Spectral characteristics of several series of more unusual aromatic hydrocarbons

Spectral characteristics of several series of more unusual aromatic hydrocarbons

JOURNAL OF MOLECULAR SPECTROSCOPY6, 181-198 (1960) Spectral Characteristics More Unusual E. Znstitde of Several Aromatic MILLER Series of Hy...

799KB Sizes 0 Downloads 20 Views

JOURNAL OF MOLECULAR SPECTROSCOPY6, 181-198 (1960)

Spectral

Characteristics

More

Unusual E.

Znstitde

of Several

Aromatic MILLER

Series

of

Hydrocarbons*

LAYTON.

JR.

for Atomic Research and Department of Chemistry, State Universitg, ilmes, Iowa

Zowa

Energy and intensity data are presented for T-electronic transitions in several families of more unusual aromatic hydrocarbons. Emphasis is placed on certain special classes of benzene and naphthalene compounds, systems of nuclei connected by polyene chains and compounds containing five- and sevenmembered rings. I. INTROI~UCTION

This

collection

energies

a nonalternant8 rather

sociated to the

of transitions have

and l’latt

empirical

(1,

analogies with

of the kilo-Kayser transitions structure

been

based

(1 kK

equals

have

the use of a correction

for solut’ion

and Ruedenberg

1 kli

tions while tions

no change

originate

ground

respectively),

upper

transitions

state.

Some

data.

(‘il

only

* Contribution No. 735. Work was performed Energy Commission. 181

but

given

values

J’ollowing

geometry.

thus any vibraof a some-

assumption

predicates

the procedure of the strong

‘L transitions.

and Mulliken-

by the label

on another

in the Ames Laboratory

of Ham ‘B transi-

Since all transi-

and N in the Platt

as shoulders

in

to correspond

internuclear

are identified

as-

are given

and intensity first

by

(3) , along with

restriction;

to the energy

the transitions appear

The

of

mole-

and the fine structure energy

a static

for the weak state

of aromatic

and are chosen

with

measured.

spectral

has been made

C2oulson notations,

The

and the wavelength

has been added

in a common

intensities,

is chosen by the latter been

on those

to be exhaustive,

types

and Ruedenberg

1000 cm-‘)

molecule

transition

an emphasis

the aid of the considerations

transitions.

has been smoothed maximum

to different

by Ham

on wavelengths, electronic

maximum

(Y),

with

of electronic

with

is not, meant

peculiar

made

of an isolated

‘l’he I’ranck-Condon rional

compounds,

21, as amended

part,icular

what, artificial

as a compilation

of aromatic

nat,ure. As such, the collection

hssignments

Elevens

is presented

groups

representative

cules.

units

of data

for several

band.

of the These

of the U. S. Atomic

are accordingly marked ( sh. ). E signifies the energy corresponding t,o the wavelength of the intensity maximum. Xlthough care has been taken in the assignment of these transitions, an element of caution is necessary since the assignments have been basically of an empirical nature and not actually based on quantit,ative calculations for rigorous models. I’lntt (a, 4 ) has definitively established separate intuitive models for condensed aromatic and extended polyene systems. Intermediate type molecules, such as stilbene (So. 12) or cinnnmylidene indene (Ko. 91 ), present thenot unusual problem of possessing distinct features not readily interpreted by either model. A comprehensive theory of classification for all aromatic systems should he applicable to such intermediate cases, but the concept of a G or H band in a condenred system, or an /, band in a polyene, can be ambiguous or even misleading. In :I strict sense, our use of the l’latt nomenclature is only meaningful for the COILdensed ring systems, the exception being the extent, to which a correspondence to Mulliken-Coulson and Clar nomenclature is valid. (See papers by T
on page 198.)

I

P.

(4)

(2)

spectrum

Ref.:

(5) BP=

135

collected

(3) P.

Tetraphenylmethaneo

Ref.:

76

$

I

a

the

c

36

16

Q

4

at

154

.@Ha

112

(2) spectrum

(3)

fig.

8

fig.

164,

(1) p.

Trlphenylmethane

~ef.:

Diphenylmethane

l~eferencca

5.

4.

3.

158,

148

(2) spectrum

(1) p.

~ef.:

p.

(1)

Mel*.:

1. Benzene

PHENYL POLYANES

end

of

2.04

7.

per.:

(3) P.

Phenyletbane

this

lLb

lLa

report.

52.9

lBb

4.86

I 4.87

E 54.5

lBa

a.

%I

T

(8) (9)

2.44

38.4

lLa

(2)

Ref.:

p.

164,

(8)

(7)

(6)

(3) P. 76

(1)

76

spectrum

1,2-Dlphenylethane (bibcnzyl)

Ref.:

1,l:Dlphenylethane

(7)

4.72 3.88

54.2 48.6

lBa,b

6)

39.4

l%

3.e2

6.

I

49.5

IL,

4.66

Intensity (108 E ma.&)

E

55.4

l%,b

T

Energy

Transition

fig.

113

36

“OCH3

T

T

1..

'Lb

lLa

lBa ,b

I

5.00 4.28 2.58

46.8 37.5

I

3.89

2.23

53.6

E

I

(ah.)

--I-37.9

k0.3

I

4.76

E

53.9

cu

R

185

34.-36.

26~33.

25.

(10)

pp.

(3)

serial

P.

p.

242,3

265

243,4

no.

(13) P. 265

(5)

(3)

La transition

Ref.:

1

Q-Polyphenyls

(i3)

(5)

p.

1La transitxon

Ref.: (3)

171

fig.

242-245

spectrum

(2)

166,

p.

(1)

m-Polyphenyls

Ref.:

p-Terphenyl

491

a4

36.

35.

34.

25.

33.

32.

t

I

14

13

12

11

30.

31.

5

10

29.

a

27.

28.

7

26.





?--I-

lLa

lBb

lBa

T

t

I

39.3

35.4

39.5

39.5

35.5

35.5

39.5

35.5

t

36.3

4.75

4.80

4.59

4.40

I

5.51

5.49

5.45

5.40

5.37

5.33

5.33

5.26

4.52

50.4

E

4.99 4.90

57.7

I

E

v

41.

40.

39.

38.

37.

P. 281

(2)

spectrum

250

(2)

spectrum

Fief.:

(2)

spectrum

1,6-Dlphenyln30hthalene

Ref.:

300

277

2-Benzylnaphthalene

% Ref.: (2) BpeCtlwm 297

2-Phenylnaphthalene

Ref.:

l-Phenylnaphthalenc

(3)

195

167. fig. 47

(2) spectrum

Ref.: (1) P.

Nsphthalene

NAPHTHALENES

lLa

T

35.0

E

4.05

I

‘G \I

44.

43.

42.

(20)

(10)

(20)

(10)

(3)

(2)

Ref.:

(20)

(10)

(3)

(2)

281

serial

281

spectrum

serial

P.

spectrum

P.

2,2-Dlnaphthyl

Ref.:

serial

%

(3)

281

spectrum

P.

(2)

1,2-Dlnaphthyl

Ref.:

1, I-Dinaphthyl

no.

309

no.

306

n0.

303

260

259

258

T

lLb

E

?

I

3.45

31.8

P

4.15

34.6

I 4.58

E 45.1

(sh.)

(sh.)

lLb

lL.4

‘Bb

IBa

4.20

32.8

3.18

4.99

40.4

30.0

4.62

48.1

48.

47.

46.

45.

Ref.:

Ref.:

P.

501,

501,502

p.

#c

502

Cs Ref.:

Q

(23)

(21)

p.

c=C+=c 501,502

_G

TetrephenJlParlldiphenylquinodiocthane (Tchlchlbablnc’a hydrocarbon)

(22)

(21)

(22)

(21)

=

Tetraphenylparabenzylquinodimethane

BENZENE QUINONOIDS

--t--l-

t-t

ILa

IBb

T

VI

t-t-

l%

T

tt-

lLa

lBb

T E

17.4

E

24.0

37.5

I

4.91

I

4.58

4.14

& 30

Ref.: (26)

(25)

~ef.: (24) p. 279

VII BIPHENYLENES

Ref.: (21) p. 501,502

T ‘19. Tetraph~nylpar~~tllb~~yl~uinodi~~th~~~

VIII

54.

(28)

(21) P. 499

(27)

(21) p. 499

Ref.: (10) serial no. 510

( ~g~g-Bifl"orenyl

Diblphcnylene-ethylene

DIPHENYLENE POLYENBS

-t-t-

21.8

30.8

"b lLe

E 42.0

T lBa

I

I

I

4.37

4.63

4.09

& *

60.

59.

57.

(27)

(24)

P. 276

aerial

(10)

(11)

spectrum

(2)

164,

~cf.: (1)

15

nos.

311

fig.

H2

go

37

L 401

h p.

aromatic

~OLI. 52 & 53

fig.

a cyclic

60

P.

with

158.

serial

p.

FlUOrene

Analogy

(10)

Ref.: (1)

Ref.:

a+ai=c

Blphenylcne-1-dlphenyl-4,4-butadiene

151

T

system

% lCb?

I%

would

‘La

la,

%3

T

E

‘El a(~

4.56

33.8

38.2

44.0

4.70

49.2

I 60.5

n-label

4.63

4.53

38.5 25.8

I 4.G

E 42.0

I% ha

T 1 'ia

lLh

!-

I

T---l23.:*

hb

lL3 1. a

lBb

4.22

32.2

27.5

40.7 Tl)I1 >J1 >I, fib B, La Lb 30.7

4.22

4.21 :slr.)

4O.L 0

4.70

I

3.s

IL,

44.3

E

2.2.4

4.31'

'I.?5 3;.c 31.'_S

4.rc1 47.3

I

4.21 3.07

29.1

:-

4 .'j6

j2.s

4.48

3Y.l

45.0

bt

Ia3

llt, l---r

-t-t

lLa

I%

lBd

I

$ C

69.

68.

67.

(30)

(2) spectrum

538 ‘;

1 28.0

(

3.37

(31)

(2)

spectrum

(2)

(32)

spectrum

xef.:

Ref.:

(31)

(2)

(31)

(2)

spectrum

spectrum

g-phenyl-1,2,5,6-dlbenz

ike.:

g-Phenylfluorene

Ref.:

&

536

535

318

534

q-s+

“““-D~b~~~~fl~~~~ .q$Jg

rter.:

74.

72.

71.

(33)

(2)

(31)

(2)

spec:

spectrum

Ref.:

(38)

(36)

(34)

(37) Acepleladylene

Ref.:

Rubicene

Ref.:

5

!,-phenyl-1,2,3,4,7,8-tribenzofluorene

-t-i-

lLa

l4

“b

T

I----I-

lLa

lLb

lab



4.61 3.7: 4.04

34.5 2-.O 20.4

I

4.20 23.6

F

4.69

35.1

I 4.83

E 40.6

*

assignment

17.

Raf.:

(41)

(49)

(2)

spectrum

that

234

.i.cce?tly,

56

the

three

(3’0,

P

30.5

ILb

44.5 37.7

.‘J

E

levels

(36)

% ~

:

Filllams

acepleiadiene

2.41

4.68

4.70

4.94

I

4.7

I

have

3.58

3.34

4.72

I

parallel

reported

Ham and

has

of

who assigned

calculations

lowest

1_

3.

the

26.4

30.2

1L 1 1. %

37.;

1,-b

iI 42.5

‘“.’

Y

-a

1,

l_ -i

Sidman

and

3f

however,

that

472

rig.

analogously,

follows

324

indlcdtl’lg

Acenaphthylene

p01ari.Zati0ns.

r~as’1~eme”ts

‘25)

dccpleiadyiene

Cur

?.ue~j~lh?r~.

-in,:

(34)

6.

SFectrum

(2)

(24)

p.

167,

~c]nce~a~hthylew

(1)

Pyrene’

76.

3cf.:

Cyclohepta

7c.

81.

80.

79.

7s.

(42)

(2)

(40)

p.

(24)

p.

403

Rer.:

(24)

p.

405

3,4-Benzfluoranthene

~ef.:

3-9

spectrum

(2) (24)

p.

(1)

168,

spectrum

2,3-Benzfluxanthene

Ref.:

Flluoranthene

~ef.:

Perinaphthene

235

Ci!$

435

fig.

a

51

H2

E

I

I

2P.f 27.1

lit

34.2

40.1

3.E

4.00

4.55

‘1.57

3.52

23.4

E

3.70

3.91

4.86

I

3.>3

4.53

4.58

4.50

28.0

33.5

40.1

IL,

lBb

lBa

lLa

lLD

%

1Ba

T

lLa

1%

lBb

%

?--lT

T

XI

(43)

(24)

(2)

p.

407

spectrum

Ref.:

(43)

(24)

(2)

P.

H-C-H

408

spectrum

11,12_Benzfluoranthene

Ref.:

lO,ll-Bcnrfluor~nthcnt

FULVENES

83.

82.

543

-I-

lLa xl I% 25.5 33.8 42.5

I

168,

fig.

CI

2.47

2.90

4.23

4.58

90.

89.

(47)

(27)

(27)

(27)

Ref.: (1)

p.

168,

Dlphcnyldibcnzofulvene (Banrhydry lldencE;b

Ref.:

.

52

do fig.

Phcnyldibcnzofulvene (Benzylldene fluorene)

Ref.:

T

E

lLb

4.03 3.98 2.94

36.6

29.6

4.86 44.4

53.6

7-t ‘La

“b

lR.

I

4.14

4.10 HC

I

2.48

3.98

Phcnylbenzofulvene (Benzylldenc lndcnc)

52

4.09

08.

(46)

p.

4.70

4.79

I

(27)

(1)

I

4.33

Ref.:

-&D

4.09

c

4.06

~

4.19

Dlphinylfulvene

(46)

4.14

87.

ref.:

Phenylfulvene

4.50

4.70

86.

(sh.)

(ah.)

193

102.

l

(53)

(49)

(11)

(52)

Indcno-azulene

Ref.:

6-Phenylazulcnc

Ref.:

P-Phenylazulenc

0

This

state

Ref.:

1s

(55)

(541

doubly

degenerate,

0..:.,

..’

CYCLOHEPTATRIENYLIUM ION (Tropyllum ion)

behavlour.

XIII

101.

100.

99.

it

will

have

I

but

? 36.4

1

T IL’

intensity

I

I

I 3.64

I

L,

‘7J-fg-y ‘j-zig

XIV

10-r.

106.

105.

104.

(56)

157)

(57)

a

(57)

Bef.:

(58)

(57)

(2)

spectrum

Trlphenylethylene

Ref.:

Cycloheptadlene-2.6

Benzylldene-l-dibenzo-2,3,6,7

Ref.:

8

156

ir-%

c

H2C

H\

Benzylidene-1-dlbenzo~2,3,6,7 cycloheptatriene-2.4.6

Ref.:

#ethylene-1-dibenko-2,3,6, cycloheptatrlene-2,4,6

~ef.: 46

=1;:

-CYCLOHEPTAPOLYENES,-FULVALENES, & -HEPTAFULVALENES

Dlbenlo-2,3,6,7 Cycloheptatrlene-2,4.

DIBENZO 103.

SPECTRAL

CHARACTERISTICS

OF HYDROCARBONS

195

108.

~ef.:

spectrum

(2)

160

(58) (59) (60) 54.

109.

Dlbiphenylene-ethylene

See Section VIII

Fluorcnylbenzylidcne-1-dibenzo-2,3,6,7 Cyclohcptstrlene-2,4,6

Ref.

:

(21)

p.

500

(61)

110.

Tctrabenzo-2,3,6.7,2’,3’,6’,7’ Heptarulvalene

REFERENCES 1.

2. 8.

4. 6. 6.

7. 8. 9. 10.

T

FOR

E

lBa

46.5

l%

34.5

SPECTRAL

DATA

of Vacuum Ultraviolet Spectra of Oryanic Compounds in Solution, H. B. Klevens and J. R. Platt, reprinted from Technical Report (1953-195X, Part I, Laboratory of Molecular Structure and Spectra Dept. of Physics, University of Chicago. R. A. FRIEDEL AND M. ORCHIN, “Ultraviolet Spectra of Aromatic Compounds,” Wiley, New York, 1951. A. E. GILLAM AND E. S. STERN, “Introduction to Electronic Absorption Spectroscopy in Organic Chemistry.” Edward Arnold, London, 1958. M. R.AMART-LCCAS AND M. J. HOCH, Bull. Sot. Chim. France 2, 1376 (1935). A. E. GILLAM AND D. H. HEY, J. Chef?l. Sot. p. 1170 (1939). M. RAMART-LUCAS, Bull. Sot. Chim. France 61, 289 and 965 (1932). M. RAMART-LUCAS, Bull. Sot. Chim. France 10, 13 (1943). A. HILMER AND E. PAESCH, 2. Physik. Chem. 161, 46 (1932). J. R. PLATT AND H. B. KLEVENS, Chem. Reus. 41, 301 (1947). American Petroleum Institute Research Project 44. National Bureau of Standards. Catalog of IJltraviolet Spectral Datta.

Survey

11. H. B. KLE\.ENiS, J. (‘hew. Ph!/s. 18, l(ifX3 (1950) f2. A. SMAK~-L.\ AXI> A. W.ISHERBI.\N. %. Physik. C’ht~m. Al& 353 r1931). 13. (:. W. WHEIASI,, “ Iteson:tnw in ()rg:rnic Chemintr~.” Wiley, Sew Yorli, 1953. 14. K. W. HAI-SSER, W. ~
I’:tris.

1952.

22. ,4. 1’1-I~Ix.4N. B. PI.LI,x4s, AND Y. HIRSHBERG.

I<. I). I
null.

Sw.

C’h.im.

9.S. W. THEII.AC.KER AND W. OZEGOMYKI,

,?4. b:. CLAR,

“iirom:ttixhe

Frcrtw

p. 707

I<. FISCHER,

I). (;ISSRI.RG

(1051).

Hrr. 73, 899 (19401.

Iiotllenw:ts:i~r,to~~.”

Springer,

Hrrlin, 1952. SW. 63, 3230 (1941). 77, 6022 (1855).

25. E. 1’. C.~RR, I,. W. ~‘ICKETT. ASD 1). \:ORIS, J. Lt)n. I’hetu.

26. &I. I’. cliv\ ASD J. F. &lY’KER. J. .tr,!. (‘hem. SW. 27. E. 1). BER(;MAXS AND Y. HIRSHBERG, Htr//. SOC. C’hirri. Frurlw p. 1091 (1950). 28. R. KUHN AND A. WINTERSTEIX, Hell,. (‘him. .-lr,ta 11, 116 (1925). 29. W. ZIEGENBEIN ASI) W. TRERS, ;lr~r~. 696, 211 (1955). SO. W. V. MAYXEORLI ANI) E. 11. F. ROE:, Proc. Ko!g. Sot. A162, 299 (1935). 31. It. D;. JOSES, J. .l~r. Chem. Ser. 67, 2021 (1945). 32. (:. I<. BRADSHER hS1) I,. J. WISSCW. .I. .t,tf.C’hrm. SOC. 68, 2149 (1946). 33. R. ?;. JONES. (‘hem. Rc~s. 41, 353 (1947). 34. J. W. SIDMAS, .I. .lnl. C’hrtu. SOC. 78, 4217 (1956). 55. iY. S. H.~M ANI) K. RI.EI)ESBERG, J. (‘Kerry. Ph!/s. 26, 13 (1956). 36. R. WII.I,IAIVI~, J. Ch,em. Phys. 26, 1186 (1957). 37. V. BOEKELHEIDE, W. E. T,an-w.~~s~~, AXI) C.-T. L1r1, J. ;lw. (‘hem. Sot. 73, 2432 (1951). 38. I>. S. MCCLCRE, Solitl St&e Phys. 8, 27 (1959). 39. 1). H. REID, W. H. STAFFORD, AsI) J. 1’. W.4RIJ, J. (‘her/r. SOC’. 11. 1193 (19553. 40. A. 1’~LLD~AN, B. PULLMAN, E. 1). RERGMA~N. c:. BERTHIER, E. FI%‘HER. \i. HIRSHBERG, AND J. I'ONTIS, J. chin!. phys. 48, 359 (1951). 41. I,. C. CRAIG, W. A. JAUJBS, ANI) (+. I. LAVIS. J. Niol. (‘hem. 139, 277 (1941). 42. V. BOEKELHEIDE ANI) c. K. LARRABEE, J. ilrrr. ChenI. Sot. 72, 1245 (1950). 43. 31. ORCHIK, I,. REGGEI,, R. A. FRIEDEI,, ASI) E;. 0. WOOLFOIX, T’. S. RIG. Miraes Tech. Paper 708, 19 (1948).

44. 0. 45. J.

KRUBER

AND (+. (+RIGOLEIT,

THIEC AND J. WIEMANN,

Krc. 87, 1895 (1954).

R~tll. Sot.

46. J. H. I)AY AND J. c’. I,osiuax.

(‘him. Frtrnc? 11, li7

Ohio J. Science

(1956).

62, 335 (1952).

(Ordinntes :u-e rrroneousl~ In\)elled IOF I/I,, ; should he log 1(,/f .J 47. R. A. MORTOS AND A. J. A. (;OUVEIA. J. f’her)~. Sot. p. 911 (1934). 48. I). IS. MANN, J. Ii. PLATT. AND H. B. ELEVENS, J. C’hem. Phys. 17, 481 (1949). 49. P. A. PLATTNER 50. P. A. PLATTNER, 51. J. R. ?;VNN

AND E. HEILBRONNER,

AND W. S. RAPSON,

52. E. 1). BERCMANN 55. I’. A. PLATTSER,

Helrl. (‘hinl.

A. FI~RsT, AND W. KELLER, AND R. IKAN,

J. C’hea~. Sot.

ilrta

Hell). C’him.

31, 804 (19483. Acte

32, 2464 (1949).

11. 825 (1949).

.I. .~NI. Chw~. Sot. 78, 1482 (1956).

A. FI-RST, AI. (+OHUON. AND I<. ZIMMERMAN,

(1950). 54. W. vex E. I~OERING ANI) I,. H. Iisos,

.J. .lm.

C’hrm.

Sot.

Helu. C’him.

76, 3203 (1951).

.4cta

33,

1910

SPECTRAL

CHBRACTERISTICH

OF HYDROCARBONS

1!>7

55. J. N. MCRRELL AND H. C. LONGUET-HIGGINS,J. Chen~.Phus. 23, 2317 (1955). 66. T. W. CAMPBELL,R. GINSIG, AND H. SCHMID.Helv. Chim. dcta 36, 1193 (1953). 57. E. D. BERGMANN,E. FISCHER,11. ~+IKSBI.RG,Y. HIRSHBERG,D. LAVIE, M. MAYOT, A. PULLMAN, A&D B. P~I,LRIAN,HlrZZ.Sot. Chinl. France p. 6% (1951). 58. B. ARENDS, Ber. 64, 1936 (1931). 59. E:. II. BERGMANX,II. GINSBVRG, Y. HIRSHBERG,M. MAYOT, A. PULLMAN,AND B. Pmr,MAX, Hull. Sot. Chim. France p. 697 (1951). 60. H. LEY AXD F. RINKE, Ber. 66, 771 (1923). 61. B. PVUMAX. A. PGLLMAN,E. D. BERGMAKN,H. BERTHOD,E. FISCHER,Y. HIRSHBERG. I). L;IVIE, BND hf. MAYOT, Bull. sec. Chim. France p. 73 (1952).

TABLE

I

EMPIRICALFEATURES OF AROMATICSPECTRALTRANSITIONS

1,4\iTt )S

198

have not utilized an exact model but have assumed that all of our systems were amenable to a naive theoretical treatment and, accordingly, have utilized the simple Watt notation, which arises from the perimeter model of condensed aromatic hydrocarbon ring systems. Table I gives spectral features peculiar to vapor phase transitions in catncondensed sis-membered aromatic ring systems, with equivalent) symbols of the various schools indicated. Most of these generalizations were originally noted hy Klevens and I’latt ( 1,B ) . Many of I’lstt’s ‘C”hands have more recently been reinterpreted as ‘R hands. Since ‘C’ transitions are of a quadrupole nature, however, intensity features should lie between the ‘B and ‘L values. The given numerical ranges for the ‘C hands should be considered as tentative. These characteristics can he helpful, with judicious discretion, in classifying bands, but the visualization of approximate molecular symmetry wave functions and Hund’s rules may give a more consistent systematization, especially when accompanied by the intensity information obtainable from the use of transition moments. Icor a more quantitative interpretation of some of the molecules considered herein and many of the more common varieties, profitable use can he made of the tahulations of eigenvalues and eigenvectors given by Coulson and Daudet (8) und by Ham and Ruedenberg (9). The present collection of spectral data was undertaken, following a suggestion by Dr. Ii. Ruedenberg, in conjunct,ion with a theoretical invest,igation of the spectra of a large numher of hydrocarbons by R. Hummel and K. Ruedenberg. RECEIVED:

March

28, 1959. TEXT

1. 2. 3. 4. 5. 6. 7. 8.

9.

R.EFEREKCES

H. B. ELEVENS AXD J.R. ~'I,ATT,J. Chen~. Phys. 17,470 (1949). J. R. PLATT, J. Chem. Phys. 17,484 (1949). N. 8. HAM ANI) K. RUEDEKBERG, J. Chum. Phys. 26, 13 (1956). J. R. PLATT, in “Radiation Biology,” A. Hollaender, ed., Vol. III, Chapter 2. pp. 71-123 McGraw-Hill, New York, 1956. M. J. S. DEWAR AND H. C. LONGKET-HIGGINS, Proc. Phys. Sot. A67, 795 (1954). H. C. LONG~JET-HIGGINS,Aduanres in Chem. Phys. 1, 239-265 (1958). B. I'TLLMAN AND A. PULI.MAN, “Les Theories Electroniques de la Chimie Organiqne.” Masson et Cie., Paris, 1952. C. A. C~ULSON AND R. I~AUDEL, eds., “Dictionary of Values of Molecular Constants.” Vols. I, II, III. Mathematical Institute, Oxford, and the Centre dechimie Thkorique de France, Paris, 1959. N. S. HAM AND Ii. RUEDEKBERG, 1. Chew. Phys. 29, 1199 (1958).