭈⭈⭈ Ž p q 1 .

X 3 py1

2

Ž p! . a1 a3p q2 X 3 pq1 q ⭈⭈⭈ Ž 3 p q 1 . ⭈⭈⭈ Ž p q 1 . ⭈⭈⭈ q2

a1 a p 2 p2 q 1

␪fŽ X. q Žm y ␪ . fŽ X.

Xp

qŽ 2␪ y m. ap X p q m

qŽ 2␪ y m. qm

qm

a12

q ⭈⭈⭈ ,

2!

X q ⭈⭈⭈ qm

a1 a p pq1

Ž p q 2. Ž p q 1.

Ž p y 1. !

X pq1 X pq2 q ⭈⭈⭈

a1py 1 a p

Ž 2 p y 1 . ⭈⭈⭈ Ž p q 1 .

Ž 2 p . ⭈⭈⭈ Ž p q 1 .

a1py 1

2

a12 a p

p!a2p

qŽ 2␪ y m.

q1

y1

s m q Ž 2 ␪ y m . a1 X q m

qŽ 2␪ y m.

2

X 2 py1

X2p

p!a1 a2p

Ž 2 p q 1 . ⭈⭈⭈ Ž p q 1 .

p!a1py 1a2p

Ž 3 p y 1 . ⭈⭈⭈ Ž p q 1 .

X 3 py1

X 2 pq1 q ⭈⭈⭈

X py1

497

TWISTED GROUP SCHEMES 2

Ž p! . a3p qŽ 2␪ y m. X 3p Ž 3 p . ⭈⭈⭈ Ž p q 1 . 2

qm

Ž p! . a1 a3p X 3 pq1 q ⭈⭈⭈ Ž 3 p q 1 . ⭈⭈⭈ Ž p q 1 . 2

Ž p! . a1py1a3p qŽ 2␪ y m. X 4 py1 q ⭈⭈⭈ Ž 4 p y 1 . ⭈⭈⭈ Ž p q 1 . ⭈⭈⭈ 2

qŽ 2␪ y m. ap2 X p q m

a1 a p 2 p2 q 1

Xp

2

q1

q ⭈⭈⭈ .

Then we obtain a12 , a1 a p , a2p ,a1 a3p , a4p , a1 a5p , . . . , a1 a ppy 2 , a ppy 1 , a1 a p 2 , a2p 2 , a1 a3p 2 , . . .g ArŽ ␭ . ,

Ž 2 ␪ y m . a1 , Ž 2 ␪ y m . a p , Ž 2 ␪ y m . a3p , Ž 2 ␪ y m . a5p , . . . , Ž 2 ␪ y m . a ppy 2 , Ž 2 ␪ y m . a p 2 , Ž 2 ␪ y m . a3p 2 , . . . g Ar Ž ␭ . . These conditions are equivalent to

Ž 2 ␪ y m . a1 , Ž 2 ␪ y m . a p , Ž 2 ␪ y m . a p 2 , . . . g Ar Ž ␭ . .

ACKNOWLEDGMENTS Finally, I am grateful to Prof. T. Sekiguchi and Prof. N. Suwa for their many suggestions.

REFERENCES 1. M. Demazure and P. Gabriel, ‘‘Groupes Algebriques,’’ Tome I, North-Holland, Amster´ dam, 1970. ´ 2. J. S. Milne, ‘‘Etale Cohomology,’’ Princeton Univ. Press, Princeton, NJ, 1980. 3. J.-P. Serre, ‘‘Local Fields,’’ Graduate Texts in Mathematics 67, Springer-Verlag, BerlinrNew York, 1979. 4. W. C. Waterhouse and B. Weisfeiler, One-dimensional affine group schemes, J. Algebra 66 Ž1980., 550᎐568. 5. B. Weisfeiler, On a case of extensions of group schemes, Trans. Amer. Math. Soc. 248, No. 1 Ž1979., 171᎐189.

498

TOSHIAKI OHNO

6. T. Sekiguchi, On the deformations of Witt groups to tori II, J. Algebra 138 Ž1991., 273᎐297. 7. T. Sekiguchi and N. Suwa, A case of extensions of group schemes over a discrete valuation ring, Tsukuba J. Math. 14, No. 2 Ž1990., 459᎐487. 8. T. Sekiguchi and N. Suwa, Some cases of extensions of group schemes over a discrete valuation ring I, J. Fac. Sci. Uni¨ . Tokyo Sect. IA Math. 38 Ž1991., 1᎐45. 9. T. Sekiguchi and N. Suwa, Some cases of extensions of group schemes over a discrete valuation ring II, Bull. Fac. Sci. Engrg. Chuo Uni¨ . Ser. I Math. 32 Ž1989., 17᎐35.