Some Rapidly Growing Functions1), 2)

Some Rapidly Growing Functions1), 2)

HARVEY FRIEDMAN'S RESEARCH ON THE FOUNDATIONS OF MATHEMATICS, L.A. Harrington et al. (editors) Elsevier Science Publishers B.V. (North-Holland), 1985 ...

441KB Sizes 3 Downloads 128 Views

HARVEY FRIEDMAN'S RESEARCH ON THE FOUNDATIONS OF MATHEMATICS, L.A. Harrington et al. (editors) Elsevier Science Publishers B.V. (North-Holland), 1985

367

Some R a p i d l y Growing F u n c t i o n s

I), 2)

C r a i g Smorynski

The purpose o f t h i s n o t e i s pure iconoclasm. m a t i c a l myths about how l a r g e " l a r g e " i s .

I wish t o debunk a few mathe-

When t h e mathematician says " l a r g e " ,

t h e l o g i c i a n i s sure t o t h i n k " s m a l l " . The f i r s t clich; Skewes number. T(X)

-

li(x)

u s u a l l y r e s o r t e d t o i n d i s c u s s i o n s o f largeness i s t h e

For a l l c a l c u l a t e d values, t h e number t h e o r e t i c f u n c t i o n Thus, when i n 1914 J. E. L i t t l e w o o d n o n c o n s t r u c t i v e -

i s negative.

l y proved t h a t t h i s f u n c t i o n changed s i g n s i n f i n i t e l y o f t e n , c u r i o s i t i e s about

where i t c o u l d become p o s i t i v e were aroused.

I n 1933, on t h e assumption o f t h e

Riemann Hypothesis, S . Skewes gave an upper bound f o r t h e f i r s t change o f sign. T h i s bound was so l a r g e (by t h e standards o f t h e day) t h a t i s achieved i n s t a n t n o t o r i e t y and even a t i t l e

-

t h e Skewes Number: 4.369

s

= 10lo < e

e

ee

The Skewes number has s i n c e been t o p p l e d from i t s p o s i t i o n o f supremacy.

In

1955, Skewes showed how t o l o w e r t h e bound i f one s t i l l assumed t h e Riemann Hypothesis; b u t he saved h i s r e p u t a t i o n by o b t a i n i n g t h e even l a r g e r upper bound,

e S ' = ee

e

7.705

,

"Reprinted from t h e Mathematical I n t e l l i g e n c e r 2 (1980) 149-154, o f S p r i nger-Verlag

.

by permission

"Editors' note: F u r t h e r d i s c u s s i o n o f t h i s t o p i c may be found i n t h e o t h e r s h o r t a r t i c l e s o f C. Smorynski i n t h i s volume, as w e l l as i n t h e c o n t r i b u t i o n s o f S. G. Simpson and R. L. Smith.

c. SMORYNSKI

368

when t h e Riemann Hypothesis was n o t assumed. shrunk,

i t s importance has:

While t h e number

has not

S'

S m a l l e r bounds f o r t h e s i g n change e x i s t today.

For

example, i n 1966 R. S. Lehman gave t h e bound

e L = e

e

2.067

L l a r g e these days:

Not even mathematicians would f i n d

Alan Baker won h i s

F i e l d s medal f o r , among o t h e r t h i n g s , g i v i n g e f f e c t i v e bounds i n number t h e o r y . I n h i s book on Transcendental Numbers, f o r i n s t a n c e , he c i t e s t h e bound 10

f o r a l l i n t e g r a l zeros

x,y

c o e f f i c i e n t s ) o f genus

1

o f an i r r e d u c i b l e polynomial

, degree

n

, and

height

f(x,y)

.

H

O f course, w i t h so much emphasis on t h e e f f e c t i v e n e s s o f t h a t mathematicians do n o t r e g a r d

B as b e i n g very l a r g e .

modern mathematician r e g a r d as l a r g e ?

(with integral

B

, we

must assume

What t h e n does t h e

Well, i n h i s column i n t h e November 1977

i s s u e o f S c i e n t i f i c American, M a r t i n Gardner c i t e s a r e s u l t o f R.

L. Graham.

According t o Gardner, " I n an u n p u b l i s h e d p r o o f , Graham has r e c e n t l y e s t a b l i s h e d an upper bound

... so v a s t t h a t

i t h o l d s t h e r e c o r d f o r t h e l a r g e s t number ever

used i n a s e r i o u s mathematical proof." i s , we f i r s t d e f i n e a f u n c t i o n

K

Intriguing?

To see what Graham's number

by r e c u r s i o n :

K(x,y)

i s "something l i k e " an e x p o n e n t i a l s t a c k o f

From K

, we

d e f i n e another f u n c t i o n

G

y's

by r e c u r s i o n :

o f height

x + 2 :

'

369

Some Rapidly Growing Functions = K(3,3)

G(0)

G(x + 1) = K(G(x),3) The growth o f stack o f

G

.

i s a b i t more d i f f i c u l t t o imagine.

i s something l i k e a

G(1)

G(0) 3 ' s , i.e.

I l e a v e t o t h e reader an e s t i m a t e o f

.

G(2)

G = G(64)

The bound t h a t Graham g i v e s i s

. I will

Now t h i s i s something t h e mathematician o f today regards as l a r g e . concede t h a t i t dwarfs numbers l i k e

f o r reasonably small values o f t h a t it i s

large

-

n

S , B, o r even say,

and

as

G

5

.

100)

I w i l l a l s o concede

a c c o r d i n g t o Gardner, t h e c o n s t a n t t h a t

bound f o r i s g e n e r a l l y b e l i e v e d t o be i s large.

(say

H

6 (!)

.

G

i s an upper

Rut I w i l l n o t concede t h a t

G

How can any number t h a t i s t h e value o f as s l o w l y growing a f u n c t i o n

on so small an argument as

64 be considered l a r g e ?

To g i v e us some standard f o r comparison, l e t me i n t r o d u c e a h i e r a r c h y o f number t h e o r e t i c f u n c t i o n s . F

n

: w + w

F o r each n a t u r a l number

0

Fn+,(x) Fn+l(x)

= Fn(

... ( F n ( x ) ) ...)

= x

a function

+ 1 x+l

= Fn

, with

F o ( x ) = x + 1, F1(x) = 2x + 1, F 2 ( x ) thing l i k e

, define

as f o l l o w s :

F (x)

i.e.

n E w

(XI ,

x + 1

nestings o f

i s something l i k e

2'

F

n

, and

.

Thus,

F (x) 3

some-

c. SMORYNSKI

370

F

4

, like

G(x)

,

i s a l i t t l e harder t o describe.

B e f o r e making any comparisons,

and H a r e something l i k e each o t h e r , 1 2 I do n o t mean t o i m p l y any r e l a t i o n n e a r l y as t i g h t as a s y m p t o t i c i t y . On t h e

t h a t I am g o i n g t o use:

When I say

l e t me q u i c k l y e x p l a i n t h e r u l e o f comparison

H

c o n t r a r y , I have i n mind a l o o s e r , more l i b e r a l , equivalence r e l a t i o n whose looseness grows w i t h t h e s i z e o f t h e elements o f a g i v e n e q u i v a l e n c e c l a s s . Given a f u n c t i o n taking

H

H , one n a t u r a l l y d e f i n e s a f a m i l y o f f u n c t i o n s

along w i t h a few b a s i c f u n c t i o n s (e.g.

5(H) by

a d d i t i o n ) and c l o s i n g under

e x p l i c i t d e f i n a b i l i t y (composition, a d d i t i o n o f dummy v a r i a b l e s , etc.).

I say

i s something l i k e H i f t h e c l a s s e s 3 ( H ) and 5 ( H ) a r e c o f i n a l 1 2 1 2 i f every f u n c t i o n o f 5 ( H ) i s m a j o r i s e d by one o f 5 ( H ) i n each o t h e r , i.e. 1 2

that

H

and v i c e versa.

T h i s i s a v e r y l o o s e measure o f equivalence:

a r e a l l something l i k e i t s own

2

X

, x! , and

n - f o l d composition w i t h i t s e l f ! )

x

X

T h i s looseness

F - H i e r a r c h y t h a t much more i m p r e s s i v e - f o r i t i s a h i e r a r c h y : n F i s n o t h i n g l i k e F , i.e. F i s so l a r g e r e l a t i v e t o F t h a t you n ntl n n+l need something l i k e F t o reach F from F F w i l l not do: F ntl ntl n n ntl e v e n t u a l l y m a j o r i s e s every f u n c t i o n o f Z ( F ) n The f u n c t i o n s K ( o r , r a t h e r , i t s d i a g o n a l ) and G f i t n e a t l y i n t o t h e

o f f i t makes t h e

.

.

.

F -Hierarchy. K(x,x) i s something l i k e F . w h i l e G i s something l i k e F n 3 ' 4 R e f l e c t i n g on t h e r a p i d i t y o f t h e growth of F F , o r even F 5 ' 236 G(64) ' the

reader w i l l see t h a t I was n o t b e i n g e n t i r e l y f a c e t i o u s when I r e f e r r e d e a r l i e r t o t h e slow r a t e o f growth e x h i b i t e d by Graham's f u n c t i o n

G(x)

.

" O f course",

t h e reader might o b j e c t , "anyone can produce ever more r a p i d l y growing f u n c t i o n s . But t h e Graham f u n c t i o n was used i n a " s e r i o u s mathematical proof." that

F

has never been so a p p l i e d .

G(64)

But

F

w

and

have

FE

It i s t r u e

-

and we

0

h a v e n ' t even reached t h e s e f u n c t i o n s y e t ! To d i s c u s s t h e r a t e s o f growth o f f u n c t i o n s used i n l o g i c , i t i s necessary

F -Hierarchy i n t o t h e t r a n s f i n i t e . n one s i m p l y i t e r a t e s what one d i d a t a :

t o extend t h e

A t successor o r d i n a l s , a

+

1

,

37 1

Some Rapidly Growing Functions

A t l i m i t ordinals,

one d i a g o n a l i s e s on what one has done b e f o r e , e.g.

F (x) w

.

= F (x) X

The f i r s t few values a r e now l o w e r t h a n those one had b e f o r e , but t h e f u n c t i o n s d e f i n e d a t l i m i t o r d i n a l s do c a t c h up and surpass t h e i r predecessors.

M. H. L'db

and S. Wainer have shown how t o c a r r y o u t t h i s c o n s t r u c t i o n t o any preassigned countable ordinal.

O f course, i n l o g i c one d o e s n ' t a c t u a l l y need t o go t h a t f a r

i n t o t h e t r a n s f i n i t e any more t h a n i n a n a l y s i s one needs t o use f u n c t i o n s growing

.

F The f u n c t i o n s we wish t o d i s c u s s a r e t h e F ' s f o r G(64) a a5€ The o r d i n a l t i s , t h e reader m i g h t r e c a l l , t h e l e a s t f i x e d p o i n t o f 0 0 E = min [8 = w 8 1 A more i n t u i t i v e o r d i n a l e x p o n e n t i a t i o n w i t h base w , i.e. 0 B i s g i v e n by v i e w i n g i t as t h e l i m i t o f t h e sequence, picture of E

as f a s t as

.

.

n

w , w

w

The immensity o f t h e s t e p from Moreover, between

and

w

w

w

ww

and

ww

a

w

w

)... .

to

there are not

w

between

, w

a

+ 1 i n c r e a s e s as a increases. 1

, not

w

, but

w

w

such steps:

w

there are

ww

human mind can comprehend t h e growth o f l o g i c a l (and, as we s h a l l see:

such steps; e t c .

FE

.

I don't think that the

Yet, i t i s f u n c t i o n o f d e f i n i t e

0 combinatorial) interest.

The f u n c t i o n s o f t h e

set,

a r e p r e c i s e l y t h o s e p r o v a b l y computable i n formal number t h e o r y .

(Believe it or

n o t , t h e s e f u n c t i o n s a r e ( t h e o r e t i c a l l y , i f not p r a c t i c a l l y ) computable.)

Thus,

i s , i n a sense, t h e f i r s t f u n c t i o n t o e v e n t u a l l y m a j o r i s e a l l f u n c t i o n s 0 p r o v a b l y computable i n formal number t h e o r y .

Ft

L e t me i n t e r p r e t t h i s l a s t f a c t . o f formal number t h e o r y o f t h e f o r m

Suppose we have a sentence o f t h e language

c. SMORYNSKI

312

,

Y x ByA(x,y) where

A

i s some p r o v a b l y d e c i d a b l e r e l a t i o n .

some p r o v a b l y computable

I f ( 1 ) i s provable, then,

for

,

F

a < E

i s a l s o provable; whence, f o r some

i s provable.

(1)

[ I n f a c t , t h e exact

a

0 '

can be determined from t h e p r o o f o f ( 1 ) .

Using such c o n s i d e r a t i o n s , i n 1952 G. K r e i s e l reviewed L i t t l e w o o d ' s 1914 paper

I f , however, (1) i s t r u e

and n o t e d e s s e n t i a l l y t h e same upper bound as Skewes.]

b u t unprovable ( a p o s s i b i l i t y n o t t o be o v e r l o o k e d ) , t h e source o f i t s unprova b i l i t y c o u l d be t h e f a i l u r e o f ( 2 ) f o r a l l p r o v a b l y computable a < E

f a i l u r e o f (3) f o r a l l

.

0

F

, i.e.

I f t h i s i s t h e case, any f u n c t i o n

F

the making

( 2 ) t r u e has moments o f r a p i d growth. Now t h e s i t u a t i o n I have j u s t d e s c r i b e d i s not h y p o t h e t i c a l :

J e f f P a r i s and

Leo H a r r i n g t o n have r e c e n t l y e x h i b i t e d such an independent statement somewhat i n t e r e s t i n g r e l a t i o n

A(x,y)

.

-

with a

Since t h i s i s t h e f i r s t n o t p u r e l y

l o g i c a l example o f a problem w i t h such n e a r l y astronomical bounds ( I comment on a f u n c t i o n o f t r u l y astronomical growth a t t h e end o f t h i s note), I s h a l l d i s c u s s i t i n some d e t a i l .

I suppose we should f i r s t s e t t l e on some n o t a t i o n . n a t u r a l numbers, we w r i t e X

.

A colouring, C

, of

[XI n [XI

n

for the collection of a l l

c

Ramsqy proved t h a t , i f respect t o

Y

n-element subsets o f

: [XIn

+

c

,

i s some p o s i t i v e n a t u r a l number and we i d e n t Fy a n a t u r a l number with c = {O,

i t s s e t o f predecessors:

subsets:

i s a set of

i s s i m p l y a map

c where

If X

c C

1

and n [Y]

n

C

...,c - 11 .

i s a colouring o f

, then

some b i g subset

i s constant.

homogeneous w i t h r e s p e c t t o

I n 1929 t h e economist F. P. n [XI and X i s b i g enough w i t h Y

X

has monochromatic

n-element

(To a v o i d clumsy phrasing, we c a l l such a s e t C .)

More s p e c i f i c a l l y , Ramsey proved t h e

373

Some Rapidly Growing Functions f o l l o w i n g two theorems.

Infinite C : [w]

i.e.

Ramsey Theorem.

n +

'

C

, there

c

[Yl

n

n, c

be p o s i t i v e i n t e g e r s .

i s an i n f i n i t e s e t

Y

F o r any c o l o u r i n g ,

homogeneous w i t h respect t o

w

C

,

i s constant.

F i n i t e Ramsey Theorem.

1. n

Let

Let

s

( f o r s i z e ) , n, c

be p o s i t i v e i n t e g e r s , w i t h

.

There i s a number R(s, n, c ) such t h a t , f o r a l l r 1. R(s, n, c ) n and a l l c o l o u r i n g s C : [ r ] + c , t h e r e i s a homogeneous Y r of cardinality s

+ 1

5 .

(The r e s t r i c t i o n

s

1. n +

1 s i m p l y r u l e s out t r i v i a l cases.)

N e i t h e r o f t h e s e statements i s p a r t i c u l a r l y i n t u i t i v e .

The b e s t way t o view

them i s as h i g h e r dimensional analogues o f D i r i c h l e t ' s Schubfachprinzip:

, the

n = 1

I n f i n i t e Ramsey Theorem j u s t a s s e r t s t h a t ,

If

i f an i n f i n i t e s e t i s

s p l i t i n t o a f i n i t e d i s j o i n t union o f subsets, one o f t h e subsets must be i n -

-

finite

ple:

A f i n i t e union o f f i n i t e sets i s f i n i t e .

i n i t s more usual f o r m u l a t i o n :

n = 1 and

For

s = 2

, the

F i n i t e Ramsey Theorem i s e x a c t l y D i r i c h l e t ' s P r i n c i -

R(2, 1, c ) = c + 1 and t e s t i t y o u r s e l f .

Take

The F i n i t e Ramsey Theorem i s a c e n t e r p i e c e o f f i n i t e c o m b i n a t o r i c s , w i t h much energy b e i n g expended on t h e c a l c u l a t i o n of

R(s, n, c )

and r e l a t e d "Ramsey

For, though such c a l c u l a t i o n i s c o n c e p t u a l l y t r i v i a l (One merely enu-

Numbers".

merates a l l p o s s i b i l i t i e s ...), i t i s i m p r a c t i c a l l y d i f f i c u l t . g i v e easy u p p w bounds: like

F

-

3

The diagonal

R ( x + 1, x, x )

Still,

one can

i s bounded by something

no l o n g e r a very l a r g e number by anyone's reckoning.

However, by

making a s u b t l e ( ? ) change i n t h e statement of t h e theorem, P a r i s and H a r r i n g t o n o b t a i n a v a r i a n t where t h e f u n c t i o n i n q u e s t i o n e x h i b i t s a more r e s p e c t a b l e r a t e o f growth

-

t h e f u n c t i o n i s something l i k e

FE

.

Q We need o n l y one more d e f i n i t i o n t o s t a t e t h e P a r i s - H a r r i n g t o n Theorem:

A

set

mum:

X

w

card(X)

i s r e l a t i v e l y l a r g e i f i t s c a r d i n a l i t y i s not l e s s t h a n i t s m i n i -

1. min(X)

.

P a r i s - H a r r i n g t o n Theorem. There i s a number

Let

H(s, n, c )

s, n, c

be p o s i t i v e i n t e g e r s w i t h

such t h a t , f o r a l l

h

1. H(s,

n, c )

s

1. n +

and a l l

1

.

c. SMORYNSKI

374 n

colourings

, there

C : [hl" + c

Y

8

h

of

.

s

c a r d i n a l i t y at l e a s t

i s a r e l a t i v e l y l a r g e homogeneous

The P a r i s - H a r r i n g t o n Theorem i s t r u e , b u t not p r o v a b l e i n formal number theory.

The f u n c t i o n

.

FG 0

like

H(x + 1, x, x )

( i n f a c t , H(x + 1, x, 3 ) )

i s something

Yet, a t l e a s t f o r t h e novice, t h e d i f f e r e n c e between t h e F i n i t e

Rainsey Theorem and t h e P a r i s - H a r r i n g t o n Theorem i s minimal.

This minimality i s

u n d e r l i n e d by t h e f a c t t h a t t h e s e theorems share a common n o n - e f f e c t i v e p r o o f . It i s i n t h e i r e f f e c t i v e p r o o f s , o f course, t h a t t h e y d i f f e r .

F o r t h e c u r i o u s reader, I o u t l i n e t h e n o n - e f f e c t i v e p r o o f . case o f t h e F i n i t e Ramsey Theorem. t h e theorem were f a l s e . r

1. s , t h e r e

.

Y E r

Suppose f o r f i x e d

.

f i n i t e set

C = U C i i

C : [rln

+

c

w i t h no s i z e

o f the f i r s t

s

s

homogeneous s e t

C

<...

C < C (by K o n i g ' s 0 1 and i n v o k e t h e I n f i n i t e Ramsey Theorem t o o b t a i n an i n -

Choose an i n f i n i t e p a t h

,

homogeneous w i t h r e s p e c t t o

X

+ 1 ,

2n

< C i f f , f o r some 1 0 T h i s p a r t i a l l y ordered s e t t u r n s o u t t o be an i n f i n i t e

f i n i t e l y branching t r e e . Lemma), t a k e

s

By a m o n o t o n i c i t y p r o p e r t y i t f o l l o w s t h a t , f o r every

i s a colouring

[rln

, and

n, c

P a r t i a l l y o r d e r such c o l o u r i n g s by e x t e n s i o n :

r, C0 = C1

Consider t h e

elements o f

g i v e s one a c o n t r a d i c t i o n .

X,r = max(Y)

C :

+

1

Iwln , and

c

+

.

C' = C

Letting

Y

consist

[rln r e a d i l y

The n o n - e f f e c t i v e p r o o f o f t h e P a r i s - H a r r i n g t o n

Theorem i s e n t i r e l y analogous. The o r i g i n a l p r o o f o f t h e independence o f t h e P a r i s - H a r r i n g t o n Theorem over formal number t h e o r y i s very a p p e a l i n g t o t h e l o g i c i a n .

Combinatorial construc-

t i o n s o f nonstandard models o f a r i t h m e t i c i n s i d e g i v e n such models can be used t o

i

prove

. t h e independence o f t h e Theorem,

ii. t h e equivalence o f t h e Theorem

w i t h a s t r o n g expression o f f a i t h i n t h e system (i.e.

a stronger-than-usual

a s s e r t i o n o f c o n s i s t e n c y ) , and iii. t h e eventual m a j o r i s a t i o n o f a l l p r o v a b l y computable f u n c t i o n s by

H(x

+

1, x, x)

.

Combined w i t h a f a m i l i a r p r o o f t h e o r e -

t i c a n a l y s i s o f formal number t h e o r y , t h i s g i v e s i n f o r m a t i o n about t h e growth o f H(x + 1, x, x)

F -Hierarchy. a As I say, t h i s p r o o f appeals t o t h e l o g i c i a n .

others.

i n terms o f t h e

I t might n o t appeal t o

I t a l s o m i g h t n o t do much f o r t h e u n d e r s t a n d i n g by e i t h e r o f what

e x a c t l y makes

H(x + 1, x, x)

grow so r a p i d l y .

E n t e r Robert M. Solovay.

Having

375

Some Rapidly Growing Functions heard about t h e P a r i s - H a r r i n g t o n Theorem and i t s independence, b u t not having seen t h e p r o o f and, consequently,

unaware t h a t one c o u l d read o f f i n f o r m a t i o n on

t h i s growth from t h e i r p r o o f , he s e t o u t t o e s t a b l i s h t h i s growth d i r e c t l y .

He

succeeded w i t h t h e l o w e r bounds; b u t had t o r e s o r t t o t h e p r o o f t h e o r y t o o b t a i n t h e upper bounds.

L a t e r , J u s s i Ketonen gave d i r e c t p r o o f s o f t h e upper bounds

and t h e two o f them went on t o g i v e r a t h e r sharp e s t i m a t e s o f t h e growth o f t h e h

H(x + 1, x,

function

7)

example, t h e y showed t h a t , f o r F (X €0

H(x + 1, x, 7 ) )

and some o f i t s v a r i a n t s (e.g.

-

x

.

For

1. 20 ,

3) < H ( x

+ 1,

X,

X)

-

< F (X €0

1)

.

The Ketonen-Solovay elementary p r o o f , l i k e elementary p r o o f s o f theorems o f a n a l y t i c number t h e o r y , i s somewhat l o n g e r t h a n t h e P a r i s - H a r r i n g t o n p r o o f and I However, I can g i v e a

c e r t a i n l y cannot present i t i n t h e space a l l o t t e d here.

+

H(x

b i t o f t h e f l a v o u r o f t h e i r p r o o f by showing t h a t

1, x, x)

eventually

.

majorises a l l functions

F for finite n n As i s always t h e case i n such m a t t e r , I must f i r s t pause t o g i v e a

d e f i n i t i o n and comment on n o t a t i o n . F i r s t t h e d e f i n i t i o n : L e t us say t h a t a 2 c o l o u r i n g C : ( w I + c c a p t u r e s a f u n c t i o n F i f every n o n - t r i v i a l r e l a t i v e l y large set

Y homogeneous w i t h r e s p e c t t o C s a t i s f i e s

if

Y and x < y , t h e n Fx

x, y E

ii j u s t a s s e r t s t h a t

Y

As f o r n o t a t i o n ,

I shall write

k 1. yo

C(x,y)

C({x,y})

a. F o r each F

n

n

.

Condition

grows a t l e a s t as r a p i d l y as

t i v e l y l a r g e , then instead of

'y

, there

.

Y = y

Further, i f

< y1 <...< x < y

,

. min

i

(Y)

1. 3

and ii.

i i s technical; condition

.

F

.

If Y i s relak-1 i t i s customary t o w r i t e y

.

i s a colouring

C

: [u]* + 4

3n

t h a t captures

.

n

.

Proof:

By i n d u c t i o n on

Basis.

A moment's thought w i l l r e v e a l t h a t c o n d i t i o n ii o f t h e d e f i n i t i o n o f

c a p t u r i n g i s always s a t i s f i e d .

To c a p t u r e c o n d i t i o n

i

,

simply define

c. SMORYNSKI

376

( O , x = O

13, X L 3 .

If C

0

Y = y

0

, then

< y

1

<...< ’k-1

C (y yl) 0 0’

I n d u c t i o n step.

Let C

y )

= Co(yl,

Suppose

entails

2

(uI2 +

:

‘n

4

-

3n

captures

.

Fn

yo

Define

1. 3

C

n+l

. by

<...<

n+l

homogeneous f o r

C

n

-

whence i. C

captures

n+l

i g n o r e t h e f i r s t c o o r d i n a t e and j u s t w r i t e Since

But

C (y , y ) = 3, i.e. 0 0 1

be r e l a t i v e l y l a r g e and homogeneous w i t h r e s p e c t t o < y1 yk-l 0 P r o j e c t i n g on t h e f i r s t c o o r d i n a t e o f C (x,y) , we n o t e t h a t Y i s

Y = y

. n+l

i s r e l a t i v e l y l a r g e and homogeneous w i t h respect t o

C

n+l

captures

F

n

k = card(Y) L m i n ( Y ) = y

0

, we

C

n+l

F

n

(x,y)

, and

ii. we can n o t a t i o n a l l y

= 0,l

, or

2

.

have

and

.

F

n

i s monotone, so

( y ,y ) # 0 [Perhaps I should p o i n t o u t t h a t t h i s i s n+l 0 k-1 t h e p a r t of t h e proof i n which r e l a t i v e largeness i s used.] and we see t h a t

Since

C

n+l

C

(yi,y.)

# J

0

.

Some Rapidly Growing Functions

311

But

and

F

i s monotone, whence

[Here we use c o n d i t i o n

i : yo

e q u a l i t y , we conclude

C(y.,y.) 1

i.e.

captures

Cntl

x

For a g i v e n

24

jn

< y

Y = y

n+l

H(x + 1, 2 , x)

Theorem.

Proof:

F

captures

n

= 2

'y

0

1 .] From t h i s i n -

t

thus

J

.

(I.E.D.

e v e n t u a l l y m a j o r i s e s each

, let

2 Cn : [ w ]

+

4

-

3n

F

n

.

capture

Fn

.

.

Assume a l s o t h a t

as mapping i n t o x) Now suppose n < H(x t 1, 2, x) i s r e l a t i v e l y l a r g e , homogeneous w i t h

<...< 'k-1 , and

- 2 , and

2y0

implies

= C(yo,y2)

( s o t h a t we can view

0 1 respect t o C Since

n

1. 3

C

-

x t 1

has c a r d i n a l i t y a t l e a s t

.

.

.

> 3 , we have y > 3 + i I n particular, y > x But C 0ix-1 n ) > F (x) C o l l e c t i n g o u r i n e q u a l i t i e s , we F , whence y x Fn(yx-l n n y

.

have

for all

x

1. 4

3

n

.

We remark t h a t t h i s p r o o f shows Since

H(x + 1, 2, 4

3')

H(x + 1, 2, 4

i s something l i k e

-

3')

t o majorise

H(x + 1, 2, x)

, we

F

w

.

can conclude

c. SMORYNSKI

378

H(x t 1, 2, x)

t o l i e at least at level H(x + 1, 3 , x)

i s exactly i t s level.

of the

w

F -Hierarchy.

I n fact, t h i s

a

i s something l i k e

F

: H(x t 1, 4 , x )

w

i s something l i k e

F

; etc. w

w

Proponents o f r a p i d growth do n o t wish t o s t o p here.

They seek ever m r e r a p i d l y

growing f u n c t i o n s and ever more powerful p r i n c i p l e s t o produce such f u n c t i o n s . D e f i n i n g , f o r example, a f i n i t e s e t card(X)

F(min(X))

, one

t o be r e l a t i v e l y

X

F-large i f

can i t e r a t e t h e P a r i s - H a r r i n g t o n c o n s t r u c t i o n and

generate more r a p i d l y growing f u n c t i o n s .

T h i s i s , however, a p e d e s t r i a n

A seemingly more e x c i t i n g approach i s t o l o o k f o r a new statement o f

approach. t h e form,

Vx ByA(x.y)

,

which i s independent over a c o n s i d e r a b l y s t r o n g e r t h e o r y t h a n formal number t h e o r y and hope t h a t t h e c o r r e s p o n d i n g c h o i c e f u n c t i o n

F

,

This

e v e n t u a l l y m a j o r i s e s a l l p r o v a b l y computable f u n c t i o n s o f t h e new t h e o r y . has been done, b u t n o t w i t h v e r y i n t e r e s t i n g r e l a t i o n s

.

A(x,y)

I n all, the

problem o f g e t t i n g a f u n c t i o n which i s a t once more r a p i d l y growing t h a n

FE 0

H(x + 1, x, x )

and o f as g r e a t an i n t e r e s t as t h a t o f

seems t o be open.

A c t u a l l y , what I should have s a i d was t h a t t h e problem o f g e t t i n g i n t e r e s t i n g computable f u n c t i o n s o f more r a p i d growth t h a n t h a t o f

FE

I f we

i s open.

0 drop t h e requirement o f c o m p u t a b i l i t y Function.

-

w e l l , t h e r e i s T i b o r Rado's Busy Beaver

T h i s i r r e p r e s s i b l e l i t t l e f e l l o w grows more r a p i d l y t h a n any t h e o r e -

t i c a l l y computable f u n c t i o n

-

a f e a t o f n o t p a r t i c u l a r l y g r e a t magnitude:

It i s

an easy m a t t e r t o e v e n t u a l l y m a j o r i s e a l l computable f u n c t i o n s by d i a g o n a l i s a t i o n ; and t h e Busy Beaver i s t h e r e s u l t o f such a d i a g o n a l i s a t i o n .

But i t i s a

d e l i g h t f u l d i a g o n a l i s a t i o n and I must comment on i t here. A T u r i n g machine (named a f t e r Alan Turing, an e n i g m a t i c c r y p t a n a l y s t ) i s an imaginary d e v i c e f o r computing f u n c t i o n s . number

x

Each T u r i n g machine

M

has a f i n i t e

o f s t a t e s and a two-way i n f i n i t e t a p e d i v i d e d i n t o c o n s e c u t i v e con-

g r u e n t squares, each o f which can e i t h e r bear t h e symbol 1 o r be blank.

M

has

Some Rapidly Growing Functions

379

t h e g r e a t f l e x i b i l i t y o f , on r e a d i n g what i s on t h e p a r t i c u l a r square i t i s scann i n g and on c o n s i d e r i n g t h e s t a t e i t i s i n , b e i n g a b l e t o erase t h e

1 i f it i s

1 i f t h e r e i s none, o r l e t i t stand; t o move t h e t a p e one square

there, p r i n t a

t o t h e l e f t o r t o t h e r i g h t , o r t o c o n t i n u e s t a r i n g a t t h e same one; and t o change s t a t e s or remain i n t h e same s t a t e .

-

n o t a l l o w e d any f r e e w i l l

Being a machine

M

i s , o f course,

i t s a c t i o n s a r e c o m p l e t e l y determined by i t s b a s i c

program. T u r i n g machines do n o t sound p a r t i c u l a r l y u s e f u l ; b u t t h e y a r e powerful enough t o compute a l l t h e o r e t i c a l l y computable f u n c t i o n s . 1 ' s and blanks, t h i s r e q u i r e s a coding. x

by a s t r i n g o f

x

+

1 1's.)

(Of course, w i t h o n l y

One u s u a l l y r e p r e s e n t s a n a t u r a l number

Moreover, t h e y have a l l t h e i n h e r e n t d i f f i c u l -

t i e s a s s o c i a t e d w i t h more s o p h i s t i c a t e d machines

-

most n o t a b l y t h e d i f f i c u l t y i n

d e t e r m i n i n g from t h e machine's program whether i t s computations w i l l ever f i n i s h . T h i s problem

has no e f f e c t i v e s o l u t i o n .

The Busy Beaver poses h i m s e l f t h e f o l l o w i n g problem: machine w i t h number o f

x

1's

I f one feeds

states. that

M

Suppose

M

is a

a blank tape, what i s t h e maximum

M

can p r i n t on t h e t a p e b e f o r e h a l t i n g ?

BB(x) = m a x ( { # ( l ' s

M

can p r i n t ) :

M

has e x a c t l y

x

This function,

,

states})

i s not computable and, i n f a c t , i t e v e n t u a l l y m a j o r i s e s every computable function.

[The obvious computation procedure i s n o t e f f e c t i v e :

t o s i m p l y enumerate t h o s e machines w i t h

x

w a i t u n t i l t h e y f i n i s h t h e i r computations, prints.

One would l i k e

s t a t e s , f e e d them a l l b l a n k tapes, 1's

and t h e n see how many

The problem i s t h a t some o f t h e s e machines m i g h t never f i n i s h

t h e r e i s no way o f knowing which ones t h e s e are.

-

and

But r a t h e r t h a n e x p l a i n t h e

The p r o o f i s q u i t e simple:

r e s u l t , l e t me prove it.]

each one

Let

F be any monotone

computable f u n c t i o n and l e t F ' ( x ) = F(2x + 3) Suppose

M

machine

M

s t a t e s . F o r each x , we can f i n d a 0 x + 1 s t a t e s t h a t w i l l p r i n t x + 1 1 ' s and h a l t when f e d

computes with

.

F'

and has

x

X

a b l a n k tape.

The hook-up o f

M

with

M

r e s u l t s i n a machine w i t h

X

s t a t e s which, when f e d a b l a n k t a p e w i l l o u t p u t

F'(x) + 1 1's

.

If

x + x x

1. x

0

+ 2

0 '

c. SMORYNSKI

380

F(2x + 2)

5 F(2x

+ 3) = F ' ( x )

< BB(2x + 2)

5 BB(2x +

3)

,

which was t o be proven. A b i t more on T u r i n g machines and t h e Busy Beaver can be found i n E n d e r t o n ' s c o n t r i b u t i o n t o t h e Handbook o f Mathematical L o S .

We n o t e merely t h a t t h e few

known values o f t h e f u n c t i o n , BB(0) = 0, BB(1) = 1, BB(2) = 4 BB(3) = 6, BB(4) = 13 do n o t e x a c t l y r e f l e c t l a t e r developments

-

,

,

even Graham's f u n c t i o n s t a r t s out

b e t t e r than t h i s . REFERENCES [l]Herb Enderton, Elements o f r e c u r s i o n t h e o r y , i n : J. Barwise, ed. Handbook o f Mathematical L o g i c (North-Holland, Amsterdam 1977). [2]

Paul Erdos and George M i l l s , Some bounds f o r t h e Ramsey-Paris-Harrington numbers, t o appear.

[31

J u s s i Ketonen and Robert M. Solovay, R a p i d l y growing Ramsey f u n c t i o n s , t o appear.

[4]

M a r t i n H. L i b and Stan Wainer, H i e r a r c h i e s o f number-theoretic f u n c t i o n s , I , 11, A r c h i v f. math. L o g i k 13 (1970), pp. 39-51, 97-113.

[5l

J e f f P a r i s and Leo H a r r i n g t o n , A mathematical incompleteness i n Peano a r i t h m e t i c , i n : J. Barwise, ed., Handbook o f Mathematical Logic ( N o r t h H o l l and, Amsterdam 1977)

.

[6]

Frank P. Ramsey, On a problem o f formal l o g i c , Proc. London Math. SOC. ( 2 ) 30 (1929), pp. 264-286.

[7]

T i b o r Rado, On non-computable f u n c t i o n s , B e l l System Tech. J. 41 (1962), pp. 877-884.