Java in a Nutshell: A Desktoo Quick Reference for Java Proarammers. ciates, Sebastopol, CA. (1996). 438 pages. $19.95.
By David Flanagan.
O’Reilly
& Asso-
Contents: How to use this book. Preface. 1. Introducing Java. 1. Getting started with Java. 2. How Java differs from C. 3. Classes and objects in Java. 11. Programming with the Java API. 4. Applets. 5. Graphical user interfaces. 6. Input and output. 7. Networking. 8. Advanced graphics and images. 9. Advanced threads. 111. Java language reference. 10. Java syntax. ll. Events. 12. Fonts, colors, and cursors. 13. System properties and applet parameters. 14. Applet security. 15. Java-related HTML and HTTP syntax. 16. The Unicode standard. 17. JDK development tools. IV. API quick reference. 18. The java.applet package. 19. The java.awt package. 20. The java.awt.image package. 21. The java.awt.peer package. 22. The java.io package. 23. The java.lang package. 24. The java.net package. 25. The java.util package. 26. Java errors and exceptions. V. API cross references. 27. Class defined-in index. 28. Method defined-in index. 29. Subclass index. 30. Implemented-by index. 31. Returned-by index. 32. Psssed-to index. 33. Thrown-by index. Glossary. Index. Linear Alaebra.
By Terry Lawson.
John Wiley & Sons, New York. (1996).
408 pages. $67.95.
Contents: List of figures. Preface. 1. Matrix algebra. 2. Vector spaces and linear transformations. and projections. 4. Eigenvalues and eigenvectors. 5. The spectra1 theorem and applications. Appendix A. Solutions to embedded exercises Bibliography. Index. An Introduction to Svmbolic Dunamics and Codinq. By Douglas Lind and Brian Marcus. Press, Cambridge. (1995). 495 pages. $54.95 (cloth); $27.95 (paper).
3. Orthogonality 6. Normal forms.
Cambridge
University
Contents: Preface. 1. Shift spaces. 2. Shifts of finite type. 3. Sofie shifts. 4. Entropy. 5. Finite-state codes. 6. Shifts as dynamica1 systems. 7. Conjugacy. 8. Finite-to-one codes and finite equivalente. 9. Degrees of codes and almost conjugacy. 10. Embeddings and factor codes. 11. Realization. 12. Equal entropy factors. 13. Guide to advanced topics. Bibliography. Notation index. Index. Pseudorandomness and Crvptoamvhic NJ. (1996). 234 pages. $24.95, 120.
Applications.
By Michael Luby.
Princeton
University
Press, Princeton,
Contents: Overview and usage guide. Mini-courses. Acknowledgments. Preliminaries. Lectures 1-18. List. of exercises and research problems. List of primary results. Credits and history. References. Notation. Index. Exulorina Probabilitv and Statistics (1995). 236 pages. $36.00.
with Svreadsheets.
By R. Jackson and J. T. Callender.
Prentice Hall, London.
Contents: Preface. 1. Introduction. 2. Graphical presentation of data. 3. The mean and variability of quantitative data. 4. Descriptive methods for large data sets. 5. Probability and probability distributions. 6. The binomial 7. Applications of the binomial probability distribution. 8. Sampling and Poisson probability distributions. distributions. 9. Continuous random variables. 10. The centra1 limit theorem. ll. Statistical process control. 12. Confidence intervals and tests of significante. 13. Regression analysis. 14. Analysis of variante. Appendix: Statistical tables. Index. Speech Codina: A Comvuter Laboratoru Textbook. By Thomas Barnwell 111, Kambiz Nayebi, and Craig Richardson. John Wiley & Sons, New York. (1996). 184 pages. $37.95 (2 diskettes included). Contents: 1. Introduction. 2. DSPLAB: The DSP laboratory software. 3. Quantization: PCM and APCM. 4. Waveform coding with fixed prediction. 5. Pitch-excited linear predictive vocoder. 6. Waveform coding with adaptive prediction. 7. Analysis-by-synthesis LPC. 8. Subband coding. 9. Projects. Appendices. A. Menu items. B. Extending DSPLAB. C. Glossary of abbreviations. Bibliography. Index.
N otes o nF ermat’s Last Theowm. By Alf van der Poorten. John Wiley & Sons, New York. (1996), 222 pages. $44.95. Contents: 1. Quasi-historica1 introduction. 11. Remarks on unique factoriaation. 111. Elementary methods. IV. Kummer’s arguments. V. Why do we believe Wiles? More quasi-history. VI. Diophantus and Fermat. VIL A child’s introduction to elliptic functions. VIII. Local and global. 1X. Curves. X. Modular forms. X1. The modularity conujecture. X11. The functional equation. X111. Zeta functions and L-series. XIV. The ABC-conjecture. XV. Heights. XVI. Claas number of imaginary quadratic number fields. XVII. Wiles’ proof. Appendices, A. Remarks on Fermat’s Last Theorem. B. “The devil and Simon Flagg,” by Arthur Porges. C. “Math riots prove fun incalculable,” by Eric Zorn. Index.