QUATERNARY
RESEARCH
20,
l-29
(1983)
Speleothems,
Travertines,
and Paleoclimates
G.J. HENNIG, R. GRCJN,AND K. BRUNNACKER Geologisches
Institut der Vniversitiit D-5000 Kcj;ln-1. Federal
za KBln, Ziilpicher Republic of Germany
Strasse
49,
Received May 10, 1982 Age data for about 660 speleothems and about 140 spring-deposited travertines were collected, including many unpublished results. These data were plotted as histograms and also as errorweighted frequency curves on a 3.50,000-yr scale. These plots clearly show periods of increased speleothem/travertine growth as well as times of cessation. The periods of most frequent speleothem growth were between approximately 130,000 and 90,000 yr ago and since about 15,000 yr ago. Suchperiods before 150,000 yr ago, however, cannot be yet recognized because of a lack of sufftcient data and the associated uncertainties of dates in this age range. A comparison with the oxygen-isotope record of deep-sea core V28-238 shows a clear relationship, indicating that terrestrial calcite formation is controlled by paleoclimatic fluctuations. The evident climatic stimulation of Quaternary calcite formation is readily explained geochemically and is substantiated by the obvious difference in speleothemitravertine growth as a function of geographic position.
deposited travertine calcite. Plants at the surface of limestone areas give rise to the production of humic soils with high concentrations of CO*, mainly generated by putrefactive bacteria and autooxidation processes. The corrosive, CO,-rich seepage waters are able to dissolve an increased amount of limestone and hence supply more Ca(HCO,), to the growing speleothem. Rapid speleothem growth therefore will generally correspond to exuberant flora on the cave-bearing rock. The conclusions can be practically substantiated: Tropical caves generally show huge, ornamented speleothem formations (e.g., in Jamaica or Mexico), whereas caves in colder regions mostly contain few and only small-sized speleothems (Waltham, 1977; Bauer, 1969; Jakucs, 1977; Moore and Sullivan, 1978). In many caves it is even possible to distinguish between several “generations” of stalagmites (Trimmel, 1953), which would most likely correspond to different periods of climates favorable to growth of speleothems.
INTRODUCTION
Two types of terrestrial calcites were formed quite frequently during the Quaternary: speleothems (cave calcites) and spring-mound-deposited travertines (calcite tufa). These Quaternary calcites were precipitated from Ca-rich, bicarbonate waters descending or ascending through limestone deposits. Consequently, the formation of such calcites was impossible in the absence of water during extremely glacial or arid climates. The presence of speleothems in caves of present-day deserts (e.g., the Namib or Negev Deserts) must therefore be regarded as an unequivocal indicator of the past humid climate in these areas. Similar considerations apply to speleothems of the high alpine caves. Humid paleoclimates marked by increased plant growth will have enhanced limestone dissolution as well as accelerated travertine and speleothem precipitation. Factors controlling the erosion of limestone have been discussed in detail (Atkinson and Smith, 1976) and shall not be reviewed here. In general, plants such as moss consume carbon dioxide from the bicarbonate spring-mound waters and, consequently, cause a more rapid formation of spring-
PALEOCLIMATIC DATA FROM SPELEOTHEMS
Various attempts to use quantitative data gained from speleothems for the purpose of 1 0033-5894183 Copyright All rights
$3.00
D 1983 by the University of Washington. of reproduction in any form reserved.
2
HENNIG.
GRUN,
paleoclimatic interpretations have been reported. Quaternary calcites undoubtedly contain much climatic information, e.g., in their pollen content, in enclosed relics of the paleofauna, or in embedded limestone breccia broken by frost (“frost rubbles;” Brunnacker, 1963). The morphology and stratigraphy of speleothems have been suggested as bases for the evaluation of paleoclimatic data (Franke, 1971; Dreybrodt, 1980) as has the occurrence of aragonitic speleothems (Moore, 1956). Isotopic variations in layered speleothems (Hendy and Wilson, 1968; Hendy, 1971) and of their fluid inclusions (Thompson et al., 1974; Harmon, 1979a, Schwartz et al., 1976) also appear to be important in the reconstruction of paleotemperatures. However, there is some evidence for nonequilibrium isotopic fractionation in stalagmites and stalactites (Fanditis and Ehhalt, 1970), and the presence of recent carbon contamination in many stalagmites (Hennig et al., 1980a) would also affect the stable (H, C, and 0) isotope ratios if recent CO, and H,O are present. Fluctuations of trace elements in speleothems and temporal variations in the amount and composition of detrital minerals (e.g., quartz, feldspars, clay minerals) can also serve as geochemical tracers for paleoclimatically induced changes in weathering processes (Ikeya, 1978; Hennig, 1979). Absolute dating techniques can be used to date speleothems, and resulting data may be used for paleoclimatical interpretations. As previously mentioned, speleothems would have grown predominantly during warm and humid climates; consequently an increased number of age data within a certain period would presumably reflect such paleoclimates. On the other hand, the absence of age data within certain time intervals possibly would indicate glacial ages, during which speleothem growth ceased. In principle, such age histograms of speleothems (or of sectioned speleothem layers) will therefore reflect paleoclimatic variations, although such a graph may not
AND
BRUNNACKER
bear a direct relation to paleotemperatures. The interrelation of speleothem growth (as deduced from the distribution of age data) and alternating paleoclimates should only be regarded as a general hypothesis, with some exceptions possible. For example, the question of whether CO, released from melting glacier ice can also give rise to a certain amount of speleothem growth should also be examined. Moreover, highly corrosive karst waters, such as those produced in tropical climates, may sometimes enter a cave before being saturated in calcium. As a consequence, partial speleothem dissolution may even occur during climatic intervals which are generally associated with accelerated speleothem formation. The first “frequency histograms” of speleothem age data were based upon radiocarbon dates, and suggested a glacial period for central Europe between 20,000 and 12,000 yr B.P. (Geyh, 1970). Since uranium-series dating with its extended age range of approximately 350,000 yr has proven to be reliable for dating speleothems, several histograms of this type have been published (Harmon et (I(., 1977; Hennig et al., 1980b; Gascoyne, 1981). Although these histograms of U-series age data apparently indicate periods of more frequent speleothem formation as well as those with reduced growth, the limited age data have been a strong handicap when attempting an unequivocal interpretation of paleoclimatical changes. This is because only 50- 100 randomly distributed age data (over a 350,000-yr time scale) will also simulate minima and maxima in “speleothem growth,” as demonstrated by four independent examples of 100 statistically distributed age data in Figure I. AGE-FREQUENCY
DATA
We have collected for the present study the highest possible number of U-series ages of speleothems and spring-deposited travertines available to us, including many unpublished data from our group. The re-
SPELEOTHEMS.
TRAVERTINES,
:lLLI,d& JI&.L.r L
0
50
100
150
200
250
300
350
0
5b
160
150
200
250
360
350
0
50
100
150
200
250
300
350
0
50
100
150 200 AGEllO'yrBPI
250
300
350
B
FIG. 1. Four examples of histograms depicting random distribution of 100 age data in 5000-yr intervals over a 350,000-yr time interval.
sulting histograms of age frequencies are then compared to reliable paleotemperature records such as those being obtained from the *sO/1”O variations in ice cores (Dansgaard et al., 1969) or from deep-sea cores (Shackleton and Opdyke, 1973; Emiliani, 1978). In our present study we have summarized 805 U-series age data of terrestial Quaternary calcites, 664 of which are from speleothems and 141 from spring-deposited travertines. Both species have been subdivided into two climatic regions according to the classification of Troll (1964). Region I corresponds approximately to former glacial and periglacial areas such as Canada, northern United States, and northern and central Europe. Region II approximately denotes warmer climates similar to those of Mexico, Jamaica, and the Mediterranean . Twenty-eight percent of the speleothem data have been obtained by our group, as well as seventy percent of the travertine ages, and include many unpublished data. The rest were collected in a thorough study
AND
PALEOCLIMATES
3
of published data, although we cannot claim total completeness. All age data are summarized in the appendix. Apart from the most reliable and abundant 239h/234U ages, all 231Pa/235Uages of speleothems have been included in the tables as well. We did not exclude any of the collected U-series ages, even if they are denoted as being questionable or less reliable, except for the 234U/238U data from speleothems which are regarded as completely unreliable (Harmon et al., 1978b). Infinite ages, i.e., those greater than approximately 350,000 yr, were of no use for this study and were disregarded. Furthermore, it was held to be disadvantageous to include age data of speleothems and travertines other than those gained by U-series dating techniques. Other dating methods, such as 14C, TL, or ESR, often exhibit considerable deviations from the corresponding 230Th/234U ages, which cannot be explained in each case (Wintle, 1978; Hennig et al., 1980a). Moreover, the presently published number of ages by other techniques is relatively small compared to the total number of U-series ages included in the present study. A certain problem in setting up an age frequency for Quaternary calcites is raised by the presentation of “corrected” Useries ages. These data have generally been corrected for detrital thorium, which may be introduced into the growing calcite together with clay or similar, noncarbonate detritus. Detrital 230Th (as well as detrital 231Pa) will shift the apparent ages of impure speleothems and travertines to higher values, necessitating a correction procedure for this interference. Various correction procedures for detrital thorium have been suggested (Ku et al., 1979; Hennig, 1979; Schwartz, 1980; Ku and Joshi, 1981). However, there has not existed a unique way to overcome this interference. We have therefore always used those age data that have been preferred by the original authors. In cases of doubt, the noncorrected age data were chosen. All U-series age data have been compiled
HENNIG,
4
GRUN,
AND
BRUNNACKER
6 I I
17
18'9
‘STAGE I
1
I I
q r
record -1
Core
i
Travertines
N 2(
\
V28-238
I
I I
I
I
I I I
I I I I
I
I I
I I I I
I I I
I I / I
II
I
10
NW
I
0
-II
_
I
I
I
I n I
I I
I /
100
FIG. 2. Histograms (N) of uranium-series subdivided into two climatic zones, I squares: Data with ? 1 o errors of less +I0 and 20%. White squares: Data core V28-238 (Shackleton and Opdyke, Quaternary calcites. For calculation of Figure 3.
200
I
I I
I /
300
AGE [103yr B P] age data for speleothems and of spring-deposited travertines and II, according to the classification of Troll (1964). Black than 2 10%. Hatched squares: Data with r I o errors between with -1 v errors over 220%. Oxygen-isotope record of 1973) (top) is shown for comparison with age frequencies of frequency curves (F) (shown below histograms) see text and
SPELEOTHEMS,
TRAVERTINES,
in four histograms in Figure 2, with 88 travertine ages and 482 speleothem ages for the moderate climate region I, and 35 travertine and 116 speleothem age data for region II. The histograms were constructed using 5000-yr class intervals. All histogram data have been labeled according to their relative statistical uncertainties. In cases where no errors were given in the original publications, we had to choose appropriate errors according to the age value itself: (1) Ages up to 200,000 yr were considered to be associated with uncertainties of less than +lO% (black squares). (2) Ages between 200,000 and 300,000 yr were defined with errors of + 15% (hatched squares). (3) Ages older than 300,000 yr, but still finite, were defined with errors of &20% (hatched squares). Although the last two cases are both represented with hatched squares, it is useful to distinguish their respective errors for the calculation of error-weighed curves (Fig. 2). The presentation of ages in the form of a histogram has some disadvantages. It is not possible, for example, to reflect the differences in the statistical uncertainties of the ages. This shall be demonstrated by the following, arbitrary example on three values of age data: 98,000 + 1000, 100,000 f 2000, and 106,000 t 8000 yr. When presented in the form of a histogram with 5000-yr class intervals, these data will result in an absolutely uniform plateau from 95,000 to 110,000 yr. The different errors associated with these three measurements would, however, suggest a higher probability of “increased speleothem formation” around 98,000-99,000 yr ago, which certainly cannot be deduced from the histogram plot. We have therefore included an additional form of presentation that takes into account the relative errors of the ages as well: the height (F) of each age rectangle is determined by the relative error of each date, and F is obtained by simply dividing the age by the sum of the total & 1 (T counting errors. In the case of our arbitrary example
AND
PALEOCLIMATES
5
the following heights (F) would be obtained: 98/(1 + 1) = 49, 100/(2 + 2) = 25, and 106/(8 + 8) = 6.625, respectively. The frequency distribution of these three “error-weighted” ages is given in Figure 3, which shall serve as an explanation for the frequency curves given in Figure 2. It is obvious from Figure 3, that the highest probability of the age frequency is in fact displayed in the expected age range of 98,000-99,000 yr. According to Figure 3, four graphs were calculated from all speleothem and travertine age data and their respective errors (Appendix), which are subdivided into climatic zones I and II. These four error-weighted curves are presented below the corresponding age histograms in Figure 2. The curves of climate region II are given by dotted lines. As with the histograms, only infinite U-series ages and 234U/23xU ages of speleothems were excluded from these graphs. Ages up to 10,000 yr were rounded off to full lOO-yr values, and ages over 10,000 yr were rounded off to full lOOO-yr values for the calculations. Some age data with infinite upper limits of errors were included as well for the purpose of completeness. In these cases the lower uncertainty (-- 1 a) was doubled in order to calculate the frequency curves (Fig. 3), and the resulting height F was taken up to the age of 350,000 yr. PALEOCLIMATICAL
INTERPRETATIONS
Some care is certainly advised when interpreting the age frequencies of speleothems and travertines in Figure 2. Only the relatively large number of speleothem age data in climate zone I seems sufftcient to be
FIG. 3. Calculation of an error-weighted three arbitrary ages: 98,000 -t 1000, 100,000 and 106,000 h 8000 yr B.P.
curve of -t 2000,
6
HENNIG,
GRtiN,
of statistical significance, at least up to approximately 200,000 yr ago. For the other age data, a larger number of samples would be desirable for a safer interpretation. A few interesting results can be deduced from Figure 2. The Holocene (stage 1 of the V28-238 deep-sea isotope record) conventionally starts with the Preboreal at 10,000 14C yr ago in central Europe. A large number of speleothems and a few travertines obviously fall within this postglacial period. The beginning of speleothem formation in climate zone I (e.g., in central Europe) seems to have started even earlier than 10,000 yr ago, at about 20,000-15,000 yr B.P. Because of the possible shifting of younger age data by detrital thorium, we prefer the younger age of approximately 15,000 + 3000 yr for the beginning of Holocene speleothem deposition in central Europe. Most notable is the absence of practically any speleothem data in region I between 30,000 and 20,000 yr B.P., which most likely reflects the maximum of the Wtirm glacial age. This minimum in age frequency is astonishingly concordant to the minimum of stage 2 in the 1sO/160 paleotemperature record (Fig. 2) (Shackleton and Opdyke, 1973). A possible cessation in speleothem and travertine growth seems to have occurred earlier in climate region II (compared to region I), but this slight indication needs to be substantiated by a larger number of dated samples. Moderate speleothem growth undoubtedly took place during isotope stage 3 of the marine record. The present data for region I seem to indicate at least two smaller frequency maxima around 40,000 -+ 5000 and 55,000 t 5000 yr, which might reflect relatively warm interstades, e.g., the Stillfried B interstade. An interstadial soil formed about 40,000 yr B.P. is also supported by a recent TL study of loess deposits at Wallertheim, Rheinland-Pfalz (Wintle and Brunnacker, 1982). Only some Mediterra-
AND
BRUNNACKER
nean travertines (zone II) seem to fall into stage 3 of the paleotemperature record. One notable result of the present study can be observed in the abundant spekothem formation between 130,000 and 90,000 yr B.P., which is most obvious for climate zone I. Here, a distinct maximum appears between about 125,000 and 115,000 yr. which is in excellent correlation with the temperature maximum in substage 5e of the V28-238 paleotemperature record. It is remarkable that there seems to be no increased formation of spring-deposited travertine during substage 5e, but a systematic shift of these age data cannot be ruled out. It should be noted that while recent growth of speleothems is well documented in most central European limestone caves, the formation of spring-deposited travertine has not been reported. Another, less-pronounced maximum seems to be present around 1 lO,OOO100,000 yr ago, which is exhibited by the speleothems of region II and also by the travertines of region I. There are only four travertine dates for region II that would support the same maximum around 1lO,OOO100,000 yr. The period between 130,000 and 90,000 yr undoubtedly coincides with the last interglaciation, although the paleotemperature record from case V28-238 suggests that this interglaciation lasted until approximately 80,000 yr B.P. This interglaciation is conventionally denoted as the Riss - Wtirm Interglaciation. The question has to be raised whether this interval is coincident with the Eemian, because the duration of the Eemian was estimated to be only about 11,000 yr long by Mtiller (1974a) through counting of annual rhythmites. In the same way Mtiller (1974b) deduced a period of only about 16,000 yr for the Holstein Interglaciation. According to the fauna1 investigations of von Koenigswald (1973), the beginning of the Wiirm should be placed at around 100,000 yr B.P., in which case the period of
SPELEOTHEMS,
TRAVERTINES,
1lO,OOO- 100,000 yr would constitute part of the Eemian of the terrestrial chronology. The frequency of speleothem formation, however, indicates a possible second temperature maximum around 120,000 yr ago, which would be coincident with the maximum of marine substage 5e. This second maximum is supported by the U-series dating of Victoria Cave speleothems (Gascoyne et al., 1981). This suggested that the splitting of the last interglaciation needs to be substantiated by a larger amount of age data. Another approach to support this idea would be the investigation of speleothem growth rates from U-series dating of single, pure successive growth layers for a stalagmite of the last interglaciation (e.g., Duplessy et af., 1970). For ages beyond 130,000 yr B.P., the total number of reliable travertine and speleothem ages is obviously insufficient for paleoclimatic interpretation. During the penultimate interglaciation (stage 7 of the V28-238 record) there seems to be a flat maximum in the travertine frequency curve of climate zone I. Several reasons may account for the flatness of this maximum: (1) The statistical uncertainties in the U-series ages grow exponentially beyond values of approximately 200,000 yr. (2) For calcites that have formed during the penultimate interglaciation (stage 7), there has been a much longer time of exposure to postdepositional alteration, which can be associated with uranium loss or accumulation. This has been clearly demonstrated for travertines of the penultimate interglaciation in comparison to those of the last interglaciation; .the older travertines
AND
PALEOCLIMATES
7
display much larger fluctuations in their 23@Th/234Uratios of successive growth layers than the younger ones having an age of approximately 100,000 yr (Griin et al., 1982). Therefore the 230Th/234U ages of speleothems generally are more reliable than those of travertines having similar ages. (3) The small amount of age data in the age range beyond 130,000 yr does not allow statistically safe conclusions to be drawn. In fact, the probability of collecting older speleothem samples is generally lower than that for younger ones, as the former are frequently buried by younger sediments or by more-recent speleothem formations. The reason for the occurrence of the flat maximum in stage 7 is mainly due to an investigation of travertine sites of the penultimate interglaciation (Grun et al., 1982). CONCLUSIONS
The present study demonstrates that the carbonate turnover during the Quaternary was stimulated by climatic conditions, making travertines and speleothems valuable sources of paleoclimatic information. APPENDIX
The compilation of age data is divided into speleothems (Table 1) and springdeposited travertines (Table 2). Each set of uranium-series age data is preceded by the name of the cave and its location according to the original publication. The country of each cave is abbreviated according to the national car road signs.
8
HENNIG, TABLE 2
1
Kingsdale 20
Yorkshire, GP2 GP3 Yl Y3:l Y3:2 Y3:3 Y5 Master Cave, KM1
4
11 8 <.5 63 13 1350 >350 127 63 332 172 9
Column Column Column
6 1 -
6 1
OF SPEL~OTHEMS" 6
7
Th/U
St St St St St FI FI Fl Fl Fl St St
ThiU
St St St St St St Ff
Th/U
Fl
Th/U
St St St St St St St St
Th/U
St St
19 3
19 3
-
-
25 11 z 26 2.5
25 11 100 26 2.5
9 1 18 4 5 5 1
9 1 18 4 5 5 1
14 6 131 63 92 112 12 Yorkshire,
GB >350
-
-
GB 12 13 <5 6 90 225 14 17
Cherdyntsev, V. V., et nt. (1%5) Akhshtyr Cave, SU 29 3 30 30 4 <33 1: 2: 3: 4: 5: 6:
5
BRLJNNACKER
GB
White Scar Cave, Yorkshire, 21 WSl 22 ws2 23 WS3:l 24 WS3:2 25 ws3:3 26 ws5 27 WS6: 1 28 WS6:2
u Column Column Column Column Column Column
AND
1. AGE DAIA
3
Atkinson, T. C., et al. (1978) G. B. Cave, Mendip Hills, GB 1 GBIA 2 GBlB 3 GBlC 4 GBlD 5 GBlE 6 GBBB 7 GB17:l 8 GB20: 1 9 GB23A 10 GB24 11 GB27 12 GB29 Gavel Pot, 13 14 15 16 17 18 19
GRijN,
2 7 -
2 7 -
2 11 75 7 4
2 11 45 7 4
5 -
Consecutive numbering of samples. Original sample labeling. Mean age value (lo3 yr B.P.). Plus one o error (103 yr). Minus one o error (lo3 yr). U-series dating methods: Th/U: 230Th/23’U; Th/Th: *3~h/234Th; P&J: =‘Pa?u; Pa/Th: 23’Pa/230Th. 7: St: stalagmite or stalactite Fl: flowstone. 8: Additional remarks. 9: I: climate zone I (see text); II: climate zone II (see text).
5 -
8
9
I
SPELEOTHEMS,
1
TRAVERTINES,
3
2
AND
9
PALEOCLIMATES
TABLE
l--Continued
4
5
6
I
8
Fomaca-Rinaldi, G. (1968) Romanelli Cave, Lecce, I 31
40
3.3
3.3
St
ThfTh
All‘onda 32
39
3.2
3.2
St
TblTh
Cave, Lucca, I
Chiostraccio Cave, Siena, I 33
<7
-
-
ThlTh
St
Th/Th
St
ThlTh
St
Scoglione Cave, Sorrento, I
II
34
2
20
Buca Tana, Lucca, I 35
<7
2
II
-
-
Gascoyne, M., et al. (1979) Blue Hole, Andros Islands, BS 36 37 38 39 40 41 42 43 44 45 46 47
II
76016-p 78032-5
158 139 162 128 104 123
BH-M BH-L 76015-3
76015la 76015-lb
119 101
76016-3 76016-4
97 129
76016-la 76016-lb
122 11
76015-7
13 Th/U
13 8 21 8.9 10 9.1 9.3 1.5 6.8
8 21 8.9
10 9.1 9.3 7.5 6.8
11
11
38
27
PalTh 1.1
1.1
Selected cc tryst. Selected cc tryst. St St St St St St St St St St Tb/U
Gascoyne, M. (198lb) Lost John’s Cave, GB 48
115
Th/U
Fl
300
ThfU
Fl
Th/U
Fl
TNU
Fl
Kingsdale Master Cave, GB 49
Ingleborough 50
Cave, GB >120
Easegill Caverns, GB 51
-
52
-
240
White Scar Cave, GB >350
-
-
Th/U
Fl
>80
-
-
Th/U
St
Coffee River Cave, JA 53
Oxford Cave, JA 54
190
Th/U
Fl
Gascoyne, M. (1981a) Caves of the Yorkshire Dales, GB 55 56-60 61-64 65,66 67-69 70-71
9
o-5 5-10 10-15 30-35 35-40 40-45
Th/U
See Fig. 1
10
HENNIG,
1
2
AND
BRUNNACKER
TABLE
I-Conrinued
4
5
1 0.7 0.6 35
1 0.7 0.6 44
6
7
8
5-50 50-55 55-60 65-70 70-75 75-80 85-90 90-95 95-100 loo- 105 105-110 110-115 115- 120 120- 125 125-130 130- 135 135- 140 140- 145 160- 170 170- 180 180- 190 190-200 200-210 210-220 220-230 230-240 240- 250 250-260 260-270 270-280 280-290 290-300 300-310 310-320 320-330 330-340 340-350
72 73 ,?4 75 76 77,78 79 80,81 82-86 87-91 92-95 96- 101 102- 108 109-114 115-121 122- 126 127- 128 129 130 131 132,133 134,135 136 137,138 139,140 141-144 145- 148 149- 152 153- 157 158, 159 160, 161 162- 164 165, 166 I67- 170 171-173 174- 176 177 178 Gascoyne, Castleguard 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
3
GRiiN,
M., and Latham, Cave, GB 80502 80501 80503 7703 1 77032 77032 77032 77033 79014 77034 77034 77035 77036 77037 79011 79012
A. G. (1981) 13 6 7 332 ,350 278 >350 >350 >350 >350 >350 >350 38 >350 109 243
-
Th/U
26
-
22 -
1 -
PaiTh TNU
1 -
3.6 22
3.5 18
St St St F1 St St St St St Fl Fl St F1 FI Fl Fl
Base TOP Same as 184
Top Base
Top
9
SPELEOTHEMS,
1 195 196 197 198
2 79012 79016 80024 80025
TRAVERTINES, TABLE
l-Continued
3
4
5
,350 143 121 >350
-
Pietrowa Szczelina Cave, Cracow-Wielun 200 349 300
6
6 6
-
I Fl Fl Fl Fl
6 5 -
Glazek, J., and Harmon, R. S. (1981) Kozi Grzbiet Quarry, Holy Cross Mountains, PL 199 360 195 24
Mala Cave, Cracow-Wielun 201 353
AND PALEOCLIMATES
19
Th/U
FI
Upland, PL 80 40
Th/U
Fl
Upland, PL 112
8
Th/IJ
Fl
Mckra Quarry, Cracow-Wielun Upland, PL 202 355 117 Wierzchowska Gorna Cave, Cracow-Wielun 203 362 120 204 363 124
8
9 9 Upland, PL 9 9 9 9
ThJU
Fl
TNU Th/U
St St
Niedzwiedzia 205
Cave, Sudetes. PL 356 180
21
17
Th/U
St
Mietusia Cave, Tatra Mountains, PL 206 414 60
5
5
TNU
Fl
Bandzioch Cave, Tatra Mountains, PL 207 359 124
66
14
Th/U
St
Harmon, R. S. (1979b) Grotte Valerie, Nahanni Region, CDN 208 NGV- 1 290 209 NGV-2 200 210 NGV-3 217 211 NGV-4 <2 212 720263 145 213 72030-7 191 214 72030- 10 280 215 72030-9 320 216 72057-2 350 217 72066-4 278 218 75021-2 10 219 75028-2 15
cc 20 17 16 21 27 35 27 0.5 2
50 20 17 16 21 27 35 27 0.5 2
Th/U
St St St St St
Trou Claudette, Nahanni Region, CDN 220 NTC-1 275
75
35
Th/U
St
Th/U
Fl
11
8
9
Base
Fl FI Fl Fl FI St St I
Speleothem Cave, Nahanni Region, N.W.T., CDN 221 72034- 1 >350 -
I I
Cave 12A, Nahanni Region, N.W.T., CDN: 222 72067-4 301 24 223 72067-5 315 41
24 41
Th/U
St St
Igloo Cave, Nahanni Region, CDN: 224 7305 l-5 >350 225 73051-4 >350
-
Th/U
St St
22
Th/U
Fl
I -
Ice Curtain Cave, Nahanni Region, N.W.T., CDN 226 73052-6 304 22
I
12
HENNIG,
2
1
Coral Canyon 227 228 Tower 229
Region, 319 >350
Cave, Nahanni 73057-l
Castleguard 230 231 232 233 234 235 236
Icefield
Eagle Cave, 239 Middle 240 241 242
Crowsnest E-2
Sentry,
Yorkshire 243
Pot,
Gargantua 244 245 246 247 Middle 248
Pass Area,
Logan 252
Bear
Cave,
Porcupine 253 254
Harmon, Crystal 257 258
7
32
TMU
FI
Region,
Range,
Uinta >350 >350
CDN St Fl St St St St
6
St
9 32
Columbia, TNU
Columbia, 6 ThiU 16 13
St St Fl
CDN Fl Fl Fl
Columbia, CDN 10 Th/U Columbia, ThlU
-
St
CDN
16 22 45
St St St St
Columbia. CDN Th/U
St
-
Th/lJ
Fl
-
Th/U
Fl Fl
Th/U
Fl
Region,
Utah,
USA 5
5 Region, 12 34
Region, -
Utah, 12 34 Utah,
USA ThKl
I Recent
CDN
Columbia, CDN 13 Th/U
Alberta-British -
Range, Uinta 120 153
Range,
R. S., et al. (1981) Cave, BS 35”N, 65”W 75008:02 75008:Ol
Uinta 90
Columbia, Th/LJ
12
Alberta-British 16 22 60
Utah, USA >350 >350
Fl
6
Alberta-British 6 16 13
Utah, USA >350
Th/U
12
Alberta-British 9 32
Pass Area, 350 219 184 290
River Range, 74034-2 74034- 1
Bear River 74038- 1 74040- 1
I 26
Alberta-British 0.2 0.2 2 2 0.5 0.5 0.2 0.2 3 3
Pass Area, Alberta-British 178 10
Bear River 74036- 1
I
Alberta-British 198 13
Pass Area, >350
9
Fl
Crowsnest YP-1
Crowsnest 69001-6
8
CDN
Pass Area, 102 191 273
Cave, Bear River 74037- 1 74037-2
White Rocks, 255 256
6
Crowsnest MS-1 MS-2 MS-3
178-ft Pit, Bear River Range, 249 74033- 1 Surface. 250 251
5
N.W.T., 32
Pass Area, 235 296
Cave, Crowsnest GAR-1 72025-4 72038-l 72038-2 Caves,
4
4 57 1 3 92 147 120
Cave. Crowsnest CT-l CT-2
BRUNNACKER
14onri,ru~d
Region, N.W.T., CDN 346 m
Cave, Columbia CC-1 73008-3 73009-3 73009-4 73010-7 73010-6 73011-2
Coulthard 237 238
AND
TABLE
3
Cave, Nahanni 73056-l 73056-3
View
GRiiN,
Fl Fl
USA TNU -
St F1
II 68 97
6 9
6 9
Tl-dU
St
TOP
St
Base
SPELEOTHEMS,
1
2
259 260 261 262
7752o:Ol 11520:03 77520:02 77522:Ol
Harmon, R. S., et al. (1978a) Davies Hall, Kentucky, USA 263 72041: 13 264 72041:09 265 72041:05
R. S., Cave,
AND
l-Continued
3
4
5
10 39 111 134
2 7 9 11
2 7 9 11
121 159 202
5 10 21
5 10 21
ThiU
St St St
USA 0.8 15
0.8 15
Th/U
3 1
3 1
St St St St St FI St Fl Fl Fl Fl Fl St Fl
-
6
-
1 11 -
33 -
25 -
28
22
13 17
13 17
I
St St St St
I 11
13
PALEOCLIMATES
TABLE
Hess, J. W., and Harmon, R. S. (1981) Flint-Mammoth Cave System, Kentucky, 266 77540 7 267 77544 123 268 77545 2 269 77546 40 270 77547 15 271 80501 >350 272 71100 6 273 77538 141 274 72035: 1 >350 275 72035~2 213 276 72036:5 >350 277 72036:4 >350 278 72037: 1 >350 279 74000: 1 247 Lively, Mystery 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
TRAVERTINES,
8
9
TOP Middle Base Top
Base Top Base Top
et al. (1981) Minnesota, MC-2 MC-2a MC-3h MC-3g MC-3 MC-3c MC-4a MC-4hg MC-5 MC-5a MC-5b MC-6 MC-1Oa MC-lob MC-lla MC-llb MC-13 MC-14 MC-16 MC-16a MC-17 MC-18 MC-20a MC-20b MC-26 MC-26a
USA
I 151 183 300 136 126 142 163 125 97 104 104 161 106 119 143 131 104 125 146 147 102 122 142 107 120 40
-
12 11 11 15 8 8 8 21 10 9 11 9 6 4 11 10 6 5 6 12 5 5 1
12 11 11 15 8 8 8 21 10 9 11 9 6 4 11 10 6 5 6 12 5 5 1
Th/U
Fl St St St St St St St Fl
Bottom Middle Middle Top Bottom Top Replicate Replicate
analysis analysis
Replicate
analysis
Fl
Fl Fl Fl Fl Fl St St Fl St
Bottom Top
14
HENNIG,
1
2
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
3
MC-26b MC-26c MC-19 MC-19 MC-19 MC-19 MC-21 MC-1 MC-7 MC-8 MC-9 MC-24 MC-25a MC-251, MC-27
Rifle Hill 321 322 323
Quarry, Minnesota, RHQ-a RHQ-c RHQ-d
Fairview 324 325
Blind
Valley, ZB-1 ZB-2
Schwartz, H. Chaise-de-Vouthon 327 328 329 Schwartz, Mammoth 330 331 332 333 334 335 336 337 Crystal 338 339 340 341 342 343 344 345
P., and Debenath. (Charente), 1 2 3
BS, 35”N, 73036: 15 73036: 15 73036: 15 73036: 15 73036: 15 75004: 14 75004:5 75004:4
5
BRUNNACKER
6
7
115 125 59 55 38 35 43 13 13 9.8 8 8.8 13 13 12
6 5 5 5 2 2 I 0.7 0.4 0.5 0.4 0.5 0.4 0.4 0.7
6 5 5 5 2 2 1 0.7 0.4 0.5 0.4 0.5 0.4 0.4 0.7
48 51 44
4 4 3
4 4 3
Th/U
FI Fl Fl
USA 28 52
4 6
4 6
Th/U
FI Fl
2 2 5
2 2 5
ThiU
St St St
10 16 30
10 16 30
Th/U
FI Fl Fl
194 179 164 156 139 115 100 97
Th/U
st St St St St St St St
185 177 176 172 166 150 120 117
ThiU
C. (1969) F 93 100 129
St St St St St St St Fl Fl FI FI St St Th/U
9
8 Middle Upper middle Bottom Lower middle Middle Top
Bottom Middle Top Bottom Replicate
analysis
Fl
A. (1979) F
H. P.. et al. (1976) Cave, Kentucky, USA 72041:2 72041:3 72041:4 72041:5 72041:7 72041:ll 72041: 12 7204l:lO Cave,
4
AND
USA
Minnesota,
Nguyen, H. V., and Lalou. I’Aven d’orgnac (Ardeche), 325 326 327
GRijN,
106 146 185
65”W
See also 265
II St St St St St St St St
SPELEOTHEMS,
1
2
346 347 348 349 350 S6tano 351 352 353 354 Norman 355 356 357 358 359
75004:7 75004:9 75004: 13 75004:ll 75004: 12 de1 Arroyo, San Luis 71042: 10 71042:s 71042:3 71042: 1 Bone
Grapewine 360 361 362 363 364 365 366 367 368 Schwartz, Hayonim 369 Zuttiyeh 370 371 372 373
H. P., et al. (1980) Cave, 11 76HY7- 1
Umm Qatafa 374 Es Skhul 375 376 377 378
AND
TABLE
l-Continued
4
5
3
6
Potosi,
7
8
9
MEX
II
95 78 55 53
USA 159 159 159 104 97 70 70 60 60
Th/U
St St St St
TNU
St St St St St
Th/U
FI Fl Fl Fl Fl Fl Replicate
analysis
Fl Fl
II 163
62
40
Th/U
Fl
I1 76ZU 1 76ZUla 76ZU4 76ZU6
95 164 148 97
10 21 6 13
10 21 6 13
Th/U
Fl Fl Fl Fl
Cave, I1 76UQ3
115
19
19
Th/U
St
79 >350 >350 >350
4
4
Th/U
Fl Fl Fl Fl
0.6 4.4 2.4 3.5 6.9 1 11 1.5
Tb/U
St St St St St St St St
Caves, I1 76SK2 76SK.5 76SKlOa 76SKlOb
15
PALEOCLIMATES
St St St St St
114 107 104 102 101
Cave, West Virginia, USA 200 NB 105F 197 NBlO4F NBl03F 174 HBlO2F 172 NBlOlF 169
Cave, West Virginia, GV2F8 GV2F7 GV2F6 GV2F5 GV2F4 GV2F3 GV2F3 GV2F2 GV2Fl
Cave,
TRAVERTINES,
II
II II
Thompson, P., et al. (1975b) Norman Bone Cave, West Virginia, USA 379 NBl-1 6 380 NBl-2 69 78 381 NB l-3 382 NBl-4 82 383 NBl-5 93 384 NBl-6 118 385 NBl-7 129 386 NBl-8 134
-
-
0.6 4.4 2.4 3.5 6.9 1 11 1.5
16
HENNIG,
1
2
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
NBl-9 NBlO-1 NBlO-2 NB 10-3 NB 10-4 NB 10-5 NB 10-6 NBlO-7 NB2-1 NB2-2 NB2-3 NB2-4 NBll-1 NBll-2 NBl l-3
Grapewine, 402 403 404 405 406 407 408 409 410
West Virginia, GV2- 1 GV2-2 GV2-3 GV2-4 GV2-5 GV2-6 GV2-7 GV2-8 GV2-9
GRUN,
BRUNNACKER
TABLE
l--Contirnrrd
3
4
5
137 105 163 173 183 203 195 199 2.5 4.5 5.5 3 2 2.1 3.5
7.8 4 6.8 6.9 9.7 11 10 8.8 1 I 0.5 0.3 0.1 0.1 0.2
7.8 4 6.8 6.9 9.7 11 10 8.8 1 1 0.5 0.3 0.1 0.1 0.2
60 81 70 69 86 80 97 105 159
2.9 6.6 3.6 2.8 3 2.1 2.5 2.7 6.9
2.9 6.6 3.6 2.8 3 2.1 2.5 2.7 6.9
Th/U
St St St St St St St St St
2 4 2 6 5
2 4 2 6 5
TNU
St St St St St
ThJU
Fi
6
7
R. S., et al. (1979) Territories, CDN RHN-1
I
-
14
Th/U
Fl
Biermann 418 419
65”W 58 101
5 18
5 18
Th/U
FI Fl
114 153 168 179 195 110 130 150 178
9 9 18 14 20 14 11 16 21
9 9 18 14 20 14 11 16 21
Th/U
St St St St St St St St St
Cave,
BS, 35”N. 73036: 11 73036: 10 73036: 12 73036: 13 73036:09 73037:08 73037:06 73039:07 73039:08
BS, 35”N,
13.4 cm from the top 72 cm from the top 128.8 cm from the top 193.5 cm from the top 233.4 cm from the top
I 350
14
Crystal 420 421 422 423 424 425 426 427 428
9
St St St St St St St St St St St St St St St
Harmon, R. S., et al. (1978). Government Quarry Cave, BS, 35”N, 65”W 417 73018:E 162 Quarry Cave, 73023:09 73023:08
8
USA
Duplessy, J. C., et al. (1970) Avert d’orgnac, F, 43”50’N, 4”30’E 411 92 412 93 413 loo 414 120 415 129 Harmon, Northwest 416
AND
II II
65”W
II Overgrowth Top Upper middle Lower middle Base Rim Center Top Middle
SPELEOTHEMS,
1 429 430 431 432 433 434 435 436 437 438 439 440
2 73039:06 75001:03 75002:03 75002:04 75003:04 75003:03 75004: 15 75004: 14 75004: 13 75004: 12 75004: 11 75004: 10
Spalding, R. F., and Mathews, Ben’s Hole, BS, 35”N, 65”W 441
TRAVERTINES, TABLE
l-Continued
3
4
5
195 38 102 113 10 27 6 99 104 109 114 119
19 2 9 12 2 4 2 5 6 8 8 13
19 2 9 12 2 4 2 5 6 8 8 13
6
17
PALEOCLIMATES
7
St St St St St St St St St St St St
8
9
Base Top Base Top Base Overgrowth Top Upper middle Middle Lower middle Base
T. D. (1972) II 22
0.4
Thompson, P., et al. (1976) Norman Bone Cave, West Virginia, USA 442 NB3 >300 443 NB4-C5 60 444 NB4-C4 53 445 NB4-C3 102 Thompson, Blanchard 446 447 448 449 450 451 452 453 454 455
AND
G. M., et al. (1975a) Spring Caverns, Arkansas, BS2-10 40 BS2-9 90 BS2-8 90 BS2-7 95 BS2-5 57 BS2-4 128 BS2-3 76 BS2-2 218 BS2-1 >350 BSl-1 97
0.4
Th/U
St
Th/U
St St St St
ThKJ
St St St St St St St St St St
Th/U
St
I 6.4 5.7 25
6.4 5.7 25
4 7 7 7 5 11 6 36
4 7 7 7 5 11 6 36
USA
-
6
Harmon, R. S., et nl. (1977) Grotte Valerie, Nahanni Region, 456 75029 457 75030- 1 458 75030-2 459 75037- 1 460 75037-2
N.W.T., >350 >350 >350 >350 >350
CDN -
Hennig, G. J. complete laboratory Alte Hiihle, Hemer, D, 51”23’N, 461 AHP-IA 462 AHP-lB3 463 AHP-2A 464 AHP-2 465 AHP-3 466 AHP-4/J 467 AHP-WA 468 AHP-5A 469 AHP-5B 470 AHG
series 7”42’E 5.5 50 4 103 16 138 69 232 16 145
5 3 1 16 2 15 6 66 2 15
6
-
FI Fl St St
5 3 1 16 2 15 6 39 2 15
TNU
St St St St St St St St St St
Top
and base
18
HENNIG,
1
3
2
GRUN,
AND
TABLE
l--Continued
4
5
BRUNNACKER
6
7
TNU
St St St St St
ThiU
FI Fl Fl St St St St St St St
Th/U
St
9 I
Prinzenhohle, 471 472 473 474 475
Hemer, PRI-6AB PRI-7/A PRI-8/A PRI-8/J PRI-9A
HeimichshBhle. 476 477 478 479 480 481 482 483 484 485
Hemer. D. 51”23’N. 7”42’E HEI-10/l 20 2 HEI20 2 HEI-10/3 19 2 HEIl/l 348 @z HEI- 1112 180 43 HEIl/4 199 168 HEI50 4 HEI140 21 HEI12 2 HEI-18D 13.50 -
Feldhofhohie, 486
D, 51“20’N, FELlS
6”52’E
Schleddehiihle, 487 488 489 490 491 492 493 494
Letmathe, LET-IA LET- 1lJ LET-21 1 LET-212 LET-213 LET-214 LET-215 LET-216
D, 51”23’N, 276 344 133 106 89 80 62 60
7”43’E m x 23 11 8 7 24 4
104 129 19 II 8 7 24 4
Th/U
St St St St St St St St
Geisloch, 495
D, 51”23’N,7”42’E 10 19 3 9 4
GEIS-5
99
17
14
Th/U
St
SILBE
165
12
11
Th/U
St
13”43’E 61
68
Th/U
St
80
A, 47”25’N, 6
15”15’E 6
Th/U
St
221
52
34
Th/U
FI
195
2
2
TNU
St
301
110
61
Th/U
St
226 139
L-Z 33
57 24
TNU
St St
E, 36”44’N, 6”48”W 252 m 247 140
58 75
Th/U
St St
93
Th/U
St
I 2 0.5 1 2
1.3
0.8
1 2 0.5 1 2 2 2 2 130 30 44 4 21 2 -
0.8
D
Silberhohle, 496
8
I D
I
Verfallene 497
Burg, Am Stein, VBURG
Rettenwand 498
Hohle, Bruck RE’l-TE
Hunas, 499
D
Grotte 500
Petite,
A, 47”33’N, 226 a.d.Murr,
I I I
HUNAS F, 44”20’N, ARD-1
4”30’E
Elba, I, 42”44’N, 10”15’E 501 ELBA Dilara 502 503
Cave,
Cueva 504 505
de Pileta, Ronda, PIL-20 PIL-21
Cueva 506
de Neja,
I II
Antalya-Kemer, DIL-1 DIL-2
TR
E, 36”45’N, NER-22
II
3”53’W 328
II
II =
SPELEOTHEMS,
1
2
Formentera, 507
de Rull,
Cueva 510
de 10s Rotas, ROT-l
Pamassos 511 512 Alistrati, 513
CR, Cave,
Laichinger 535 536 537
CR,
4
5
6
7
4
Th/U
St
4 12
Th/U
St St
53
Th/U
Fl
Th/U
Fl FI Fl
19
8
O”O9’W 4 12
Chalkidiki, PET- 1 PET-211 PET-212 PET-213 PET-U4 PET-215 PET-4 PET-5 PET-7 PET-8 PET-912 PET- 11 PET-13 PET-Isa PET- 16b PET-17 PET-19 PET-20 PET-2 1 PET-22 PET-25-A
O”O6’W 226 38”20’N, >350 14
II 115 22”15’E 3
-
-
-
Th/U
Fl
II
-
Th/U
Fl Fi Fl Fl Fl Fl Fl Fl FI Fl St Fl Fl Fl Fl Fl FI St St St St
3
Hemer, HEI-18A HEI-18B HEI-18C
Gessarthohle, 543
Ltidenscheid, GESSA
II >350
CR, 40”22’N, >350 304 170 75 93 86 >350 >350 127 350 88 >350 >350 >350 126 >350 229 164 177 59 157 D, 48”28’N,
Sariopolis, CR, DYROS 600 DYROS 630
23”Ol’E CJo 42 18 22 10 12 11 25 58 25 26 6 35
II 79 29 16 18 10 12 11 25 36 20 20 6 25
9”43’E 169 191 174
114 60 58
56 44 38
Th/U
Fl Fl Fl
36”36’N, 64 73
22”22’E 16 13
14 12
Th/U
St St
4 30 30
4 30 30
Th/U
Fl Fl Fl
7”38’E 18
16
ThKJ
St
60 15
Th/U
St St
D, 51”23’N,
Canonhohle, Winterberg, CAN-1B GIGA-
9
II
23”55’E
Heinrichshiihle, 540 541 542
GroBe 544 545
l-Continued
4
E, 38”50’N, 49 102
E: 38”50’N,
Tiefenhohle, LAI-IA LAI-1B LAITZ
Caves,
TABLE
PALEOCLIMATES
II 17
Pego, Valencia, RULL1 RULL-3
41”04’N, ALIS-
AND
l”30’E
Cave, Galaxidi, PARC-8 PAR-12
Petralona 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
Dyros 538 539
3
E, 38”40’N, FORM1
Cueva 508 509
TRAVERTINES,
I
7”42’E
42 130 150 D, 51”14’N, 120
D, 51”48’N, 320 140
Submarin Submarin
lO”l4’E 30 15
I
GRON,
HENNIG,
20
2
1
3
ZoolithenhBhle, 546 547 548 549 550
Burggailenreuth. ZOOLl ZOO2L ZOOLB ZOOL2 ZOOLl
Knitterthbhle, 551 552 553
Letmathe, KNIT5 KNIT7 KNIl2
Charcadio 554 555 556
Cave, Tilos, T7507 T767S T766S
Rowing 557 558
Hills
Mieru 559 560
Hiihle,
Punkra 561
CS, 49”N, MIERl MIERZ
Sijhnstetten 562
TNU
St St St
36”28’N, 27”23’E 108 16 58 10 72 9
14 10 7
Th/U Th/U
St St St
Th/U
Fl Fl
ZA, 22”31’S, 2350 >350
9
Replicate
analysis I
II
14”48”E
-
II
-
I 1 8
2 1
1 1
TNU
St St
16”45’E 190
48
45
TNU
St
II
2
2
TNU
St
87 108
12 15
12 15
Th/U
St St
11
1
1
Th/U
St
BAERlO BAERI 1 BAER12
3 17 15
1 2.5 1.5
1 2.5 1.5
Th/U
St St St
KAM13
14
2
Th/U
St
YU VIL14 VILl5
52 82
5 10
TNU
St St
82
13
TNU
St
I I
YU, 45”45’N, ZELS9
14”20”E
I
II
D
Kaminloch, 569
8
I
5 2 1
Zelske 565
I
D Hdhle.
Geistalh(ihle, 572
Euerwanger 577
FI Fl Fl Fl FI
5 2 1
D
Fuchsberg, 576
7
TNU
Tropfsteinhiihle, LANG7 LANG8
Silberh(ihle, 573 574 575
6 1.5 6 4 2 1
Langenfelder 563 564
Vilenica 570 571
5 1 l”l2’E 1.5 5 3 2 1
Hiihle. D: SOHNS
BPrenloch, 566 567 568
4
BRUNNACKER
19”40’E
CS, 49”23’N, PUNK4
Hiihle,
I-Cor~tinucd
D. 49”50’N, 17 6.5 44 13 18
Cave, Namibia, K0164 K0165
HBhle,
TABLE
D, 51”23’N. 7”43’E 45 18 9.1 GR,
AND
I
D, 45”56’N, GE116 Kehlheim, SIL-17 SI-18A SI-181
I
7”23’E
I
D, 48”55’N,
ll”50’E
I
115 106 98
10 10 11
10 10 11
Th/U
St St St
FUCHS
153
15
15
Th/U
Fl
Btthl, D BUHLZ
180
24
19
TNU
Fl
D
I I
SPELEOTHEMS,
1 Cueva 578
2 de RuIl,
Sontheimer 579 580 581 Makapan, 582 583 584 585
3
1~: 38”50’N, RlJLL
Hohle, Laichingen, SONT6 SONT3 SONT2
TABLE
l-Continued
4
5
21
PALEOCLIMATES
6
-
7
8
9 II
62
4
5
Th/U
St
196 154 3.1
cc 19 0.4
67 16 0.5
Th/U
St St St
Th/U
Fl FI Fl Fl
D
I
ZA
II
M.4KCT M.4KCS M.AKBA MAKA2
>350 202 324 >350
du Prince, Grimaldi, GDP-02 GDP-01
Caune 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
de pArago, F, 42”45’N, YCP- 1 YCP-2 YCP-3 YCP-4 YCP-5 YCP-16 YCP-21 YCP-22 YCP-23 YCP-24 YCP-25 YCP-26 Y CP-27 YCP-28 YCP-29 YCP-30 YCP-3 1 d’Aldene,
Herault, ALD-22 ALDE-2 ALDE- 1 AL.DE-1 AL.DE-2 AL.DS- 1 AL.D2- 1 AL.D2-3a AL.D2-3b AL,D2-3c AL.D2-4 AL.D2-5a AL.D2-5b AL,DS-3 AL.DB-4
Volmehanghohle, Hagen, 620 VGLM-2 621 VGLM1 Loisia, 622
-
AND
O”O9’W
Grotte 586 587
Grotte 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
TRAVERTINES,
Sud de Lons GIGNY
-
-
49 m -
29 72 -
I 210 217 2”44’E 55 225 249 73 105 >350 >350 308 221 139 101 157 >350 165 268 148 258
24 63
19 38
Th/U
Fl FI
3 30 145 5 12 m
3 23 60 5 11
Th/U
Fl Fl Fl Fl Fl St St Fl Fl Fl FI Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl
54 26 11 14 20
36 12 16 23 -
17 80 16 60
15 44 14 38
9 55 7 7 9 57 24 61 103 22 43 59 29 82 14
8 35 6 6 8 35 18 37 50 18 30 25 22 44 13
Th/U
D, 51”18’N, 7”30’E 163 22 19 2
17 2
Th/U
St St
19
ThU
St
F, 43”16’N, 106 166 104 100 102 225 169 230 269 246 214 242 235 267 129
de Saunier,
F, 168
2”44’E
Replicate Replicate
analysis analysis
I
I 23
22
HENNIG,
1
2
Courterolles 623 624
3
Nutts, St. George, GEOR-4 GEOR-3 GEOR-2 GEO-1W GEO-1R
Skhul Caves, 630
I1 SKHUL
Grotte 631 632
Arriege, ELEN-2 ELENE
Cave,
Kuizhon, 635 636 637 638 639
Tj
Caune 641 642
Dietfurt, 644
BRUNNACKER
--
6
-
7
9
8
F >350 >350 191 240 >350
-
54
TNU
Fl Fl
TNU
Fl Fl Fl Fl FI
TNU
Fl
Th/U
Fl Fl
St St
35
I -
27 44
22 31 -
-
II
85
44
I
F 39 43
Chalkidiki, PET-25-B/1 PET-25-B/2
GR,
40”22’N. 113 98
5.1 5.8
4.9 5.5
II
23”Ol’E 12 10
10 10
Th/U
19 17 82 190 115
2 3 4 35 14
3 2 3 26 13
TNU
65
6
6
ThiU
304 255
cc 75
61 42
TNU
226
18
14
TNU
258
73
41
TNU
102 120 104 126 135 131 125 123 71 114 129 119
12 7 6 10 9 9 7 7 3 5 6 5
11 7 6 9 8 8 6 7 3 5 6 5
TNU
Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl Fl
Th/U
St Fl
11
Beijing, CHKT-I
Altmtihltal, PFRAU
Replicate
analysis
Tj
de I’Arago, F ARC-5-CU ARC-S-DU
Pfraundorf, 643
5
-
271
QUIZ-3-A QUIZ-3-B QUIZ-4 8012-A 8012-B
Chou-Kouthien. 640
4
>350 199
Les Valerots 625 626 627 628 629
Petralona 633 634
AND
I
D’AvaIIon. F COUR-2 COUR- 1
d’Enlene,
GRON,
D
Oberpfalz, D DIETF
Gascoyne, M., er al. (1981) Victoria Cave, GB 645 79000- 1 646 79000-2 647 79001-l 648 79001-2 649 79001-3 650 79002- 1 651 79021-l 652 79023- 1 653 79025-l 654 79025-2 655 79025-3 656 79026 1 Green, H. S., et nl. (1981) Pontnewydd Cave, Wales, 657 D-188 658 D-187
GB
J 20 125
-
6
6
See Fig.
3
SPELEOTHEMS,
1 6.59 660 661 662 663 664
2 D-292 co D-604 D-312 D-312 D-47 1 TABLE
1
2
Harmon, R. S., ef al. (1980) Bilzingsleben, DDR 5 373 6 374 7 375 8 376 Schwartz, H. P., ef al. (1979) Nahal Mor, I1 9 76NZ3-2 10 76NZ3-2A 11 76NZ4B-2A 12 76NZ4B-3 13 76NZ4B-4a 14 76NZB-4a 15 76NZ4A- 1 16 76NZ5-2 Nahal Aqev, I1 17 76NZ6e- 1 18 76NZ6a- 1 19 76NZ6a-2 20 76N.Z6a-4 21 76N:Z6d-3 22 76N:Z6d-4 23 76N:Z 1 (I Column Column Column Column Column Column
AND
TABLE
l-Continued
3
4
5
180 180 162 90 91 180
35 11 10 3 2 20
35 11 10 3 2 20
3
23
PALEOCLIMATES
6
7 Fl Fl Fl St St Fl
2. AGE DATA OF SPRING DEPOSITED
Cherdyntsev, V. V., et al. (1965) Tata, H 1 7 116 Verteszollos, H 2 9 3 10 4 8
TRAVERTINES,
4
5
6
16
16
Th/U
35
Th/U
8
Top Base
TRAVERTINE~
7
225 2250 >300
35 -
228 234 223 228
17 18 16 17
12 13 11 12
Th/U
2.5 2 3.1 1.8 13 3.6 5.2 4.2
2.5 2 3.1 1.8 13 3.6 5.2 4.2
Th/U
Travertine blocks
46 54 25 36 19 10 5
ThKJ
Fossil spring
-
9
8
II 51 49 42 25 42 47 45 46
II 258 228 214 191 211 85 74
86 127 33 5 19 10 5
1: Consecutive numbering of samples. 2: Original sample labeling. 3: Mean age value (lo3 yr B.P.). 4: Plus one o error (lo3 yr B.P.). 5: Minus one o error (lo3 yr B.P.). 6: U-series dating method: Thm: z3~h/*34u. Column 7: Additional remarks. Column 8: I: climate zone I (see text), II: climate zone II (see text).
24
HENNIG.
1
Ein Aqev, 24
TABLE
2--Continurd
12
5
-
-__
6
8
II -
Th/U
115
30
30
TNU
70 190 >270
20 45
20 45
ThiU
60
15
15
TNU
70
18
18
ThiU
175
44
44
Th/U
190
42
42
Th/U
I
average
of 11 samples
I
I
H
H 32
Budapest-Kriscall. 33
H
Tata-Tovaros. 34
H
Vertesszollos, 35
H -
>350
-
Th/U
Nguyen, Barrage 36 37 38 39
H. V., et al. (1973) du Dragon, AFG 4T320 3T367 2T363 lT157
16 28 45 47
Sources 40 41
de Paimouri, lOT344 1 lT346
18 80
2 5
Th/U
Barrage 42
de Band-e-Amir, 9T324
113
15
Th/U
Hennig, G. J. Complete Bad Langensalza, DDR 43 TBLS-1 44 TBLS-2 45 TBL-3.1 46 TBL-3.2 Briihheim, 47
7
ThiU
-
Cherdyntsev, V., et al. (1975) Weimar-Ehringsdorf, DDR 27 Pecsi. M. (1973) Vertesszollos, H 28 1 29 2 30 3
0.9
0.9
Schwartz, H. P., et al. (1980) Mayan Barukh, I1 24 76MB4 >350 25 76MB3 >350 >350 26 76MBl
Tata,
BRUNNACKER
II
I1 76NZ8
Budapest-Obuda. 31
AND
4
3
2
GRUN,
DDR TBRU-4
II Th/U
AFG
II
AFG
II
laboratory
series I 14 14 9 10
1 2 0.6 0.7
Th/U
I
>350
-
Th/U
SPELEOTHEMS,
TRAVERTINES, TABLE
1
2
Burgtonna, 48 49 50
5
6
8 9 7
8 9 7
Th/U
115 118 151
20 12 18
18 11 14
ThiU
212 167 244 159
30 27 50 16
24 21 34 14
Th/U
79
8
8
Th/U
Bilzingsleben, DDR 59 TBI-21.1 60 TBI-21.2 61 TBI-22 62 TBI-23 63 TBI24.1 64 TBI-24.2 65 TBI-25.1 66 TBI--25.2 67 TBI-26.1 68 TBI.-26.2
83 81 179 244 >320 301 185 186 222 88
6 4 22 54
5 4 17 35
Th/U
Weimar-Ehringsdorf, DDR 69 SWIG14 70 SWEG 13 71 SWE-12 72 SWEI-11 73 SWES-1 74 S WE:-2 75 S WE:-3 76 S WE;-4 77 SWE:-5 78 S WE-6 79 S WE:-7 80 SWEi-8 81 S WE:-9 82 SWE.-IO
121 132 31 71 >350 80 105 212 102 159 1350 >350 145 177
13 14 135 24 26 17 19
133 106 105 105
21 6 9 4
17 6 7 4
Th/U
D 101 95
5 6
4 5
Th/U
197 255
20 82
17 46
ThiU
Weimar, DDR TWE-IO. 1 TWE-10.2 TWE-11
Parktravertin, 54 55 56 57 Komer, 58
Weimar, TWE-12 TWE-13 TWE-14 TWE-15
Thiiringen, TKG20
7
8 I
104 101 111
Taubach, 51 52 53
25
PALEOCLIMATES
2-Continued
4
3
DDR TBUR-5 TB UR-6 TB UR-7
AND
I
DDR
I
DDR
Stuttgart-Unterturkheim, 83 TBD-1 84 TBD-2 85 TBD-3 86 TBD.-4 Heinrich-Ebner-Str., 87 THE-- 1 88 THE-2 Katzensteigle, Stuttgart, 89 TKN-1 90 TKN-2
1 I
cc 20 14 40 3
58 17 11 29 3
13 17 3 7 -
11 15 3 6
Th/U
12 13 55 19 20 14 16
D
Stuttgart,
I
I
D
26
HENNIG,
GRUN,
TABLE 2
1 Kursaal 91
3
Bad Cannstatt, TKU Haas, Stuttgart, THA-I THA-2 THA-4 THA-5 THA-6A THA-7 THA-6B THA-IA THA-8B
Steinbruch 101 102 103 104 105 106 107 108 109 110 111 112 113
Lauster, TLA-1 TLA-2 TLA-3 TLA-4 TLA-5 TLA-6 TLA-7 TLA-8 TLA-9 TLA-10 TLA-11 TLA-12 TLA-13
Muggendorf, 114
D MUGG-2
Streitberg, 115
D TLANG
Stuttgart.
Neustift, 120 Pammukkale, 121 122 El Kown, 123 124 125 126 127 128 129
6
8
7
I
D 41
1
2
TWU
174 235 134 285 243 166 >350 209 260
36 45 96 50 34 62
29 31 41 34 27 40
Th/U
I
-
D 192 245 171 225 266 182 267 212 227 178 67 >350 221
31 23
59 68 31 58 98 52 35 64 26 32 7
35 41 24 36 50 36 27 41 21 25 7
-
82 107 >350
Th/U
33
9.6
D, 50”34’N, 8.1
41 28
-
>350
Wasserleitung, TROM-2
5
D
Libyan Desert. LAR 116 LIBY-3 117 LIBY-2 LIBY- 1 118 Romische 119
BRUNNACKER
2-C’ontinued
4
Stuttgart,
Steinbruch 92 93 94 95 % 91 98 99 100
AND
24 -
Th/U
1.4
1.5
Th/U
6 9
5 8
Th/U
0.7
0.7
Th/U
-
-
6”4l’E
D NEUST
12
0.3
0.4
Th/U
TR PAM- 1 PAM-2
15 17
2.1 2.6
2.2 2.5
ThiU
16 157 140 80 247 102 99
0.6 22 10 4 30 8 8
0.6 20 10 4 25 8 8
Th/U
84 104
6 9
6 9
ThiU
SYR AINB-1 HUMM-2 OUMM-3 OUMM-4 OUMM-5 TELL-6 TELL-6
Koppeth-Dagh-Gebirge. 130 DAGH131 DAGH-2
II
Replicate
IR 1
analysis II
SPELEOTHEMS,
TRAVERTINES,
TABLE 1
27
PALEOCLIMATES
2-Continued
3
4
5
101 98
10 8
10 8
TNU
Vertesszollos, H 134 VERT-2 135 VERT-6 136 VERT-7 137 VERT-8
128 210 248 135
20 151 30 12
17 51 67 11
Th/U
Dunamaals, H: 138 DUN-09 139 DUN-10
291 >350
~0 -
82
Th/U
-
Buda, H: 140 141
>350 160
-
-
Tata, H 132 133
2
AND
6
7
8 I
TATA- 1 TATA- 13
I
I
I BUD-11 BUD-12
38
ACKNOWLEDGMENTS The authors wish to express thanks to the following persons and institutions for their help: Professor Dr. W. Herr of the Institute of Nuclear Chemistry, University of Cologne, who supported our geochronological studies; Miss M. Winter for her assistance in many U-series analyses; Dr. N. Wiehl for writing a convenient computer program for U-series evaluation; Dr. J. Eberth and the Institute of Nuclear Physics, University of Cologne, for supplying surface barrier detectors; and Mr. J. Loftus for his assistance with the English version of this manuscript. We furthermore gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Bundesministerium fur Forschung und Technologie.
REFERENCES Atkinson, T. C., Harmon, R. S., Smart, P. L., and Waltham, A. c’. (1978). Paleoclimatic and geomorphic implications of *30Th/234U dates on speleothems from Britain. Nature (London) 272, 24-28. Atkinson, T. C., (and Smith, D. I. (1976). The erosion of limestones. In “The Science of Speleology” (T. D. Ford and C. H. D. Cullingford, Eds.), pp. 151- 177. Academic Press, New York. ohne Sonne.” Bauer, E. (1969). “Hohlen-Welt Ravensburger Taschenbuchverlag Nr. 565, Ravensburg. Brunnacker, K. ( 1963). Die Sedimente in der Hohlenrinne von Hunas (Nordliche Frankenalp). Eiszeifalter und Gegenwart 14, 117- 120. Cherdyntsev, V. V., Kazachevskiy, I. V., and Kuzmina, Y. A. (1965). Dating of Pleistocene carbonate formations by lthe thorium and uranium isotopes. Geokhimiya 9, 1085- 1092. [translation.] Cherdyntsev, V., Senina, N., and Kuzmina, E. A. (1975). Die Altersbestimmung der Travertine von
Th/U 27
Weimar-Ehringsdorf. Abh. Zentr. Geol. Inst. 23, 7- 14. Dansgaard, W., Johnsen, S. J., Mgller, J., and Langway, C. C., Jr. (1969). One Thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science 166, 377-380. Dreybrodt, W. (1980). Deposition of calcite from thin film of natural calcareous solutions and the growth of speleothems. Chemical Geology 29, 89- 105. Duplessy, J. C., Labeyrie, J., Lalou, C., and Nguyen, H. V. (1970). Continental climatic variations between 130,000 and 90,000 years BP. Nature (London) 226, 63 l-633. Emiliani, E. (1978). The cause of the Ice Ages. Earth and Planetav
Science
Letters
37, 349-352.
Fanditis, J., and Ehhalt, D. H. (1970). Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: Evidence of nonequilibrium isotopic fractionation. Earth and P/anetary Science Letters 10, 136- 144. Fornaca-Rinaldi, G. (1968). *30Th/234Th Dating of cave concretions. Earth and Planetary Science Letters 5, 120- 122. Franke, H. W. (1971). Morphologie und Stratigraphie des Tropfsteins-Rtickschliisse auf Grossen des Palaoklimas. Geologisches Jahrbuch 1971, 473-501. Gascoyne, M. (198la). A climate record of the Yorkshire Dales for the last 300,000 years. In “Proceedings, 8th International Congress of Speleology,” pp. 96-98. Gascoyne, M. (198lb). Rates of cave passage entrenchment and valley lowering determined from speleothem age measurements. In “Proceedings, 8th International Congress of Speleology,” pp. 99- 100. Gascoyne, M., Benjamin, G. J., Schwartz, H. P., and Ford, D. C. (1979). Sea-level lowering during the Il-
28
HENNIG,
GRON,
linoian glaciation: Evidence from a bahama “Blue Hole.” Science 205, 8066808. Gascoyne, M., Currant, A. P., and Lord, T. C. ( 1981). Ipswichian fauna of Victoria Cave and the marine paleoclimatic record. Nafurr (London) 294, 652-654. Gascoyne, M., and Latham, A. G. (1981). The antiquity of Castleguard Cave as established by uranium-series dating of speleothems. In Proceedings, 8th International Congress of Speleology. pp. 101-103. Geyh, M. A. (1970). Zeitliche Abgrenzungen von Klimaanderungen mit C-14 Daten. Beiheftr Geobgisches Jahrbuch 98, IS - 22. Glazek, J., and Harmon, R. S. (1981). Radiometric dating of polish cave speleothems: Current results. In Proceedings. 8th International Congress of Speleology, pp. 424-427. Green, H. S., Stringer, C. B., Collcut, S. N., Currant, A. P.. Huxtable, J., Schwartz, H. P., Debenham, N., Embleton, C.. Bull, P., Molleson, T. I., and Bevins, R. E. (1981). Pontnewydd Cave in Wales-A new middle Pleistocene hominid site. Natrrrr (Lendon) 294, 707-713. Grtin, R.. Brunnacker, K., and Hennig, G. J. (1982). 2D”Th/234U-Daten mittelund jungpleistozaner Travertine im Raum Stuttgart. Jahresberichrr und Mitteilungen des Oberrheinischen Geologischen Verrins, N.F. 64, 201-211. Harmon, R. S. (1979a). “Late Pleistocene Paleotemperatures in North America as Inferred from Isotopic Variations in Speleothems.” PhD. thesis, Department of Geology, McMaster University, Hamilton, Harmon, R. S. (1979b). U-series dating of speleothems and a-glacial chronology for western North America. NSS Bulletin 41, lO2- 104. Harmon, R. S.. Ford, D. C.. and Schwartz, H. P. (1977). Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Thi’34U dating of calcite speleothems. Canadian Journul of Earth Sciences 14, 2543-2552. Harmon, R. S.. Glazek, J., and Nowak, K. (1980). s30Th/‘34U dating of travertine from the Bilzingsleben archaeological site. Nature (London) 284, l32- 135. Harmon, R. S., Ku. T. L., Matthews, R. K.. and Smart, P. L. (1979). Limits of the U-series analysis: Phase 1 results of the uranium-series intercomparison project. Geology 7, 405-409. Harmon, R. S., Land, L. S., Mitterer, R. M.. Garrett. P., Schwartz, H. P.. and Larson, G. J. (1981). Bermuda sea level during the last interglacial. Nature (London) 289, 481-483. Harmon, R. S., Schwartz, H. P., and Ford, D. C. (1978a). Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave system Kentucky: Implications for terrestical climate change during the period 230,000 to 100,000 years B.P. Journal of Geology 86, 373-384. Harmon, R. S.. Schwartz, H. P.. Thompson. P., and
AND
BRUNNACKER
Ford, D. C. ( 1978b). Critical comment on “uranium series dating of stalagmites from Blanchard Springs Caverns, Arkansas, U.S.A.” Geochimica et Cosmochimica Acta 42, 433-439. Hendy. C. H. (1971). The isotopic geochemistry of speleothems. Part I-The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Grochimica et Cosmochimicu Actu 3.5, 801-824. Hendy. C. H., and Wilson, A. T. (1968). Paleoclimatic data from speleothems. Nature (London) 219, 48-51. Hennig, G. J. ( 1979). “Beitrage zur Th-230/U-234Altersbestimmung von Hohlensintern sowie ein Vergleich der erzielten Ergebnisse mit denen anderer Absolutdatierungsmethoden.” Dissertation. Universitat zu Koln. Koln. Hennig, G. J.. Bangert. U.. Herr, W., and Freundlich, J. ( 1980a). Uranium series dating of calcite formations in caves: Recent results and a comparative study on age determinations via 230Th/2R’U, 14C, TL and ESR. Revue d‘Archueometric 4, 91- 100. Hennig. G. J., Bangert. U., and Herr. W. (1980b). Dating of speleothems by disequilibrium in the Udecay series. Proceedings of the 19th International Symposium on Archaeometry and Archaeological Prospection, London, March 28-31, 1979. In “British Museum Occasional Papers” (R. Burleigh. Ed.), Vol. 10, pp. 73-83. British Museum Research Laboratory, London. Hess, J. W., and Harmon, R. S. It7 “Proceedings, 8th International Congress of Speleology.” pp. 433-436. Ikeya. M. (1978). Spin-resonance ages of brown rings in cave deposits. Natur,vissenschaftrn 65, 489. Jakucs, L. (1977). “Morphogenetics of Karst Regions, Variants of Karst Evolution.” Hilger, Bristol. Koenigswald, W. v. (1973). Lagurus lagurus im jungpleistozlnen Travertin des Biedermannschen Steinbruchs (Stuttgart-Unterttirkheim). Nertrv Jahrbuch .feur Ceologie und Pal~1~~ont(,i(,gir, Moncushefte 1973, 667-673. Krolopp, E. (1977). Absolute chronological data of the Quaternary sediments in Hungary. Forldr. Koe:/. 101, 230-232. Ku. T. L.. Bull. W. G., Freeman. S. T.. and Knauss. K. G. (1979). ‘30Th/234U Dating of pedogenetic carbonates in gravel desert soils of Vidal Valley, Southeastern California. Geologiccrl .‘$ociefy of America RuDetin 90, 1063- 1073. KU, T. L., and Joshi, L. U. (1981). Measurements of YJ and 230Th in impure carbonates for age determination. Journal of Radioanalyrical Chemistry 67, 35 I-358. Lively. R. S., Alexander. E. C.. and Milske, J. (1981). A late Pleistocene chronologic record in Southeastern Minnesota. In “Proceedings, 8th International Congress of Speleology.” pp. 623-626.
SPELEOTHEMS,
TRAVERTINES,
Moore, G. W. (1956). Aragonite speleothems as indicators of paleotemperature. American Journal of Science
254,
746.
Moore, G. W., and Sullivan, G. N. (1978). “Speleology-The Study of Caves,” 2nd ed., Zephyrus, Teaneck. Mtiller, H. (1974a). Pollenanalytische Untersuchungen und Jahresschichtenzahlungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Juhrbuch A21, 149- 169. Mtiller, H. (1974b). Pollenanalytische Untersuchgen und Jahresschichtenzahlungen an der holsteinzeitlichen Kieselgur von Munster-Brehloh. Geologisches Jahrbuch A21, 107- 140. Nguyen, H. V., and Lalou, C. (1969). Comportement geochimique des isotopes des families de l’uranium et du thorium edansles concretionements de grottes: application a la datation des stalagmites. Compfes Rendus Hebdomadaires des Sciences Serie 560-563.
D:
des seances de I’dcademie Sciences Natyralles 269,
Nguyen, H. V., Lang, J., Elbez, G., Lalou, C., and Lucas, G. (1973). Existence d’un dtsequilibre eleve entre les isotopes de l’uranium. Influence sur la datation des travertines de Bamian (Afghanistan Central) par la methode 23Th1234U. Comptes Rendus Hebdomadaires 2233-2236.
des Seances
de 1’Academie
276,
Pecsi, M. (1973). Geomorphological position and absolute age of the lower paleolithic site at Vertesszbllos, Hungary. Foeldr. Koezl. 97, 109- 119. Schwartz, H. P. (1980). Absolute age determination of archaeological sites by uranium series dating of travertines. Archaeomerry 22, 3-24. Schwartz, H. P., Blackwell, B., Goldberg. P., and Marks, A. E. (1979). Uranium series dating of travertine from archaeological sites. Nahal Zin, Israel. Narure (London) 277, 558-560. Schwartz, H. P., and Debenath, A. (1979). Datation absolue des restes humains de la Chaise-de-Vouthon (Charente) au moyen du desequilibre des series d’uranium. Comptes Rendus Hebdomadaires des Seances
de I’Academie
des Sciences,
Serie
D 288,
1155-1157. Schwartz, H. P., Goldberg, P. D., & Blackwell, B. (1980). Uranium series dating of archaeological sites
AND
29
PALEOCLIMATES
in Israel. Israel Journal of Earth Sciences 29, 157- 165. Schwartz, H. P., Harmon, R. S., Thompson, P., and Ford, D. C. (1976). Stable isotope studies of fluid inclusions in speleothems and their paleoclimatical significance. Geochimica et Cosmochimica Acta 40, 657-665.
Shackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes of a lo5 year and IO8 year scale. Quafernary
Research
3, 39-55.
Spalding, R. F., and Mathews, T. D. (1972). Stalagmites from caves in the Bahamas: Indicators of low sea level stand. Quaternary Research 2, 470-472. Thompson, G. M., Lumsden, D. N., Walker, R. L., and Carter, J. A. (1975a). Uranium series dating of stalagmites from Blanchard Springs Caverns, U.S.A. Geochimica et Cosmochimica Acta 39, 1211-1218. Thompson, P., Ford, D. C., and Schwartz, H. P. (1975b). U234/U238ratios in limestone cave seepage waters and speleothem from West Virginia. Geochimica et Cosmochimica Acta 39, 661-669. Thompson, P., Schwartz, H. P., and Ford, D. C. (1974). Continental Pleistocene climatic variations from speleothem age data. Science 184, 893-895. Thompson, P., Schwartz, H. P., and Ford, D. C. (1976). Stable isotope geochemistry, geothermometry, and geochronology of speleothems from West Virginia. Geological Society of America Bulletin 87, 1730- 1738. Trimmel, H. (1953). Beobachtungen tiber die Ausbildung von Sintergenerationen in osterreichischen Hohlen. Die Hiihle 4, 6- 10. Troll, C. (1964). Karte der Jahreszeiten-Klimate der Erde. Erdkunde 18, 5-28. Waltham, A. C. (1977). “Die Wunderwelt der Hohlen in Farbe.” Stidwest Verlag, Munchen. Wintle, A. G. (1978). A thermoluminescence study of some Quatemary calcite: Potential and problems. Canadian Journal of Earth Sciences 15, 1977- 1986. Wintle, A. G., and Brunnacker, K. (1982). Ages of volcanic tuff in Rheinhessen obtained by thermoluminescence dating of the loess in which they occur. Naturwissenschaffen 69, 181- 182.