Special relativity, phase space and cross sections

Special relativity, phase space and cross sections

i7 SPECIAL Notation. RELATIVITY, 4-vector in c . m . p = (w,~); in lab P = (W,~), Solid-angle element d~ = 2~d cos 0; pZ = w2 . ~2 = m 2 i s ~n i...

62KB Sizes 2 Downloads 96 Views

i7

SPECIAL

Notation.

RELATIVITY,

4-vector in c . m . p = (w,~); in lab P = (W,~),

Solid-angle element d~ = 2~d cos 0; pZ = w2 . ~2 = m 2 i s ~n i n v a r x a n t . C r o s s

PHASE

SPACE,

AND

CROSS

SECTIONS

Rn, Invariant Volume in n-Body Momentum Space

T = W-re.

Ausefuli.... iaoti4d'p

cl~= Z~d cos O.

section 0 is invariant,

Rz

:'lPtl/W-~7", %

=

S g = fp d do ½Dldwdo

* [dwidw z

= (~7Z/4S) f d m f z dzm z 3 . z

Lorentz Transformation w Px

-ff

V

If 6 and e are m e a s u r e d

0 0

0

Px

to t h e t r a n s f o r m a t i o n

i 0

0 t

PV P

Pl = tan 6 =

(/0 °/0 ,~

py

0

:

Pz

0

if p a r t i c l e i i s b e a m ,

v:

(w~+~z)/~,

with respect

-~W+Vi~icosO

as

2 i s target, then ( W z , ~ ~) : (mz,~) and

= (2Tr)464(p . ~ q i )

(i=i,Z),

(4)

fuse (6), below].

(5)

~ + m~2+ m ~ + rn~2.

(6) (3,1aS)

~f = ~

= +ZlTil I;'t d cos 0.

F o r e l a s t i c s c a t t e r i n g ( m i = m ' t , m 2 = rn*z) , (4) and (5) i n c . m . t = _~z

(~,cm) become

li - cos~l = -C~ z s i n Z O / Z ,

.

,

(tZ)

,

ci~)

where Tif is an invariant matrix element. F is M~ller's invariant flux Z 2 Z 2 f a c t o r . F = (Pi" PZ ) - PlP2" In .... y s y s t e m w h e r e ~ i a n d ~2 . . . . . Ui . . . . . r : w i w z l ~ i - ~'21 ~ : P~/~I. U f is b . . . . Z. target ~ 2 ~ 01, then

I~t I~-;"

d~

ITI z

d Ldl~ IPS

d~

= ~ f

{~t [ ' and(12) yields --~--s

ITI z

4~2cos20/2.

(5,el)

T h e n o r m a l i z a t i o n i s s u c h t h a t the o p t i c a l t h e o r e m r e a d s

using (4,1ab), (4,el), and {Z),

l m T It=0 = Z [ ~ i l q ~ - ~ t o t •

T~ = 2~tZm2s sin2 (~)(useInl Two-Body States. s+mt

2

-mZ

wt

Energies Z

~2 . pf

=p;

~,

in 2 = ~:m~ + ij m iZ2 3

Z

Z

lc~iati.

Z

'

~ i r a ~ ....

lie , ) I

=~

T h e c h o i c e of E q . ( i t ) i m p l i e s a p a r t i c u l a r n o r m a l i z a t i o n of a n y s p i n o r s t h a t m a y o c c u r in T. t T h e a d v a n t a g e of t h i s normmalization i s that it g r e a t l y i i s i m p l i f i e s the s t r u c t u r e of T by p u t t i n g f a c t o r s s u c h a s ~ ~-~ into the p h a s e s p a c e w h e r e t h e y r e a l l y b e l o n g . In a d d i t i o n , the l a b e l s , i, f, r e f e r to

[s-(mi+m2)Zl[s-(mi-m2)Z].

(8)

specific spin (helicity) states, implicit.

s o that the u s u a l " a v e r a g e and s u m " r u l e i s

then

= const. (i,j = i,Z, 3) [ f o l l o w s f r o m (6)]

m i . k = ~."a i + 2 m t 2 3 4 = c o n s t . l

(i5)

(7)

a n d m o m e n t a in c . m .

= 2 ~ m i + m i 2 3 4 = const. i
f ....

Z L e t m i j = (Pi + Pj) ' e t c . ;

3- and 4 - B o d y S t a t e s . i
(it)

(4,ell

u = (mi2 - n~Z)Z/s- z~Z(l+cos 0) = ( m t 2 - m ; ) Z / s -

F o r elastic scattering,

Ze I

in g ..... 1 if} ~ If> .

JIT,,IZdL~Slm~;,f,'..,~.)

F o r e l a s t i c s c a t t e r i n g i n c. in. ,

dt

~ i=i

or

r = I ~ Im 2 = s : m ~ 2 + m ~ + 2 W i r e Z = ( m I + mmz)Z + 2 T ~ r n z ,

ystem

~P(KL)

Note that R n = (Zw) 3n-4 f dLIPS.

~ = ~-~ f [rifJ z dLmSIs;q t, ..-,%)

'~)

In lab s y s t e m P 2 = (mz' ~)' and writing W = m + T,

In . . . . .

i (-~) 3n

i

2

t ....

Z

qn [ q i = ( e l ' q~i)]' d e f i n e L . . . . t z I n v a r l a n t P h a s e S p a c e

dLIPS(S;ql ' ...,qn)

f + Z ~ I' + 2'.

u = (p~ - pz) z = (p~ - p~)Z

ta qi' "'''

F o r I + Z -- n particles or f ~ n particles,

= m~i+m*i2- 2(wiw'i-Ti.7?,

_Z

d3~

~nd 7 , = ~ - f ~ ,

s : (p~ + p2) 2 : m~ + ~2 + ~(w~2 - ~i" ~ ) '

G . . . . . 1 relati . . . . .

Rn=Id(~)~Rn-k+t'

F o r a s y s t e m of n p a r t i c l e s w i t h o v e r a l l Inur-111omenturn p a n d f i n a l m ....

four-vectors that correspond to a resonant state.

t = (p*i-pi)2

<

/

C r o s s S e c t i o n s and D e c a y R a t e s t

w h e r e Q2 = M2 and f = (e + e ' ) / ( E + M). T h e s e e q u a t i o n s f o l l o w f r o m e x a m p l e (b), p. 34 of H a g e d o r n . ~ T h e y a r e p a r t i c u l a r l y u s e f u l w h e n ~ i s a s u m of

Notation:

I then

(Rk7

(

A Useful T r a n s f o r m a t i o n : Consider two 4-vectors G = (E, Q) and q = (e, ~). In the r e s t f r a m e of ~ [QI = (M,~)], q b e c o m e s (q ~ q')

Invariants.

(an) ,

(l~n k+l)l

(z)

G e n e r a l L .... tz Transformation [characterized by ~, with V = ( t ' ~ ) " i / 2 a n d . 7 = ~Yf: w:~W~.7; 7=~-7 W+w ?+I "

e,:o.~/~

k + i, • - • , n

k+l,...,n

or as N ~ K, L

IF, I / ~ , I ~ 1 : Ipzl : ~mZ = I~fl~z/~"

~" ~:

N~K,

Lt, ~,..., k

-2 "i = f + T f / Z m f .

F o r m i = m Z,

R e l a t i o n f o r F a c t o r i n g R n (see. e. g . , H a g e d o r n , p. 93*):

W r i t e N ~ i , Z, • • . , k,



i~lsin e

Px

Recurrence

a x i s x,

( i , j , k = i, Z, 3, 4.)

(9)

(lO)

* R . H a g e d o r n , R e l a t i v i s t i c K i n e r n a t i c s ~ W. A . B e n j a m i n , N e w Y o r k , 1964. # S e e , f o r e x a m p l e , C h a p s . f a n d Z of H. P i l k u h n , T h e I n t e r a c t i o n s of Hadrons., John Wiley & Sons, New York, f967.