BiochemicalPharmacology. Vol. 26, pp. 1003 1007. PergamonPress, 1977, Printedin Great Britain.
PRELIMINARY COMMUNICATION
SPECIFIC
IN VIVO
BINDING
OF
NEUROLEPTIG
DRUGS
IN RAT
BRAIN
P. Laduron and J. Leysen Department of Biochemical Pharmacology, Janssen Pharmaceutica, B-2340 Beerse, Belgium (Received 24 February 1977; accepted 24 February 1977}
Neuroleptic
d r u g s a r e k n o w n to i n c r e a s e
ganglia i and mesolimbic have been interpreted
system
in t e r m s
dopamine
2 b u t a l s o in t h e m e s o c o r t i c a l
of b l o c k a d e o f d o p a m i n e
drugs can inhibit dopamine-sensitive
f i c a l l y b i n d to r e c e p t o r s
in d o p a m i n e r g i c
the enzyme cellular
the hypothesis
regions
from rat striatum
9,
investigations macological
w a s to e x a m i n e
prototype
rats
o r 3H p i m o z i d e
travenous
injection.
removed
and various
(250 g) w e r e
areas
were
dissected.
was measured
B o t h d r u g s w e r e f o u n d to be m o r e
as two possible targets of t h e p r e s e n t
i n v o l v e d in t h e p h a r -
derivative
and pimozide,
earlier
A s s h o w n i n t a b l e 1, t h e d i f f e r e n c e
areas
k n o w n to c o n t a i n d o p a m i n e r g i c and brain remainder)
instance,
the cerebellum.
contain more
the
dopamine
higher retention
a n d of 3H p i m o z i d e
closely parallels
in in v i t r o c o n d i t i o n s .
r e g i o n is d i r e c t l y 3H s p i p e r o n e
pronounced 3H s p i p e r o n e
a higher retention
than the parietal
has recently
related
oxidi-
in t h e r a t b r a i n . areas
of t h e r a t
a n d 3H p i m o -
side,
drugs.
in t h e n u c l e u s a c c u m b e n s
treatment
4
The substantia
11, a l s o a p p e a r e d distribution
receptor
areas
sites
displaced
to p o s s e s s
nigra the
of 3H s p i p e r o n e
binding sites when
that the different retention
1003
ce-
t h a n in
c a p a c i t y in t h e d o p a m i n e r g i c
The regional
of r e c e p t o r
w a s a l s o f o u n d to b e s p e c i f i c a l l y
cortex,
than with pimozide.
and this may explain the much higher HVA
t h a t of t h e n e u r o l e p t i c
This suggests
parietal
with spiperone
t h a t t h e f r o n t a l c o r t e x w a s f o u n d to
been demonstrated
to t h e n u m b e r
were
spectrometer.
and the other ones (e.g.
It is n o t e w o r t h y
capacity for neuroleptic
by in-
Brains
in a t i s s u e s a m p l e
a n d 3H p i m o z i d e
t h a n in the l a t t e r a f t e r h a l o p e r i d o l
release
9 Ci/
in t h e l a b e l l e d d r u g c o n t e n t b e t w e e n t h e b r a i n
terminals
u s i n g 3H p i m o z i d e .
3H s p i p e r o n e
combusted
t a k e n u p in t h e d o p a m i n e r g i c
was much more
Although less marked,
in t h e f o r m e r
Pharmaceutica)
f i n d i n g s 10 in t h e d o g w h e n u s i n g 3H h a l o p e r i d o l
t h e r e w a s a b o u t 10 t i m e s m o r e
was also observed
Janssen
w e r e k i l l e d by d e c a p i t a t i o n .
They were
specifically
zide.
measured
direct
Since
in d i f f e r e n t s u b -
The purpose
are really
in a l i q u i d s c i n t i l l a t i o n
thus confirming
where
receptors.
( 0 . 0 0 5 m g . k g "l s p e c . a c t .
13 G l / m m o l
of 3H s p i p e r o n e
brain,
increase
6 and speci-
a n in v i v o a s s a y w a s d e v e l o p e d u s i n g
g i v e n 3H s p i p e r o n e
the a n i m a l s
Table 1 shows the regional distribution
For
effects.
a butyrophenone
( 0 . 0 2 m g . k g -1 s p e c . a c t . Two hours later,
zer and the radioactivity
rebellum
Therefore,
; spiperone,
The recent
cyclase
of t h e d i p h e n y l b u t y l p i p e r i d i n e s . Male Wistar
mmol
drugs
drugs.
r e f . 5).
to be l o c a l i z e d
to w h a t e x t e n t t h e s e r e c e p t o r s
a c t i v i t y of n e u r o l e p t i c
two different neuroleptic
and behavioral
These effects
have prov!ded more
t h e y m i g h t be c o n s i d e r e d
c a p a b l e of e l i c i t i n g d i f f e r e n t b i o c h e m i c a l
3,4
drugs block dopamine
and the specific binding sites have been reported
structures
(cfr.
adenylate
of t h e b r a i n 7 , 8 ,
that neuroleptic
n o t o n l y in b o t h t h e b a s a l
system
receptors
findings that neuroleptic
e v i d e n c e to s u p p o r t
turnover
c a p a c i t y of a g i v e n
involved. by a l a r g e r
dose.of unlabelled
corn-
Preliminary Communication
IO04 T a b l e 1.
R e g i o n a l d i s t r i b u t i o n of l a b e l l e d d r u g s in r a t b r a i n 2 h o u r s a f t e r i . v .
i n j e c t i o n of
3H s p i p e r o n e ( 0 . 0 0 5 m g . k g -1) a n d 3H p i m o z i d e ( 0 . 0 2 m g . k g - 1 ) .
p g . m g -I Jr S E M
p g . m g -1 +_ S E M (n=5)
(n=6)
Pimozide
Brain r e g i o n
Spiperone
Nucleus a c c u m b e n s
2.79_+ 0.38
Striatum
2.50 _+ 0.15
7.63 4- 0.49
Substantia nigra
1.71 +_ 0.30
4.11 _+ 0.19
Tuberculum
i. 59 _+ 0.08
5.06 +_ 0.37
olfactorium
6.36 + 0.19
Frontal cortex
1.02 + 0.05
4.27 +_ 0.19
Parietal cortex
0.74 _+ 0.06
4.05 _+ 0.19
Cerebellum
0.29 _+ 0.02
2.65 + 0.25
Rest of the brain
0.77 _+ 0.06
3.35 + 0.21
pound in the d o p a m i n e containing areas. much
more
Indeed fig.1 shows that labelled spiperone decreased
rapidly in the striatum w h e n unlabelled spiperone was injected one hour after the
radioactive drug.
In contrast to this, no displacement w a s detectable in the cerebellum.
other dopaminergic areas such as the nucleus a c c u m b e n s ,
the tuberculum olfactorium and
STRIATUM I
2
~
8
16
HOURS AFTER 3H SPIPERONE
Fig. I.
In vivo displacement of 3 H spiperone (0.005 m g . k g -I i.v.) in rat
striatum and cerebellum. removed
In the first group ( H
), rat brains w e r e
at different time intervals after injection of labelled spiperone.
In the second group ( O----
The hatched part
E a c h point is the m e a n
of 4 deter-
Significant differences f r o m control values are indicated by ~
p~.001.
(P : student t-test)
In
Preliminary Communicati0n e v e n , but to a l e s s e r
extent,
the f r o n t a l c o r t e x ,
1005
we have o b s e r v e d a s i m i l a r
displacement
a f t e r a l a r g e d o s e of u n l a b e l l e d d r u g u s i n g e i t h e r 3H s p i p e r o n e o r 3H p i m o z i d e (in p r e p a r a tion).
Thus,
dopaminergic
only those molecules structures
bound aspecifically,
w h i c h a r e s p e c i f i c a l l y b o u n d to the r e c e p t o r s
can be d i s p l a c e d f r o m t h e i r b i n d i n g s i t e s w h e r e a s
of the
those which are
cannot.
A t h i r d l i n e of e v i d e n c e f o r s p e c i f i c in v i v o b i n d i n g o f n e u r o l e p t i c d r u g s w a s p r o v i d e d by the s t u d y o f the s u b c e l l u l a r l o c a l i z a t i o n of 3H s p i p e r o n e in r a t s t r i a t u m samples
and cerebellum.
Brain
w e r e f r a c t i o n a t e d b y d i f f e r e n t i a l c e n t r i f u g a t i o n a c c o r d i n g to the a n a l y t i c a l f i v e -
fraction procedure thus obtained,
12, 13
In o r d e r to a s s e s s
several marker
t h e c o m p o s i t i o n of t h e s u b c e l l u l a r f r a c t i o n s
enzymes were determined
a c c o r d i n g to m e t h o d s p r e v i o u s l y
described 12, 13 Fig.2 shows the distribution pattern of 3 H spiperone in fractions obtained f r o m rat striatum and cerebellum homogenates.
Ninety percent of the radioactivity w a s recovered
in particulate fractions in the striatum against only 49 percent in the cerebellum. r o n e w a s m a i n l y f o u n d to h a v e b e e n e n r i c h e d striatum
but n o t in t h e c e r e b e l l u m
the s t r i a t u m when assayed
closely parallels
(7 %).
in the P ( m i c r o s o m a l )
in in v i t r o c o n d i t i o n s .
f r a c t i o n (42 ~o) in the
It is n o t e w o r t h y t h a t the 3H s p i p e r o n e p r o f i l e in
t h a t of t h e n e u r o l e p t i c
receptor
In c o n t r a s t to t h i s ,
l y d i f f e r e d f r o m t h a t of c y t o c h r o m e
3 H spipe-
as previously reported
in b o t h r e g i o n s ,
its p r o f i l e m a r k e d
o x i d a s e ( m i t o c h o n d r i o n ) of l a c t a t e d e h y d r o g e n a s e
n a p t o s o m e ) o f N - a c e t y l - ~ -D g l u c o s a m i n i d a s e adenylate cyclase as already described
Consequently,
n o n e of t h e s e s t r u c t u r e s
CEREBELLUM CYTOCHROME OXPDASE
+[ 'I
LACTATE DEHYD~OGE NASE
i:
2!i
N. ACE "~VE-j3- O . GLUCOSAMINIDASE
,t'1
~o
$'-NUCLEOTIOASE
,I RADIOACtWlTy 2
~ o N o
M 20
L ~o
P ~
s 80 1oo
0
N o
2o
M
LP
s
~o
6o
~o
io~
PERCENTAGE OF TOTAL RECOVEPED PI~OTEINS
Fig. 2.
Distribution pattern of radioactivity and m a r k e r e n z y m e s in sub-
cellular fractions of rat striatum and cerebellum obtained by differential centrifugation, kg-l).
two hours after i.v. injection of 3 H spiperone (0.005 rag.
The absolute a m o u n t of 3 H spiperone in the starting material was
2.9 ng g-i in the striatum and 0.4 ng g-I in the cerebellum, while their distribution in percent w a s respectively 6 and 17 in N (nuclear fraction), 28 and 19 in M (heavy mitochondrial fraction), 14 and 6 in L (light mitochondrial fraction), 4Z and 7 in P ( m i c r o s o m a l fraction), I0 and 51 in S (supernatant).
(sy-
( l y s o s o m e ) a n d e v e n of d o p a m i n e - s e n s i t i v e
13.
STRtATUM
9,
seems
1006
Preliminary Communication
to be the m a i n target in vivo for neuroleptic drug activity.
In control experiments in which
labelled spiperone w a s a d d e d to the starting h o m o g e n a t e at a concentration corresponding to that n o r m a l l y found in the h o m o g e n a t e under in vivo conditions, only 18 % and 40 % of 3 H spiperone w e r e respectively r e c o v e r e d in the P a n d S fractions in the striatum.
O n the
contrary, th+
Therefore,
one m a y
conclude that the 3 H spiperone e n r i c h m e n t in the P fraction corresponds to a specific in vivo binding on neuroleptic receptors.
Moreover,
although w e cannot quite rule out that a small
a m o u n t of spiperone should also be associated with structures bearing dopamine-sensitive adenylate cyclase, the inhibition of this e n z y m e
does not s e e m to be of great importance for
the antipsychotic activity of neuroleptic drugs.
W e believe that the inhibition of the d o p a m i -
he-sensitive adenylate cyclase is only involved in the m e c h a n i s m
of action of neuroleptic
drugs e n d o w e d with sedative effects. T h r o u g h o u t the present work,
radioactivity w a s always considered either as u n c h a n g e d spi-
perone or as u n c h a n g e d pimozide.
Metabolic studies have s h o w n that 2 hours after intrave-
nous injection 90 percent of 3 H spiperone and 3 H pimozide w e r e found in the rat brain as unchanged drug 14.
M o r e o v e r the a m o u n t of pimozide metabolites per mg.tissue w a s similar
in all the brain regions for 24 hours after injection,
T h e s e metabolites w e r e never found
to have been.particulate-bound but well contained in the supernatant fraction (J. Heykants ; unpublished results). Spiperone s e e m s to be particularly appropriate for such in vivo studies ; indeed, recent in vitro binding experiments have s h o w n that, w h e n c o m p a r e d
to haloperidol, spiperone has a
slower dissociation rate, a higher affinity for neuroleptic receptor but a lower one for aspecific sites (unpublished results).
This is also true for pimozide except that its aspecific bin-
ding w a s relatively higher, a fact w h i c h can explain w h y the retention of 3 H pimozide in the c e r e b e l l u m w a s relatively m o r e
p r o n o u n c e d than that of 3 H spiperone (table i).
In the present study, three lines of evidence w e r e provided to demonstrate a specific in vivo binding for neuroleptic drugs.
First, these drugs w e r e specifically taken up in
the d o p a m i n e r g i c areas of the brain so that the higher retention capacity in these regions, w h e n c o m p a r e d to that in non d o p a m i n e r g i c areas, an index for specific in vivo binding.
However,
(e.g. the cerebellum), might be taken as
specific distributions are only possible if a
very low dose of the drug is u s e d in a w a y that the high affinity specific binding is p r e d o m i nant, thus not m a s k e d
by the low affinity aspecific binding 15.
Secondly, larger doses of un-
labelled drug could displace the labelled drug in vivo only in the d o p a m i n e r g i c areas.
Recent
results have s h o w n that a p o m o r p h i n e a n d aminotetralin derivatives can also be u s e d in these displacement experiments, a fact w h i c h provides further evidence concerning the d o p a m i n e r gic nature of the neuroleptic receptor.
Thirdly, specificity for this in vivo binding w a s fur-
ther a s s e s s e d at the subcellular level since the labelled neuroleptic drug w a s found to be specifically enriched in the m i c r o s o m a l
fraction of the d o p a m i n e containing areas.
T h e present results support the view that, in vivo, the neuroleptic receptor m a y a more
important target for neuroleptic drugs than dopamine-sensitive adenylate cyclase.
This work was technical
partially
assistance.
supported
by a grant
from
IRSIA.
We t h a n k P . F . M .
Janssen
for
be
Preliminary Communication
1007
REFERENCES
1.
A. C a r l s s o n and M. L i n d q v i s t , A c t a P h a r m a c o l .
(Kbh)ZO, 140-144 (1963).
2.
N.E. And4n, J.Pharm. P h a r m a c .
3.
B. Scatton, J. Glowinskiand L. Julou, Brain Res. I09, 184-189 (1976).
4.
P. Laduron, K. De Bie and J. Leysen, Naunyn-Schmiedeberg's Arch, Pharmacol.
Z44, 905-906 (1972).
z96, 183-185 (1977). 5.
L.L.
I v e r s e n , S c i e n c e 188, 1084-1089 (1975).
6.
J . W . Kebabian, G . L . P e t z o l d a n d P .
7.
I. C r e e s e , D . R . B u r t and S . H . S n y d e r , L i f e Sci. 17, 993-1002 (1975).
8.
P. S e e m a n ,
Greengard,
Proc,n.atn. Acad,Sci. U.S.A.
69, 2145-2149 (1972). M. C h a n - W o n g , J. T e d e s c o and K. Wong, P r o c , n a t n , A c a d . Sci.
U . S . A . 72, 4376-4380 (1975). 9.
J . L e y s e n and P. L a d u r o n ,
10.
P.A.J.
Janssen,
Life Sci. Z_0, 281-Z88 (1977).
W. Soudijn, I. Van W i j n g a r d e n and A. D r e s s e ,
Arzneim,-Forsch.
(Drug R e s . ) 18, 261-279 (1967). 11.
L . B . Geffen, I . M . J e s s e l l , A . C . C u e l l o and L . L .
12.
P. L a d u r o n ,
M. V e r w i m p , P . F . M .
Janssen andW.
I v e r s e n , N a t u r e 260, 258-Z60. G o m m e r e n , B i o c h i m i e 57,
253-Z60 (1975). 13.
P. L a d u r o n ,
M. V e r w i m p ,
P.F.M.
J a n s s e n and J . L e y s e n , Life Sci. 18, 433-440
(1976). 14.
J. Heykants, Biological R e s e a r c h Report,
15.
J. L e y s e n , in M e m b r a n o u s e l e m e n t s and m o v e m e n t s of m o l e c u l e : t e c h n i q u e V o l . 6 ( C e l l u l a r b i o c h e m i s t r y ) (Ed. E , Reid).
Janssen Pharmaceutica,
Horwood, C h i c h e s t e r U . K .
May (1974).
in p r e s s (1977)