CHAPTER
Special functions
4
CHAPTER OUTLINE 4.1 Introduction ............................................................................................................................... 152 4.2 Legendre Functions .................................................................................................................... 152 4.2.1 Legendre polynomials and associated Legendre polynomials........................................152 4.2.2 Recurrence relations for Legendre polynomials...........................................................154 4.2.3 Series of Legendre polynomials.................................................................................154 4.2.4 Legendre functions of first and second kind ...............................................................155 4.2.5 Neumann’s formula for the Legendre functions ..........................................................157 4.3 Laguerre Functions..................................................................................................................... 158 4.3.1 Laguerre polynomials and Laguerre functions .............................................................158 4.3.2 Associated Laguerre polynomials...............................................................................159 4.3.3 Basic integrals over associated Laguerre functions......................................................161 4.4 Hermite Functions ...................................................................................................................... 163 4.4.1 Hermite polynomials ................................................................................................163 4.4.2 Hermite functions....................................................................................................164 4.4.3 Integrals over Hermite functions ...............................................................................165 4.5 Hypergeometric Functions........................................................................................................... 166 4.5.1 Hypergeometric series and differential equation .........................................................166 4.5.2 Confluent hypergeometric functions ..........................................................................168 4.6 Bessel Functions ........................................................................................................................ 170 4.6.1 Bessel functions of integral order ..............................................................................170 4.6.2 Bessel functions of half-integral order .......................................................................171 4.6.3 Spherical Bessel functions .......................................................................................172 4.6.4 Modified Bessel functions ........................................................................................176 4.7 Functions Defined by Integrals .................................................................................................... 178 4.7.1 The gamma function ................................................................................................178 4.7.2 The incomplete gamma function ...............................................................................178 4.7.3 From the gamma function to the exponential integral function.....................................179 4.7.4 The exponential integral function ..............................................................................180 4.7.5 The generalized exponential integral function.............................................................181 4.7.6 Further functions.....................................................................................................181 4.8 The Dirac d-Function .................................................................................................................. 184 4.9 The Fourier Transform................................................................................................................. 185 4.10 The Laplace Transform ............................................................................................................... 188 4.11 Spherical Tensors ...................................................................................................................... 190 Elementary Molecular Quantum Mechanics 2E. http://dx.doi.org/10.1016/B978-0-444-62647-9.00004-X 2013, 2007 Elsevier B.V. All rights reserved
151
152
4.12 4.13 4.14 4.15 4.16
CHAPTER 4 Special functions
4.11.1 Spherical tensors in complex form ..........................................................................190 4.11.2 Spherical tensors in real form .................................................................................191 4.11.3 Generalized spherical tensors .................................................................................195 Orthogonal Polynomials .............................................................................................................. 195 Pade´ Approximants..................................................................................................................... 197 Green’s Functions....................................................................................................................... 199 Problems 4 ................................................................................................................................ 202 Solved Problems ........................................................................................................................ 203
4.1 INTRODUCTION The special functions of mathematical physics and chemistry are mostly obtained in the solution of differential equations like those we studied in the previous chapter (Sneddon, 1956; Abramowitz and Stegun, 1965). Some of these solutions were already met in elementary analysis, such as circular and exponential functions, but others are new, as we saw in the series solution for the harmonic oscillator (Hermite functions) or the atomic one-electron problem (Laguerre and Legendre functions). Other special functions are defined by integrals, like the gamma function or the exponential integral function, while the Dirac d-function of Section 4.8, strictly speaking, is not a function but a distribution.
4.2 LEGENDRE FUNCTIONS 4.2.1 Legendre polynomials and associated Legendre polynomials These polynomials were discussed in Section 3.7.3 of the previous chapter as regular solutions of the second-order differential equation:
1 x2
d2 Qlm ðxÞ dx2
2x
dQlm ðxÞ m2 Qlm ðxÞ ¼ 0 þ lðl þ 1Þ 1 x2 dx
(1)
where x ¼ cos q, and l, m are integers with m ¼ jmj 0; l m 0. Equation (1) is known in potential theory as Legendre’s associated differential equation, which for m = 0 reduces to the so-called Legendre’s differential equation. We saw in Chapter 3 that, under the regularity conditions, the infinite series occurring in the solution of Eqn (1) reduces to a polynomial of degree (lm) equivalent to the conventional associated Legendre polynomials Pm l ðxÞ (MacRobert, 1947; Hobson, 1965; Abramowitz and Stegun, 1965) to within a constant factor, irrelevant from the standpoint of the differential equation, which was chosen as mþ½ Pm l ðxÞ ¼ ð1Þ
where ½/ stands for ‘integer part of’.
lþm 2
Qlm ðxÞ
(2)
4.2 Legendre functions
153
In mathematics, the Legendre polynomials of degree l in x are defined through the so-called Rodrigues’ formula (Sneddon, 1956; Hobson, 1965): Pl ðxÞ ¼
l 1 dl 2 x 1 l l 2 l! d x
and the associated Legendre polynomials of degree (l m) and order m in x by m 2 m=2 d Pm Pl ðxÞ l ðxÞ ¼ 1 x d xm
(3)
(4)
The associated Legendre polynomials are orthogonal in the interval 1 x 1 and are normalized to (Sneddon, 1956) Z1 2 ðl þ mÞ! m0 (5) d x Pm l ðxÞPl0 ðxÞ ¼ dll0 dmm0 2l þ 1 ðl mÞ! 1
as can be verified by repeated integration by parts. The explicit form of the first few associated Legendre polynomials up to l ¼ m ¼ 5 is given below.
m¼0
m¼1
m¼2
m¼3
m¼4 m¼5
8 > > > P0 ¼ 1 <
P 1 ¼ x P2 ¼
3x2 1 2
P3 ¼
5x3 3x 2
> > 4 2 5 3 > : P ¼ 35x 30x þ 3 P ¼ 63x 70x þ 15x 4 5 8 8 8 1=2 3 2 1=2 1=2 > P11 ¼ 1 x2 5x 1 P12 ¼ 1 x2 3x P13 ¼ 1 x2 > < 2 > > :
1=2 5 3 1=2 15 4 P14 ¼ 1 x2 P15 ¼ 1 x2 7x 3x 21x 14x2 þ 1 2 8 8 2 2 2 2 2 2 2 15 > > < P2 ¼ 1 x 3 P 3 ¼ 1 x 15x P4 ¼ 1 x 2 7x 1 > > :
105 3 P25 ¼ 1 x2 3x x 2 8 3 2 3=2 15 P 3 ¼ 1 x2 3=2 105x > 4 < P3 ¼ 1 x > :
3=2 105 2 9x 1 P35 ¼ 1 x2 2 n 2 2 P 44 ¼ 1 x2 105 P 45 ¼ 1 x2 945x n 5=2 945 P55 ¼ 1 x2
(6)
154
CHAPTER 4 Special functions
In general l lk l! X ðx þ 1Þk l ðx 1Þ Pl ðxÞ ¼ l ðl kÞ! k! 2 k¼0 k
Pm l ðxÞ where
¼ 1x
2 m=2
l lk l! X ðx þ 1Þkm l þ m ðx 1Þ k ðl kÞ! ðk mÞ! 2l k¼m
(7)
(8)
n! n ¼ is the binomial coefficient (Abramowitz and Stegun, 1965) with n k. k k!ðn kÞ!
4.2.2 Recurrence relations for Legendre polynomials We give here without proof some recurrence relations occurring for the Legendre polynomials and their first derivatives in the primed notation (Sneddon, 1956): ðl þ 1ÞPlþ1 ðxÞ ¼ ð2l þ 1ÞxPl ðxÞ lPl1 ðxÞ
(9)
P0lþ1 ðxÞ P0l1 ðxÞ ¼ ð2l þ 1ÞPl ðxÞ
(10)
P0lþ1 ðxÞ xP0l ðxÞ ¼ ðl þ 1ÞPl ðxÞ
(11)
4.2.3 Series of Legendre polynomials It may sometimes be useful to express a given function as a series of Legendre polynomials. Because of the linear independence of Pms, any polynomial P(x) of degree l in x can be expressed in terms of Legendre polynomials as l X PðxÞ ¼ Pk ðxÞck (12) k¼0
Now, if we want to expand any given function f(x), defined in the interval jxj 1, into a series of Legendre polynomials in the form N X Pk ðxÞck (13) f ðxÞ ¼ k¼0
assuming the series to be convergent in the given interval, we see that the expansion coefficients are given by Z1 Z1 N N X X 2 2 dlk ¼ cl (14) d x f ðxÞPl ðxÞ ¼ ck d x Pk ðxÞPl ðxÞ ¼ ck 2k þ 1 2l þ1 k¼0 k¼0 1
1
2l þ 1 cl ¼ 2
Z1 d x f ðxÞPl ðxÞ 1
(15)
4.2 Legendre functions
155
so that f(x) is given by the series N X
2k þ 1 Pk ðxÞ f ðxÞ ¼ 2 k¼0
Z1
dx0 f ðx0 ÞPk ðx0 Þ
(16)
1
4.2.4 Legendre functions of first and second kind Problems of mathematical physics often involves the Laplace’s equation: 72 VðrÞ ¼
v2 V v2 V v2 V þ 2 þ 2 ¼0 vx2 vy vz
(17)
which can be solved in spherical coordinates by putting Vðr; q; 4Þ ¼ RðrÞQðqÞFð4Þ. Factorization of function V implies the independence of the solutions with respect to the different variables, namely, the R(r) and F(4) terms can be treated as constants in the solution of the q-equation. If we put 1 d 1 d2 F 2 dR r ¼ nðn þ 1Þ; ¼ m2 R dr dr F d42 the solutions of these equations are (Hobson, 1956) RðrÞ ¼ c1 r n þ c2 r n1 ;
Fð4Þ ¼ c3 expðim4Þ
(18)
Two solutions of the Laplace’s Eqn (17) must hence have the form Vfrn Unm ðq; 4Þ;
Vfr n1 Unm ðq; 4Þ;
Unm ðq; 4Þ ¼ QðqÞexpðim4Þ
(19)
In this way, by multiplying both members by QðqÞ, Eqn (17) gives 1 d dQ m2 sin q þ nðn þ 1Þ 2 Q ¼ 0 sin q dq dq sin q which, by posing Q ¼ w;
cos q ¼ z; sin q ¼ ð1 z2 Þ1=2 , becomes dw d m2 w¼0 1 z2 þ nðn þ 1Þ 1 z2 dz dz
(20)
Equation (20) is known as associated Legendre’s differential equation (compare Eqn (188) of Chapter 3 with l ¼ n(n þ 1)). For m ¼ 0 we have the corresponding Legendre’s differential equation: d 2 dw 1z þ nðn þ 1Þw ¼ 0 (21) dz dz Even if variable z has been defined as the cosine of a real angle, being therefore real and restricted to the interval (1,1), the solution of Eqn (21) will now be considered in a more general sense. Assuming the ascending power series expansion wðzÞ ¼ a0 þ a1 z þ a2 z2 þ /
(22)
156
CHAPTER 4 Special functions
we obtain in the usual way the two-term recurrence formula: akþ2 ¼
kðk þ 1Þ nðn þ 1Þ ðn kÞðn þ k þ 1Þ ak ¼ ak ðk þ 1Þðk þ 2Þ ðk þ 1Þðk þ 2Þ
k ¼ 0; 1; 2; /
giving the solution wðzÞ as nðn þ 1Þ 2 nðn 2Þðn þ 1Þðn þ 3Þ 4 z þ z / wðzÞ ¼ a0 1 1$ 2 1$ 2$ 3$ 4 ðn 1Þðn þ 2Þ 2 ðn 1Þðn 3Þðn þ 2Þðn þ 4Þ 4 z þ z / þ a1 z 1 1$ 2$ 3 1$ 2$ 3$ 4$ 5 which, putting 2 F1 ¼ F, can be rewritten in terms of the hypergeometric functions of Section 4.5.1 as n nþ1 1 2 n1 nþ2 3 2 wðzÞ ¼ a0 F ; ; ; z þ a1 zF ; ; ;z 2 2 2 2 2 2 as can be easily seen. When n is a positive integer, one of the series terminates and, if n is even, the solution n nþ1 1 2 ; ;z (23) w1 ðzÞ ¼ a0 F ; 2 2 2 becomes a polynomial of degree n in even powers of z2, while the remaining solution n1 nþ2 3 zF ; ; ; z2 is an infinite series which converges when jzj < 1. 2 2 2 For n ¼ odd, the finite solution is n1 nþ2 3 2 ; ; ;z (24) w2 ðzÞ ¼ a1 zF 2 2 2 which is a polynomial of degree n in odd powers of z, while the remaining solution n nþ1 1 ; ; z2 is an infinite series which converges when jzj < 1. F ; 2 2 2 Now, let us try to obtain a solution of Legendre’s Eqn (21) in the form of a series of descending powers of z: wðzÞ ¼ b0 zq þ b2 zq2 þ b4 zq4 þ /
(25)
obtaining for the coefficients the two-term recurrence relation b2kþ2 ¼
ðq 2kÞðq 2k 1Þ b2k ðq 2k 2Þðq 2k 1Þ nðn þ 1Þ
k ¼ 0; 1; 2; /
Since b2 ¼ 0, we obtain from the resulting quadratic equation (Problem 4.1) ðq nÞðq þ n þ 1Þ ¼ 0
4.2 Legendre functions
157
which is satisfied by the two values, q ¼ n and q ¼ n 1, giving rise to the two different solutions n n 1 2n 1 2 (26) w3 ðzÞ ¼ bzn F ; ; ;z 2 2 2 n þ 1 n þ 2 2n þ 3 2 n1 (27) w4 ðzÞ ¼ cz F ; ; ;z 2 2 2 By reversing the order of the terms in the series (Hobson, 1965), w3 is seen to be identical to w1 and w2 for n integer even and n integer odd, respectively, whereas w4 is an infinite series converging when jzj > 1. Putting both constants a0 and a1 of w1 and w2 equal to an ¼ ð1Þ½n=2 n!=f2n ð½n=2!Þ2 g where [t] means ‘integer part of t’, constant b of w3 and constant c of w4 equal to (Sneddon, 1956) b¼
ð2nÞ!
; 2n ðn!Þ2
c¼
2n ðn!Þ2 ð2n þ 1Þ!
we can write the general solution of the Legendre’s differential Eqn (21) as wðzÞ ¼ APn ðzÞ þ BQn ðzÞ where A, B are arbitrary constants, and where n n 1 2n 1 2 ; ; ;z Pn ðzÞ ¼ bzn F ; 2 2 2
Qn ðzÞ ¼ czn1 F
(28) n þ 1 n þ 2 2n þ 3 2 (29) ; ; ;z 2 2 2
are called Legendre’s functions of the first and second kind of degree n, respectively. For m s 0 the corresponding solutions of Eqn (20) are the associated Legendre’s functions of the first and second kind, respectively, which in un-normalized form are given as 8 m m ðzÞ ¼ 1 z2 m=2 d Pn ðzÞ z ˛ ð1; 1Þ; > P > > n < dzm
m=2 dm Pn ðzÞ m Pbn ðzÞ ¼ z2 1 z ˛ð1; NÞ dzm
> m > > : Qm ðzÞ ¼ 1 z2 m=2 d Qn ðzÞ z ˛ ð1; 1Þ; n dzm
bm ðzÞ Q n
m=2 dm Pn ðzÞ ¼ z2 1 z ˛ð1; NÞ dzm
(30)
4.2.5 Neumann’s formula for the Legendre functions It is possible to show (Sneddon, 1956) that Qn(x) can be expressed by the integral Z1 1 Pn ðxÞ Qn ðxÞ ¼ dx jxj > 1 real 2 xx
(31)
1
which is known as Neumann’s formula, and also that, for jxj > 1 Z1 1 xþ1 1 Pn ðxÞ Pn ðxÞ Qn ðxÞ ¼ Pn ðxÞln dx 2 x1 2 xx 1
(32)
158
CHAPTER 4 Special functions
An expression for Qn(x) with n integer useful for practical calculations is the following: Qn ðxÞ ¼
p 1 x þ 1 X 2n 4k 1 Pn ðxÞln Pn2k1 ðxÞ 2 x 1 k¼0 ð2k þ 1Þðn kÞ
(33)
where p ¼ ðn 1Þ=2 or p ¼ ðn 2Þ=2 according to n > 0 is odd or even. The first four Qns are then Q0 ðxÞ ¼
1 xþ1 ln ; 2 x1
3 P1 ðxÞ 2 7 1 Q4 ðxÞ ¼ P4 ðxÞQ0 ðxÞ P3 ðxÞ P1 ðxÞ 4 3
Q1 ðxÞ ¼ P1 ðxÞQ0 ðxÞ 1;
5 1 Q3 ðxÞ ¼ P3 ðxÞQ0 ðxÞ P2 ðxÞ ; 3 6
Q2 ðxÞ ¼ P2 ðxÞQ0 ðxÞ
(34)
4.3 LAGUERRE FUNCTIONS 4.3.1 Laguerre polynomials and Laguerre functions The Laguerre polynomials Ln(x) of degree n in x defined as (Sneddon, 1956) Ln ðxÞ ¼ expðxÞ
dn n ½x expðxÞ dxn
(35)
are the solution of the Laguerre’s differential equation of the second order: x
d2 Ln ðxÞ dLn ðxÞ þ ð1 xÞ þ nLn ðxÞ ¼ 0 dx2 dx
(36)
where n is a positive integer. The explicit form for the first few Laguerre polynomials up to n ¼ 5 is L0 ðxÞ ¼ 1 L1 ðxÞ ¼ 1 x L2 ðxÞ ¼ 2 4x þ x2
(37)
L3 ðxÞ ¼ 6 18x þ 9x2 x3 L4 ðxÞ ¼ 24 96x þ 72x2 16x3 þ x4 L5 ðxÞ ¼ 120 600x þ 600x2 200x3 þ 25x4 x5 and, in general Ln ðxÞ ¼ n!
n X k¼0
ð1Þk
k n x k k!
(38)
We now verify in detail that L5(x) does verify the differential equation with n ¼ 5: xL005 ðxÞ þ ð1 xÞL05 ðxÞ þ 5L5 ðxÞ ¼ 0
(39)
4.3 Laguerre functions
159
In fact, using the primed notation for derivatives, we have from Eqn (37) L05 ðxÞ ¼ 600 þ 1200x 600x2 þ 100x3 5x4 L005 ðxÞ
¼ 1200 1200x þ 300x 20x 2
3
(40) (41)
and substituting into Eqn (39) and adding all terms 1200x 1200x2 þ 300x3 20x4 600 þ 1200x 600x2 þ 100x3 5x4 þ 600x 1200x2 þ 600x3 100x4 þ 5x5
(42)
þ 600 3000x þ 3000x2 1000x3 þ 125x4 5x5 ¼ 0 as it must be. The Laguerre polynomials are not orthogonal in themselves, but the Laguerre functions 1 expðx=2ÞLn ðxÞ n!
(43)
form an orthonormal set in the interval 0 x N: ZN dx expðxÞLn ðxÞLn0 ðxÞ ¼ ðn!Þ2 dnn0
(44)
0
as can be proved by integration by parts. Recurrence relations for the Laguerre polynomials are (Sneddon, 1956) Lnþ1 ðxÞ ¼ ð2n þ 1 xÞLn ðxÞ n2 Ln1 ðxÞ
(45)
L0n ðxÞ ¼ nL0n1 ðxÞ nLn1 ðxÞ
L00nþ1 ðxÞ ¼ ðn þ 1Þ xL00n ðxÞ L0n ðxÞ
(46)
and for the derivatives
xL00n ðxÞ
¼ ðx
1ÞL0n ðxÞ nLn ðxÞ
(47) (48)
the last equation being Eqn (36) defining Ln(x).
4.3.2 Associated Laguerre polynomials The m-th derivative (m n) of the Laguerre polynomial Ln(x) of order n in x
dm Ln ðxÞ dm dn n m ¼ m expðxÞ n ½x expðxÞ Ln ðxÞ ¼ dxm dx dx
(49)
160
CHAPTER 4 Special functions
is called the associated Laguerre polynomial Lm n ðxÞ of degree (n m) and order m in x, and is the solution of the associated Laguerre’s differential equation of the second order: x
d2 Lm dLm ðxÞ n ðxÞ þ ðm þ 1 xÞ n þ ðn mÞLm n ðxÞ ¼ 0 2 dx dx
(50)
where n, m (m n) are positive integers. The explicit form of the first few associated Laguerre polynomials up to m ¼ 5 is L11 ðxÞ ¼ 1 L12 ðxÞ ¼ 4 þ 2x;
L22 ðxÞ ¼ 2
L13 ðxÞ ¼ 18 þ 18x 3x2 ;
L23 ðxÞ ¼ 18 6x;
L14 ðxÞ ¼ 96 þ 144x 48x2 þ 4x3 ; L34 ðxÞ ¼ 96 þ 24x; L44 x ¼ 24
L33 ðxÞ ¼ 6
L24 ðxÞ ¼ 144 96x þ 12x2 ;
L15 ðxÞ ¼ 600 þ 1200x 600x2 þ 100x3 5x4 ; L35 ðxÞ ¼ 1200 þ 600x 60x2 ;
L25 ðxÞ ¼ 1200 1200x þ 300x2 20x3 ;
L45 ðxÞ ¼ 600 120x;
and, in general m Lm n ðxÞ ¼ ð1Þ n!
(51)
nX m
ð1Þk k! k¼0
L55 ðxÞ ¼ 120 n xk mþk
(52)
Once the explicit form of a Laguerre polynomial is known, the corresponding associated Laguerre polynomial is readily evaluated through the appropriate derivative. We now verify in detail that L25 ðxÞ does verify the differential Eqn (50) with n ¼ 5, m ¼ 2, n m ¼ 3: 00
0
xL25 ðxÞ þ ð3 xÞL25 ðxÞ þ 3L25 ðxÞ ¼ 0 Using the primed notation for the derivatives, we have from Eqn (51) 0
L25 ðxÞ ¼ 1200 þ 600x 60x2 00 L25 ðxÞ
¼ 600 120x
and, substituting into the differential equation and adding all terms, we find 600x 120x2 þ 3600 þ 1800x 180x2 þ 1200x 600x2 þ 60x3 þ 3600 3600x þ 900x2 60x3 ¼ 0
(53) (54)
(55)
as it must be. In the previous chapter, we discussed two such associated Laguerre differential equations which we solved by the series expansion technique after solution of the asymptotic differential equations resulting at the singular points, (1) the radial equation for the atomic one-electron system and (2) the x-equation for the free hydrogen atom in parabolic coordinates.
4.3 Laguerre functions
161
Recurrence relations for the associated Laguerre polynomials are (Sneddon, 1956) m m1 Lm ðxÞ n2 Lm nþ1 ðxÞ ¼ ð2n þ 1 xÞLn ðxÞ mLn n1 ðxÞ
(56)
m m1 Lm n ðxÞ ¼ nLn1 ðxÞ nLn1 ðxÞ
(57)
4.3.3 Basic integrals over associated Laguerre functions The general integral over the product of two orthogonal Laguerre functions involving the associated Laguerre polynomials of degree k and k0 was originally given by Schroedinger (1926a) in terms of generalized binomial coefficients as ZN
0
m dx x p expðxÞLm mþk ðxÞLm0 þk0 ðxÞ 0 0
0
¼ ð1Þmþkþm þk p!ðm þ kÞ!ðm0 þ k0 Þ!
0 minðk;k X Þ
k¼0
ð1Þk
pm kk
p0 m0
k0 k
p 1 k
i a generalized binomial coefficient defined by j 8 < 1 ðj ¼ 0Þ i ¼ iði 1Þ/ði j þ 1Þ ðj > 0Þ j : j!
(58)
where p is a non-negative integer, and
(59)
with j a non-negative integer and i any integer. The generalized binomial coefficient becomes identical to an ordinary binomial coefficient whenever i j. This formula was put into a more convenient form by Figari (2010) in terms of ordinary binomial coefficients as ZN
0
0
mþm m dx x p expðxÞLm ðm þ kÞ!ðm0 þ k0 Þ! mþk ðxÞLm0 þk0 ðxÞ ¼ ð1Þ
0
kþk X0 k¼0
ð1Þk ðp þ kÞ!
0 minðk X;kÞ
mþk
1 ðk sÞ!s! m þ k s s¼maxð0;kkÞ
m0 þ k 0 m0 þ s
(60)
For the calculation of the first-order Stark effect, we introduced in Chapter 3 the auxiliary integral Il(m,k) as ZN Il ðm; kÞ ¼ 0
2 dx x mþl expðxÞ Lm mþk ðxÞ
(61)
162
CHAPTER 4 Special functions
From the formulae above, for m0 ¼ m; k0 ¼ k; p ¼ m þ l, we obtain ZN
2 dx xmþl expðxÞ Lm Il ðm; kÞ ¼ mþk ðxÞ 0
¼ ðm þ lÞ!½ðm þ kÞ!
2
k X
" ð1Þ
l
k¼maxð0;klÞ
kk
since "
l kk
"
# ¼
!2
mþlþk
# ¼
(62)
!
k
ðm þ l þ kÞ!
k¼maxð0;klÞ ½ðl
k þ kÞ!2 ½ðk kÞ!2 k!
ðk ¼ kÞ
1
lðl 1Þ/½l ðk k 1Þ > : ðk kÞ! 8 l! l > < ¼ k k ðk kÞ!ðl k þ kÞ! ¼ > : 0
m l 1 k
8 > <
k X
#
k
k X
¼ ðm þ lÞ!½ðm þ kÞ!2
m l 1
kk
k¼0
¼ ðl!Þ2 ½ðm þ kÞ!2
#2 "
l
k
ðk < kÞ ðk l k kÞ ðk < k lÞ (63)
8 <
ðk ¼ 0Þ
1
: ðm l 1Þðm l 2Þ/ðm l kÞ k! ! mþlþk ðm þ l þ kÞ! ¼ ð1Þk ¼ ð1Þk k!ðm þ lÞ! k
ðk 0Þ
(64)
ðk 0Þ
We give below the explicit formulae for the first three auxiliary integrals with l ¼ 0, 1, 2: ZN
2 I0 ðm; kÞ ¼ dx xm expðxÞ Lm mþk ðxÞ 0
¼ ½ðm þ kÞ!2
¼
½ðm þ kÞ!3 k!
k X k¼maxð0;kÞ ½ðk
ðm þ kÞ! 2
(65) 2
þ kÞ! ½ðk kÞ! k!
4.4 Hermite functions
ZN I1 ðm; kÞ ¼
163
2 dx xmþ1 expðxÞ Lm mþk ðxÞ
0
¼ ½ðm þ kÞ!2
k¼maxð0;k1Þ ½ð1
ðm þ 1 þ kÞ! k þ kÞ!2 ½ðk kÞ!2 k!
¼
½ðm þ kÞ!2 ½kðm þ kÞ! þ ðm þ k þ 1Þ! k!
¼
½ðm þ kÞ!3 ðm þ 2k þ 1Þ k!
ZN I2 ðm; kÞ ¼
k X
(66)
2 dx xmþ2 expðxÞ Lm mþk ðxÞ
0
¼ ð2!Þ2 ½ðm þ kÞ!2
k X k¼maxð0;k2Þ ½ð2 k
ðm þ 2 þ kÞ! þ kÞ!2 ½ðk kÞ!2 k!
¼
½ðm þ kÞ!2 ½kðk 1Þðm þ kÞ! þ 4kðm þ k þ 1Þ! þ ðm þ k þ 2Þ! k!
¼
½ðm þ kÞ!3 2 m þ 3mð2k þ 1Þ þ 6kðk þ 1Þ þ 2 k!
(67)
These integrals were used in Chapter 3 for the calculation of the normalization and z-integrals for the free hydrogen atom in parabolic coordinates.
4.4 HERMITE FUNCTIONS 4.4.1 Hermite polynomials The Hermite polynomials Hn(x) of degree n in x defined as (Sneddon, 1956) dn Hn ðxÞ ¼ ð1Þn exp x2 exp x2 n dx are the solution of the Hermite differential equation of the second order: d2 Hn ðxÞ dHn ðxÞ þ 2nHn ðxÞ ¼ 0 2x 2 dx dx
(68)
(69)
where n is a positive integer. These polynomials were found in Section 3.6 of the previous chapter in the study of the onedimensional linear harmonic oscillator.
164
CHAPTER 4 Special functions
The explicit form for the first few Hermite polynomials up to n ¼ 5 is H0 ðxÞ ¼ 1 H1 ðxÞ ¼ 2x H2 ðxÞ ¼ 4x2 2 H3 ðxÞ ¼ 8x3 12x
(70)
H4 ðxÞ ¼ 16x4 48x2 þ 12 H5 ðxÞ ¼ 32x5 160x3 þ 120x and, in general nðn 1Þ nðn 1Þðn 2Þðn 3Þ ð2xÞn2 þ ð2xÞn4 1! 2! nðn 1Þðn 2Þðn 3Þðn 4Þ ð2xÞn6 þ / 3!
Hn ðxÞ ¼ ð2xÞn
(71)
As an example, we now verify that H5(x) does verify the differential equation with n ¼ 5: H500 ðxÞ 2xH50 ðxÞ þ 10H5 ðxÞ ¼ 0
(72)
In fact, we have from Eqn (70) H50 ðxÞ ¼ 120 480x2 þ 160x4
(73)
H500 ðxÞ ¼ 960x þ 640x3
(74)
Substituting in Eqn (72) and adding all terms, we have 960x þ 640x3 240x þ 960x3 320x5 þ 1200x 1600x3 þ 320x5 ¼ 0
(75)
as it must be. Recursion relations are Hnþ1 ðxÞ ¼ 2xHn ðxÞ 2nHn1 ðxÞ
(76)
Hn0 ðxÞ ¼ 2xHn ðxÞ Hnþ1 ðxÞ
(77)
Hn00 ðxÞ ¼ 2xHn0 ðxÞ 2nHn ðxÞ
(78)
and for the derivatives
the latter equation being no more than the differential Eqn (69) determining Hn(x).
4.4.2 Hermite functions A differential equation related to the Hermite’s differential equation is the following: j00 ðxÞ þ l x2 jðxÞ ¼ 0
(79)
4.4 Hermite functions
165
which for l ¼ 2n þ 1 we recognize as Eqn (113) of Section 3.6 of Chapter 3. We have shown there that the general regular solutions of Eqn (79) are given in this case by: (80) jn ðxÞ ¼ Nn exp x2 =2 Hn ðxÞ where Nn is the normalization factor given by Eqn (136) of Chapter 3. Functions jn ðxÞ are called Hermite functions, and are orthonormal in the interval (N,N) as shown by Eqn (87). The recursion relations for jn ðxÞ follow from those of the Hermite polynomials: jnþ1 ðxÞ ¼ 2xjn ðxÞ 2njn1 ðxÞ
(81)
j0n ðxÞ ¼ xjn ðxÞ jnþ1 ðxÞ
(82)
j00n ðxÞ ¼ x2 2n 1 jn ðxÞ
(83)
and for the derivatives
which for l ¼ 2n þ 1 is Eqn (79) defining jn ðxÞ. We verify the recursion relations Eqn (81–83) by the direct calculation of the second derivative of j4 . We first recall that Eqn (76–78) give: H4 ¼ 2xH3 6H2 ;
H40 ¼ 2xH4 H5 ;
H400 ¼ 2xH40 8H4
Direct calculation then gives j04 ¼ exp x2 =2 H40 xH4 ¼ exp x2 =2 ½ð2xH4 H5 Þ xH4 ¼ exp x2 =2 ðxH4 H5 Þ which is Eqn (82), and
j004 ¼ exp x2 =2 H400 2xH40 þ x2 1 H4 ¼ exp x2 =2 2xH40 8H4 2xH40 þ x2 1 H4 ¼ exp x2 =2 x2 9 H4
(84)
(85)
(86)
which is Eqn (83), or Eqn (79), as it must be.
4.4.3 Integrals over Hermite functions In the quantum mechanical treatment of the harmonic oscillator and its spectroscopy are of great importance integrals involving products of pairs of the Hermite functions jn ðxÞ and jm ðxÞ. From the definition Eqn (83), the following relations are easily established (Sneddon, 1956): ZN pffiffiffiffi d x jm ðxÞjn ðxÞ ¼ 2n n! pdnm (87) Imn ¼ N
expressing the orthogonality of functions jm and jn for m s n, and the normalization integral for m ¼ n: ZN pffiffiffiffi d x jn ðxÞjn ðxÞ ¼ 2n n! p (88) In ¼ N
166
CHAPTER 4 Special functions
Furthermore, we give below some integrals occurring in the selection rules for the spectroscopy of the harmonic oscillator: ZN 1 d x xjm ðxÞjn ðxÞ ¼ nIm;n1 þ Im;nþ1 (89) 2 N
so that ZN d x xjm ðxÞjn ðxÞ ¼ 0
if msn 1
(90)
pffiffiffiffi d x xjn ðxÞjnþ1 ðxÞ ¼ 2n ðn þ 1Þ! p
(91)
N
and ZN N
Similarly, we have for integrals involving the first derivative ZN dx
jm ðxÞj0n ðxÞ
N
8 <0
if msn 1 pffiffiffiffi ¼ p if m ¼ n 1 : n pffiffiffiffi 2 ðn þ 1Þ! p if m ¼ n þ 1 2n1 n!
(92)
4.5 HYPERGEOMETRIC FUNCTIONS 4.5.1 Hypergeometric series and differential equation If a, b, c are parameters and z the complex variable, the series 1þ
a$b aða þ 1Þ $ bðb þ 1Þ 2 zþ z þ/ 1$c 1 $ 2 $ cðc þ 1Þ
(93)
is a generalization of the well-known geometric series 1 þ z þ z2 þ /
(94)
and is called hypergeometric series. Series (93) converges absolutely if jzj < 1 provided c is not zero or a non-negative integer, diverges if jzj > 1, while if jzj ¼ 1 the series converges absolutely if c > a þ b. Abramowitz and Stegun (1965) define series (93) as the hypergeometric function 2 F1 ða; b; c; zÞ: 2 F1 ða; b; c; zÞ
¼
N GðcÞ X Gða þ kÞGðb þ kÞ zk k! GðaÞGðbÞ k¼0 Gðc þ kÞ
(95)
where the suffixes 2 and 1 denote that there are two parameters of the type a and one parameter of the type c.
4.5 Hypergeometric functions
167
Using the properties of the G functions given in Section 4.7.1, if we introduce the Pochhammer’ symbol Gða þ kÞ ða þ k 1Þ! ¼ ðaÞk ¼ GðaÞ ða 1Þ! ¼
ða þ k 1Þða þ k 2Þ/½a þ k ðk 2Þ½a þ k ðk 1Þða þ k kÞða 1Þ! ða 1Þ!
(96)
¼ aða þ 1Þða þ 2Þ/ða þ k 1Þ we can rewrite Eqn (95) in the contracted form: 2 F1 ða; b; c; zÞ ¼
N X aða þ 1Þ/ða þ k 1Þbðb þ 1Þ/ðb þ k 1Þ zk cðc þ 1Þ/ðc þ k 1Þ k! k¼0
N X ðaÞk ðbÞk zk a$b aða þ 1Þ $ bðb þ 1Þ 2 ¼1þ zþ z þ/ ¼ ðcÞk k! 1$c 1 $ 2 $ cðc þ 1Þ k¼0
(97)
Even if the two suffixes are important in the further generalization of the hypergeometric functions (Sneddon, 1956), it will suffice for our purposes to omit them if there is no risk of confusion, so simplifying our notation, henceforth denoting 2 F1 simply by F. The hypergeometric function (97) is the solution of the second-order hypergeometric linear differential equation d2 y dy aby ¼ 0 (98) zð1 zÞ 2 þ ½c ða þ b þ 1Þy dz dz It can be shown (Sneddon, 1956) that any ordinary linear differential equation of the second order whose singular points are regular points can be transformed by a simple change of variable to the form of Eqn (98). In the series expansion of Eqn (98), the roots of the indicial equations (see Section 3.5 of Chapter 3) are 1. Near z ¼ 0 a ¼ 0;
a¼1c
(99)
a¼cab
(100)
2. Near z ¼ 1 a ¼ 0; 3. Near z ¼ N a ¼ a;
a¼b
(101)
It can be shown (Sneddon, 1956) that the corresponding solutions of the differential Eqn (98) are 1. Near the origin (z ¼ 0), provided (1 c) is not zero or a positive integer yðzÞ ¼ AFða; b; c; zÞ þ Bz1c Fða c þ 1; b c þ 1; 2 c; zÞ where A and B are arbitrary constants. If c ¼ 1, the two F solutions become identical.
(102)
168
CHAPTER 4 Special functions
2. Near z ¼ 1, the solution is yðzÞ ¼ AFða; b; a þ b c þ 1; 1 zÞ þ Bð1 zÞcab Fðc a; c b; c a b þ 1; 1 zÞ (103) 3. Near z ¼ N, the solution is yðzÞ ¼ Aza F a; a c þ 1; a b þ 1; z1 þ Bzb F b; b c þ 1; b a þ 1; z1
(104)
4.5.2 Confluent hypergeometric functions The confluent hypergeometric functions are solutions of the differential equation called Kummer’s or confluent hypergeometric equation (Abramowitz and Stegun, 1965): x
d2 y dy ay ¼ 0 þ ðb xÞ 2 dx dx
(105)
We see that, for b ¼ m þ 1, a ¼ m n, Eqn (105) coincides with the associated Laguerre differential Eqn (50), so that, in this case, yðxÞ ¼ Lm n ðxÞ. Independent solutions are the Kummer’s function: Mða; b; xÞ ¼
N X ðaÞk xk ðbÞk k! k¼0
(106)
where (a)k and (b)k are the Pochhammer’ symbols (96), and Uða; b; xÞ ¼
p Mða; b; xÞ Mð1 þ a b; 2 b; xÞ x1b sin pb Gð1 þ a bÞGðbÞ GðaÞGð2 bÞ
(107)
Properties of these functions are dn ðaÞn Mða; b; xÞ ¼ Mða þ n; b þ n; xÞ d xn ðbÞn 1 Uða; b; xÞ ¼ GðaÞ
(108)
ZN dt expðxtÞta1 ð1 þ tÞba1
(109)
0
These functions were discussed in the study of the damping coefficients and the non-expanded multipole analysis of the exact second-order induction energy in Hþ 2 (Magnasco and Figari, 1987a), where use was made of the confluent hypergeometric functions M(a,b, x) and U(a,b, x). For integer positive values of the parameters a, b and (b a) 1, polynomial expressions useful in the applications can be found for the functions U and M.
4.5 Hypergeometric functions
169
Using the binomial expansion in Eqn (109), we obtain ZN dt expðxtÞta1 ð1 þ tÞba1
ða 1Þ!Uða; b; xÞ ¼ 0
¼
¼
ba1 X
ba1
k¼0
k
x1b
!
ðk þ a 1Þ! xkþa
ba1 X
ba1
k¼0
k
(110)
! ðb 2 kÞ!xk
so that Uða; b; xÞ ¼
ðb 2Þ! 1b x Pba1 ðxÞ ða 1Þ!
(111)
where Pba1(x) is a polynomial of degree (b a 1) in x with P0 ¼ 1. A convenient polynomial form for the Kummer’s function M(a,b,x) is derived starting from the series expansion (106) for M(1,b,x): N N X X ð1Þk xk xk ¼ ðb 1Þ! ðbÞk k! ðb 1 þ kÞ! k¼0 k¼0 # " N b2 k X X xk x 1b 1b ¼ ðb 1Þ!x expðxÞ ¼ ðb 1Þ!x k! k! k¼0 k¼b1
(112)
ðbÞn dn Mða; b; xÞ ðaÞn d xn
(113)
Mð1; b; xÞ ¼
Using Eqn (108) Mða þ n; b þ n; xÞ ¼ We can write Mða; b; xÞ ¼
ðb 1Þ! da1 Mð1; b a þ 1; xÞ ða 1Þ!ðb aÞ! d xa1
(114)
This expression relates the M function of the general parameter a to the derivative of the M function of parameter a ¼ 1, whose polynomial expression was given in Eqn (112). Calculating the derivatives, we obtain " a1 X ðb 1Þ! k a 1 ðb a 1 þ kÞ! abk x ð1Þ þ ð1Þa Mða; b; xÞ ¼ expðxÞ ða 1Þ! ðb a 1Þ! k k¼0 # (115) ba1 X ðb 2 kÞ! 1bþk x k!ðb a 1 kÞ! k¼0
170
CHAPTER 4 Special functions
which can be rearranged to ðb 1Þ!ðb 2Þ! x1b Mða; b; xÞ ¼ ð1Þa ða 1Þ!ðb a 1Þ! "
1 k ba1 a1 X b a 1 b 2 1 xk X x b2 k a1 þ expðxÞ ð1Þ k k k k k! k! k¼0
¼ ð1Þa
#
k¼0
ðb 1Þ!ðb 2Þ! x1b ½ expðxÞPa1 ðxÞ þ Qba1 ðxÞ ða 1Þ!ðb a 1Þ!
(116)
where P(x) and Q(x) are polynomials in x of degree (a 1) and (b a 1), respectively, with P0 ¼ Q0 ¼ 1. We shall see later in Section 4.7.2 that the incomplete gamma function g(a, x) can be put in relation to the Kummer’s function M(1,a þ 1,x) through Eqn (175) which gives a polynomial expression for it.
4.6 BESSEL FUNCTIONS 4.6.1 Bessel functions of integral order The Bessel functions Jn(x) of order n in x are the solution of the Bessel’s differential equation of the second order: d2 Jn ðxÞ d Jn ðxÞ 2 þ x n2 Jn ðxÞ ¼ 0 þx (117) x2 2 dx dx where n is a positive integer. In Problem 4.2 it is shown that the function Jn(x) can be defined in terms of hypergeometric functions as (Sneddon, 1956) xn 1 (118) Jn ðxÞ ¼ n 0 F1 n þ 1; x2 2 n! 4 where
X N 1 2 1 1 2 k ¼ x 0 F1 n þ 1; x 4 k!ðn þ 1Þk 4 k¼0
k 1 1 ¼ x2 4 k¼0 k!ðn þ 1Þðn þ 2Þ/ðn þ kÞ N P
(119)
and (a)k is the Pochhammer’ symbol (96). Recursion relations for the function Jn(x) are easily found to be xJn0 ðxÞ ¼ xJn1 ðxÞ nJn ðxÞ xJn00 ðxÞ þ Jn0 ðxÞ ¼
n2 Jn ðxÞ xJn ðxÞ x
where use was made of the primed notation for the derivatives.
(120) (121)
4.6 Bessel functions
171
4.6.2 Bessel functions of half-integral order When n is not an integer, the differential equation of the second order x2
d2 yðxÞ dyðxÞ 2 þ x n2 yðxÞ ¼ 0 þx dx2 dx
(122)
admits as general solution yðxÞ ¼ AJn ðxÞ þ BJn ðxÞ
(123)
xn 1 2 Jn ðxÞ ¼ n F1 n þ 1; x 2 Gðn þ 1Þ 0 4
(124)
with A, B arbitrary constants, and
When n ¼ n is an integer, the two solutions Jn(x) and Jn(x) are not linearly independent, since Jn ðxÞ ¼ ð1Þn Jn ðxÞ
(125)
When n ¼ n þ 1/2 is half an integer (n ¼ integer), the functions Jnþ 1 ðxÞ; Jn 1 ðxÞ 2
(126)
2
are called spherical Bessel functions of order n. These functions are simply related to the circular functions sin x and cos x. Using the duplication formula for the gamma function of Section 4.7.1, it can be shown that (Sneddon, 1956) 1=2 X N 2 x2kþ1 (127) ð1Þk J1=2 ðxÞ ¼ ð2k þ 1Þ! px k¼0 so that
2 1=2 sin x px
J1=2 ðxÞ ¼
Again it can be shown that
J1=2 ðxÞ ¼
2 px
1=2 X N k¼0
ð1Þk
x2k ¼ ð2kÞ!
(128)
2 px
1=2 cos x
and, in general, when n is half an odd integer 1=2 2 Jn ðxÞ ¼ ½ fn ðxÞsin x gn ðxÞcos x px Jn ðxÞ ¼
2 px
(129)
(130)
1=2 ð1Þn1=2 ½gn ðxÞsin x þ fn ðxÞcos x
(131)
172
CHAPTER 4 Special functions
The explicit expressions of the first few Jn(x) and Jn(x) are 1=2 1 sin x cos x x 1=2 2 3 3 1 sin x cos x J5=2 ðxÞ ¼ px x2 x 1=2 2 15 6 15 J7=2 ðxÞ ¼ sin x 2 1 cos x px x3 x x 1=2 2 105 45 105 10 2 þ 1 sin x cos x J9=2 ðxÞ ¼ px x4 x x3 x
J3=2 ðxÞ ¼
2 px
2 1=2 1 sin x þ cos x px x
2 1=2 3 3 sin x þ 2 1 cos x px x x
J3=2 ðxÞ ¼ J5=2 ðxÞ ¼ J7=2 ðxÞ ¼ J9=2 ðxÞ ¼
1=2
2 px
15 15 6 cos x 1 sin x þ x2 x3 x
(132)
(133)
2 1=2 105 10 105 45 sin x þ 2 þ 1 cos x px x3 x x4 x
4.6.3 Spherical Bessel functions To examine in more detail their properties, it is convenient to redefine the spherical Bessel functions of order n (n is a non-negative integer), denoted by jn(x), as the analytic solutions of the differential equation of the second order (Abramowitz and Stegun, 1965): d2 jn ðxÞ 2 djn ðxÞ nðn þ 1Þ jn ðxÞ ¼ 0 þ 1 þ dx2 x dx x2
(134)
Since x ¼ 0 is a regular singularity, the solution of Eqn (134) can be found by expanding jn(x) in the power series of the variable x: jn ðxÞ ¼
N X k¼0
ak xaþk
(135)
4.6 Bessel functions
173
The indicial equation gives a ¼ n for a0 s 0. Furthermore it is found a1 ¼ 0, so that only even coefficients survive with the recurrence relation: akþ2 ¼
ak ðk þ 2Þðk þ 2n þ 3Þ
(136)
so that by iteration (see Problem 4.2) we obtain a2k ¼ ð1Þkþ1
ð2n þ 1Þ!! a0 ð2kÞ!!ð2k þ 2n þ 1Þ!!
(137)
the double factorial functions being defined as:
(
ð2nÞ!! ¼ 2n n! ð2n 1Þ!! ¼
ð2n þ 2Þ!! ¼ ð2n þ 2Þð2nÞ!! ð2nÞ! 2n n!
ð2n þ 1Þ!! ¼
ð2n þ 1Þ! 2n n!
(138) 0!! ¼ ð1Þ!! ¼ 1
Putting ð2n þ 1Þ!!a0 ¼ 1, we obtain for jn(x) the representation as infinite series: jn ðxÞ ¼
N X k¼0
ð1Þk xnþ2k ð2kÞ!!ð2k þ 2n þ 1Þ!!
(139)
Equation (139) gives immediately the parity of jn(x): jn ðxÞ ¼ ð1Þn jn ðxÞ
(140)
and the recurrence relations jn1 ðxÞ ¼
nþ1 jn ðxÞ þ j0n ðxÞ; x
jnþ1 ðxÞ ¼
n jn ðxÞ j0n ðxÞ x
(141)
In fact, we observe that N d nþ1 d X ð1Þk x2kþ2nþ1 x jn ðxÞ ¼ dx dx k¼0 ð2kÞ!!ð2k þ 2n þ 1Þ!! N X
ð1Þk x2kþ2n ¼ xnþ1 jn1 ðxÞ ¼ ð2kÞ!!ð2k þ 2n 1Þ!! k¼0
(142)
and, deriving the left-hand member ðn þ 1Þxn jn ðxÞ þ xnþ1 j0n ðxÞ ¼ xnþ1 jn1 ðxÞ which proves the first recurrence relation.
(143)
174
CHAPTER 4 Special functions
Likely, for the second recurrence relation, we have d n x jn ðxÞ ¼ nxn1 jn ðxÞ þ xn j0n ðxÞ dx N d X ð1Þk x2k ¼ dx k¼0 ð2kÞ!!ð2k þ 2n þ 1Þ!! ¼ ¼
N X
ð1Þk ð2kÞx2k1 ð2kÞ!!ð2k þ 2n þ 1Þ!! k¼0
N X
(144)
kþ1
ð1Þ ð2k þ 2Þx2kþ1 ð2k þ 2Þ!!ð2k þ 2n þ 3Þ!! k¼0
¼ xn
N X
ð1Þk x2kþnþ1 ð2kÞ!!ð2k þ 2n þ 3Þ!! k¼0
¼ xn jnþ1 ðxÞ from which follows the second recurrence relation. The recurrence relations give for the first derivative of jn(x) the formulae n j0n ðxÞ ¼ jn ðxÞ jnþ1 ðxÞ x n þ1 j0n ðxÞ ¼ jn ðxÞ þ jn1 ðxÞ x
(145) (146)
From Eqn (145) and Eqn (146) follows for the second derivative of jn(x) the expression j00n ðxÞ ¼
i nðn 1Þ dhn 2 jn ðxÞ jn ðxÞ þ jnþ1 ðxÞ jn ðxÞ jnþ1 ðxÞ ¼ dx x x2 x
(147)
Using for jnþ1(x) the second of the recurrence formulae Eqn (141), it is easily seen that jn(x) does satisfy the starting differential Eqn (134). A finite form for jn(x) is given by the integral representation1 (Abramowitz and Stegun, 1965) Z1 1 n du expðixuÞPn ðuÞ (148) jn ðxÞ ¼ ðiÞ 2 1
where i is the imaginary unit (i ¼ 1) and Pn(u) a Legendre polynomial of degree n with u ¼ cos q. Integral (148) can be calculated by successive integration by parts taking Pn(u) as a finite factor and du exp(ixu) as a differential factor. The successive derivatives of Pn(u) stop at the order n, so that 2
Z1 du expðixuÞPn ðuÞ ¼ 1 1
n X ðiÞq q¼0 ðixÞ
qþ1
expðixuÞ
dq Pn ðuÞ duq
1 (149) 1
The equivalence with the infinite series (139) for jn(x) is obtained by expanding the imaginary exponential in power series.
4.6 Bessel functions
175
The derivatives of Pn(u) are calculated from the definition (3) of the Legendre polynomials and the Leibnitz’s rule for the n-th derivative of products of functions (Smirnov, 1993a): n X dn n ðnkÞ ðkÞ f ð fgÞ ¼ g (150) k dxn k¼0
where
f ðnÞ
¼d
n
f ðxÞ=dxn
denotes the n-th derivative of f(x). We have
dq 1 dnþq P ðuÞ ¼ ½ðu 1Þn ðu þ 1Þn n duq 2n n! dunþq
¼
nþq 1 X n þ q dt dnþqt ðu 1Þn nþqt ðu þ 1Þn n t t du du 2 n! t¼0
¼
n n! 1 X n! nþq ðu 1Þnt ðu þ 1Þtq n t 2 n! t¼q ðn tÞ! ðt qÞ!
(151)
Substituting into Eqn (149) and noting that ðu 1Þnt ¼ dnt
for u ¼ 1;
ðu þ 1Þtq ¼ dqt
for u ¼ 1
(152)
du expðixuÞPn ðuÞ ¼ in Wn ðxÞexpðixÞ þ Wn ðxÞexpðixÞ
(153)
we obtain integral (149) in the form Z1 1
where Wn ðxÞ ¼ ðiÞnþ1
n X iq ðn þ qÞ! q1 x 2q q!ðn qÞ! q¼0
Hence, we obtain for jn(x) the finite representation 1
jn ðxÞ ¼ Wn ðxÞexpðixÞ þ Wn ðxÞexpðixÞ 2
(154)
(155)
Euler’s formulae for the imaginary exponentials expðixÞ ¼ cos x i sin x
(156)
allow to transform Eqn (155) into an explicit form involving algebraic and trigonometric functions of the variable x, particularly suited for the graphic representation of the function jn(x): jn ðxÞ ¼ ð1Þn=2 ½ fn ðxÞcos x þ gn ðxÞsin x n ¼ even
(157)
jn ðxÞ ¼ ð1Þðnþ1Þ=2 ½gn ðxÞcos x fn ðxÞsin x n ¼ odd
(158)
176
CHAPTER 4 Special functions
where, if [t] ¼ the largest integer t, and fn(x) ¼ 0 for n ¼ 0 hn1i fn ðxÞ ¼
2 X q¼0
gn ðxÞ ¼
ð1Þq ðn þ 2q þ 1Þ! x2q2 22qþ1 ð2q þ 1Þ!ðn 2q 1Þ! ½n=2 X
ð1Þq ðn þ 2qÞ! 2q1 x 22q ð2qÞ!ðn 2qÞ! q¼0
(159)
(160)
The explicit form of the first few spherical Bessel’s functions (SBFs) is given below: sin x j0 ðxÞ ¼ x 1 1 j1 ðxÞ ¼ cos x þ 2 sin x x x 3 1 3 sin x j2 ðxÞ ¼ 2 cos x x x x3 1 15 6 15 j3 ðxÞ ¼ cos x 2 4 sin x x x3 x x 10 105 1 15 105 j4 ðxÞ ¼ 4 cos x þ þ 5 sin x x2 x x x3 x 1 105 945 5 105 189 j5 ðxÞ ¼ 3 þ 5 cos x þ sin x þ x x 2x2 2x4 2x6 x
(161)
Formulae (161) are simpler than their parent formulae (132) and (133). It is apparent that the behaviour of the SBFs is the wavelike one of the trigonometric functions damped by the presence of the algebraic factors depending on the negative powers of the variable. Using recurrence relation Eqn (145) in the equivalent operatorial form n 1 d jn ðxÞ (162) jnþ1 ðxÞ ¼ j0n ðxÞ þ jn ðxÞ ¼ xnþ1 x x dx xn by iteration we find the so-called Rayleigh’s formula for jn(x): 1 d n 1 d n sin x n n j0 ðxÞ ¼ x jn ðxÞ ¼ x x dx x dx x
(163)
4.6.4 Modified Bessel functions The second-order differential equation d2 yðxÞ dyðxÞ 2 x þ n2 yðxÞ ¼ 0 x2 þx 2 dx dx
(164)
4.6 Bessel functions
177
which differs from Bessel’s Eqn (122) only in the coefficient of y(x), frequently occurs in problems of mathematical physics.2 Its two solutions in real form are called modified Bessel’s functions, and are defined as (Watson, 1966) nþ2k 1 x N X 2 (165) In ðxÞ ¼ k!Gðn þ k þ 1Þ k¼0 the modified Bessel’s function of the first kind, and Kn ðxÞ ¼
p In ðxÞ In ðxÞ 2 sin np
(166)
the modified Bessel’s function of the second kind. The physical importance of Kn(x) lies in the fact that it is a solution of Eqn (164) which tends exponentially to zero as x /N through positive values of the variable. These functions were used by Cha1asinski and Jeziorski (1974) in their exact multipole expansion of the second-order induction interaction of two hydrogen atoms discussed in detail in Section 17.3.3 of Chapter 17.3 For integer n, the SBFs of Section 4.6.3 can be related to the modified Bessel’s functions of the second kind by the relation 1=2 2 x1=2 Knþ 1 ðxÞ (167) jn ðxÞ ¼ 2 p The function xn Kn ðxÞ
(168)
for n > 0 has no singularities for x / 0. Therefore, the function kn ðxÞ ¼ ð2=pÞ1=2 xn Kn ðxÞ
(169)
was called by Shavitt (1963) reduced Bessel function. For half-integer n k1=2 ¼
kN 1 ðxÞ ¼ 2
expðxÞ x
(170)
N expðxÞ X ð2N k 1Þ! kN k 2 x x ðk 1Þ!ðN kÞ! k¼1
(171)
The following recursion formula, practical for computational purposes, holds for all values of n (Magnus et al., 1966): x2 kn 1 ðxÞ ¼ knþ 3 ðxÞ ð2n þ 1Þknþ 1 ðxÞ 2
2 3
2
2
Equation (164) is obtained in the solution of the Laplace’s equation in cylindrical coordinates. Incorrectly, Cha1asinski and Jeziorski call Kn(x) modified Bessel’s function of the third kind.
(172)
178
CHAPTER 4 Special functions
The reduced Bessel functions were extensively used by Steinborn and co-workers (Weniger and Steinborn, 1983; and references therein) in their studies of multicentre molecular integrals over Slatertype orbitals (STOs) and, more generally, exponential-type orbitals (ETOs) with their related anisotropic generalizations, the so-called B-functions. The B-functions are linear combinations of STOs, having a sensibly more complicated analytical structure than STOs but more appealing properties in multicentre problems, such as simpler Fourier transforms (FTs) and extremely compact convolution integrals (see Section 4.9).
4.7 FUNCTIONS DEFINED BY INTEGRALS 4.7.1 The gamma function The gamma function G is defined by the integral (Sneddon, 1956; Abramowitz and Stegun, 1965) ZN dx expðxÞxn1 (173) GðnÞ ¼ 0
where n > 0. A few properties of the gamma function are 1. Gð1Þ ¼ 1 2. Gðn þ 1Þ ¼ nGðnÞ the recurrence formula 3. Gðn þ 1Þ ¼ n! if n is positive integer pffiffiffiffi 1 ¼ p 4. G 2 1 1 Gð2nÞ ¼ 22n1 GðnÞG n þ 5. G 2 2 the duplication formula For n a positive integer the duplication formula becomes 1 1 ð2nÞ! ¼ 22n n!G n þ G 2 2 n!nx n/N ðx þ 1Þðx þ 2Þ/ðx þ nÞ the Euler’s formula
6. Gðx þ 1Þ ¼ lim
x>0
Some of these properties are easily derived in Problem 4.3 using the definition of the gamma function and the rule of integration by parts.
4.7.2 The incomplete gamma function The incomplete gamma function g(a,x) is defined by the integral (Abramowitz and Stegun, 1965) Zx gða; xÞ ¼ dt expðtÞta1 (174) 0
4.7 Functions defined by integrals
179
and is related to the Kummer’s confluent hypergeometric function of Section 4.5.2 by the relation gða; xÞ ¼ a1 expðxÞxa Mð1; a þ 1; xÞ # " a1 k (175) X x ¼ ða 1Þ!½1 expðxÞPa1 ðxÞ ¼ ða 1Þ! 1 expðxÞ k! k¼0 The difference between the gamma function GðaÞ and the incomplete gamma function g(a,x) defines the new function Gða; xÞ: ZN dt expðtÞta1 (176) Gða; xÞ ¼ GðaÞ gða; xÞ ¼ x
which for a ¼ n negative integer can be expressed by # " n1 X 1 n1 k ðn 1 kÞ! k n x ð1Þ Gðn; xÞ ¼ ð1Þ EiðxÞ þ ðn 1Þ!expðxÞx n! ðn 1Þ! k¼0 " ¼
#
(177)
1 ð1Þn1 EiðxÞ þ ðn 1Þ!expðxÞxn Pn1 ðxÞ n!
where Ei(x) is the exponential integral function defined by Eqn (185) of the next section.
4.7.3 From the gamma function to the exponential integral function From Eqn (6) of the previous section it is possible to derive an expression for Euler’s constant g, which is defined by the series 1 1 1 (178) g ¼ lim 1 þ þ þ / þ ln n ¼ 0:577 215 665/ n/N 2 3 n In fact, taking the logarithm of (6) we have ln Gðx þ 1Þ ¼ lim ½ln n! þ x ln n ln ðx þ 1Þ ln ðx þ 2Þ / ln ðx þ nÞ n/N
and, taking its derivative d 1 1 1 ln Gðx þ 1Þ ¼ lim ln n / n/N dx xþ1 xþ2 xþn Letting x/0 we obtain
d ln Gðx þ 1Þ g ¼ lim x/0 dx and, from the definition of Gðx þ 1Þ it follows ZN g ¼ dt expðtÞln t 0
(179)
(180)
(181)
(182)
180
CHAPTER 4 Special functions
Integrating by parts the function of x ZN ZN ZN N dt expðtÞln t ¼ ln td½expðtÞ ¼ ln t expðtÞjx þ dt expðtÞt1 x
x
ZN
¼ ln x expðxÞ þ
x
(183)
dt expðtÞt1
x
and, taking the limit for x/0, we find ZN ZN g ¼ dt expðtÞ ln t ¼ lim dt expðtÞln t x/0
0
2
¼ lim 4
3
ZN dt
x/0
x
expðtÞ þ ln x5 ¼ lim ½EiðxÞ ln x x/0 t
(184)
x
where
ZN EiðxÞ ¼
dt
expðtÞ ¼ E1 ðxÞ t
(185)
x
is the exponential integral function (Sneddon, 1956; Abramowitz and Stegun, 1965). We notice that dEiðxÞ expðxÞ ¼ dx x
(186)
4.7.4 The exponential integral function For E1(x) we have the series expansion E1 ðxÞ ¼ EiðxÞ ¼ g ln x
N X xn ð1Þn n $ n! n¼1
(187)
where g is Euler’s constant, or EiðxÞ ¼ g þ ln x þ Hence
N X xn ð1Þn n $ n! n¼1
g ¼ lim ½EiðxÞ ln x x/0
(188)
(189)
This relation, which is nothing but Eqn (184) derived before, occurs in the calculation of the twocentre two-electron exchange integral ð1sA 1sB j1sA 1sB Þ between STO functions centred at nuclei A and B (Section 18.7.2 of Chapter 18 of this book) and its higher homologues. This integral was met by Heitler and London (1927) in their wave mechanical calculations on the ground state of the hydrogen molecule, and was first evaluated exactly by Sugiura (1927).
4.7 Functions defined by integrals
181
The complete form for this exchange integral, here given in the so-called charge density notation, is Z
Z ð1sA 1sB j1sA 1sB Þ ¼
Z
dr2
dr1
½1sA ðr2 Þ1sB ðr2 Þ ½1sA ðr1 Þ1sB ðr1 Þ r12
(190)
dr1 KAB ðr1 Þ½1sA ðr1 Þ1sB ðr1 Þ
¼
where KAB(r1) is the two-centre exchange potential at the space point r1 due to the two-centre charge distribution of electron 2 at r2: Z ½1sA ðr2 Þ1sB ðr2 Þ (191) KAB ðr1 Þ ¼ dr2 r12 The calculation of this difficult integral is based on the expansion of the inverse of the interelectron distance r12 in spheroidal coordinates and is explained in detail in Section 18.7.2 of Chapter 18 of this book. The series occurring for two-centre spherical 1s orbitals with equal orbital exponents breaks down after two terms, but an infinite number of terms is needed when the orbital exponents are different. This is the case of the four-centre two-electron integral evaluated by Musso and Magnasco (1971) in terms of a Gauss–Legendre four-dimensional numerical integration using appropriate recursion formulae for the auxiliary functions.
4.7.5 The generalized exponential integral function In the calculation of molecular multicentre exchange integrals over STOs (Magnasco et al., 1998; Magnasco et al., 1999; Magnasco and Rapallo, 2000) occurs the generalized exponential integral of order n En(r) (Abramowitz and Stegun, 1965) defined as ZN En ðrÞ ¼
dx expðrxÞxn
(192)
1
with n a non-negative integer and Re(r) > 0. The high accuracy needed in its numerical calculation can be achieved through multiple precision arithmetics using recurrence relations and accurate Gaussian quadrature techniques (Ralston, 1965; Demidovic and Maron, 1981; Bachvalov, 1981). It is of crucial importance to start the recursion with extremely accurate terms.
4.7.6 Further functions The basic indefinite integral occurring in atomic or molecular calculations involving STOs with exponential radial decay is defined by the primitive function Z n X n! xnk ð1Þk Fn ðxÞ ¼ dx expðrxÞxn ¼ expðrxÞ ðn kÞ! ðrÞkþ1 k¼0 # " n! ðrxÞn ðrxÞn1 ðrxÞ2 þ þ/þ þ rx þ 1 ¼ nþ1 expðrxÞ (193) n! ðn 1Þ! 2! r ¼
n! rnþ1
expðrxÞ
n X ðrxÞk k¼0
k!
182
CHAPTER 4 Special functions
where n is a non-negative integer and r a real positive number, a result that can be obtained by repeated integration by parts. From these relations follow some definite integrals needed in one-centre atomic problems: " # Zu n k X n! ðruÞ dx expðrxÞxn ¼ nþ1 1 expðruÞ (194) k! r k¼0 0
ZN dx expðrxÞxn ¼
n! rnþ1
expðruÞ
n X ðruÞk k¼0
u
k!
(195)
giving by addition the well-known integral ZN dx expðrxÞxn ¼
n! rnþ1
(196)
0
and the following auxiliary functions needed in two-centre molecular problems (Roothaan, 1951b): ZN An ðrÞ ¼
dx expðrxÞxn ¼
n! rnþ1
expðrÞ
n X rk k¼0
1
k! (197)
Z1 dx expðrxÞxn ¼ ð1Þnþ1 An ðrÞ An ðrÞ
Bn ðrÞ ¼ 1
In some calculations are needed the integrals Zu n X n! ðruÞk dx expðrxÞxn ¼ An ðrÞ nþ1 expðruÞ k! r k¼0
(198)
1
ZN dx expðrxÞxn ¼
n! rnþ1
expðruÞ
n X ðruÞk k¼0
u
k!
(199)
whose addition gives the An(r) function. Properties of the Bn(r) functions are Bn ðrÞ ¼ ð1Þn Bn ðrÞ;
Bn ð0Þ ¼
2 den nþ1
(200)
where e ¼ even. Recurrence relations between the auxiliary functions are sometimes needed in numerical calculations. For instance, it is easily shown from the definitions that 1 An ðrÞ ¼ ½nAn1 ðrÞ þ rA0 ðrÞ r
(201)
4.7 Functions defined by integrals
183
In fact An ðrÞ ¼
n! rnþ1
n1 k X r
expðrÞ
k¼0
k!
"
¼
þ
n! rnþ1
n1 k X r
expðrÞ
rn n!
#
(202)
n ðn 1Þ! expðrÞ 1 þ expðrÞ ¼ ½nAn1 ðrÞ þ rA0 ðrÞ k! r rn r r k¼0
The generalized auxiliary functions are defined as ZN m dx expðrxÞxj x2 1 Tjm ðrÞ ¼
(203)
1
Z1
m dx expðrxÞxj 1 x2
(204)
m=2 m dx expðrxÞxj 1 x2 Pl ðxÞ
(205)
Gjm ðrÞ ¼ 1
Z1 Bljm ðrÞ
¼ 1
ZN Hlmpq ðr1 ; r2 Þ ¼
ZN dx
1
m=2 m
Q^l ðx> ÞP^m dy expðr1 xÞexpðr2 yÞxp yq x2 1 y2 1 l ðx< Þ (206)
1
^m ^m j, l, m, p, q being non-negative integers, Re(r) > 0, Pm l ; Pl ; Ql normalized associated Legendre functions of first and second kind, x< and x> the lesser and the greater of x and y. Tjm(r) and Gjm(r) are generalizations of the elementary auxiliary functions Aj(r) and Bj(r) defined above, while Bljm ðrÞ and Hlmpq(r1,r2) were introduced by Ruedenberg (1951) as a generalization of the auxiliary integral ZN Hlpq ðrÞ ¼ Hlqp ðrÞ ¼
ZN dx
1
dy exp½rðx þ yÞxp yq Q^l ðx> ÞP^l ðx< Þ
(207)
1
occurring in Rosen calculation (1931) of the exchange integrals over STOs in his quantum mechanical treatment of the ground state of the hydrogen molecule. It is seen that Tjm(r) and Gjm(r) can be written as finite sums of An and Bn functions: m X mþk m Ajþ2k ðrÞ ð1Þ (208) Tjm ðrÞ ¼ k k¼0 m X k m Bjþ2k ðrÞ ð1Þ (209) Gjm ðrÞ ¼ k k¼0
While evaluation of Tjm(r) by Eqn (208) is straightforward through use of recurrence relations, for some values of indices j, m, Gjm(r) may be affected by strong numerical instabilities due to cancellation of terms of similar magnitude. Stability in the evaluation of Gjm(r) with very high numerical
184
CHAPTER 4 Special functions
accuracy (14–15 significant figures) can be obtained by expanding in series the exponential in Eqn (204). Similar problems are met in the evaluation of Bljm ðrÞ of Eqn (205), and again numerical stability to about 14–15 significant figures is achieved by the series expansion of the exponential. We may point out here that the accurate evaluation of the double integral (206) is the most timeconsuming step in the evaluation of two-centre molecular integrals in quantum chemistry calculations.
4.8 THE DIRAC d-FUNCTION The Dirac d-function is a distribution which may be visualized as an infinitely sharp Gaussian function (spike) selecting a given value of a function f(x), its main property being Z dx dðx aÞf ðxÞ ¼ f ðaÞ (210) where the integration is over all possible values of definition of the variable x. The operation of multiplying f(x) by d(x a) and integrating over all values of x is hence simply equivalent to replacing a for x in the argument of the original function. The Dirac d-function is met when expanding any regular function f(x) in the complete set f4k ðxÞg ^ say of the eigenfunctions of a Hermitian operator A, f ðxÞ ¼
X
4k ðxÞCk
(211)
k
the expansion coefficients being given by
Z
dx0 4k ðx0 Þf ðx0 Þ
Ck ¼
(212)
Using Dirac’s notation, Eqn (212) can be written as
and expansion Eqn (211) as
Ck ¼ h4k j f i
(213)
X jf ¼ j4k > h4k j f
(214)
k
where
X X 4k ðxÞ4k ðx0 Þ ¼ dðx x0 Þ j4k >< 4k j ¼ k
(215)
k
if the set is complete (see Section 1.1.7 of Chapter 1). So, Eqn (215) expresses the completeness of the set f4k ðxÞg of regular functions in terms of the Dirac d-function which can hence be said to be the identity operator ^ 1. More precisely, dðx x0 Þ is recognized as the kernel of the integral operator ^dðxÞ ¼ ^1: Z ^dðxÞf ðxÞ ¼ dx0 dðx x0 Þf ðx0 Þ ¼ f ðxÞ (216)
4.9 The Fourier transform
185
Roughly speaking, as said before, we say that the Dirac d-function corresponds to the identity operator when working on continuous functions. It can be shown (Sneddon, 1956) that further properties of the Dirac d-function are dðxÞ ¼ dðxÞ and, for a > 0 dðaxÞ ¼
1 dðxÞ; a
1 d a2 x2 ¼ ½dðx aÞ þ dðx þ aÞ 2a
(217)
(218)
It is also often said that the Dirac d-function is the derivative of the Heaviside unit function H(x), which is defined by the equations 1 if x > 0 HðxÞ ¼ (219) 0 if x < 0 a relation that can be precisely stated in terms of Stieltjes integration.4
4.9 THE FOURIER TRANSFORM The Fourier transform (FT) is of great interest in the calculation of multicentre molecular integrals, in the theory of intermolecular potentials and, in its discretized form (Griffiths, 1978), in recent applications to infrared spectroscopy. The FT was first suggested by Prosser and Blanchard (1962) to simplify the computation of molecular integrals over STOs and, more extensively, by Silverstone and co-workers (Todd et al., 1982) and by the Steinborn group (Filter and Steinborn, 1978; Weniger and Steinborn, 1983; Weniger et al., 1986) in the attempt to give compact analytical forms useful in the practical calculation of multicentre molecular integrals. With the help of the FT, some six-dimensional integrals in coordinate space with nonseparable integration variables can be transformed into three-dimensional integrals in momentum space where the integration variables are separated quite easily. The same is true for the application of the FT method to the study of intermolecular potentials, as we shall see more in detail in Section 17.8 of Chapter 17 of this book. The FT of the interparticle distance in the intermolecular potential allows for a generalized expansion converging for all intermolecular separations R and for separation of angle-dependent from R-dependent factors (Koide, 1976; Knowles and Meath, 1987; Magnasco and Figari, 1989). We now proceed to introducing the essential elements of the FT. The FT of a function f(x) of a real variable x is defined as ZN dx f ðxÞexpðipxÞ (220) FðpÞ ¼ N
where p is a parameter, whereas 1 f ðxÞ ¼ 2p
ZN dp Fð pÞexpðipxÞ N
is called the inverse Fourier transform or Anti-Fourier transform. 4
For the definition of a Stieltjes integral, see Sneddon (1956) p. 162.
(221)
186
CHAPTER 4 Special functions
Equation (221) is obtained as the limit as L /N of the complex Fourier expansion of a function f(x) defined in the interval (L, L): N pk X ak exp i x (222) f ðxÞ ¼ L k¼N the coefficients being given by 1 ak ¼ 2L
ZL
pk x dx f ðxÞexp i L
L
(223)
In fact, we can rewrite expansion (222) as N pk ZL pk 1 X f ðxÞ ¼ x x f ðxÞ exp i dx exp i 2L k¼N L L
(224)
L
and change variable to p¼
pk L
(225)
p increases in steps of unity by Dp ¼ pðk þ 1Þ pðkÞ ¼
kþ1 k p 1 1 p p¼ 0 ¼ Dp L L L 2L 2p
(226)
Then, using these relations, expansion (224) becomes ZL N 1 X f ðxÞ ¼ Dp expðipxÞ dx expðipxÞf ðxÞ 2p k¼N
(227)
L
Now, taking the limit for L / N, Dp becomes infinitesimal, so that the sum over k becomes an integral: ZN N X lim Dp ¼ dp (228) lim Dp ¼ dp; L/N
L/N
k¼N
N
and expansion (227) becomes 1 f ðxÞ ¼ 2p
ZN dp FðpÞexpðipxÞ
(229)
N
ZN dx f ðxÞexpðipxÞ
FðpÞ ¼ N
(230)
4.9 The Fourier transform
187
A more symmetrical definition of FT is 1 f ðxÞ ¼ pffiffiffiffiffiffi 2p
ZN
1 FðpÞ ¼ pffiffiffiffiffiffi 2p
dp FðpÞexpðipxÞ; N
ZN dx f ðxÞexpðipxÞ
(231)
N
Using Eqn (231), we can write 1 f ðxÞ ¼ 2p
ZN dp expðipxÞ N
ZN ¼ N
ZN
dx0 f ðx0 Þexpðipx0 Þ
N
dx0 f ðx0 Þ
1 2p
ZN
dp exp½iðx x0 Þp ¼
N
ZN
(232) dx0 dðx x0 Þf ðx0 Þ
N
where use was made of the integral representation of the Dirac d-function (Section 4.8) 1 dðx x Þ ¼ 2p 0
ZN
dp exp½iðx x0 Þp
These formulae can be extended to a three-dimensional space (r,k): Z 1 f ðrÞ ¼ pffiffiffiffiffiffi3 dk expðik $ rÞFðkÞ 2p 1 FðkÞ ¼ pffiffiffiffiffiffi3 2p
(233)
N
(234)
Z dr expðik $ rÞf ðrÞ
(235)
where (k $ r) is the scalar product of vectors k and r k $ r ¼ kx x þ ky y þ kz z
(236)
and dk ¼ dkx dky dkz ;
dr ¼ dx dy dz
(237)
From these relations, we have the generalization of the integral representation of the Dirac dfunction to three dimensions: 0
dðx x Þ ¼
1 ð2pÞ3
ZN
dk expðiðx x0 Þ $ kÞ
(238)
N
where the three-dimensional d-function has the properties Z Z dðxÞ ¼ 0 x s 0; dx dðxÞ ¼ 1; dx dðx yÞf ðxÞ ¼ f ðyÞ
(239)
188
CHAPTER 4 Special functions
Of importance in the applications is the fact that the FT transforms convolutions into products and vice versa. The convolution (German / Faltung) of two functions f1(x) and f2(x) is denoted by f1(x) * f2(x) and is given by the integral relation (Rossetti, 1984) ZN dx0 f1 ðx x0 Þf2 ðx0 Þ (240) f ðxÞ ¼ f1 ðxÞ f2 ðxÞ ¼ N
The convolutory product has the properties f1 ðxÞ f2 ðxÞ ¼ f2 ðxÞ f1 ðxÞ
(241)
ðf1 f2 Þ f3 ¼ f1 ðf2 f3 Þ
(242)
and Now F½ f1 f2 ¼
pffiffiffiffiffiffi 2p F½ f1 $ F½ f2
(243)
and 1 F½f1 $ f2 ¼ pffiffiffiffiffiffi F½f1 F½f2 2p If f (x) is a real even function, its FT is real and is given by rffiffiffiffi ZN ZN 1 2 FðpÞ ¼ pffiffiffiffiffiffi dx cosðpxÞf ðxÞ ¼ dx cosðpxÞ f ðxÞ p 2p N
(244)
(245)
0
If f (x) is a real odd function, its FT is purely imaginary and is given by rffiffiffiffi ZN ZN i 2 FðpÞ ¼ pffiffiffiffiffiffi dx sinðpxÞ f ðxÞ ¼ i dx sinðpxÞ f ðxÞ p 2p N
(246)
0
A few examples of FTs are given in Problems 4.4–4.5 (Rossetti, 1984).
4.10 THE LAPLACE TRANSFORM The Laplace transform (LT) of a function F(t) of the real variable t is defined as ZN LðsÞ ¼
dt FðtÞexpðstÞ
(247)
0
where s is a complex variable. The integral (247) converges whenever Re(s) > 0. F(t) is called the original function and L(s) the image function. Equation (247) can be rewritten as LðsÞ ¼ L^s FðsÞ
(248)
4.10 The Laplace transform
where L^s is the integral operator with kernel exp(st) ZN ZN ^ ^ Ls FðsÞ ¼ dt expðstÞPst FðsÞ ¼ dt expðstÞFðtÞ ¼ LðsÞ 0
(249)
0
Fundamental properties of the LT are d FðtÞ ¼ sLs ½FðtÞ Fð0Þ Ls dt and, in general
189
(250)
n1 X dn F ðkÞ ð0Þsn1k Ls n FðtÞ ¼ sn Ls ½FðtÞ dt k¼0
where the notation for the derivatives means F
ðnÞ
dn FðtÞ ð0Þ ¼ lim t/0 dtn
(251)
(252)
The LT and its property (251) are of interest in the solution of the linear differential equations with constant coefficients such as those derived in chemical kinetics. More details about that can be found elsewhere (Rossetti, 1984). A few LTs, taken from Abramowitz and Stegun (1965), are given in Table 4.1. They are easily proved by integration as shown in Problem 4.6. Table 4.1 Table of Laplace Transforms L(s)
F(t)
1 s 1 s2 1 ðn ¼ 1; 2; 3; /Þ sn 1 aþs 1 ðn ¼ 1; 2; 3; /Þ ða þ sÞn
1 t t n1 ðn 1Þ! exp(eat) t n1 expðatÞ ðn 1Þ!
1 ðbsaÞ ða þ sÞðb þ sÞ
expðatÞ expðbtÞ ba
s1=2
1 pffiffiffiffiffi pt
1 s nþ 2 1 a2 þ s2
1
2n t n2 pffiffiffiffi 1$3$5/ð2n 1Þ p 1 sinðatÞ a
190
CHAPTER 4 Special functions
4.11 SPHERICAL TENSORS A n-rank tensor is a quantity having 3n components and can be regarded as a vector in a 3n-dimensional space whose components carry a representation of the rotation group (Section 8.15 of Chapter 8). Thus, scalars can be regarded as tensors of rank zero (n¼ 0), while a vector in three-space can be regarded as a first-rank tensor (n ¼ 1) having three components. An irreducible tensor operator T of rank k is an operator with (2 kþ 1) components Tkq transforming in a well-defined way under rotation of axes (Brink and Satchler, 1993). Spherical harmonics are examples of spherical tensors. The spherical tensors Rlm(r), also called regular solid harmonics (Brink and Satchler, 1993; Stone, 1996), can be given in complex or real form. Complex spherical tensors are eigenfunctions of the square of the angular momentum operator L^2 and of the z-component of the angular momentum operator L^z, while real spherical tensors are eigenfunctions only of the square of the angular momentum operator L^2. In atomic theory use is often made of a theorem connected to spherical tensors, the Wigner–Eckart theorem (Wigner, 1959; Eckart, 1930a), which states that 0 0 (253) lmTkq l m ¼ hlkTk kl0 ihl0 m0 kqjlmi where Tkq is the q-component of a spherical tensor T of rank k, hlkTk kl0i is a reduced matrix element independent of m and q, and hl0 m0 kqjlmi is the Clebsch–Gordan coefficient (Chapter 10) describing the coupling of the angular momentum eigenvector jl0 m0 i to jkqi to give a state with resultant angular momentum jlmi. Thus, all directional properties are contained in the Clebsch– Gordan coefficients, while the dynamical properties of the system appear in the scalar factor hlkTk kl0 i.
4.11.1 Spherical tensors in complex form The spherical tensors Rlm(r) in complex form are defined in terms of the (normalized) modified spherical harmonics (Brink and Satchler, 1993), eigenfunctions of the operators L^2 and L^z : 8 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > > > ðl mÞ! m > P ðxÞ½ð1Þm expðim4Þ > > > ðl þ mÞ! l rffiffiffiffiffiffiffiffiffiffiffiffi > < 4p Ylm ðq; 4Þ ¼ r l Pl ðxÞ Rlm ðrÞ ¼ rl > 2l þ 1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > > > ðl jmjÞ! jmj > > > P ðxÞexpðijmj4Þ > : ðl þ jmjÞ! l
m>0 m¼0
(254)
m<0
where use is made of the so-called Condon–Shortley phase convention, and Pm l is the associated Legendre polynomial ðm ¼ jmjÞ (Abramowitz and Stegun, 1965) of Section 4.2.1
Pm l ðxÞ
m=2 lþm l 2 1 x2 d ¼ x 1 ð2lÞ!! dxlþm
with x ¼ cos q and the double factorial function is defined by Eqn (138).
(255)
4.11 Spherical tensors
191
4.11.2 Spherical tensors in real form The spherical tensors Rlm(r) in real form are defined in terms of the (normalized) modified real spherical harmonics, also called tesseral harmonics (MacRobert, 1947): 8 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > > ðl mÞ! m > > 2 P ðxÞcos m4 > > ðl þ mÞ! l > > rffiffiffiffiffiffiffiffiffiffiffiffi > < 4p c;s Pl ðxÞ Ylm ðq; 4Þ ¼ r l Rlm ðrÞ ¼ rl > 2l þ 1 > s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > > > > ðl þ mÞ! jmj > > > : 2 ðl mÞ! Pl ðxÞsinjmj4
m>0 m¼0
(256)
m<0
where m ¼ jmj
(257)
and Pm l is the associated Legendre polynomial. Spherical tensors in real form are eigenfunctions of the operator L^2 alone, but still form a complete orthogonal set with respect to integration over the angular variables. The explicit form of the first few of them (l ¼ 0, 1, 2, 3, 4) is best written in terms of Cartesian coordinates as (
R00 ¼ 1 R10 ¼ z;
R11 ¼ x;
R11 ¼ y
(258)
8 1 > R20 ¼ 3z2 r 2 > > > 2 > > > < pffiffiffi pffiffiffi R21 ¼ 3z x; R21 ¼ 3yz > > > > pffiffiffi > > pffiffiffi > : R ¼ 3 x2 y2 ; R ¼ 3xy 22 22 2
(259)
8 5z2 3r 2 > > > R30 ¼ z > > 2 > > > > rffiffiffi rffiffiffi > > > 3 2 3 2 > 2 > > R31 ¼ 5z r x; R31 ¼ 5z r 2 y > < 8 8 pffiffiffiffiffi > > pffiffiffiffiffi > 15 2 2 > > R x ¼ y ¼ 15xyz z; R 32 > 32 > 2 > > > > > rffiffiffi rffiffiffi > > > 5 2 5 2 > 2 : R33 ¼ x 3y x; R33 ¼ 3x y2 y 8 8
(260)
192
CHAPTER 4 Special functions
8 > > > > R40 > > > > > > > > > > R41 > > > > > > > < R42 > > > > > > > > > > R43 > > > > > > > > > > > : R44
8z4 þ 3x4 þ 3y4 24z2 x2 24y2 z2 þ 6x2 y2 8 pffiffiffi 2 pffiffiffi 2 5 4z 3x2 3y2 5 4z 3x2 3y2 zx; R41 ¼ pffiffiffi yz ¼ pffiffiffi 2 2 2 2 ¼
pffiffiffi 6z2 x2 y2 pffiffiffi 6z2 x2 y2 2 x y2 ; R42 ¼ 5 xy 5 4 4 pffiffiffiffiffi 2 pffiffiffiffiffi 35 x 3y2 35 3x2 y2 z x; R43 ¼ pffiffiffi yz ¼ pffiffiffi 2 2 2 2 ¼
¼
pffiffiffiffiffi x4 þ y4 6x2 y2 ; 35 8
R44 ¼
(261)
pffiffiffiffiffi x2 y2 xy 35 2
The STOs of valence theory are real spherical tensors multiplied by a radial decay factor exp(cr) with c a real non-zero positive number. Figures 4.1–4.5 give the angular form in space for the AOs with l ¼ 0, 1, 2, 3, 4 and m ¼ 0.5 The plots were obtained from the function ParametricPlot3D of Mathematica 6 (Wolfram Research, 2007) using a small software due to Ottonelli.
FIGURE 4.1 Three-dimensional representation in space of the s AO with l ¼ m ¼ 0 (For colour version of this figure, the reader is referred to the online version of this book.)
The form of complex and real spherical tensors is identical for m ¼ 0.
5
4.11 Spherical tensors
193
FIGURE 4.2 Three-dimensional representation in space of the p AO with l ¼ 1 m ¼ 0 (For colour version of this figure, the reader is referred to the online version of this book.)
FIGURE 4.3 Three-dimensional representation in space of the d AO with l ¼ 2 m ¼ 0 (For colour version of this figure, the reader is referred to the online version of this book.)
194
CHAPTER 4 Special functions
FIGURE 4.4 Three-dimensional representation in space of the f AO with l ¼ 3 m ¼ 0 (For colour version of this figure, the reader is referred to the online version of this book.)
FIGURE 4.5 Three-dimensional representation in space of the g AO with l ¼ 4 m ¼ 0 (For colour version of this figure, the reader is referred to the online version of this book.)
4.12 Orthogonal polynomials
195
4.11.3 Generalized spherical tensors The generalized spherical tensors in k-space (Magnasco and Figari, 1989) are spherical tensors whose rl radial part is replaced by (2lþ 1)!!jl(rk): rffiffiffiffiffiffiffiffiffiffiffiffi 4p Ylm ðq; 4Þ (262) Rlm ðr; kÞ ¼ ð2l þ 1Þ!!jl ðrkÞ 2l þ 1 where jl(rk) is a spherical Bessel function (Abramowitz and Stegun, 1965). They are related to the ordinary spherical tensors Rlm(r) by the relation Rlm ðr; kÞ 1 vl ¼ R ðr; kÞ (263) Rlm ðrÞ ¼ lim lm k/0 kl l! vkl k¼0 The spherical Bessel functions were discussed in Section 4.6.3 and (2 l þ 1)!! is the double factorial function defined by Eqn (138). We then have rffiffiffiffiffiffiffiffiffiffiffiffi r lþ2 klþ2 r lþ4 klþ4 4p l l þ / Ylm ðq; 4Þ (264) Rlm ðr; kÞ ¼ r k 2ð2l þ 3Þ 8ð2l þ 3Þð2l þ 5Þ 2l þ 1 an equation which is obtained from the representation (139) of jl(rk) as the infinite series jl ðrkÞ ¼
N X
ð1Þp ðrkÞlþ2p ð2pÞ!!ð2p þ 2l þ 1Þ!! p¼0
(265)
4.12 ORTHOGONAL POLYNOMIALS We have seen in Section 4.2.3 that any regular function f(x), defined in the interval jxj < 1, can be expanded in series of Legendre polynomials. They form a complete set of orthogonal functions so that the expansion is unique. However, they are not the only possible set of orthogonal polynomials. Given a set of powers of the variable, say {xn}, it is always possible by Schmidt orthogonalization (Chapter 1) to obtain a complete set of polynomials {Pn(x)} of degree n, orthogonal and normalizable in the finite interval (a,b) and with respect to any weight function p(x), such that Zb ðPn ; Pm Þ ¼
dx Pn ðxÞPm ðxÞpðxÞ ¼ dnm
(266)
a
Any power xn can then be expressed in terms of the first (n þ 1) orthogonal polynomials, each polynomial being orthogonal to any polynomial of lower degree. It can be shown that the expansion is unique and the following important theorem exists (Rossetti, 1984): the zeros of a polynomial Pn(x) belonging to a system of polynomials {Pn(x)} orthogonal in L2 are all simple and lie inside the interval (a,b). The importance of orthogonal polynomials lies in the fact that the n-th reduced sum in the expansion of a continuous function f(x) allows for the interpolation of the function in at least (n þ 1) points within the interval (a,b).
196
CHAPTER 4 Special functions
In other words, if we have the expansion f ðxÞ ¼
N X
ck Pk ðxÞ
(267)
k¼0
where the polynomials are orthogonal according to Eqn (266), then the n-th reduced sum Sn ðxÞ ¼
n X
ck Pk ðxÞ
(268)
k¼0
coincides with the function f(x) in at least (n þ 1) points within the interval (a,b). This property is of great importance in practical applications, such as those involving numerical quadratures, e.g. the Gauss–Legendre quadrature. If X(x) is at most a quadratic polynomial with real roots, then it can be shown (Rossetti, 1984) that the Rodriguez formula holds: Pn ðxÞ ¼
1 1 dn ½ pðxÞX n ðxÞ Kn pðxÞ d xn
(269)
where p(x) is the weight function, which must be real and integrable in (a,b), and Kn is a constant factor. Possible forms of p(x) are pðxÞ ¼ ðb xÞa ðx aÞb
(270)
pðxÞ ¼ expðxÞðx aÞa
(271)
pðxÞ ¼ exp x2
(272)
with a and b real and >1; with a > 1;
In Eqn (269), the constant factor Kn, called the standardization factor, defines in a unique way each different class of polynomials. The majority of orthogonal polynomials entering practical applications are given by the Rodriguez formula (269). They are called classical orthogonal polynomials, and correspond to three classes according to the form chosen from Eqn (270–272) for the weight function p(x). Most common is to choose the interval (a,b) as (1,1),6 in which case XðxÞ ¼ 1 x2
(273)
and the weight function p(x) is pðxÞ ¼ ð1 xÞa ð1 þ xÞb
a; b > 1
(274)
Such polynomials are called Jacobi polynomials. In the interval (0,N), X(x) is given by XðxÞ ¼ x 6
It is always possible to reduce any interval (a,b) to (1,1) by an appropriate linear transformation.
(275)
4.13 Pade´ approximants
197
with the weight factor pðxÞ ¼ expðxÞxa
a > 1
(276)
Such polynomials are called Laguerre polynomials. They were treated in detail in Section 4.3. In the interval (N,N), X(x) is given by with the weight factor
XðxÞ ¼ 1
(277)
pðxÞ ¼ exp x2
(278)
Such polynomials are called Hermite polynomials. They were treated in detail in Section 4.4. Specific values given to a and b originate particular polynomials. For instance, the choice a¼b¼l
1 2
l>
1 2
(279)
gives the Gegenbauer (or ultraspherical) polynomials, denoted by Cnl ðxÞ. Among these polynomials, particular importance have the Tchebichef polynomials (of first and second kind) which are obtained by choosing l ¼ 0, 1 and, perhaps the most important of all, the Legendre polynomials, obtained by choosing l ¼ 1/2. These polynomials were treated in detail in Section 4.2. So, we see that all polynomials found in the previous sections of this chapter, obtained as regular solutions of the appropriate differential equations of Chapter 3, can be reassigned to particular classes of the more general definition of orthogonal polynomials. Much more than this can be found in Chapter IV of Rossetti (1984).
4.13 PADE´ APPROXIMANTS Even if strictly pertinent to numerical analysis, a few elements of the Pade´ approximants technique (Baker and Gammel, 1975) may be of interest here. They are of importance, for instance, in assessing the form of the exchange-correlation functional (Vosko et al., 1980) in density functional theory, in Rayleigh–Schroedinger (RS) (Wilson et al., 1977) and Brillouin–Wigner (BW) (Bendazzoli et al., 1970) perturbation theories, and in the power expansion of time-dependent correlation functions (Paul, 1980). The Pade´ approximants technique deals with the possibility of reproducing in an efficient way a given function f(x) in terms of polynomials and it is an improvement over the Taylor approximants. We first recall a theorem due to Weierstrass which states that if a function f(x) is continuous at a point x0, interior to the domain of definition of the function, for any arbitrary positive ε it is possible to find a polynomial: n X ak ðx x0 Þk (280) Pn ðx x0 Þ ¼ k¼0
such that for any point x j f ðxÞ Pn ðx x0 Þj < ε
(281)
The degree of the polynomial and the values of its coefficients are flexible parameters that must be properly fixed so as to satisfy the required accuracy ε.
198
CHAPTER 4 Special functions
We examine first the Taylor approximant. The Taylor expansion of a function f(x) is the power series f ðxÞ ¼
N X
ak ðx x0 Þk
(282)
k¼0
with ðkÞ
f ak ¼ 0 ; k!
ðkÞ f0
¼
dk f d xk
(283) x¼x0
The degree of a Taylor polynomial can be unlimited as far as the function admits unlimited derivatives. Taylor’s expansion requires rather regular functions, having in x0 continuous derivatives up to the order corresponding to its polynomial approximant. Stopping the expansion at a finite degree n, we have a truncation error in the Taylor approximation, namely, we have a remainder Rn(x) which we can estimate, for instance, in the Lagrange form: Rn ðxÞ ¼ f ðxÞ
ðkÞ n X f0 f ðnþ1Þ ðxÞ ðx x0 Þk ¼ ðx x0 Þnþ1 k! ðn þ 1Þ! k¼0
(284)
for x ˛ ðx0 ; xÞ
(285)
The difference at the point x0 between the function and its polynomial approximant is therefore proportional to the value assumed, at a point x lying in-between x0 and x, by the derivative successive to the last derivative included in the polynomial. It is clear that if f (nþ1)(x) is limited in absolute value at the interior of the interval (x0,x), the error has an upper bound which can be evaluated exactly. We can see that f (nþ1)(x) is the factor to be included in the remainder if we write f ðxÞ
ðkÞ n X f0 ðx x0 Þnþ1 ðx x0 Þk D ¼0 k! ðn þ 1Þ! k¼0
(286)
Then, using repeatedly Rolle’s theorem, it can be shown that f ðnþ1Þ ðxnþ1 Þ D ¼ 0
(287)
(nþ1)
(xnþ1) where xnþ1 is a value (denoted by x in Eqn (284) for the so that D coincides with f remainder) lying in the interval (x0,x). The remainder is an indicator of the convergence properties of the series, which will be reproduced exactly if lim Rn ðxÞ ¼ 0
n/N
(288)
Let us now turn to the Pade´ approximants. In this case, the values of the function f(x) are estimated as the ratio [m,n] between two polynomials: f ðxÞ ¼
Qm ðx x0 Þ ¼ ½m; n Tn ðx x0 Þ
(289)
4.14 Green’s functions
where7 Qm ðx x0 Þ ¼
m X
bk ðx x0 Þk
199
(290)
k¼0
Tn ðx x0 Þ ¼
n X
ck ðx x0 Þk
ðc0 ¼ 1Þ
(291)
k¼0
The coefficients of the Pade´ expansion are obtained by the comparison with the corresponding Taylor expansion of the function ðkÞ N X f Qm ðx x0 Þ ; ak ¼ 0 (292) ak ðx x0 Þk ¼ k! Tn ðx x0 Þ k¼0 N X
ak ðx x0 Þk $
k¼0
n X
cl ðx x0 Þl ¼
m X
bm ðx x0 Þm
(293)
m¼0
l¼0
Since coefficients of the same power of (x x0) must be identical, this gives m X bm ðm ¼ 0; 1; 2; /; mÞ aml cl ¼ 0 ðm ¼ m þ 1; m þ 2; /; m þ nÞ
(294)
l¼0
cl ¼ 0
for l > n
(295)
In this way, we obtain an algebraic system where the m þ n þ 1 unknown parameters b0, b1,/, bm, c1, c2,/, cn are put in relation to the a0,a1,/,amþn parameters of the corresponding Taylor series. The connection between Pade´ and Taylor expansions is such that their difference depends on powers higher than m þ n: Xm XN Xn m N b ðx x Þ X a c ðx x0 Þk m 0 m¼0 k k¼mþnþ1 l¼0 kl l Xn ak ðx x0 Þ Xn ¼ (296) c ðx x0 Þl c ðx x0 Þl k¼0 l¼0 l l¼0 l It is not always possible to associate a Pade´ approximant with given values of m and n to the Taylor expansion of a function, because sometimes system (294) does not admit a solution. However, if the Pade´ approximant exists, then it is a more flexible instrument than the Taylor series, which must be regarded as a particular case of Pade´ approximant having n ¼ 0 in the denominator of Eqn (289). Unfortunately, there does not exist any rule giving the best balance of the powers m and n of the two polynomials so as to give the most efficient approximation, but it is generally true that m ¼ n and m ¼ n 1 are appropriate choices.
4.14 GREEN’S FUNCTIONS Green’s functions originate in the study of differential equations and even if they occur in many problems of theoretical and mathematical physics (Morse and Fesbach, 1953; Courant and Hilbert, Choosing c0 ¼ 1 is not a constraint, since it corresponds to dividing each term of the fraction by c0 leaving the fraction unchanged. 7
200
CHAPTER 4 Special functions
1989) they are sensibly less popular in quantum chemistry, except perhaps for their use in propagator theory (Thouless, 1961; McWeeny, 1992). For a conceptually simple introduction to Green’s functions theory we follow here the presentation given by Mathews and Walker (1970). The theory is strictly connected with the solution of the inhomogeneous differential equations of mathematical physics arising when an eigenvalue problem is modified by some point field disturbance and rests on the fundamental statement that the series expansion of a regular function in the complete set of eigenfunctions of a Hermitian operator L^ converges absolutely and uniformly in the domain D of definition of the function. We assume that we know the whole set of orthogonal eigenfunctions {uk(x)} and eigenvalues lk of the operator L^ obtained as solutions of the eigenvalue equation ^ k ðxÞ ¼ lk uk ðxÞ; huk juk0 i ¼ dkk0 (297) Lu We want to solve for the unknown function u(x) the inhomogeneous differential equation: ^ LuðxÞ luðxÞ ¼ f ðxÞ
(298)
where L^ is a linear Hermitian operator, l is a parameter, and u(x) and f(x) are regular functions defined over a domain D and subjected to the usual boundary conditions. We expand u(x) and the inhomogeneity f(x) in the eigenfunction (297) of the operator L^ as Z X (299) ak uk ðxÞ; ak ¼ d x0 uk ðx0 Þuðx0 Þ ¼ huk jui uðxÞ ¼ k
f ðxÞ ¼
X
Z bk uk ðxÞ;
bk ¼
d x0 uk ðx0 Þf ðx0 Þ ¼ huk jf i
(300)
k
so that Eqn (298) becomes
X
ak ðlk lÞuk ðxÞ ¼
X
k
X
namely,
bk uk ðxÞ
(301)
k
ak ½ðlk lÞ bk uk ðxÞ ¼ 0
(302)
k
Since the set {uk(x)} is linearly independent, we obtain ak ½ðlk lÞ bk ¼ 0 and, provided (lk l) s 0 ak ¼
bk ¼ lk l
Z
d x0
uk ðx0 Þf ðx0 Þ ¼ ðlk lÞ1 huk j f i lk l
Therefore X
X
Z
uk ðx0 Þf ðx0 Þ lk l k k Z Z X uk ðxÞ d x0 uk ðx0 Þf ðx0 Þ ¼ d x0 Gðx; x0 Þf ðx0 Þ ¼ l l k k
uðxÞ ¼
ak uk ðxÞ ¼
uk ðxÞ
(303)
(304)
d x0
D
(305)
4.14 Green’s functions
201
where Gðx; x0 Þ ¼
X uk ðxÞu ðx0 Þ k
k
lk l
¼
X juk ðxÞ >< uk ðx0 Þj k
lk l
(306)
is called the Green’s function of the operator L^. To emphasize the dependence of G on the value of the parameter l, the Green’s function is sometimes written as Gðx; x0 ; lÞ. It can be seen that the Green’s ^ function (306) is the kernel of the integral operator GðxÞ whose action on a function f(x) is Z ^ GðxÞf ðxÞ ¼ dx0 Gðx; x0 Þf ðx0 Þ ¼ uðxÞ (307) If f(x) is the Dirac’s d-function f ðxÞ ¼ dðx x0 Þ then the solution of Eqn (298) can be written as Z uðxÞ ¼ dx0 Gðx; x0 Þdðx0 x0 Þ ¼ Gðx; x0 Þ
(308)
(309)
D
so that
Gðx; x0 Þ
is the solution of the differential equation ^ LGðx; x0 Þ lGðx; x0 Þ ¼ dðx x0 Þ
(310)
In other words, the physical meaning of the Green’s function is that of being the solution of problem (298) when the disturbance is the unit point source f ðxÞ ¼ dðx x0 Þ. The problems arising when l equals one of the eigenvalues of L^ are avoided by imposing the orthogonality condition Z (311) dx uk ðxÞf ðxÞ ¼ 0 These considerations are readily extended to three-dimensional space simply by replacing x by r and dx by dr. In the RS perturbation theory of Chapter 1, the first-order equation ðH^0 E0 Þj1 þ ðV E1 Þj0 ¼ 0
(312)
which must be solved under the orthogonality constraint hj0 jj1 i ¼ 0
(313)
j1 ¼ ðH^0 E0 Þ1 ðV E1 Þj0
(314)
has the formal solution Expanding j1 in the eigenstates fjk g of H^0 : Z X jk ðrÞ Z 0 0 0 j1 ¼ dr jk ðr ÞðV E1 Þj0 ðr Þ ¼ dr0 Gðr; r0 ÞðV E1 Þj0 ðr0 Þ E E k 0 kðs 0Þ
(315)
202
CHAPTER 4 Special functions
the Green’s function Gðr; r0 Þ ¼
X jk ðrÞj ðr0 Þ k E0 E k kðs 0Þ
(316)
is called the Rayleigh–Schroedinger resolvent of Eqn (312) (Courant and Hilbert, 1989; Hubac et al., 2000). Unfortunately, Eqns (314) and (316) are purely formal since, as already said in Chapter 1, the correct application of Eqn (315) requires consideration of the whole discrete spectrum belonging to the bounded eigenstates of H^0 as well as of its continuous spectrum belonging to the ionized state. The Green’s function in spherical coordinates for the ground state of the hydrogen atom was obtained by Hameka (1967) following earlier work by Meixner (1933), and resulted in extremely complicated sectorialized formulae involving products of confluent hypergeometric functions that cannot be reported here. Extension of the method to the ground state of helium (Hameka, 1968a) and lithium (Hameka, 1968b) atoms resulted in purely formal results not practical for numerical estimates. Molecular applications to the second-order induction energy of a hydrogen atom perturbed by a proton a distance R apart were done by Pan and Hameka (1968) and by Singh et al. (1970), who used a modified form of the Green’s functions obtained as solutions of differential equations rather than by direct summation of their spectral expansion (316). Cha1asinski and Jeziorski (1974) were the first who succeeded in calculating exactly the second-order induction interaction between the atoms in the hydrogen molecule using the Green’s functions of the hydrogen atom as explained in detail in Section 17.3.3 of Chapter 17 of this book. In the opinion of the author, the method of linear pseudostates presented in Section 1.3.2.4 of Chapter 1 of this book seems more valuable for obtaining practical approximations, even very accurate, to second-order quantities, as shown for the second-order energy in the hydrogen-like perturbation theory of the ground state of the helium atom (Byron and Joachain, 1967; Magnasco et al., 1992a), for the damping coefficients in the non-expanded second-order induction energy for Hþ 2 (Magnasco and Figari, 1987a), and from the early calculations of C6 dispersion coefficients for the long-range H–H interaction (Magnasco and Figari, 1987b) up to the recently very accurate results for the dispersion coefficients of simple atomic and molecular systems obtained by use of reduced pseudospectra (Magnasco and Figari, 2009).
4.15 PROBLEMS 4 4.1. Find the quadratic equation in q occurring in the Legendre’s equation expressed in the form of descending powers of the variable. Answer: qðq þ 1Þ nðn þ 1Þ ¼ ðq nÞðq þ n þ 1Þ ¼ 0 4.2. Solve the Bessel’s equation of integral order. Answer: xn 1 2 Jn ðxÞ ¼ n 0 F1 n þ 1; x 2 n! 4 Hint: Solve the differential Eqn (117) by the usual series expansion in the variable x.
4.16 Solved problems
203
4.3. Prove properties (1)–(4) of the gamma function. Hint: Use the definition of gamma function and the rule of integration by parts. 4.4. Find the FT of the exponential and the Gaussian function. Answer: 1. The exponential function 1=2 2 c FðpÞ ¼ p c 2 þ p2 2. The Gaussian function 2 2 c c p FðpÞ ¼ pffiffiffi exp 4 2 Hint: Evaluate the integrals defining the FT of these functions. 4.5. Find the Fourier and the anti-FT of the Coulombic potential. Answer: Z 1 expðik $ rÞ 1 dk ¼ FðrÞ ¼ 2 2p k2 r FðkÞ ¼
Z
1 ð2pÞ3=2
dr expðik $ rÞ
1 ¼ r
1=2 2 1 p k2
Hint: Evaluate the integrals defining the FT and the anti-FT of 1/r. 4.6. Prove the LTs of Table 4.1. Hint: Use the definition of LT and ordinary integration rules.
4.16 SOLVED PROBLEMS 4.1. The quadratic equation occurring in Legendre’s equation. The recurrence relation gives for 2k ¼ 2 b0 ¼
ðq þ 2Þðq þ 1Þ qðq þ 1Þ nðn þ 1Þ b2 0 b2 ¼ b0 qðq þ 1Þ nðn þ 1Þ ðq þ 2Þðq þ 1Þ
(317)
Since b0 s 0, the constraint b2 ¼ 0 necessarily implies qðq þ 1Þ nðn þ 1Þ ¼ 0
(318)
204
CHAPTER 4 Special functions
a quadratic equation in q whose solutions are q ¼ n and q ¼ n 1, and which can be written in terms of these solutions in the form: ðq nÞðq þ n þ 1Þ ¼ 0
(319)
4.2. The Bessel’s functions of integral order. For n positive integer, the Bessel’s differential equation of the second order is x2 y00 ðxÞ þ xy0 ðxÞ þ x2 n2 yðxÞ ¼ 0
(320)
The solution near the singular point x ¼ 0 suggests the power expansion: N X yðxÞ ¼ ak xkþa
(321)
k¼0
where a is a constant to be determined by solution of the indicial equation. We have for the derivatives N N X X ðk þ aÞak xkþa1 ; y00 ðxÞ ¼ ðk þ aÞðk þ a 1Þak xkþa2 (322) y0 ðxÞ ¼ k¼0
k¼0
so that substituting in the differential equation N N N X X X ðk þ aÞðk þ a 1Þak xkþa þ ðk þ aÞak xkþa þ ak xkþaþ2 n2 ak xkþa ¼ 0
N X k¼0
k¼0
k¼0
(323)
k¼0
we obtain for the coefficient of xkþa the equation
h i ðk þ aÞðk þ a 1Þak þ ðk þ aÞak n2 ak ¼ 0 0 ðk þ aÞ2 n2 ak ¼ 0
giving as solution of the indicial equation the two roots k ¼ 0 0 a2 n2 a0 ¼ 0 0 a ¼ n
(324)
(325)
since a0 s 0. The same result could have been obtained using Eqn (104) of Section 3.5 of the previous chapter by noting that p1 ðxÞ ¼ q1 ðxÞ ¼ 1;
r1 ðxÞ ¼ n2
for x0 ¼ 0
giving the same quadratic equation in a as before. Hence for a ¼ n the first solution of the Bessel’s equation can be written as 8 y ðxÞ ¼ xn FðxÞ > > < 1 y01 ðxÞ ¼ xn F 0 þ nx1 F > > : y00 ðxÞ ¼ xn F 00 þ 2nx1 F 0 þ n2 nF
(326)
(327)
1
By substituting Eqn (327) into the Bessel’s Eqn (320) we obtain the differential equation determining the unknown function F(x): x2 F 00 þ ð2n þ 1ÞxF 0 þ x2 F ¼ 0
(328)
4.16 Solved problems
an equation which we solve by the usual power expansion as N N N X X X ak xk ; F 0 ðxÞ ¼ kak xk1 ; F 00 ðxÞ ¼ kðk 1Þak xk2 FðxÞ ¼ k¼0
k¼1
205
(329)
k¼2
therefore obtaining N X
kðk 1Þak xk þ ð2n þ 1Þ
k¼2
N X
kak xk þ
k¼1
N X
ak xkþ2 ¼ 0
(330)
k¼0
The coefficient of xk in expansion (330) is kðk 1Þak þ ð2n þ 1Þkak þ ak2 ¼ 0
(331)
giving the recurrence relation ak ¼
ak2 kð2n þ kÞ
(332)
Since series (329) starts with the term a0 s 0, we must take a1 ¼ 0 and, in order the equation above may be satisfied for all k 2, we must take 8 > < a2kþ1 ¼ 0 (333) k ¼ 1; 2; 3; / a2k2 > : a2k ¼ 2kð2n þ 2kÞ so that only even coefficients survive in the expansion. To relate the general coefficient a2k to the non-zero coefficient a0, we write down the first few coefficients which are given explicitly by a0 (334) k ¼ 1 a2 ¼ 2 $ 1ð2n þ 2Þ k¼2 k¼3
a4 ¼
a2 ð1Þ2 a0 ¼ 2 $ 2ð2n þ 4Þ 2 $ 2ð2n þ 4Þ $ 2 $ 1ð2n þ 2Þ
a4 ð1Þ3 a0 ¼ a6 ¼ 2 $ 3ð2n þ 6Þ 2 $ 3ð2n þ 6Þ $ 2 $ 2ð2n þ 4Þ $ 2 $ 1ð2n þ 2Þ
(335) (336)
Therefore the (2k)-th coefficient is given in terms of a0 as a2k ¼ ¼
ð1Þk a0 2kð2n þ 2kÞ $ 2ðk 1Þð2n þ 2k 2Þ $ 2ðk 2Þð2n þ 2k 4Þ/2 $ 1ð2n þ 2Þ ð1Þk a0 ½2kð2k 2Þð2k 4Þ/2 $ 1½ð2n þ 2kÞð2n þ 2k 2Þð2n þ 2k 4Þ/ð2n þ 2Þ
ð1Þk a0 ¼ k ½2 kðk 1Þðk 2Þ/1½2k ðn þ kÞðn þ k 1Þðn þ k 2Þ/ðn þ 2Þðn þ 1Þ k ð1Þk a0 a0 1 ¼ ¼ 2k 4 2 k!½ðn þ 1Þðn þ 2Þ/ðn þ k 1Þðn þ kÞ k!ðn þ 1Þk where in the last expression we have introduced the Pochhammer’ symbol (96).
(337)
206
CHAPTER 4 Special functions
Taking a0 ¼¼ 1/(2nn!), we obtain for the general coefficient k 1 1 1 k ¼ 0; 1; 2; / a2k ¼ n 2 n! k!ðn þ 1Þk 4
(338)
finally obtaining the solution for a ¼ n in the form of the infinite series in even powers of x 2 k N N X xn X 1 x y1 ðxÞ ¼ xn a2k x2k ¼ n (339) 2 n! 4 k!ðn þ 1Þ k k¼0 k¼0 Writing explicitly the first few terms of the series N X a2k x2k ¼ a0 þ a2 x2 þ a4 x4 þ / k¼0
"
1 ð1Þ2 x2 þ x4 / ¼ a0 1 2ð2n þ 2Þ 2 $ 2ð2n þ 4Þ $ 2 $ 1ð2n þ 2Þ 2 2 2 1 x 1 x þ ¼ a0 1 þ / 4 4 nþ1 1 $ 2ðn þ 1Þðn þ 2Þ
# (340)
we see that the series in Eqn (340) can be expressed in terms of the hypergeometric function 0 F1 ðc; zÞ containing just the single parameter c: 1 1 (341) zþ z2 þ / 0 F1 ðc; zÞ ¼ 1 þ 1$c 1 $ 2cðc þ 1Þ which for c ¼ n þ 1 and z ¼ x2/4 becomes 2 2 2 x2 1 x 1 x n þ 1; ¼ 1 þ þ F þ/ 1 0 4 4 4 1 $ ðn þ 1Þ 1 $ 2ðn þ 1Þðn þ 2Þ so that y1 ðxÞ ¼
xn x2 ¼ Jn ðxÞ n þ 1; F 1 2n n! 0 4
(342)
(343)
which is Eqn (118) of the main text. Noting that ðn þ kÞ! ¼ ðn þ kÞðn þ k 1Þðn þ k 2Þ/½n þ k ðk 2Þ½n þ k ðk 1Þðn þ k kÞ! ¼ ðn þ kÞðn þ k 1Þðn þ k 2Þ/ðn þ 2Þðn þ 1Þn! ¼ ðn þ 1Þk n!
(344)
we can write for Jn(x) the equivalent expressions Jn ðxÞ ¼ ¼
2 k X 2 k N xn X 1 x x n N 1 x ¼ 2n n! k¼0 k!ðn þ 1Þk 4 4 2 k¼0 k!ðn þ kÞ! N X
ð1Þk xnþ2k nþ2k k!ðn þ kÞ! 2 k¼0
(345)
4.16 Solved problems
207
Because of relation (125), for n integer, the two solutions Jn(x) and Jn(x) are not linearly independent. Relation (125) of the main text is most easily derived in terms of the coefficients (Bessel’s coefficients of order n) of tn and tn in the symmetrical series expansion of the exponential, which gives (Sneddon, 1956) N x x X x 1 t ¼ exp t exp t1 ¼ Jn ðxÞtn (346) exp 2 t 2 2 n¼N For n ¼ n not an integer, we simply replace factorials by gamma functions obtaining xn x2 n þ 1; Jn ðxÞ ¼ n F 1 2 Gðn þ 1Þ 0 4
(347)
The two solutions Jn(x) and Jn(x) are now linearly independent and we can write the general solution of Eqn (320) in the form yðxÞ ¼ AJn ðxÞ þ BJn ðxÞ
(348)
with A, B arbitrary constants. It can be shown that the series obtained in this way are convergent and differentiable for any value of x, so that our formal solutions are the solution of Bessel’s differential Eqn (117) of the main text. Generalizing what we have seen so far, we give below some current definitions of the particular solutions of the Bessel’s Eqn (320) with n ¼ n (Sneddon, 1956): Jn ðxÞ Bessel’s functions ðBFsÞ of the first kind of order v
(349)
Yn ðxÞ BFs of the second kind of order v ðor Weber’s BFsÞ
(350)
where Yn(x) is a rather complicated function containing a logarithmic part, with g the Euler’s constant of Section 4.7.3 8 n1 > 2 1 1 X ðn k 1Þ! 2 n2k > > g þ ln x Jn ðxÞ Yn ðxÞ ¼ > > < p 2 p k¼0 k! x (351) nþ2k > N k k X X > 1 ð1Þ 1 1 > > > x ½4ðn þ kÞ þ 4ðkÞ 0 4ðkÞ ¼ : p k!ðn þ kÞ! 2 s s¼1 k¼0 8 < Hnð1Þ ðxÞ ¼ Jn ðxÞ þ iYn ðxÞ (352) BFs of the third kind of order v ðor Hankel’s BFsÞ : H ð2Þ ðxÞ ¼ J ðxÞ iY ðxÞ n
n
n
ð1Þ
ð2Þ
where i is the imaginary unit. Jn(x) and Yn(x), as well as Hn ðxÞ and Hn ðxÞ, are functions linearly independent for any value of n. Expressions for the functions J0(x), Y0(x) of order zero are given in Sneddon (1956). Y0(x) is also called Neumann’s Bessel function of the second kind and zero order. Much the same can be said for the SBFs which are solutions of the differential equation
(353) x2 j00n ðxÞ þ 2xj0n ðxÞ þ x2 nðn þ 1Þ jn ðxÞ ¼ 0 with n a non-negative integer.
208
CHAPTER 4 Special functions
Particular solutions are rffiffiffiffiffi p J 1 ðxÞ SBFs of the first kind of order n 2x nþ 2 rffiffiffiffiffi p Y 1 ðxÞ SBFs of the second kind of order n yn ðxÞ ¼ 2x nþ 2 8 rffiffiffiffiffi > p ð1Þ ð1Þ > > > < hn ðxÞ ¼ jn ðxÞ þ iyn ðxÞ ¼ 2x Hnþ 12 SBFs of the third kind of order n rffiffiffiffiffi > > p ð2Þ ð2Þ > > hn ðxÞ ¼ jn ðxÞ iyn ðxÞ ¼ H 1 : 2x nþ 2 jn ðxÞ ¼
(354) (355)
(356)
4.3. Properties (1)–(4) of the gamma function. Properties (1)–(4) can be proved by integration. We have 1. n ¼ 1 ZN
ZN d x expðxÞ ¼
Gð1Þ ¼ 0
0 d½expðxÞ ¼ expðxÞjN 0 ¼ expðxÞjN ¼ 1
0
Reminding that dðuvÞ ¼ u dv þ v du 0 u dv ¼ dðuvÞ v du where u is the finite factor and dv the differential factor, by integrating both members follows the rule of integration by parts: Z
Z u dv ¼ uv
v du
Then, integrating by parts 2. ZN Gðn þ 1Þ ¼
d x expðxÞx
ðnþ1Þ1
0
¼ xn expðxÞjN 0 þn
ZN
ZN ¼
ZN d x expðxÞx ¼ n
0
d x expðxÞxn1 ¼ nGðnÞ 0
xn d½expðxÞ 0
4.16 Solved problems
209
By repeated integration by parts 3.
ZN Gðn þ 1Þ ¼
ZN d x expðxÞx ¼
x d½expðxÞ ¼ x
n
0
n
n
expðxÞjN 0
ZN þn
0
ZN ¼ n
dx expðxÞxn1 0
xn1 d½expðxÞ ¼ nxn1 expðxÞjN 0 þn
0
ZN
expðxÞd xn1
0
ZN
ZN ¼ nðn 1Þ
n2
dx expðxÞx 0
2
¼ nðn 1Þðn 2Þ/4
ZN
¼ / ¼ nðn 1Þðn 2Þ/
dx expðxÞxnðn2Þ 0
3 x2 d½expðxÞ5
0
8 9 ZN < N 2 = 2 ¼ nðn 1Þðn 2Þ/ x expðxÞ0 þ expðxÞd x : ; 0
ZN ¼ nðn 1Þðn 2Þ/2
2
d x expðxÞx ¼ nðn 1Þðn 2Þ/24
0
2 ¼ nðn 1Þðn 2Þ/24x expðxÞjN 0 þ
ZN
3
ZN
3 xd½expðxÞ5
0
d x expðxÞ $ 15
0
2 ¼ nðn 1Þðn 2Þ/24
ZN
3 d½expðxÞ5 ¼ nðn 1Þðn 2Þ/2 $ 1 ¼ n!
0
1 2 ZN ZN 1 1 1 2 d x expðxÞx ¼ d x expðxÞx1=2 ¼ G 2
4. n ¼
0
0
Now, change variable to x ¼ u2 ;
d x ¼ 2u du;
u ¼ x1=2
the interval of definition of the new variable being the same as that of x. Then pffiffiffiffi ZN ZN 2 1 1 p pffiffiffiffi 2u du exp u u ¼ 2 du exp u2 ¼ 2 ¼ G ¼ p 2 2 0
0
210
CHAPTER 4 Special functions
where use was made of the integral over Gaussian functions ZN
ðn 1Þ!! du exp cu2 un ¼ sðnÞ nþ1 ð2cÞ 2 0 rffiffiffiffi p for n ¼ even; sðnÞ ¼ 1 sðnÞ ¼ 2
for n ¼ odd
and (n 1)!! is the double factorial function defined by Eqn (138). Therefore, for n ¼ 0, c ¼ 1 rffiffiffiffi pffiffiffiffi ZN 2 p 1 1 p du exp u ¼ pffiffiffi sð0Þ ¼ pffiffiffi ¼ 2 2 2 2 0 pffiffiffiffi 1 ¼ p follows. and G 2 By repeated integration by parts it is also possible to derive the duplication formula (5). The recurrence property (2) allows one to obtain the G functions whose argument is a negative fraction. For example, 7.
1 1 G þ1 G 2 2 1 1 G ¼ ¼ ¼ 2G 1 1 2 2 2 2 3 1 1 G þ1 G G 3 4 1 2 2 2 G ¼ ¼ ¼ ¼ G 3 3 3 1 2 3 2 2 2 2 2
This can be shown by use of theprevious variable transformation followed by integration by 1 parts. We prove this for G . In fact 2 1 2 ZN 1 d x expðxÞx3=2 ¼ G 2 n¼
0
x¼
u2 ;
d x ¼ 2u du;
x3=2 ¼ u3
4.16 Solved problems
211
Then, taking v ¼ exp(u2) as finite factor and d(u1) as differential factor ZN ZN 1 G ¼ 2 du exp u2 u2 ¼ 2 exp u2 d u1 2 0
N ¼ 2 exp u2 u1 0 þ 2
ZN
0
u1 d exp u2
0
Now, the first term vanishes at infinity, and also at zero by the l’Hoˆpital’s rule, since 2 1
2 1 d exp u du lim exp u u ¼ lim u/0 u/0 du du
2 ¼ lim exp u ð2uÞ=1 ¼ 0 u/0
so that we obtain
1 G 2
ZN ¼2
u
1
ZN
exp u ð2u duÞ ¼ 4 2
0
du exp u
2
1 ¼ 2G 2
0
as it must be. 4.4. Find the FT of the exponential and the Gaussian function. 1. The exponential function Let f ðxÞ ¼ expðcjxjÞ
(357)
be the exponential function where c is a real positive parameter. Then its FT is 1 Fð pÞ ¼ pffiffiffiffiffiffi 2p
ZN d x expðipxÞexpðcjxjÞ N
2 0 3 Z ZN 1 4 1 1 1 þ d x exp½ðc ipÞx þ d x exp½ðc þ ipÞx5 ¼ pffiffiffiffiffiffi ¼ pffiffiffiffiffiffi 2p 2p c ip c þ ip N
1=2 2 c ¼ p c2 þ p 2
0
(358) 2. The Gaussian function Let
f ðxÞ ¼ exp x2 =c2
(359)
212
CHAPTER 4 Special functions
be the Gaussian function where c is a real parameter. Then its FT is still a Gaussian function: 1 Fð pÞ ¼ pffiffiffiffiffiffi 2p
ZN
d x expðipxÞexp x2 =c2
N
2 2 ZN h 2 2 1 c p x x cp 2 i c c p p ffiffiffiffiffiffi p ffiffi ffi d ¼ exp exp ¼ exp þ i 4 4 c c 2 2p 2
(360)
N
4.5. The FT and the anti-FT of the Coulombic potential. With reference to Figure 4.6, choosing r as polar axis, we have in spherical coordinates k$r ¼ kr cos qk
(361)
dk ¼ k dk sin qk dqk d4k
(362)
2
Putting x ¼ cos qk ;
z ¼ kr;
dz ¼ r dk
(363)
we evaluate the integral extended to the whole space: 8 Z expðik $ rÞ > > I ¼ dk > > > k2 > > > > > Z1 Z2p ZN ZN > > > expðikrxÞ expðikrÞ expðikrÞ < ¼ 2 dk k dx d4k ¼ 2p dk k2 ikr > 0 1 0 0 > > > > > ZN > > > 4p sin z 4p p 2p2 > > ¼ $ ¼ dz ¼ > > r r z r 2 : 0
FIGURE 4.6 The spherical coordinates ðk; qk ; 4k Þ of the wave vector k
(364)
4.16 Solved problems
Therefore, we obtain 1 1 ¼ 2 r 2p
Z dk
expðik $ rÞ k2
213
(365)
which is the form of the FT of r1 (Koide, 1976). Even if it does not exist in the strict sense of ordinary analysis, the theory of generalized functions (Gel’fand and Shilov, 1964) shows that the divergent integral arising in the inverse FT of 1/r can be treated as well and is given by (Weniger and Steinborn, 1983): 1=2 Z 1 1 2 1 dr expðik $ rÞ (366) ¼ FðkÞ ¼ 2 3=2 r p k ð2pÞ 4.6. The LTs of Table 4.1. The first six integrals of Table 4.1 are immediately evaluated by recalling the well-known general formula ZN d x xn expðaxÞ ¼
n! anþ1
0
with n a non-negative integer and a a real positive number different from zero. Then, we obtain for the third integral in the table 1 LðsÞ ¼ ðn 1Þ!
ZN dt tn1 expðstÞ ¼
1 ðn 1Þ! 1 ¼ n $ ðn 1Þ! sn s
0
The fourth integral is evident, since ZN
ZN dt expðatÞexpðstÞ ¼
LðsÞ ¼ 0
dt exp½ða þ sÞt ¼
1 aþs
0
For the sixth integral we have 1 LðsÞ ¼ ba
ZN dt½expðatÞ expðbtÞexpðstÞ 0
2 1 4 ¼ ba
ZN dt exp½ða þ sÞt 0
¼
ZN
3 dt exp½ðb þ sÞt5 ¼
0
1 bþsas 1 $ ¼ b a ða þ sÞðb þ sÞ ða þ sÞðb þ sÞ
as it must be.
1 1 1 ba aþs bþs
214
CHAPTER 4 Special functions 1 The seventh integral is obtained much in the same way as we did before for the G function. 2 In fact 1 LðsÞ ¼ pffiffiffiffi p
ZN
dt t1=2 expðstÞ
0
Changing variable to st ¼ u2 ;
s dt ¼ 2u du;
u¼
pffiffiffiffi st;
t1=2 ¼ s1=2 u1
we have 1 LðsÞ ¼ pffiffiffiffi p
ZN 0
2u 1=2 1 2 s u exp u2 ¼ pffiffiffiffiffiffi du s ps
ZN
du exp u 0
2
pffiffiffiffi 2 1 p ¼ pffiffiffiffiffiffi$ ¼ pffiffi s ps 2
The last integral in the table is a little more complicated. It is, however, easily shown that the integrand is the primitive of the function f ðtÞ ¼
expðstÞ½s sinðatÞ þ a cosðatÞ a2 þ s 2
as we can see by calculating the first derivative of f(t). Taking the definite integral, we then have ZN expðstÞ½s sinðatÞ þ a cosðatÞ dt sinðatÞexpðstÞ ¼ a2 þ s2 t¼N 0 expðstÞ½s sinðatÞ þ a cosðatÞ a þ ¼ 2 a2 þ s2 a þ s2 t¼0 and the integral of the table follows.