Some morphological aspects of geomagnetic secular variation

Some morphological aspects of geomagnetic secular variation

Planet. Space Sci. 1965. Vol. 13. pp.1097 to 1110. Pergamon Press Ltd. Printed in Northern Ireland SOME MORPHOLOGKAL ASPECTS OF GEOMAGNETIC ...

847KB Sizes 0 Downloads 87 Views

Planet.

Space Sci. 1965.

Vol. 13.

pp.1097

to 1110.

Pergamon

Press Ltd.

Printed

in Northern

Ireland

SOME MORPHOLOGKAL ASPECTS OF GEOMAGNETIC SECULAR VARIATION Department

L. SLAUCITAJS* and 33. E. WINCH of Applied Mathematics, Unive~i~ of Sydney, Sydney, N.S.W., Australia (Received 9 June 1965)

Abstract-Analysis of geomagnetic secular variation data, in the t&e elements X, Y and Z at five observatories distributed over the Earth, shows that amplitudes obtained for a 50 year cycle by harmonic analysis are highly significant. Amplitudes of higher order harmonics are found to be either not as significant or not significant, indeed, the cycle can be seen dire&y on the graphs of ob~ational data. These results are confirmed by power spectrum analysis. Using phase angles obtained for the 50 year (semicentennial) cycle from different stretches of data, an improved value for the period is found to be 61 f 6 years. The approximate semicentemkl values are interesting in view of the theoretical possibility of an oscillation of an S,O field of period 77 years superimposed on the main field. INTRODUCTION

of the author@ indicated a “pulse” or “period” of appro~mately 50 years in secular variation of the geomagnetic field. This was confirmed by independent papers of Barta@“) and more recently by Gaibar-PuertaC-‘1 and Slaucitajs.(8) Wasserfall,(*) using data for Oslo 1820 to 1948 mentions some “nutational” period of 70 years, Slaucitajs(l”) made a harmonic analysis of 44 years of secular variation data from a South American station, so that a fourth harmonic represented the effect of the solar sunspot cycle. Stoyko@l) indicates that the fluctuation in terrestrial time in a period of about 50 years is correlated with secular change in the total intensity, and Elsasser(12) comments that periods of 40 years are fairly representative of the secular variation. For the IAGA Meeting in Toronto, 1957, a communication on forecasting of secular variation was presented by Kalinin(13) in which the author mentions that part of the changes in the geomagnetic field effected by internal causes has a quasi~riodical character at observatories in Eurasia with a period of a few decades and that another part has an eleven year period connected with the geomagnetic activity. Yukutake(14) indicates that analysis for short intervals of secular variation data reveals a 50-year and 25-year period, Depietri(15) analysing secular variation for the Northern Hemisphere between 350” and 80”E received a period of 55 years. Recently Degaonkar(16) analysed AH, AZ and AF for three American stations with respect to the 11 year sunspot cycle, and Yukutake’s paperQ7) on the eleven year period variation in the geomagnetic field associated with the solar activity was presented to the IAGA Symposium in Pittsburgh. These researches are largely empirical, and one must be cautious since(l@ periodicities found by harmonic analysis and not predicted by previous theoretical considerations may be untrustworthy, as many complications are capable of giving spurious periods. As we know Bartels’19) indicated the predominantly local character of secular variation and after McNish(20) it is preferred to relate the major part of secular variation with the residual, non-dipole field. Nevertheless the morphology of the phenomenon shows that some periodicities in secular variation exist(21)and one of these is the approximate semicentennial. One

* On leave from the National University of La Plats, Argentina. 1097

L, SLAUCTFAJS and D. E. WINCH

1098

The physical theories of the origin of the main field and secular variation field based on magnetohydrodynamics need to meet the morphological aspects shown by and deduced from observational data. Now, Nagata and Rikitake(22) indicate the theoretical possibility of an oscillation of an S,Ofield about the main field with a period of 77 years. Although one could not conclude that the observed cyclic changes in AX, AY and AZ (see below) are directly TABLE 1

observatory

Geographic Long. Lat.

1. Wyssokaja Doubrawa

56” 44’N

61” 4’E

2. Niemegk

52” 4’N

12’ 41’E

3. Pilar

31” 40’S

296” 7%

4. Cheltenham

38” 44’N

283” 1O’E

5. Kakioka

36” 14’N

140” 11’E

FIG. 1. GEOMAGNETIC COORDINATESOF OBSERVATORIES WHOSE SECULAR VARIATION DATA ARE U~~~A~AL~S.

related to this quadrupole oscillation suggested by the theory, it is most interesting to find secular changes with a period comparable to the theoretically suggested one. It is the purpose of this paper to present harmonic and power spectrum analyses of the armual mean rate of change of the elements X, Y and 2, denoted AX, AY and AZ using all available data at the magnetic observatories listed in Table 1. Figure 1 illustrates the distribution of these observatories over the Earth. In the well-known graph of Declination and Inclination for London from the 16th century, now expanded till mid-20th century by Gaibar-Fuertas(6) in which short period features are not obliterated to give prominence to an apparent 500 year cycle, a superimposed cycle of se~centenni~ period is also suggested.

SOME MORP~OL~IC~

ASPECTS OF GEO~GNE~C COMPUTATIONAL

SECULAR V~A~ON

1099

DETAILS

First the graphs of observed values of AX, AY and AZ and of running eleven year means to eliminate the solar activity period were prepared. These graphs suggested (as already reported by Slaucitajs(l)) testing the period mathematically. The secular variation corresponds to first differences of the main field values, and so does not contain any linear trend in the latter, so that any superimposed oscillations are more readily seen. For intervals of data longer than about 70 years, any parabolic and cubic trends in the main field result in linear and parabolic trends respectively in the secular variation field which distort any oscillations. For this reason, harmonic analysis of xxx&r variation values over 100 years to test the hypothesis of a 50 year cycle will not lead to significant results. An attempt to fit by the Method of Least Squares the regression model 4

Y = a0 +kslak sin mkt + $ bKcos mkt k=l

where m = 27~150to given dataye, at equally spaced intervals t = 0, 1,2, . . , , N to the normal equations

(1) 1 leads

If now N is taken to be 50,100,150, . . . then these normal equations reduce to diagonal form, and estimates of a, and bBwill be entirely uncorrelated; from a statistical viewpoint this is very desirable. In each analysis N has been taken as 50. The solution of the normal equations is now

2iv-1

a, = -

yr sin mkt NC t-0

b, = ;;i;yt

cos mkt

k = 1,2,3,4

k = 1,2,3,4.

A computing algorithm given by Goertzel WI) takes one tenth of the computer time required for direct evaluation of a, and bk using sine and cosine subroutines and this has been as follows: with

ET,=0

1100

L. SLAUCITAJS

and D. E. WINCH

compute for k=N-

1, N-2

N

-z bk = yO f N 3ak

=

,...,

I,

V, cos mk - U, U, sinmk

Since the sum of squares due to regression is advaO + 2 adad2)

+ 2 bk(bkN/2)

hence the residual sum of squares is

where .r2 is an estimate of the variance around the regression relationship. Confidence limits for a, are a,, f tg l/N and for a, and bKare ak f 6 and b, f 6 where 8 = t&2/N),(“) where t, is found in Student’s t table with N - 9 degrees of freedom.(26) The expression (1) may be put in the form

a, + i Cksintmkt + #kl k=l

Noting that annual mean values given for the years x and x + 1 have a first difference corresponding to the secular variation at epoch x + 05, it proved convenient to refer all phase angles to epoch 1900.5. From confidence limits a, rt: 6 and bk f 6 for a, and 4, confidence limits for C, and &.k,confidence limits for C, and & are given by Whittaker and RobinsorP) as C, f 8 and 46, f s/C,. The quantity s/c& will be in radian measure, The results of this analysis are given in Table 2. For those cases in which the 50 year cycle is s~g~fi~nt and higher harmonics not as sibilant, or insig~ficant, the following theory to indicate a more suitable value for the period of the cyole is applicable. The problem is to fit the curve y=Asinkt+Bcoskt = C sin (kt + a) where k = 24T and A + iB= Cexpia

(2)

SOME MORPHOLOGICAL

ASPECTS OF GEOMAGNETIC

SECULAR VARIATION

1101

to data which is really of the form y = D sin (k’t + p) where k’ = 277/T’

111 0

E g

20

WYSSOKAJA

10 1

AX

DOUBRAWA

I

L

-50

s. 10 c. 0E 0 ‘D > 20

20 10 0 -10 E -20

, 1990.5

I

v

I

1900.5

1910.5

I

I

1920.5 Epoch,

1930.5

1

I

1940.5

19505

I

19605

yr

FIG. 2. WYSSOKAJA DOUBRAWA. UNRROKENLMEISSECULARVARIATION,DASHED LINRISREOREWON CURv@FORFIRSTFWTYYEARS,DO~DLINEISREGRESSIONCURvEFORLASTFIFNYEARS.

Solving the least squares equations for A and B, and substituting into (2) gives C exp ia = s [ (exp i[p + (N -

-

l)(k -

{exp -U

k’)/2]} zz Nii:

+ (N -

1 $

l)(k + k’)P])

if

Nti

I::$]

Assuming k w k’, the first term of the expression dominates, and hence a M B + (N - l)(k’ - k)/2

(3)

If a second analysis is performed on a further set of observations, whose tist observation is the mth after the fist observation of the fist set, and a, is obtained as the phase angle referred to the point t = 0, then a2 + km = /? + k’m + (N -

l)(k’ - k)/2

(4)

L. SLAUCITAJS

1102

and D. E. WINCH

Solving (3) and (4) for k’, the expression for T’ is obtained: T’ = 360mT/{(cc, - a)T + 36Om))

(5)

where as and a are in degrees of arc, and T is 50. If confidence limits for a and a2 are a & 6, and a2 f 6, respectively, then confidence limits for T’ are given approximately by T’ f. d(d,Z + 6,2)T’2/(360m) NIEMEGK

70

60 50 g

40

:

30

sl :

.

20 10

;; b 2.

50 -

i

403

0 m

AZ f

30 zo-

\

lo-

, \

O-10 -20

-

-30 -40

-

-50

-

-60

-

-70 -90

-

-90 -

f 1990-s

1

1900 5

I

1910.5

I

Epoch,

FIG.

3.

I

1930.5

1920.5

I

1940.5

t

1950.5

I

1960.5

yr

NIEMEOK. UNBR~KENLINEISS@CULARVARUTION,DASHED LINEIS REGRESSIONCURVE FORFIRSTFlFTYYEARS,DO-fTEDLINEISRRGRESSIONCURVEFORLASTmFIYYEARS.

The results of this analysis are included in Table 2, except for observatory 3, Pilar, where m was small and the results were non-significant. Although 95 per cent cotidence limits are given for amplitudes and phase angles, confidence limits for the improved period are approximately 60 per cent, due to the nature of the approximation made in the theory. Twenty-five autocorrelation coefficients were computed for the power spectrum analysis, since this is the smallest number which would give a spectral peak corresponding to a

SOME MORPHOLOGICAL

ASPECTS OF GEO~AG~E~C

SECULAR

VARIATION

fifty year cycle. The cosine transformation(a7) of the autocorrelation computed using the Goertzel algorithm described above. SOURCES

1103

coefficients was

OF DATA

The principal sources were the Bock-Schumann catalogue@‘) and the Nagata-Sawada catalogue,@) Annual mean values in the interval not covered by these two catalogues,

6

-60

E -70 E -80 ::

5 Ti -50 tj - -60 > -70 s 2 x

*

-so 40 30 20

.

10 0 -10 -20 1910*5

t920*5

19305

1940 5

1950~5

19606

Epoch. yr

Fm. 4. PILAR. UNBROK.ENLBIBI~SECULARVARIATM)N,DASHEDLINEISREGRFS~IONCUR~EFOR FIRST FWIT YEARS,DOTTED LINE IS REGRESSION CURVE FOR LAST FIFTY YEARS.

1949 to 1955, were obtained from yearbooks of the observatory concerned, or from the institute controlling the observatory. Mr. B. R. Leaton very kindly supplied missing values for Wyssokaja Doubrawa. CONTUSIONS

Power spectrums and harmonic analyses indicate that the amplitude of a 50 year cycle is highly sign&ant at the five observatories distributed over the Earth, except for AY and AZ at Kakioka; in the case. of AZ this seems to be due to the great variability of the earlier values. The amplitudes of the higher order harmonics are either not as significant or not significant. The average result for the improved values of the periods is found to be 61 ,j, 6 years(60 per cent confidence limits). This result taken with the theoretical prediction of an oscillation of an axial quadrupole field having a period of 77 years, suggests that spherical harmonic coefficients of the main field should be computed at at least two year intervals, using all the data contained in the

106f 3 218ir 14 156i: 9 12Of7 80 f 17

255rfr:8

15 k 1

26 & 6

27 i 4

20 i 2 11 f3

21 + 1 16 &2

20 f4

40 l 3

O&2 -312

44 f 1

47 a 2

AY 18905-1939~5

1912.5-1961.5

14 f 4 12 f 4

16OrtlO 336f 15 324& 16

20 f 3

16 f4

16 + 4

312

-50 xt 3

-52&3

1908%1957.5

3. Ax 1905.5-19545

8zt9 10 f 3

221f 17

29 + 9

8k6

19125-1961.5

411 6f2

10 f 2 63~3

6f4

13~6

2&l

l&l

6&3 13 + 5

G P

AZ:1890*5-1939.5

19125-1961~5

2. AX 1890+-1939.5

1911*5-1960.5

AZ;1887.5-1936.5

1911+-1960-5

279f 3

105f 3

21 & 1

2&l

-3 + 1

AY 1887S1936~5

142i 5 106$: 10

lPll+-19605

1. AX 18875-1936.5

29 It 5

41 deg.

32 & 3

c, li

-321lz4

a0 li

lztl 3f2 6rtr9 5&3

301+ 14 148f 22 308f 63 343i 20

295+ 21

514

5zt4

4xt3

16 f 32

306f 17

3rtr2

143i 14

2&6 7f4

70 i 40

201f 55

240f 54

338f 44

88 & 75

101+ 37

274f 61

326+ 45

222f 46

350i 34

115f 217

120rt 22

298i. 17

3+1 2331

359i 65 318i 31

4s deg.

2f3 IO & 5

G P

31 f 375

132It 26

2134 44

11 f23

147i 27

#e deg.

2414 44

7f5

5+6

5*4 354

2rt3

4It9

3f2

3&l

413

3&2

4&4

234& 51 201i_ 93

195f 113

138f 117

58 f 41

125i: 19

166& 50

225f 41

109i-66

179f 67

109zt86 134f 17

288& 51

3f3

l&l 3ztl

164 deg.

81 f 16

59 zt 4

Improved period, yr

~ISPIL~,OBSERVATORY

G ?

OBSERVATORY~~SWYSS~KAJADOUBRAWA,ORSERVATORY~ISNIEMEGK,OBSERVATORY 4IS ~L~~M,O~~VA~RYsIS~OKA

-38f2

Ob. El. hterval

INDICATED ~ERTHEHIWXN~‘?NTERVAL”.

TABLE2. NINETY-FIVE PERcENTCONmDENCEL~sFORAMPLITUDESINGAMMASPERYEARANDPHASEANGLESINDEGREESGIVENATEPOCH 1900.5 OPFOUR HARMONIcSOFA%YEARFUNDAMENTAL. %XTYPERCENTCONFIDENCELMTSFORTHElMPROVEDPERIOD. THEFIFTYYEARINTERVALSIJSEDFORANALYSISARE

? $ h

r

-57 ri: 1

1908s1957.5

-20 f 5

-9 f 1 -9 i 1

1911.5-1960.5

AY 1902.5-1951.5

-17$:2

AY 1897.5-1946.5

19W5-1958.5

AZ 18975-19465

4 j, 15 -2 rir13

-16 & 1

7&4

1909.5-1958.5

6&6

1909.5-1958.5

-53 xk5

1911.5-19605

5. AX 1897.5-1946.5

-56 rt 5

AZ 19025-19515

1911*5-1960.5

-37 ic 4

4. AX 1902.5-1951.5

AZ 1.905*5-1954.5 -12zk2 19065-1955~5 -12 * 2

-58 zk1

hY 19055-1954.5

22 -+ 18

18 i22

l&2

4f2

15 f 6

13 zk8

46 f 7

44 + 7

10 i 2

10 It 2

53 f 7

40 f 5

24 c?c 3 23 f 3

13 12

13 & 1 l&l

171j, 47

142& 70

356& 169

240It 35

115* 21

119& 36

120-+:8

125+9

171& 20

174& 9

92 f 7

129rt 8

5 i 22 6 It 18

4rrt2

i&2

5&6

3f8

41t7

517

4rt2

5*2

19 f 7

24 f 5

3&3 2xt3

346f 7

2&2

349Jr 7

1391:7

143$5

18 f 234 144i 172

24 z!c29

109z!x194

112f 68

143f 160

145&- 82 96 &9l

227f 23

218& 20

135f 12 59 & 21

343& 93

357zt 59

350f 55

355f 110

3 i 22 8 -4r18

3f2

2rf2

2f6

J&t?

7&7 10 & 7

3f2

4f2

4rt;5 17 St 7

6rf3

6+3

2-rt2

21-l

79 Ii=31

l&l

167rir57

326f 376 100+ 133

10 + 46

127f 66

244 & 174

241 f 93

358f 40

2 i 61

93 f 35

96 i 26

318rt 23

88 f 83

318zk66 318rt 22 212It 64 299* 102

19 $I 22 10 & 18

31 rfr:77

4f6 2&2 5&2

333xk491

lct8

2614 64

244f 77

5&7 6f7

139f 58

114f 52

212 2f2

234I: 31

5kt5 13 rfl:7

167&56

239f 34 225I 36

5f3 5k3

201+ 52

229f 26

212

240+ 29

55 f 59

37 f 27

21 & 18

53 ct 27

55 f 11

53 zk 12

117f 45

1106

L. SLAUCITAJS and D. E. WINCH

50

CHELTENHAM AX

30 20 10 40 0E -10 ~ \ -20 \ \

-30 -40 -50 -60

[

; -70 E -80 ~ 8l

.

10 i 0 ;; - -10 & > -20

AY 1

-90 -100 -110 -120 -130I__-L_i_-_. 1900.5 1910.5

1920.5

1930-S

1

I

I

1940.5

1950.5

1960.5

Epoch, yr FIG.~.~IELTDIHAM.

UNBROKEN LINE IS SECULARVARIATION,DASHEDLINEIS REGRESSIONCURVEFOR~TmFTYYEARS,DO~D~ISREORESSIONCURVB FOR LAST FIFTYYEARS.

catalogues mentioned above, and examined for superimposed periodicities. Least Squares applied to a model of the form

y =

2 a*xf

i-o

The Method of

+ anfl cos (27rxfT) 4 aS.+zsin (2427

where ordinates y, are the spherical harmonic coe5cients of the same kind, x is the year, and T is the period, would be appropriate. From the paper by Nagata and Rikitake (s2)the period of oscillation of the SBofield is deduced as 23ra 1 75-p T=zg J( 3 )

SOME MORPHOLOGICAL

I

_---__L*;--5 r’ 0” 4r

P

.:

1 . . . . . L ,.................:

l_______,____ix.I~z

SECULAR VARIATION

,____.i

:r-_--i...

i I : I :

ASPECTS OF GEOMAGNETIC

:..... .. .

I

,.......,.....................

-...

?

ci

i

I



I

ii, “0

I

I

“0 Ad~/~(sourwo6)~X~~suep

0

JaMOd

I

5:

1107

-

LA

__

: :.

Period.

56

,:

I

2.9

I.,

Ii

II,31::fL

Ll

i.f

:.!

. . . :: i

.

. . .

i

yr

:

1.: . ..:

:



2.0

I

I

I

;

I

L ,

,I;;

i

: : : :

:” . . . : : :

I

Ir’ I:

:: :: :: :.;

i”

1

I.

I

:.

FIG. 8. NIEMEGK. UPPER 90% CONFIDENCE ~rmrf? ARE SHOWN FOR EACH ELEMENT.

A12.5i

A-: : : : : : . . : : : : : : : : . : : : : : : :.:

: :

I:

-1

I....

Fwiod.

yr



(

i

LIMITSARESHOWNFOREACHELEMENT.

FIG.9. PILAR. UPPER 90% CON~DENCE

_r?

AV .............A2

AV ,...,........AZ

3 Ax

Spectrum ________

Spectrum 2 ______ -_ A)(

5 m

c

SOME MORPHOLOGICAL

ASPECTS OF GEOMAGNETIC

SECULAR VARIATION

yz

. ..... ..... ............ ... r______-_-____ ___ ..:

....:

,__-__J

:......

X>N

3

: .. . .. . .

-ada

L____,

:*.: .. . . . .. ,. .

. .. .... . :..

.

L-_______,

r_-___, r_____J

: . . . . .. ..

I :

L_

I

.i i

L____?

,-_______J

r

rd

: . . . . . . . . ra . . . .

,

:......... ...:

I

‘6

-6

Ida /z(

SDWWD~ )‘Xa!suap

P Jarnod

1109

1110

L. SLAUCITAJS

and D. E. WINCH

where a is the radius of the core, p the density of the core, S, a steady poloidal field in the core. When T = 50years, the value for S, is found to be 2.8 e.m.u., a not unreasonable value. REFERENCES 1. L. S~~vcrr~a, Contri6. Baltic Univ. 63, 1 (1948). 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

A Magyar Tudomdnyos Akademia Miiszaki Tudomdnyok Oszttit’ya Kozlemenyei V, 1 (1952). BARTA,Magyar Allami ZWvi2s Lorand Geofzikai Zntezet Geojizikai Kiizlemenyek III, 1 (1954). BARTA,Acta Geol. IV, Fast. 1 (1956). GAIBAR-P~ERTAS, Observatorio de1 Ebro. Mem. 11,201(1953). GAIBAR-P~ERTAS, Geof. pura e appl. 29,22 (1954). GAIBAR--PUERTAS, Publ. corn. 50” aniv. Obs. Magn. San Miguel, Lisboa (1962). L. SLAUC~~AJS, Pure Appl. Geophys. 59/111 75 (1964). K. F. WASSERFALL, J. Geophys. Res. 55,292 (1950). L. SLAUCITAJS, Publ. de1 Observ. Astron. de la Plats, Ser. Geof VII, 1 (1951). N. STOYKO, C.R., Acad. Sci., Paris 234,1798 (1952). W. M. ELSASSER, Amer. J. Phys. 24,87 (1955). G. G. G. C. C. C.

BARTA,

12. 13. Y. D. KALm, Trans. Toronto Meeting, ZAGA Bull. 16,368 (1960). 14. T. YUKUTAKE,J.Geomag. Geoelect. XII, 102 (1961). 15. C. DEPIETRI,Geof. e Meteorol. VIII, 5/6 (1960). 16. S. S. DEGAONKAR, J. Geophys. Res. 68,6206 (1963). 17. T. YUKATAKE,ZAGA Symp. on Magnetism of Earth’s Interior, Pittsburgh (1964). 18. H. JEFPREYS and B. S. JEFFREYS, Methods of Mathematical Physics, page 451. Cambridge University Press (1963). 19. J. BARTELS, Preuss. Meteorol. Inst. AbhandZ. 8, (2) 23 (Veroff.Nr. 332) (1925). 20. A. G. MCNISH, Trans. Amer. Geophys. Un. 21,287 (1940). 21. S. K. RUNCORN,Encyclopaedia of Physics XLVII, 498 (1956). 22. T. NAGATAand T. R~TAICE, J. Geomag. GeoeZect. XIV, (4) 213 (1963). 23. G. GOERTZEL,Amer. Math. Monthly 65,34 (1958). 24. R. J. HADERand A. H. E. GRANDAGE,Symposium on Design ofIndustrial Experiments (ed. E. V. Chew), p. 108, Institute of Statistics, Raleigh, N. Carolina (1956). 25. L. H. C. Tmpm-r, The Methods of Statistics, p. 387. Wiley,New York (1952). 26. E. WHITTAKERand G. ROBINSON,The Calculus of Observations, p. 282, Blackie(1944). 27. R. B. BLACKMANand J. W. TUREY, The Measurement of Power Spectra. Dover (1958). 28. R. Bock and W. S-ANN, Katalog der Jahresmittelder magnet&hen Elemente der Observatorien tmd der Stationen, an denen eine Zeitlang erdmagnetischeBeobachtungenstattfanden. Berlin (1948). 29. T. NAGATAand M. SAWADA,J. Geomag. Geoelect. XV, 2 (1963).

h'dIOM~&IaJIKB AaHHbIX reOMarHHTHhIX BeKOBbIX KaMeHeHHii B TpeX EUlebfeHTaX X,Y K Z B IIFITH06CepBaTOpHJIX paaMeIgeRKbIx II0 SeMHOMy ILlapy,IlOKaabIBaeT,9TO aMIlJIl¶TTy~L.I,lIOJIj’%HHW3 B 6O-TKJIeTHEi~gliKJI~OCpe~CTBOMrapMOHEl~eCKOrO aHaJIEl8a, BeCbMaLUEFlHTeJIbRM. kIJI0 06KapyHCeH0,9TO aMIUIHTJ'AblI'apMOHtlK6onee BbICOKOrO 3TOT gHKJI MOX-330 mui Boo6Ige HeaHaUUTeJIbm: nopsnKa McKee aKawTenbHhl, HeIIOCpe~CTBeHHOBH~eTbH'drpa@l¶KOB~aHHbIXHa6~IO~eHH~. 3THpeayJIbTaTbIUOATBepB hoxAaroTcn aKamfaou cmoBor0 cneKTpa. ~OJIb8yflCb J'PJIaMH@aa, IlOJryreHHbIMki THJIeTHHt (lIOJIJ'CTOJIeTHHt)gKKJInO AaHHbIM pa8JIEiWMXlIepEiO~OB,6oJIee J-TOgHeHHbIe aKaverim~n~aTorogKKnaoKaaanmbpaBHmo~KMnCs 61 f 6 JleT. ~pH6JUWiTeJIbHbIe IlOJlyCTOJleTHUeBHWIeHUR ElHTepeCHbIB BKAy TeOpeTHreCKOti BOBMO)KHOCTH Kone6anmi nona SaOnepHoAa B 77 neT,HanaraeMoro Ka rnamoe none.