Journal of Number Theory 121 (2006) 45–66 www.elsevier.com/locate/jnt
Some new results on k-free numbers Zaizhao Meng School of Mathematical Sciences, Peking University, Beijing 100871, PR China Received 1 June 2004; revised 23 October 2005 Available online 3 March 2006 Communicated by David Goss
Abstract In this paper we obtain an improved asymptotic formula on the frequency of k-free numbers with a given difference. We also give a new upper bound of Barban–Davenport–Halberstam type for the k-free numbers in arithmetic progressions. © 2006 Elsevier Inc. All rights reserved. MSC: 11N13
1. Introduction In this paper, we give some new results on the average behaviour of the remainder terms of the k-free numbers in arithmetic progressions. Such result is analogous to the Barban–Davenport– Halberstam theorem for the primes in arithmetic progressions. Let μk (n) be the characteristic function of the k-free numbers, then we have μ(d), (1.1) μk (n) = d k |n
where μ(n) is the Möbius function. For fixed positive integer r and positive real number ε > 0, in [10] Mirsky obtained 2 2 pk − 1 1− k x + Or,k x k+1 +ε , μk (n)μk (n + r) = k p p −2 k p nx
p |r
E-mail address:
[email protected]. 0022-314X/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2006.01.010
46
Z. Meng / Journal of Number Theory 121 (2006) 45–66
and in [11], Mirsky improved this to
μk (n)μk (n + r) =
p
nx
2 1− k p
p k |r
2 k+2 pk − 1 x + Or,k x k+1 (log x) k+1 . pk − 2
We improve this result as follows: Theorem 1. For fixed positive integer r 1, k 2, we have
μk (n)μk (n + r) =
2 2 pk − 1 1− k x + Ok (x + r) log log 3r k+1 . k p p −2 k p p |r
nx
Especially, we have
μk (n)μk (n + r) =
1−
p
nx
2 pk
p k |r
2 pk − 1 x + Or,k x k+1 . k p −2
For k = 2, r = 1, Heath-Brown [6] obtained O(x 7/11 (log x)7 ) in place of O(x 2/3 (log x)4/3 ) in Mirsky’s theorem. Write M(x; q, a) =
Φa (m) =
μk (n),
nx n≡a (mod q)
m, 0,
if m | a, otherwise,
(1.2)
μ(d)(d k , q) , dk
(1.3)
and F (x; q, a) =
∞ Φa ((p k , q)) x −1 1− = xq q p pk
d=1 (d k ,q)|a
where the product is over prime numbers. This formula can be obtained as Hooley had done in [8,9]. When a and q are positive integers, define E(x; q, a) by the relation M(x; q, a) = F (x; q, a) + E(x; q, a). Also, define S(x, Q) =
qQ 1aq
E 2 (x; q, a).
(1.4)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
47
When k = 2, Warlimont [15] obtained the following bounds for S(x, Q): ⎧ 1+ε ⎨ x Q, S(x, Q) xQ, ⎩ xQ,
for 1 Q x, for 1 Q x 1/3 , for x 1/3 log10/3 x Q x.
He also proved that 2(2α+1) S x, x α x 3 +ε ,
for
1 α 1. 2
In [16], Warlimont improved the above results for x 3/4 Q x, namely S(x, Q) x 1/2 Q3/2 + x 5/3+ε . Later, Croft [4] improved these results for x 5/8 Q x 2/3 , that is S(x, Q) x 1/2 Q3/2 + x 3/2 log7/2 x. When k > 2, Brüdern and others [2,3] obtained 2
2
S(x, Q) x k +ε Q2− k ,
for 1 Q x.
(1.5)
In this paper, we obtain the following: Theorem 2. Suppose that Q and x are positive real numbers greater than 1, and that k is an integer with k > 2. Then 1
k+4
1
2k+6
S(x, Q) x k Q2− k + x k+2 (log x) k+2 ,
for 1 < Q x,
(1.6)
where the —constant will depend at most on k. k 2 +2k−4
This theorem improves (1.5), for x 2(k−1)(k+2) < Q < x. Theorem 2 also improves Theorem 1.2 of Vaughan [13] in the case an = μk (n). It should be noticed that we cannot use (1.6) to the case k = 2 directly. When k > 2, we cannot obtain asymptotic formula of Montgomery–Hooley type as in the prime numbers in arithmetic progressions [5,7,14]. We insert the definition of E(x; q, a) in (1.4) and square out. Thus 2 M(x; q, a) − F (x; q, a) = J1 − 2J2 + J3 , (1.7) S(x, Q) = qQ 1aq
where J1 =
M(x; q, a)2 ,
qQ 1aq
J3 =
J2 =
M(x; q, a)F (x; q, a),
qQ 1aq
F (x; q, a)2 .
qQ 1aq
We shall prove Theorem 1 in Section 2, and Theorem 2 in Section 5.
(1.8)
48
Z. Meng / Journal of Number Theory 121 (2006) 45–66
Notation. Let k > 1 denote a positive integer. Throughout, the implicit constants in Vinogradov’s notation , and in Landau’s O-notation, will depend at most on k unless it is pointed out depend upon the corresponding parameters. n ≡ a (mod q) may be written as n ≡ a(q). The greatest common divisor and the least common multiple of integers a, b are denoted by (a, b) and [a, b], respectively; μ(n) denotes the Möbius function and τ (n) denotes the divisor function; ω(n) denotes the number of distinct prime factors of n; [e] denotes the integer part of e; ψ(v) = [v] − v + 12 . The letter p denotes a prime number, and write p t n when p t | n but p t+1 † n. Let x denote a sufficiently large real number and Q be a positive real number with Q x. 2. Lemmas for J1 and the proof of Theorem 1 By (1.2), we have J1 =
qQ 1aq
2
μk (n)
= J11 + 2J12 ,
(2.1)
nx n≡a(q)
where J11 =
qQ 1aq
Now, J11 =
qQ
nx
J12 =
μk (n)2 ,
qQ 1aq
nx n≡a(q)
μk (m)μk (n).
(2.2)
m
μk (n). Using (2) in [12], we have
1 μk (n) = ζ −1 (k)x + O x k ,
nx
therefore 1 J11 = ζ −1 (k)x[Q] + O Qx k .
(2.3)
Write Tq =
μk (n)μk (n − h) =
lxq −1 lq
1hx h
and for a fixed positive integer r Wr (x) =
μk (n)μk (n − r),
r
then J12 =
qQ
Tq .
μk (n)μk (n − lq),
(2.4)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
49
For fixed integers u and v, we define the function N (u, v, x, r) by
N (u, v, x, r) =
1,
uc−vd=r ucx
where c and d are positive integers. Lemma 2.1. For positive integers u and v, we have x−r (u, v) + O(1), N (u, v, x, r) = uv 0,
if (u, v) | r, otherwise.
Proof. If (u, v) † r, the lemma is obvious. We suppose that (u, v) | r. Let c0 , d0 be any fixed solution of the equation uc − vd = r, then all the solutions of this equation may be represented v u t, d = d0 + (u,v) t, where t is any integer, and uc0 − vd0 = r. We need to count as c = c0 + (u,v) the number of t that satisfy the following conditions: uc0 +
uv t x, (u, v)
c0 +
v t 1, (u, v)
d0 +
u t 1. (u, v)
Then, we have v − vd0 x − uc0 u − uc0 (u, v), (u, v) t (u, v), max uv uv uv the number of such t is
x−r uv (u, v) + O(1),
and the lemma follows.
2
Lemma 2.2. For positive integer r and positive real number y, we have Wr (x) = (x − r)
μ(a)μ(b)(a, b)k μ(a)μ(b)(a, b)k − (x − r) k k a b a k bk k k
(a,b) |r
+
μ(a)μ(b) + O
(a,b) |r ab>y
2
2
μ (a)μ (b) .
(a,b)k |r
a k c−bk d=r a k cx, ab>y
aby
Proof. By (1.1), we have Wr (x) =
r
μ(a)
a k |n
μ(b) =
bk |n−r
μ(a)μ(b) =
a k c−bk d=r a k cx
1
+
where 1
=
a k c−bk d=r a k cx, aby
μ(a)μ(b),
2
=
a k c−bk d=r a k cx, ab>y
μ(a)μ(b).
2
,
50
Z. Meng / Journal of Number Theory 121 (2006) 45–66
By Lemma 2.1, we have 1
=
(a,b)k |r aby
k k (a, b)k μ(a)μ(b)N a , b , x, r = μ(a)μ(b) (x − r) + O(1) a k bk k (a,b) |r aby
= (x − r)
μ(a)μ(b)(a, b)k μ(a)μ(b)(a, b)k − (x − r) a k bk a k bk k k
(a,b) |r
+O
(a,b) |r ab>y
2
2
μ (a)μ (b) ,
(a,b)k |r aby
and the lemma follows.
2
Write Kk (n) =
pm .
p m n mk
Lemma 2.3. For y 2, we have μ(a)μ(b)(a, b)k k y − 2 2ω(Kk (r)) log y. k k a b k
(a,b) |r ab>y
If k 3 then μ(a)μ(b)(a, b)k k y − 2 2ω(Kk (r)) . k bk a k
(a,b) |r ab>y
Proof. Write I=
μ(a)μ(b)(a, b)k , a k bk k
(a,b) |r ab>y
then I=
μ(a)μ(b)(a, b)k 2 −k μ (t)t a −k a k bk k k t |r (a,b)=t ab>y
t |r
a1
b>yt −2 a −1
b−k .
Z. Meng / Journal of Number Theory 121 (2006) 45–66
51
We need to estimate the sums of a and b more carefully. We have
a −k
b>yt −2 a −1
a1
b−k
a −k +
a>yt −2
1−k a −k ya −1 t −2 ,
ayt −2
hence I
μ2 (t)t −k
a>yt −2
t k |r
a −k + y 1−k t 2k−2
a −1 I1 + I2 + I3 ,
ayt −2
where I1 =
μ2 (t)t −k
I3 = y 1−k
a −k ,
I2 =
a>yt −2
t k |r
t 2 y
μ2 (t)t −k
t k |r
a −k ,
a1
t 2 >y
t k |r
μ2 (t)t k−2
a −1 .
ayt −2
t 2 y
We estimate I1 , I2 and I3 separately. We have I1
1−k k−2 μ2 (t)t −k yt −2 y 1−k μ2 (t)t k−2 y 1−k y 2 μ2 (t),
t k |r t 2 y
t k |r
t k |r t 2 y
therefore k
I1 y − 2 2ω(Kk (r)) .
(2.5)
Also I2
k
μ2 (t)t −k y − 2
k
μ2 (t) y − 2 2ω(Kk (r)) .
(2.6)
t k |r
t k |r t 2 >y
Similarly, we have I3 y 1−k log y
k
μ2 (t)t k−2 y − 2 log y
t k |r t 2 y
By (2.5)–(2.7), we obtain the first part of the lemma.
t k |r
k
μ2 (t) y − 2 log y2ω(Kk (r)) .
(2.7)
52
Z. Meng / Journal of Number Theory 121 (2006) 45–66
If k 3, then
I3 = y 1−k
μ2 (t)t k−2
y
1−k
a −1 +
μ (t)t
k−2
t k |r
y log 2 + t
9t 2 y
and the lemma follows.
a −1
ayt −2
y<9t 2 9y 2
μ2 (t)t k−2
t k |r
9t 2 y
ayt −2
t k |r
2
μ (t)t
k−2
k
y − 2 2ω(Kk (r)) ,
t k |r y<9t 2 9y
2
Lemma 2.4. For y 2, we have
μ2 (a)μ2 (b) y log y.
(a,b)k |r aby
Proof. This is a trivial result, we give a proof for completeness. We have
μ2 (a)μ2 (b)
ay bya −1
(a,b)k |r aby
and the lemma follows.
1y
a −1 y log y,
ay
2
Write f (r) =
μ(a)μ(b)(a, b)k . a k bk k
(2.8)
(a,b) |r
Lemma 2.5. For r x and y 2, we have
Wr (x) = (x − r)f (r) +
k μ(a)μ(b) + O (x − r)y − 2 2ω(Kk (r)) log y + y log y .
a k c−bk d=r a k cx, ab>y
If k 3, then Wr (x) = (x − r)f (r) +
a k c−bk d=r a k cx, ab>y
k μ(a)μ(b) + O (x − r)y − 2 2ω(Kk (r)) + y log y .
Z. Meng / Journal of Number Theory 121 (2006) 45–66
53
Proof. By Lemmas 2.2–2.4, we have
k Wr (x) = (x − r)f (r) + O (x − r)y − 2 2ω(Kk (r)) log y +
μ(a)μ(b)
a k c−bk d=r a k cx, ab>y
+ O(y log y), and the first part of the lemma follows. We may obtain the second part similarly.
2
Write ∞
g(t) = μ2 (t)t −k
μ(n)τ (n)n−k .
(2.9)
n=1 (n,t)=1
Lemma 2.6. For positive integer r, we have f (r) =
g(t) =
p
t k |r
1−
2 pk
p k |r
pk − 1 . pk − 2
Proof. By the definition of f (r), we have f (r) =
μ(a)μ(b)(a, b)k μ(ab) 2 −k = μ (t)t a k bk a k bk k k t |r (a,b)=t
=
t |r
μ(n)τ (n) = g(t), nk k
μ2 (t)t −k
t k |r
(ab,t)=1
t |r
(n,t)=1
this is the first part of the formula. We continue in this fashion obtaining f (r) =
μ2 (t)t −k
t k |r
=
p
2 −1 1 − 2p −k = 1 − 2p −k 1 − 2p −k μ (t)t −k p
p†t
1−
2 pk
and the lemma follows.
p k |r
t k |r
pk − 1 , pk − 2
p|t
2
Combining Lemma 2.5 and the method of Atkinson and Cherwell [1] gives nx
μk (n)μk (n + r) =
p
2 1− k p
p k |r
2 pk − 1 x + Or,k x k+1 log x . pk − 2
54
Z. Meng / Journal of Number Theory 121 (2006) 45–66
Write D1 (n) =
μ(v)
v k |n
uk |n+r
vz
D3 (n) =
D2 (n) = μk (n)
μ(u),
μ(u),
uk |n+r u>z
uz
μ(v)μk (n + r),
D4 (n) = −
v k |n v>z
μ(v)
v k |n v>z
μ(u).
uk |n+r u>z
Lemma 2.7. For fixed positive integer r and positive real number z, we have μk (n)μk (n + r) = D1 (n) + D2 (n) + D3 (n) + D4 (n). Proof. By (1.1),
μk (n)μk (n + r) = μk (n)
μ(u) +
uk |n+r
uk |n+r
u>z
μ(u) = D2 (n) + μk (n)
μ(u),
uk |n+r
uz
uz
and
μk (n)
μ(u) = D1 (n) +
uk |n+r
μ(v)
v k |n v>z
μ(u) =
uk |n+r uz
v k |n v>z
and the lemma follows.
uz
μ(v)
v k |n v>z
μ(u).
uk |n+r
v>z
μ(v)μk (n + r) −
μ(v)
v k |n
uz
We have
μ(u) = D3 (n) + D4 (n),
uk |n+r u>z
2
Now, we have
μk (n)μk (n + r) =
4
Dj (n) =
j =1 nx
nx
E1 =
u,vz
= xE11 + O z2 , t −k E11 = t k |r
μ(u)μ(v)
4
1=
nx n+r≡0(uk ), n≡0(v k )
m,szt −1 (m,s)=1
Ej ,
j =1
say, μ(u)μ(v)
u,vz (u,v)k |r
say, −k
μ(mt)μ(st)(ms)
= f (r) + O z1−k log log 3r .
= f (r) + O
t k |r
t
x + O(1) [u, v]k
−k
s>zt −1
s
−k
Z. Meng / Journal of Number Theory 121 (2006) 45–66
55
Hence E1 = f (r)x + O xz1−k log log 3r + z2 . For j = 2, 3,
Ej
1 (x + r)z1−k .
uk x+r nx+r u>z uk |n
For j = 4,
E4
nx+r
(x + r)
2
1
dk
d=1
1 (x + r)
u>z v>z [uk ,v k ]|n nx+r
uk |n u>z ∞
[u, v]−k (x + r)
u,v>z
(uv)−k (x + r)
∞
d −k
u,v>z
t −k
2
t>zd −1
d=1
(u,v)=d
(u, v)k uk v k u,v>z
2 (x + r) d −k t −k + d −k . t>zd −1
dz
d>z
Hence 1−k 2 E4 (x + r) d −k zd −1 + z1−k (x + r) z2−2k d k−2 + z1−k dz
dz
(x + r)z1−k . Thus
μk (n)μk (n + r) = f (r)x + O (x + r)z1−k log log 3r + z2 ,
(2.10)
nx 1
so that by choosing z = ((x + r) log log 3r) k+1 in (2.10), this completes the proof of Theorem 1. 3. The formula for Tq 2
From now on we make the assumption: 2 y x k , k > 2. By Lemma 2.5 and (2.4), we have
56
Z. Meng / Journal of Number Theory 121 (2006) 45–66
Tq =
lxq −1
=
Wlq (x)
(x − lq)f (lq) +
lxq −1
μ(a)μ(b) + O (x − lq)y
− k2 ω(Kk (lq))
2
+ y log y
a k c−bk d=lq
= Uq + Vq + O Zq∗ ,
a k cx, ab>y
where Uq =
(x − lq)f (lq),
lxq −1
Zq∗ =
Vq =
μ(a)μ(b),
lxq −1 a k c−bk d=lq a k cx, ab>y
k xq −1 − l qy − 2 2ω(Kk (lq)) + y log y . lxq −1
Lemma 3.1. We have k
Zq∗ x 2 q −1 y − 2 2ω(Kk (q)) log x + xq −1 y log x. Proof. By noting that ω(Kk (lq)) ω(Kk (l)) + ω(Kk (q)), we have xq −1 − l τ (l) + xq −1 y log x.
k
Zq∗ 2ω(Kk (q)) qy − 2
lxq −1
By Dirichlet’s formula for divisor function, we have −1
xq 2 −1 xq − l τ (l) τ (l) dt xq −1 log x, lxq −1
and the lemma follows.
1
lt
2
Write k
Zq = x 2 q −1 y − 2 2ω(Kk (q)) log x + xq −1 y log x, then Tq = Uq + Vq + O(Zq ), and J12 =
qQ
Tq =
Uq + Vq + O(Zq ) = A + B + O(C), qQ
(3.1)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
57
where
A=
Uq ,
B=
qQ
Vq ,
C=
qQ
Zq .
qQ
Lemma 3.2. We have k
C x 2 y − 2 log3 x + xy log2 x. Proof. By the definition of C, we have k
C x 2 y − 2 log x
q −1 τ (q) + xy log x
qQ
q −1 ,
qQ
again, by Dirichlet’s formula for the divisor function and noting that have
q −1 τ (q) log2 x,
qQ q
−1
log Q, we
k
C x 2 y − 2 log2 x log x + xy log x log x,
qQ
and the lemma follows.
2
4. The formula for J1 In this section we will give the formula for J1 . Lemma 4.1. Suppose that f (t) and g(t) are defined by (2.8) and (2.9), respectively, that u > 0 and that v = u(t k , q)t −k . We have
f (mq) =
∞ t=1
mu
∞ 1 1 + g(t) v − g(t)ψ(v) + O (uq) k −1 . 2 t=1
Proof. By Lemma 2.6, we have
f (mq) =
mu t k |mq
mu
=
1
t(uq) k
=
1
t(uq) k
g(t) =
g(t) 1
t(uq) k
mu t k |mq
1=
g(t) u t k , q t −k 1
t(uq) k
k −k k −k 1 g(t) u t , q t − + ψ u t , q t 2 1 + g(t) v − g(t)ψ(v). 2 1 t(uq) k
58
Z. Meng / Journal of Number Theory 121 (2006) 45–66
By (2.9), we have g(t) t −k , and
g(t)(v + 1) 1
1 t −k 1 + ut −k q, t k (uq) k −1 , 1
t>(uq) k
and the lemma follows.
t>(uq) k
2
Write
H (x, q) = 2q
∞
−1 g(t)t k q, t k
k )q −1 t −k x(q,t
t=1
ψ(v) dv. 0
Lemma 4.2. We have ∞ 1 1 1 1 −1 A = − ζ −1 (k)x[Q] + H (x, q) + x 2 q g(t)t −k q, t k + O Qx k . 2 2 2 qQ
qQ
t=1
Proof. By Lemma 4.1, we have −1 xq
Uq = q 0
=q
mu
−1 xq ∞
0
t=1
−1
xq ∞ ∞ 1 1 −1 k du f (mq) du = q g(t) v − g(t)ψ(v) + O (uq) + 2
0
t=1
t=1
−1
xq
∞ 1 1 + g(t) v − g(t)ψ(v) du + O q (uq) k −1 du . 2
t=1
0
The error term is 1 1 1 q k xq −1 k x k . Therefore,
Uq = q
∞
−1 xq
g(t)
t=1
0
−1
xq ∞ 1 1 v− du + q g(t) ψ(v) du + O x k . 2 t=1
0
Also −1 xq
v− 0
1 1 1 du = x 2 t −k q, t k q −2 − xq −1 , 2 2 2
Z. Meng / Journal of Number Theory 121 (2006) 45–66 −1 xq
59
t −k (q,t k ) xq −1
−1 ψ(v) du = t q, t k k
ψ(v) dv,
0
0 ∞
g(t) = ζ −1 (k).
t=1
Thus ∞
∞
t=1
t=1
1 1 1 1 g(t)t −k q, t k − x g(t) + H (x, q) + O x k , Uq = x 2 q −1 2 2 2 and the lemma follows.
(4.1)
2 2
Lemma 4.3. Suppose that k > 2 and that 2 y x k . Then 3k
k
B x 2 y 1−k log5/2 x + x 3/2 y 1− 2 log7/2 x + x 2 y 1/2− 4 log3/2 x. Proof. We refine the argumentation in [4].We have B J (x), where J (x) =
1
qQ lxq −1 a k c−bk d=lq a k cx, ab>y
τ (m)
1.
a k c−bk d=m a k cx, ab>y
mx
We write K = K(x; a, b) =
τ (m)
mx
1,
a k c−bk d=m cxa −k
then J (x)
(4.2)
K(x; a, b).
a k x, bk x ab>y
By the Cauchy inequality and Dirichlet’s formula for the divisor function K
1/2 τ (m) L1/2 x 1/2 log3/2 xL1/2 , 2
mx
where L = L(x; a, b) =
a k c−bk d=a k γ −bk δ c,γ xa −k
1.
60
Z. Meng / Journal of Number Theory 121 (2006) 45–66
Writing c − γ = u and d − δ = v, we have L
x2 a k bk
(a, b)k x2 x3 x2 x + 1 2k 2k (a, b)k + k k . k k k k a b a b a b a b
1
a k u=bk v |u|xa −k , |v|xb−k
Hence k x 3/2 x (a, b) 2 + k k , k k a b a2b2
L1/2 and
k
K x 2 log3/2 x
(a, b) 2 1 + x 3/2 log3/2 x k k . a k bk a2b2
(4.3)
By (4.2) and (4.3), J (x) x log 2
3/2
x
k (a, b) 2 1 3/2 3/2 + x log x . k k a k bk 1 a2b2
1
a,bx k ab>y
a,bx k ab>y
Thus J (x) x 2 log3/2 xL1 + x 3/2 log3/2 xL2 ,
(4.4)
where L1 =
1 a,bx k
k
(a, b) 2 , a k bk
L2 =
1 a,bx k
ab>y
1 k 2
k
.
a b2
ab>y
We have L1
1
dx k
k
d 2 −2k
2
yd −2 nx k d −2
τ (n) −3k d 2 + nk √ y
1ny
τ (n) nk
n d
2
1nx k
2
τ (n) nk √
d
−3k 2
1 y k −1/2 n dx n
τ (n) . nk
y
Again, by Dirichlet’s formula for the divisor function, we have 1
3k
L1 y 2 − 4 + y 1−k log x.
(4.5)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
61
We see at once that
L2
1 y
1 a,bx k
k
k 2 −1
ab
y 1− 2 log2 x,
(4.6)
ab>y
and the lemma then follows from (4.4)–(4.6).
2
Lemma 4.4. For k > 2, we have J1 =
H (x, q) + x 2
qQ
q −1
∞
g(t)t −k q, t k
t=1
qQ
1 k 1 3k + O Qx k + x 2 y 1−k log5/2 x + x 3/2 y 1− 2 log7/2 x + x 2 y 2 − 4 log3/2 x k + x 2 y − 2 log3 x + xy log2 x . Proof. By (2.1)–(2.3), we have 1 J1 = ζ −1 (k)x[Q] + O Qx k + 2J12 . By (3.1), (4.1), Lemmas 3.2, 4.2 and 4.3, we have ∞ 1 1 1 1 −1 H (x, q) + x 2 q g(t)t −k q, t k + O Qx k J12 = − ζ −1 (k)x[Q] + 2 2 2 qQ
qQ
t=1
k + O x 2 y 1−k log5/2 x + x 3/2 y 1− 2 log7/2 x 1 3k k + x 2 y 2 − 4 log3/2 x + x 2 y − 2 log3 x + xy log2 x , and the lemma follows.
2
5. The formulas for J2 , J3 and the proof of Theorem 2 In this section we give the complete proof of Theorem 2. For k > 2, there are not simple properties for the function M(x; q, a) as in the case k = 2 [4,16], our method is suitable for all k 2. Lemma 5.1. For k 2, we have J2 = x 2
qQ
Proof. By (1.1)–(1.3) and (1.8),
q −1
∞ t=1
1 g(t)t −k q, t k + O x 1+ k log x .
62
Z. Meng / Journal of Number Theory 121 (2006) 45–66
J2 =
qQ 1aq
=x
q −1
nx t k |n n≡a(q)
d=1 (d k ,q)|a
∞ μ(d)(q, d k )
dk
d=1
qQ
μ(t)xq
∞
−1
μ(t)
t k x
μ(d)(d k , q) dk
q
1.
a=1 t k |nx (q,d k )|a n≡a(q)
Write q
G=
1.
a=1 t k |nx (q,d k )|a n≡a(q)
Writing a = (q, d k )j and n = t k m, we have G=
k −1 q(q,d )
j =1
mxt −k t k m≡(q,d k )j (q)
1=
x(q, d k , t k ) x(q, d k , t k ) = + O(1). k k (q, d )t (q, d k )t k
Hence J2 = J21 + O(J22 ),
(5.1)
where J21 = x 2
q −1
qQ
J22 = x
q −1
∞ μ(d) d=1
μ(t) q, d k , t k t −k ,
1
tx k
∞ μ2 (d)(q, d k )
dk
d=1
qQ
dk
μ2 (t).
(5.2)
1 tx k
By (2.9), proceeding as in the proof of Lemma 2.6, we get J21 = x 2
q −1
∞
g(t)t −k q, t k − x 2 q −1 Δ21 ,
t=1
qQ
qQ
where, Δ21 =
∞ μ(d) d=1
We have
dk
1
t>x k
μ(t) q, d k , t k t −k .
(5.3)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
63
∞ ∞ μ(d) μ(d) k −k q, m Δ21 = μ(t)t = μ(m) q, mk m−k k dk d 1 m|d
d=1
=
∞
∞
μ(m) q, mk m−k
m=1
d=1 m|d
m|d
d=1
t>x k (t,d)=m
μ(t)t −k
1 t>x k m−1
(t,d)=1
μ(d) dk
μ(t)t −k = Δ211 + Δ212 ,
1
t>x k m−1 (t,d)=1
where
Δ211 =
1 mx k
Δ212 =
∞ −k μ(d) k μ(m) q, m m dk d=1 m|d
μ(m) q, mk m−k
1
∞ d=1 m|d
m>x k
μ(t)t −k ,
1 t>x k m−1
(t,d)=1
μ(d) dk
μ(t)t −k .
1
t>x k m−1 (t,d)=1
We have Δ211
q, mk m−2k 1
mx k 1
x k −1
1 1−k q, mk m−2k x k m−1
t −k
1
1
t>x k m−1
mx k
q, d k d −k−1 , 1
dx k
hence 1 1 x2 q, d k d −k−1 x 1+ k q −1 Δ211 x 2 q −1 x k −1 d −k−1 q −1 q, d k qQ
1
qQ 1
x 1+ k
1
dx k
d −k−1
m|d k
1
dx k
m
dx k 1
q −1 x 1+ k log x
(q,d k )=m qQ
qQ
τ d k d −k−1 .
1
dx k
Thus x2
1
q −1 Δ211 x 1+ k log x.
(5.4)
qQ
Since Δ212 x2
qQ
1
m>x k
(q, mk )m−2k , we have
q −1 Δ212 x 2
qQ
q −1
q, mk m−2k x 2 q −1 m−k 1
m>x k
1 1−k x 2 log x x k ,
qQ
1
m>x k
64
Z. Meng / Journal of Number Theory 121 (2006) 45–66
therefore, x2
1
q −1 Δ212 x 1+ k log x.
(5.5)
qQ
By (5.2), we have 1
J22 x 1+ k
q −1
∞ μ2 (d)(q, d k )
dk
d=1
qQ
1
x 1+ k
∞
d −k
d=1
q −1 q, d k ,
qQ
as in the estimation of (5.4), we have 1
J22 x 1+ k log x,
(5.6)
2
and the lemma follows from (5.1), (5.3)–(5.6). Lemma 5.2. For k 2, we have J3 = x 2
q −1
qQ
∞
g(t)t −k q, t k .
t=1
Proof. By the definition of J3 , we have J3 =
xq
−1
d=1 (d k ,q)|a
qQ 1aq
= x2
q −1
qQ
∞
∞
μ(d)(d k , q) dk
2 =x
2
qQ
q
−1
∞ μ(d1 )μ(d2 ) q, d1k , d2k k k d1 d2 d ,d =1 1
2
g(t)t −k q, t k ,
t=1
and the lemma follows.
2
By (1.7), Lemmas 4.4, 5.1 and 5.2, for k > 2, S(x, Q) =
1 k 1 3k H (x, q) + O Qx k + x 2 y 1−k log5/2 x + x 3/2 y 1− 2 log7/2 x + x 2 y 2 − 4 log3/2 x
qQ
k 1 + O x 2 y − 2 log3 x + xy log2 x + x 1+ k log x . A good choice for y is 2
y = (x log x) k+2 , then S(x, Q) =
qQ
k+4 2k+6 H (x, q) + O x k+2 (log x) k+2 .
(5.7)
Z. Meng / Journal of Number Theory 121 (2006) 45–66
65
Lemma 5.3. For k 2, we have
1
1
H (x, q) x k Q2− k .
qQ
Proof. We have g(t) t
−k
,
ψ(v) dv 1,
k )q −1 t −k x(q,t
ψ(v) 1.
0
Hence H (x, q) q
k −1 q, t + 1
xq
−1 −k
t
1 1−k q xq −1 k + qxq −1 xq −1 k
1
t<(xq −1 ) k 1
t(xq −1 ) k
1
x k q 1− k , and
1
H (x, q) x k
qQ
and the lemma follows.
1
1
1
q 1− k x k Q2− k ,
qQ
2
Finally, by Lemma 5.3 and (5.7), we have 1
1
k+4
2k+6
S(x, Q) x k Q2− k + x k+2 (log x) k+2 , and Theorem 2 follows. Acknowledgment I am grateful to the referee for his/her many helpful comments and constructive suggestions, which enabled me to strengthen the results of the earlier version of this paper. References [1] F.V. Atkinson, Lord Cherwell, The mean-values of arithmetical functions, Quart. J. Math. Oxford 20 (1949) 65–79. [2] J. Brüdern, A. Granville, A. Perelli, R.C. Vaughan, T.D. Wooley, On the exponential sum over k-free numbers, Philos. Trans. R. Soc. Lond. Ser. A 356 (1998) 739–761. [3] J. Brüdern, A. Perelli, T.D. Wooley, Twins of k-free numbers and their exponential sum, Michigan Math. J. 47 (2000) 173–190. [4] M.J. Croft, Square-free numbers in arithmetic progressions, Proc. London Math. Soc. 30 (1975) 143–159. [5] D.A. Goldston, R.C. Vaughan, On the Montgomery–Hooley asymptotic formula, in: G.R.H. Greaves, G. Harman, M.N. Huxley (Eds.), Sieve Methods, Exponential Sums, and Their Applications in Number Theory, Cardiff, 1995, Cambridge Univ. Press, Cambridge, 1996, pp. 117–142. [6] D.R. Heath-Brown, The square sieve and consecutive square-free numbers, Math. Ann. 266 (1984) 251–259. [7] C. Hooley, On the Barban–Davenport–Halberstam theorem: I, J. Reine Angew. Math. 274/275 (1975) 206–223.
66
Z. Meng / Journal of Number Theory 121 (2006) 45–66
[8] C. Hooley, On the Barban–Davenport–Halberstam theorem: XII, in: K. Györy, H. Iwaniec, J. Urbanowicz (Eds.), Number Theory in Progress, vol. II, Zakopane-Ko´scielisko, Poland, 1997, de Gruyter, Berlin, 1999, pp. 893–910. [9] C. Hooley, On the Barban–Davenport–Halberstam theorem: XIII, Acta Arith. 94 (1) (2000) 53–86. [10] L. Mirsky, Note on an asymptotic formula connected with r-free integers, Quart. J. Math. Oxford 18 (1947) 178– 182. [11] L. Mirsky, On the frequency of pairs of square-free numbers with a given difference, Bull. Amer. Math. Soc. 55 (1949) 936–939. [12] H.L. Montgomery, R.C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory, Symposium Durham, 1979, vol. 1, Academic, London, 1981, pp. 247–256. [13] R.C. Vaughan, On a variance associated with the distribution of general sequences in arithmetic progressions. II, Philos. Trans. R. Soc. Lond. Ser. A 356 (1998) 793–809. [14] R.C. Vaughan, On a variance associated with the distribution of primes in arithmetic progressions, Proc. London Math. Soc. (3) 82 (2001) 533–553. [15] R. Warlimont, On squarefree numbers in arithmetic progressions, Monatsh. Math. 73 (1969) 433–448. [16] R. Warlimont, Über die kleinsten quadratfreien Zahlen in arithmetischen Progressionen mit primen Differenzen, J. Reine Angew. Math. 253 (1972) 19–23.