Applied Mathematics and Computation 216 (2010) 431–437
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Some inclusion relationships associated with Dziok–Srivastava operator M.K. Aouf Faculty of Science, Mansoura University, Mansoura 35516, Egypt
a r t i c l e
i n f o
a b s t r a c t In this paper we introduce and study some new subclasses of p-valent starlike, convex, close-to-convex and quasi-convex functions defined by Dziok–Srivastava operator. Inclusion relationships are established and integral operator of functions in these subclasses is discussed. Ó 2010 Elsevier Inc. All rights reserved.
Keywords: p-Valent Starlike Convex Close-to-convex Quasi-convex Dziok–Srivastava operator
1. Introduction Let AðpÞ denote the class of functions of the form:
f ðzÞ ¼ zp þ
1 X
apþk zpþk
ðp 2 N ¼ f1; 2; . . .gÞ;
ð1:1Þ
k¼1
which are analytic and p-valent in the unit disc U ¼ fz : jzj < 1g. For functions f 2 AðpÞ, given by (1.1), and g 2 AðpÞ given by
gðzÞ ¼ zp þ
1 X
bpþk zpþk
ðp 2 NÞ;
ð1:2Þ
k¼1
the Hadamard product (or convolution) of f and g is defined by
ðf gÞðzÞ ¼ zp þ
1 X
apþk zpþk ¼ ðg f ÞðzÞ ðp 2 NÞ:
ð1:3Þ
k¼1
A function f ðzÞ 2 AðpÞ is said to be in the class Sp ðcÞ of p-valently starlike of order c, if it satisfies
0 zf ðzÞ Re > c ð0 6 c < p; z 2 UÞ: f ðzÞ
ð1:4Þ
We write Sp ð0Þ ¼ Sp , the class of p-valent starlike in U. Also a function f ðzÞ 2 AðpÞ is said to be in the class K p ðcÞ of p-valently convex of order c, if it satisfies
00 zf ðzÞ > c ð0 6 c < p; z 2 UÞ: Re 1 þ 0 f ðzÞ The class of p-valently convex functions in U is denoted by K p ¼ K p ð0Þ. It follows from (1.4) and (1.5) that
E-mail address:
[email protected] 0096-3003/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2010.01.034
ð1:5Þ
432
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437 0
f ðzÞ 2 K p ðcÞ if and only if
zf ðzÞ 2 Sp ðcÞ ð0 6 c < p; z 2 UÞ: p
ð1:6Þ
The class Sp ðcÞ was introduced by Patil and Thakare [18] and the class K p ðcÞ was introduced by Owa [17]. Also we note that the classes Sp and K p were introduced by Goodman [6]. Furthermore, a function f ðzÞ 2 AðpÞ is said to be p-valently close-to-convex of order h and type c in U, if there exists a function gðzÞ 2 Sp ðcÞ such that
0 zf ðzÞ Re > h ð0 6 h; c < p; z 2 UÞ: gðzÞ
ð1:7Þ
We denote by C p ðh; cÞ, the subclass of AðpÞ consisting of all such functions. The class C p ðh; cÞ was studied by Aouf [1]. We note that C 1 ðh; cÞ ¼ Cðh; cÞ, is the class of close-to-convex functions of order h and type cð0 6 h; c < 1Þ, was studied by Libera [9]. Also a function f ðzÞ 2 AðpÞ is called p-valently quasi-convex of order h and type c if there exists a function gðzÞ 2 K p ðcÞ such that
0 ðzf ðzÞÞ0 > h ð0 6 h; c < p; z 2 UÞ: Re 0 g ðzÞ
ð1:8Þ
We denote this class by C p ðh; cÞ. We note that C 1 ðh; cÞ ¼ C ðh; cÞ, is the class of quasi-convex of order h and type cð0 6 h; c < 1Þ, was introduced and studied by Noor [14,15]. It follows from (1.7) and (1.8) that 0
f ðzÞ 2 C p ðh; cÞ if and only if
zf ðzÞ 2 C p ðh; cÞ: p
ð1:9Þ
For complex parameters a1 ; . . . ; aq and b1 ; . . . ; bs ðbj R Z 0 ¼ f0; 1; 2; . . .g; j ¼ 1; . . . ; sÞ, we define the generalized hypergeometric function q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ by
a
qFsð 1; . . . ;
aq ; b1 ; . . . ; bs ; zÞ ¼
1 X ða1 Þk ðaq Þk zk ðb1 Þk ðbs Þk k! k¼0
ð1:10Þ
ðq 6 s þ 1; q; s 2 N0 ¼ N [ f0g; z 2 UÞ; where ðhk Þ is the Pochhammer symbol defined, in terms the Gamma function C, by
ðhk Þ ¼
Cðh þ kÞ ¼ CðhÞ
1
ðk ¼ 0Þ;
hðh þ 1Þ . . . ðh þ k 1Þ ðk 2 NÞ:
ð1:11Þ
Corresponding to a function hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ defined by
hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ ¼ zp q F s ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ; we consider a linear operator
Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ : AðpÞ ! AðpÞ; defined by the convolution
Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þf ðzÞ ¼ hp ða1 ; . . . ; aq ; b1 ; . . . ; bs ; zÞ f ðzÞ:
ð1:12Þ
If, for convenience, we write
Hp;q;s ða1 Þ ¼ Hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ;
ð1:13Þ
then one can easily verify from the definition (1.12) that
zðHp;q;s ða1 Þf ðzÞÞ0 ¼ a1 Hp;q;s ða1 þ 1Þf ðzÞ ða1 pÞHp;q;s ða1 Þf ðzÞ:
ð1:14Þ
The linear operator hp ða1 ; . . . ; aq ; b1 ; . . . ; bs Þ was introduced and studied by Dziok and Srivastava [5]. It should be remarked that the linear operator Hp;q;s ða1 Þ is a generalization of many other linear operators considered earlier. In particular, for f ðzÞ 2 AðpÞ we have: (i) Hp;2;1 ða; 1; cÞf ðzÞ ¼ Lp ða; cÞf ðzÞða > 0; c > 0Þ (Saitoh [19]); (ii) Hp;2;1 ðm þ p; 1; m þ p þ 1Þf ðzÞ ¼ J m;p ðf ÞðzÞ, where J m;p ðf ÞðzÞ is the generalization Bernardi–Libera–Livingston operator (see [2,10,12]) defined by
J m;p ðf ÞðzÞ ¼
mþp zm
Z
z
t m1 f ðtÞdt
ðm > p; p 2 NÞ;
ð1:15Þ
0
(iii) Hp;2;1 ðl þ p; 1; 1Þf ðzÞ ¼ Dlþp1 f ðzÞðl > pÞ, where Dlþp1 f ðzÞ is the ðl þ p 1Þ-th order Ruscheweyh derivative of a function f ðzÞ 2 AðpÞ (see Kumar and Shukla [7,8]);
433
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437
(iv) Hp;2;1 ð1 þ p; 1; 1 þ p lÞf ðzÞ ¼ Xzðl;pÞ f ðzÞ, where Xzðl;pÞ f ðzÞ is defined by (see Srivastava and Aouf [21])
Xðzl;pÞ f ðzÞ ¼
Cð1 þ p lÞ l l z Dz f ðzÞ ð0 6 l < 1; p 2 NÞ; Cð1 þ pÞ
ð1:16Þ
where Xlz is the fractional derivative operator (see, for details [16]); (v) H1;2;1 ðl; 1; k þ 1Þ ¼ Ik;l f ðzÞðk > 1; l > 0Þ, where Ik;l f ðzÞ is the Choi–Saigo–Srivastava operator [4]; (vi) Hp;2;1 ðp þ 1; 1; n þ pÞf ðzÞ ¼ In;p f ðzÞðn 2 Z; n > pÞ, where the operator In;p f ðzÞ is considered by Liu and Noor [11]; k (vii) Hp;2;1 ðk þ p; c; aÞf ðzÞ ¼ Ikp ða; cÞf ðzÞða; c 2 R n Z 0 ; k > pÞ, where I p ða; cÞf ðzÞ is the Cho–Kwon–Srivastava operator [3]. Using the linear operator Hp;q;s ða1 Þ, we now introduce the following classes:
n o Sp;q;s ða1 ; cÞ ¼ f 2 AðpÞ : Hp;q;s ða1 Þf 2 Sp ðcÞ; 0 6 c < p ;
ð1:17Þ
K p;q;s ða1 ; cÞ ¼ f 2 AðpÞ : Hp;q;s ða1 Þf 2 K p ðcÞ; 0 6 c < p ; C p;q;s ða1 ; h; cÞ ¼ f 2 AðpÞ : Hp;q;s ða1 Þf 2 C p ðh; cÞ; 0 6 h; c < p ;
ð1:18Þ ð1:19Þ
and
n o C p;q;s ða1 ; h; cÞ ¼ f 2 AðpÞ : Hp;q;s ða1 Þf 2 C p ðh; cÞ; 0 6 h; c < p :
ð1:20Þ
In this paper, we shall establish the various inclusion relationships for these classes and investigate integral operator in these classes. 2. The main inclusion relationships In order to prove our main results, we shall require the following lemma. Lemma 1 [13]. Let uðu; v Þ be a complex-valued function such that
u : D ! C; ðD C CÞ; C being (as usual) the complex plane and let u ¼ u1 þ iu2 and v ¼ v 1 þ iv 2 . Suppose that the function uðu; v Þ satisfies each of the following conditions: (i) uðu; v Þ is continuous in D; (ii) ð1; 0Þ 2 D and Re fuð1; 0Þg > 0; (iii) Re fuðiu2 ; v 1 Þg 6 0 for all ðiu2 ; v 1 Þ 2 D such that
v 1 6 12 ð1 þ u22 Þ.
Let pðzÞ ¼ 1 þ p1 z þ p2 z2 þ be regular in U, such that ðpðzÞ; zp0 ðzÞÞ 2 D for all z 2 U. If
Re fuðpðzÞ; zp0 ðzÞÞg > 0 ðz 2 UÞ; then Re fpðzÞg > 0ðz 2 UÞ. Theorem 1. Sp;q;s ða1 þ 1; cÞ Sp;q;s ða1 ; cÞðf ðzÞ 2 AðpÞ; a1 þ c > p; 0 6 c < p; p 2 NÞ: Proof. Let f ðzÞ 2 Sp;q;s ða1 þ 1; cÞ and assume that
zðHp;q;s ða1 Þf ðzÞÞ0 ¼ c þ ðp cÞhðzÞ; Hp;q;s ða1 Þf ðzÞ
ð2:1Þ
where hðzÞ ¼ 1 þ c1 z þ c2 z2 þ Using the identity (1.14), we have
Hp;q;s ða1 þ 1Þf ðzÞ 1 ¼ ½ða1 þ c pÞ þ ðp cÞhðzÞ: Hp;q;s ða1 Þf ðzÞ a1
ð2:2Þ
Now, we logarithmically differentiate both sides of (2.2) with respect to z, and thus, we find that 0
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 zðHp;q;s ða1 Þf ðzÞÞ0 ðp cÞzh ðzÞ ¼ þ ; ða1 þ c pÞ þ ðp cÞhðzÞ Hp;q;s ða1 þ 1Þf ðzÞ Hp;q;s ða1 Þf ðzÞ which, in view of (2.1), yields 0
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 ðp cÞzh ðzÞ c ¼ ðp cÞhðzÞ þ : ða1 þ c pÞ þ ðp cÞhðzÞ Hp;q;s ða1 þ 1Þf ðzÞ
ð2:3Þ
434
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437
Let
uðu; v Þ ¼ ðp cÞu þ
ðp cÞv ða1 þ c pÞ þ ðp cÞu
ð2:4Þ
0
with hðzÞ ¼ u ¼ u1 þ iu2 and zh ðzÞ ¼ v ¼ v 1 þ iv 2 . Then cp gÞ C; (i) uðu; v Þ is continuous in D ¼ ðC n fa1cþp (ii) ð1; 0Þ 2 D and Re fuð1; 0Þg ¼ p c > 0; (iii) for all ðiu2 ; v 1 Þ 2 D such that v 1 6 12 ð1 þ u22 Þ,
Re fuðiu2 ; v 1 g ¼ Re
ðp cÞv 1 ða1 þ c pÞ þ ðp cÞiu2
¼
ðp cÞða1 þ c pÞv 1 ða1 þ c pÞ2 þ ðp cÞ2 u22
<0
for m1 < 0. Therefore, the function uðu; v Þ satisfies the conditions of Lemma 1. Thus we have Re fhðzÞg > 0ðz 2 UÞ, that is, f ðzÞ 2 Sp;q;s ða1 ; cÞ. This completes the proof of Theorem 1. h
Theorem 2. K p;q;s ða1 þ 1; cÞ K p;q;s ða1 ; cÞðf ðzÞ 2 AðpÞ; a1 þ c > p; 0 6 c < p; p 2 NÞ: Proof. f ðzÞ 2 K p;q;s ða1 þ 1; cÞ () Hp;q;s ða1 þ 1Þf ðzÞ 2 K p ðcÞ () pz ðHp;q;s ða1 Þf ðzÞÞ0 0 0 2 Sp ðcÞ () Hp;q;s ða1 þ 1Þðzf pðzÞÞ 2 Sp ðcÞ () zf pðzÞ 2 Sp;q;s ða1 þ 1; cÞ
)
0 0 zf ðzÞ zf ðzÞ z 2 Sp ðcÞ () ðHp;q;s ða1 Þf ðzÞÞ0 2 Sp ðcÞ () Hp;q;s ða1 Þf ðzÞ 2 K p ðcÞ () f ðzÞ 2 Sp;q;s ða1 ; cÞ () Hp;q;s ða1 Þ p p p 2 K p;q;s ða1 ; cÞ;
which evidently proves Theorem 2. h Theorem 3. C p;q;s ða1 þ 1; h; cÞ C p;q;s ða1 ; h; cÞðf ðzÞ 2 AðpÞ; a1 þ c > p; 0 6 h; c < p; p 2 NÞ. Proof. Let f ðzÞ 2 C p;q;s ða1 þ 1; h; cÞ. Then, by (1.19), there exists a function kðzÞ 2 Sp ðcÞð0 6 c < pÞ such that
Re
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 > h ðz 2 U; 0 6 h < pÞ: kðzÞ
ð2:5Þ
Taking
kðzÞ ¼ Hp;q;s ða1 þ 1ÞgðzÞ 2 Sp ðcÞð0 6 c < pÞ; we find from (1.17) and (2.5) that gðzÞ 2
ð2:6Þ
Sp;q;s ð 1
a þ 1; cÞ and
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 > h ðz 2 U; 0 6 h < pÞ; Re Hp;q;s ða1 þ 1ÞgðzÞ
ð2:7Þ
respectively. We now let
zðHp;q;s ða1 Þf ðzÞÞ0 ¼ h þ ðp hÞhðzÞ; Hp;q;s ða1 ÞgðzÞ
ð2:8Þ
where hðzÞ ¼ 1 þ c1 z þ c2 z2 þ From (2.8), we have
zðHp;q;s ða1 Þf ðzÞÞ0 ¼ ½h þ ðp hÞhðzÞHp;q;s ða1 ÞgðzÞ
ð2:9Þ
so from (2.9) and the identity (1.14), we have
a1 zðHp;q;s ða1 Þf ðzÞÞ0 ¼ zðHp;q;s ða1 ÞgðzÞÞ0 ½h þ ðp hÞhðzÞ þ Hp;q;s ða1 ÞgðzÞ ðp hÞzh0 ðzÞ þ ða1 pÞzðHp;q;s ða1 Þf ðzÞÞ0 :
ð2:10Þ
Now apply the identity (1.14) for the function gðzÞ and use (2.10) to get 0
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 Hp;q;s ða1 ÞgðzÞ ðp hÞzh ðzÞ ¼ ½h þ ðp hÞhðzÞ þ : Hp;q;s ða1 þ 1ÞgðzÞ Hp;q;s ða1 þ 1ÞgðzÞ a1 Since gðzÞ 2 Sp;q;s ða1 þ 1; cÞ and Sp;q;s ða1 þ 1; cÞ Sp;q;s ða1 ; cÞ, we let
zðHp;q;s ða1 ÞgðzÞÞ0 ¼ c þ ðp cÞHðzÞ; Hp;q;s ða1 ÞgðzÞ
ð2:11Þ
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437
435
where Re HðzÞ > 0ðz 2 UÞ. Thus (2.8) can be written as : 0
zðHp;q;s ða1 þ 1Þf ðzÞÞ0 ðp hÞzh ðzÞ h ¼ ðp hÞhðzÞ þ : ða1 þ c pÞ þ ðp cÞHðzÞ Hp;q;s ða1 þ 1ÞgðzÞ Now we form the function Wðu; v Þ by taking u ¼ hðzÞ and
Wðu; v Þ ¼ ðp hÞu þ
ð2:12Þ
v ¼ zh0 ðzÞ in (2.12) as:
ðp hÞv : ða1 þ c pÞ þ ðp cÞHðzÞ
It is easy to see that the function uðu; v Þ satisfies the conditions (i) and (ii) of Lemma 1 in D ¼ C C. To verify the condition (iii), we proceed as follows:
Re Wðiu2 ; v 1 Þ ¼
ðp hÞv 1 ½a1 þ c p þ ðp cÞh1 ðx; yÞ 2
½a1 þ c p þ ðp cÞh1 ðx; yÞ þ ½ðp cÞh2 ðx; yÞ
2
<0
for m1 < 0, where HðzÞ ¼ h1 ðx; yÞ þ ih2 ðx; yÞ; h1 ðx; yÞ and h2 ðx; yÞ being functions of x and y and Re HðzÞ ¼ h1 ðx; yÞ > 0. Hence Re hðzÞ > 0ðz 2 UÞ and f ðzÞ 2 C p;q;s ða1 ; h; cÞ. This completes the proof of Theorem 3. h Theorem 4. C p;q;s ða1 þ 1; h; cÞ C p;q;s ða1 ; h; cÞðf ðzÞ 2 AðpÞ; a1 þ c > p; 0 6 h; c < p; p 2 NÞ: Proof. Just as we derived Theorem 2 as a consequence of Theorem 1 by means of the equivalence (1.6), we can prove Theorem 4 by appealing analogously to Theorem 3 and the equivalene (1.9). h
3. Integral operator For c > p and f ðzÞ 2 AðpÞ, the integral operator Jc;p f ðzÞ : AðpÞ ! AðpÞ is defined by
cþp J c;p f ðzÞ ¼ c z
Z
z
t
c1
f ðtÞdt ¼
p
z þ
0
1 X k¼1
c þ p pþk z cþpþk
!
f ðzÞ ðc > p; z 2 UÞ:
ð3:1Þ
The operator J c;1 ðc 2 NÞ was introduced by Bernardi [2]. In particular, the operator J 1;1 was studied earlier by Libera [9] and Livingston [11]. Some results for the operator J c;p were showed by Saitoh [19] and Saitoh et al. [20]. Theorem 5. Let c > p; 0 6 c < p: If f ðzÞ 2 Sp;q;s ða1 ; cÞ; then J c;p f ðzÞ 2 Sp;q;s ða1 ; cÞ. Proof. Let f ðzÞ 2 Sp;q;s ða1 ; cÞ. From (3.1), we have
zðHp;q;s ða1 ÞJ c;p f ðzÞÞ0 ¼ ðc þ pÞHp;q;s ða1 Þf ðzÞ cHp;q;s ða1 ÞJ c;p f ðzÞ:
ð3:2Þ
zðHp;q;s ða1 ÞJ c;p f ðzÞÞ0 ¼ c þ ðp cÞhðzÞ; Hp;q;s ða1 ÞJ c;p f ðzÞ
ð3:3Þ
Put
where hðzÞ ¼ 1 þ c1 z þ c2 z2 þ , using the identity (3.2), we have
Hp;q;s ða1 Þf ðzÞ 1 ¼ fc þ c þ ðp cÞhðzÞg: Hp;q;s ða1 ÞJ c;p f ðzÞ c þ p
ð3:4Þ
Differentiating (3.4) logarithmically with respect to z, we obtain 0
zðHp;q;s ða1 Þf ðzÞÞ0 ðp cÞzh ðzÞ c ¼ ðp cÞhðzÞ þ : c þ c þ ðp cÞhðzÞ Hp;q;s ða1 Þf ðzÞ Now we form the function uðu; v Þ by taking u ¼ hðzÞ and
uðu; v Þ ¼ ðp cÞu þ
ð3:5Þ
v ¼ zh0 ðzÞ in (3.5) as:
ðp cÞv : c þ c þ ðp cÞu
It is easy to see that the function uðu; v Þ satisfies the conditions (i) and (ii) of Lemma 1 in D ¼ ðC fccþpcgÞ C. To verify the condition (iii), we proceed as follows:
Re uðiu2 ; v 1 Þ ¼ Re
ðp cÞv 1 c þ cðp cÞiu2
¼
ðp cÞðc þ cÞv 1 2
Þ2 u22
ðc þ cÞ þ ðp c
ðp cÞðc þ cÞð1 þ u22 Þ i < 0; 6 h 2 ðc þ cÞ2 þ ðp cÞ2 u22
where v 1 6 12 ð1 þ u22 Þ and ðiu2 ; v 1 Þ 2 D. Therefore the function uðu; v Þ satisfies the conditions of Lemma 1. This shows that 0 if Re fuðhðzÞ; zh ðzÞÞg > 0 ðz 2 UÞ, then Re hðzÞ > 0 ðz 2 UÞ, that is, if f ðzÞ 2 Sp;q;s ða1 ; cÞ, then J c;p f ðzÞ 2 Sp;q;s ða1 ; cÞ. This completes the proof of Theorem 5. h
436
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437
Theorem 6. Let c > p; 0 6 c < pÞ:If f ðzÞ 2 K p;q;s ða1 ; cÞ; then J c;p f ðzÞ 2 K p;q;s ða1 ; cÞ. 0
0
Proof. f ðzÞ 2 K p;q;s ða1 ; cÞ ) zf pðzÞ 2 Sp;q;s ða1 ; cÞ ) J c;p ðzf pðzÞÞ 2 Sp;q;s ða1 ; cÞ () pz ðJ c;p f ðzÞÞ0 2 Sp;q;s ða1 ; cÞ () J c;p f ðzÞ 2 K p;q;s ða1 ; cÞ. This completes the proof of Theorem 6. h Theorem 7. Let c > c; 0 6 c < p: If f ðzÞ 2 C p;q;s ða1 ; h; cÞ: Then J c;p f ðzÞ 2 C p;q;s ða1 ; h; cÞ. Proof. Let f ðzÞ 2 C p;q;s ða1 ; h; cÞ. Then by (1.19) there exists a function gðzÞ 2 Sp;q;s ða1 ; cÞ such that
Re
zðHp;q;s ða1 Þf ðzÞÞ0 > h ðz 2 UÞ: Hp;q;s ða1 ÞgðzÞ
Put
zðHp;q;s ða1 ÞJ c;p f ðzÞÞ0 ¼ h þ ðp hÞhðzÞ; Hp;q;s ða1 ÞJ c;p gðzÞ
ð3:6Þ
where hðzÞ ¼ 1 þ c1 z þ c2 z2 þ From (3.2) and (3.6), we have 0
ðc þ pÞzðHp;q;s ða1 Þf ðzÞÞ0 ¼ zðHp;q;s ða1 ÞJ c;p gðzÞÞ0 ½h þ ðp hÞhðzÞ þ Hp;q;s ða1 ÞJ c;p gðzÞ ðp hÞzh ðzÞ þ czðHp;q;s ða1 ÞJ c;p f ðzÞÞ0
ð3:7Þ
now apply (3.2) for the function gðzÞ and use (3.7), we obtain 0
Hp;q;s ða1 ÞJ c;p gðzÞ ðp hÞzh ðzÞ zðHp;q;s ða1 Þf ðzÞÞ0 : ¼ h þ ðp hÞhðzÞ þ cþp Hp;q;s ða1 ÞgðzÞ Hp;q;s ða1 ÞgðzÞ
ð3:8Þ
Since gðzÞ 2 Sp;q;s ða1 ; cÞ, then from Theorem 5, we have J c;p gðzÞ 2 Sp;q;s ða1 ; cÞ, we let
zðHp;q;s ða1 ÞJ c;p gðzÞÞ0 ¼ c þ ðp cÞHðzÞ; Hp;q;s ða1 ÞJ c;p gðzÞ where Re HðzÞ > 0 ðz 2 UÞ. Thus (3.8) can be written as 0
zðHp;q;s ða1 Þf ðzÞÞ0 ðp hÞzh ðzÞ h ¼ ðp hÞhðzÞ þ : c þ c þ ðp cÞHðzÞ Hp;q;s ða1 ÞgðzÞ Now we form the function uðu; v Þ by taking u ¼ hðzÞ and
uðu; v Þ ¼ ðp hÞu þ
ð3:9Þ
v ¼ zh0 ðzÞ in (3.9) as:
ðp hÞv : c þ c þ ðp cÞHðzÞ
It is easy to see that the function uðu; v Þ satisfies the conditions (i) and (ii) of Lemma 1, in D ¼ C C. To verify the condition (iii), we proceed as follows:
Re uðiu2 ; v 1 Þ ¼
ðp hÞv 1 ½c þ c þ ðp cÞh1 ðx; yÞ 2
½c þ c þ ðp cÞh1 ðx; yÞ þ ½ðp cÞh2 ðx; yÞ
2
;
where HðzÞ ¼ h1 ðx; yÞ þ ih2 ðx; yÞ; h1 ðx; yÞ and h2 ðx; yÞ being functions of x and y and Re HðzÞ ¼ h1 ðx; yÞ > 0. By putting v 1 6 12 ð1 þ u22 Þ, we have
ðp hÞð1 þ u22 Þ½c þ c þ ðp cÞh1 ðx; yÞ o < 0: Re uðiu2 ; v 1 Þ 6 n 2 2 2 ½c þ c þ ðp cÞh1 ðx; yÞ þ ½ðp cÞh2 ðx; yÞ Hence Re hðzÞ > 0 ðz 2 UÞ and J c;p f ðzÞ 2 C p;q;s ða1 ; h; cÞ. This completes the proof of Theorem 7. h Similarly we can prove Theorem 8. Let c > c; 0 6 c < p: Iff ðzÞ 2 C p;q;s ða1 ; h; cÞ: Then J c;p f ðzÞ 2 C p;q;s ða1 ; h; cÞ. Acknowledgements The author thank the referees for their valuable suggestions to improve the paper.
M.K. Aouf / Applied Mathematics and Computation 216 (2010) 431–437
437
References [1] M.K. Aouf, On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci. 11 (2) (1988) 259–266. [2] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429–446. [3] N.E. Cho, O.H. Kwon, H.M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004) 470–483. [4] J.H. Choi, M. Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002) 432–445. [5] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13. [6] A.W. Goodman, On Schwarz–Chritoffell transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950) 204–223. [7] Vinod Kumar, S.L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, Indian J. Pure Appl. Math. 15 (11) (1984) 1216–1227. [8] Vinod Kumar, S.L. Shukla, Mulivalent functions defined by Ruscheweyh derivative II, Indian J. Pure Appl. Math. 15 (11) (1984) 122801238. [9] R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964) 143–158. [10] R.J. Libera, Some classes of regular functions, Proc. Amer. Math. Soc. 16 (1965) 755–758. [11] J.-L. Liu, K.I. Noor, Some properties of Noor integral operator, J. Nat. Geom. 21 (2002) 81–90. [12] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966) 352–357. [13] S.S. Miller, P.T. Mocanu, Second differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978) 289–305. [14] K.I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci. 10 (1987) 241–258. [15] K.I. Noor, On some applications of the Ruscheweyh derivatives, Math. Japon. 36 (5) (1991) 869–874. [16] S. Owa, On the distortion theorems.I, Kyungpook Math. J. 18 (1978) 53–59. [17] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 (1985) 385–402. [18] D.A. Patil, N.K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R.S. Roumaine (N.S.) 27 (75) (1983) 145–160. [19] H. Saitoh, On certain class of mulivalent functions, Math. Japon. 37 (1992) 871–875. [20] H. Saitoh, S. Owa, T. Sekine, M. Nunokawa, R. Yamakawa, An application of certain integral operator, Appl. Math. Lett. 5 (1992) 21–24. [21] H.M. Srivastava, M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and mulivalent functions with negative coefficients. I and II, J. Math. Anal. Appl. 171 (1992) 1–13. 192 (1995) 673–688.