-A'
60) 61 ) 62 ) 13 )
CooKE, (2), p. 300, (6.4, II). CooKE, (2), p. 284, (6.2, II). COOKE, (2), P· 300, (6.4, II). COOKE, (2), p. 284, (6.2, II). By theorem (VI) of this paper, since {A
507
Ixk/ < rk
for every x in X, and Iu,./ < s,. for every u in U; therefore t
!u' (A<:v>_A) xl =I L u,. L n=l I
L
~
xkl
(a~~-a~')J)
k=l
t
for every x in X and u in U.
Ls,.·la~~-a~'iJ/·rk
n=lk=l
Since {A
N~~>k
Let N'>Nn.k for n
/u' (A<:v> -A)
I
xi~
L
t
L ES,. rkf(s.. rk tl) = E for p, q > N'
.. =tk=l
for every x in X, and every u in U. Therefore {A
L 00
E>OcorrespondsanumberME)suchthat
n=tk+l
ja~o;;>j
< Eforeverym, by(IX).
Let X be a p-bd set in a, and let U be a p-bd set in ai( =a00 }; then !xk/ < rk for every x in X 64 ), and /uk/ < M for every k and every u in U 65 ). By (iii), to an arbitrary E > 0 corresponds a number ME) such that 00
L
=tk+l
/ai:/:>1 < E/(4Mlrk) for every m. Let A for k
By (ii), to an arbitrary E>O corresponds a number la~J-a;sJI ~
N~~>k
such that
E/(2flMrk) for p,q > Nn.k•
Let N'>Nn.k for n
I
n=l
k=l
lu' (A<:v>_A) xi= I L u,. L f
~ L
oo
I
~ L
L lun (a$1-a~~) xkl
n=/+1 k=l
l
L /u.. l·rk·E/(2/Mlrk)+
n=l k=l
~
xk/
l
L /un (a$1-a~')J) xkl + L
n=l k=l f
(a~%>-a~'}J)
I
; + L 2MrkE/(4Mlrk) = k=l
z
00
2 2Mrd/a$11+/a~'}JI)
k=l
n=t+l
E for p, q > N',
every x in X and every u in U. Thus {A<"'>} is p-cgt in a--+ a 1 • 64 ) 65 )
(1), p. 300, (10.4, VI). CooKE, (1), p. 298, (10.4, III).
COOKE;
508
Cor. In Goo~~. z,p·., r·p·, p·, ~rul p-convergence coincide. Proof. As in theorem (XVII) it is sufficient to prove that in a00 ~ ~. p-convergence implies p-convergence. Now a00 is perfect, a~= a 1 , and ~*=a; hence if t:he sequence A
a
00
.2
ja!:;:>j < E for every m
(l)
n-tk+l
Also lim a!:;:> exists for every nand k; i.e., {A
(2)
m-+oo
Let X be a p- bd set in ~. and let U be a p- bd set in ai( = a 00 ) ; then X is of bounded length l, and jxkj < rk for every x in X 67); also jUj,j < M
for every k and every u in U 68). By ( l ), to an arbitrary E > 0 corresponds a number fk( E) such that 00
.2
ja!:;:>j < ef(4Mlrk) for every m. Let /> fk for k.;;;l.
n=fk+l
By (2), to an arbitrary E>O corresponds a number N,.,k(E) such that
Ia$]- a~ I~ ef(2flMrk) for p, q > X,.,k. Let N'>Nn,k for n
iu' (A< 71>-A) xi=
n=l
f
l
00
1.2 u,. .2 (a$1-a~) xki m-1
l
! .
00
~
.2 _2iu,. (a$1-a~) xki + n=t+l .2 k=l .2iu,. (a$]-a~~) xki n=l k=l
~
.2 .21u,.!· rk· E/(2flMrk) + k=ln=f+l .2 .2 Mrdla$Jj + Ja:~ I) n=l k=l
~
I
; +
:
l
l
.22M rk· ef(4Mlrk)
k=l
= E
oo
for p,q > N',
for every x in X and every u in U. Thus {A
87) 68 )
CooKE, (2), p. 326, (6.6, I). CooKE, (1), p. 297, (10.4, II). CooKE, (1), p. 298, (10.4, III).
~
a1 •
509
(XX) In a00 "'-+a, l·p·, r·p·, p·, and p-convergence coincide. Proof. As in theorem (XVII). it is sufficient to prove that in a 00 "'-+a, p-convergence implies p-convergence. Let the sequence A
z Ia:>!•..;;: E for every m. 00
n-tk+l
Also lim a:> exists for every nand k; i.e., {A
•
m-+oo
Let X be a p-bd set in a, and let U be a p-bd set in I
I
r
8
-+-= 1; then !xkl ..;;;rk for every x in
X
and
70 ),
a~( =ar),
(2) (3)
where
z lunl' ..;;;M• for every 00
n-l
u in u By (2), to an arbitrary E>O corresponds a number 71 ).
z 00
•-t,.'+l
Ia:>!•..;;: [E/(4lMrk)]• for every m.
f > f~
for k < l; then by (3), a number
such that
/~(E)
exists such that
N~~k
la~-a~l
z ""
•-f+l
ju,. a::J:> xkl ~ rk (
z 00
n=f+l
lunl') 11' (
,! 00
n=t+l
ja~'J:,I") 11" ~ MErkf(4lM rk)
=
E/(4l)
for every x in X, every u in U, and for every m; and thus :u' (ACP>-A
~
n=f+l
~I
z zJu,. t
I
n=l k=l (q)
k-7;:1 u,. ank xk
,__..
(a~-a~)
~ ~ lu..I•E•1"Jo
'''\7::1k7::1
~ ~ £..
£..
2flMrk
for every x in X and every u in U. Hence {A
11 )
z zJu,. oo
CooKE, (2), p. 326, (6.6, I). CooKE, (1}, p. 300, (10.4, VI). CooKE, (1}, p. 299, (10.4, V).
I
n=t+l k=l
~
~
a$J xkl
I
(!>)
+ k-7;:1 n-1+1 u,. ank
(q) u,. ank xk I ~ 2E
k=l n=/+1
18 )
xkl+
El + El4i + 4i =
E
+
xk
I
+
£or p, q > N' ,
510
(XXII) In a,-+ cp (r> 1), l·p·, and p-convergence coincide. Proof. p-convergence implies l·p-convergence. Let the sequence A(m>(m= 1, 2, ... ) be l·p-cgt in a,-+ cp. Since a, and cp are perfect, a:=a,, where~+~= 1, and cfo* =a it follows r
s
that {A'(m>} is r·p-cgt in a-+ a,, by (XV). Thus {A '(m>} is p- cgt in a -+ a8 , by (XXI). But a and a, are perfect, a* =cp, and a:=a,; therefore {A(m>} is p-cgt in a, -+ cp, by (XVI).
REFERENCES l. CooKE, R. G., Infinite matrices and sequence spaces (MacMillan, 1950).
2.
, Linear operators (MacMillan, 1953).