Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
Contents lists available at ScienceDirect
Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns
Stability and Hopf bifurcation analysis in bidirectional ring network model Linjun Wang a,b,⇑, Xu Han a a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University, Changsha City 410082, PR China b College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China
a r t i c l e
i n f o
Article history: Received 15 September 2010 Received in revised form 20 December 2010 Accepted 20 December 2010 Available online 28 December 2010 Keywords: Delay Hopf bifurcation Neural network Normal form Center manifold
a b s t r a c t Using the system parameter instead of the delay as the bifurcation parameter, linear stability and Hopf bifurcation analysis including its direction and stability of bidirectional ring network model are investigated in this paper. The main tools to obtain our results are the normal form method and center manifold theory. Numerical simulations show that the theoretically predicted values are in excellent agreement with the numerically observed behavior. Ó 2010 Elsevier B.V. All rights reserved.
1. Introduction Bifurcation behavior of artificial neural networks is a very interesting phenomenon which has been intensively studied during the last two decades. Moreover, they have many other applications. For example, content-addressable memories, in which information is stored as stable equilibrium points of the system. In 1984, Hopfield considered a simplified neural network model, where each neuron is represented by a linear circuit consisting of a resistor and a capacitor, and connected to the other neurons via nonlinear sigmoidal activation functions [1]. Since then, dynamical characteristics of neural networks had become a subject of intensive research activity. Later, it developed that delays were arising in neural networks due to the processing of information. Most of the models of neural networks are described by the systems of delay differential equations [2–7]. In addition, for the general theory of delay differential equations (DDEs), we refer to [8–15]. Due to the complexity of the analysis, most of the works only have focused on the situations where most of them deal with the two-equation models or traditionally regarding the delay of signal transmission as the parameter. However, very few papers about bifurcation analysis regarding the eigenvalues of the connection matrix as the bifurcation parameters can be found and very limited, especially in highdimensional bidirectional ring network model with delay. In this paper, we consider bidirectional ring network model as the following system (1.1) of DDEs consisting of delay, the internal decay rate and the connection strength. More precisely, we will give some conditions on the linear stability of the trivial solution of the system and investigate the Hopf bifurcation including its direction and stability of system (1.1), which is given as the following model (see Fig. 1)
8 > < x_ ¼ x þ af ðyðt sÞÞ þ bf ðzðt sÞÞ; y_ ¼ y þ af ðzðt sÞÞ þ bf ðxðt sÞÞ; > :_ z ¼ z þ af ðxðt sÞÞ þ bf ðyðt sÞÞ;
ð1:1Þ
⇑ Corresponding author at: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University, Changsha City 410082, PR China. E-mail address:
[email protected] (L. Wang). 1007-5704/$ - see front matter Ó 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cnsns.2010.12.022
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
3685
Fig. 1. Architecture of the model described by (1.1).
where s is nonnegative and denotes the synaptic transmission delay. The strengths of the self and nearest-neighbour coupling are denoted by a and b, respectively. They are the nonzero connection weighters. f : R ? R is the activation function. Throughout this paper, we always assume that f : R ? R is adequately smooth, and satisfies the following conditions: (C1) f(0) = 0, f0 (0) = 1; (C2) x f(x) – 0 for when x – 0. The rest of the paper is organized as follows: In Section 2, we discuss the linear stability of the trivial solution. In Section 3, we study the Hopf bifurcation of equilibria. Section 4 is devoted to numerical simulations and we conclude this paper in Section 5. 2. Linear stability of the trivial solution Linearizing (1.1) at trivial solution produces the following linear system:
8 > < x_ ¼ x þ ayðt sÞ þ bzðt sÞ; y_ ¼ y þ azðt sÞ þ bxðt sÞ; > :_ z ¼ z þ axðt sÞ þ byðt sÞ; whose characteristic matrix is
0
kþ1
B Dðl; kÞ ¼ @ beks aeks
aeks
beks
C aeks A:
kþ1 be
1
ks
kþ1
So the characteristic equation is
0 ¼ det Dðl; kÞ ¼ ðk þ 1Þ3 3abe2ks ðk þ 1Þ ða3 þ b3 Þe3ks :
ð2:1Þ
Then it can be decomposed as
" ks
det Dðl; kÞ ¼ ½k þ 1 ða þ bÞe
kþ1þ
aþb 2
#" # ! ! pffiffiffi pffiffiffi aþb 3 3 ks ks kþ1þ : þ ða bÞi e ða bÞi e 2 2 2
ð2:2Þ
We first consider
pz ðkÞ ¼ k þ 1 zeks ; z 2 C:
ð2:3Þ
We define a curve R as the following parametric equations
uðtÞ ¼ cosðstÞ t sinðstÞ;
v ðtÞ ¼ t cosðstÞ þ sinðstÞ;
ð2:4Þ
where t 2 R. ðtÞ Similar to the analysis in [13], it is not difficult to check that the curve R is symmetric about the u-axis. Let hðtÞ ¼ vuðtÞ . Then 2 2 0 h (t) = u (t)(1 + s + st ) > 0 for all t 2 R such that u(t) – 0. This implies that, as t increases, the corresponding point (u(t), v(t))
3686
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
on the curve R moves anticlockwise around the origin. Moreover, it follows from u2 + v2 = 1 + t2 that R+ = {(u(t), v(t)) : t 2 R+} is simple, i.e., it cannot intersect with itself. Let ftn gþ1 non-negative zeros of n¼0 be the monotonic increasing sequence of theS v(t), and cn = u(tn) for all n 2 N0 :¼ {0, 1, 2, . . .}. For each n 2 N0, let Rn = {(u(t), v(t)):t 2 [ tn+1, tn] [tn, tn+1]}, which is a closed curve with (0, 0) inside, and it is shown in Fig. 2. The following lemma plays a profound role in analyzing the distribution of zeros of (2.1). Lemma 2.1. Consider pz(k) defined in (2.3), then the following statements are true: (i) pz(k) has a purely imaginary zero if and only if z 2 R. Moreover, if z = u(h) + iv(h) then the purely imaginary zero is ih except that there is a pair of conjugate purely imaginary zeros ±itn if z = cn for n 2 N. (ii) For each fixed z0 = u(h0) + iv(h0) 2 R, there exists an open d-neighborhood of z0 in the complex plane, denoted by B(z0, d), and an analytical function k : B(z0, d) ? C such that k(z0) = ih0 and k(z) is a zero of pz(k) for all z 2 B(z0, d). In addition, along the vector v(n) = (v0 (h0), u0 (h0))M(n), the directional derivative of Re{k(z)} at z0 is positive, where n 2 (p/2,p/2) and
MðnÞ ¼
cos n
sin n
sin n cos n
:
(iii) pz(k) has only zeros with strictly negative real parts if and only if z is inside the curve R0; exactly j 2 N zeros with negative real parts if z is between Rj1 and Rj. Especially, if z 2 R0, pz(k) has either a simple real zero 0 (if z = 1) or a simple purely imaginary zero (if Im (z) – 0), or a pair of simple purely imaginary zeros (if z = c1), and all other zeros have strictly negative real parts. For the sake of convenience, we introduce the following notations:
8 X ¼ fðb; aÞ 2 R2þ : b a ¼ cj ; b a–cj ; b a– ck g; > > > 1j < > > > :
k 2 N0 ; j 2 N0 :
X2j ¼ fðb; aÞ 2 R2þ : b a ¼ cj ; b a–cj ; b a– ck g;
k 2 N0 ; j 2 N0 :
R2þ ¼ fðb; aÞ 2 R2 : a > 0g:
We call X 1j ; X2j ; j 2 N 0 ; critical lines.
10 for t ≥0 for t<0
8 Σ
6
2
Σ1
4 2
Σ
v(t)
0
0 −2 −4 −6 −8
−10 −10
−8
−6
−4
−2 u(t)
0
Fig. 2. The parametric curve R.
2
4
6
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
3687
Corollary 2.2 (i) All the zeros of detD(l, k) have negative real parts if and only if jb + aj < 1 and a2 + b2 ab < 1. S S þ S (ii) If and only if l ¼ ðb; aÞ 2 Xþ X1n X2n X2n for some n 2 N, detD(l,k) has a pair of simple conjugate purely imaginary 1n zeros denoted by ±itn. S S þ S (iii) If and only if l ¼ ðb; aÞ 2 Xþ X10 X20 X20 det Dðl; kÞ has a simple zero k = 0. Moreover, if l ¼ ðb; aÞ 2 Xþ10 ; all the 10 zeros but k = 0 of detD(l, k) have strictly negative real parts. pffiffiffiffiffiffiffiffiffiffiffiffiffi (iv) If 1 < a2 þ b2 ab < 1 þ f2 ; then detD(l, k) has exactly a pair of simple purely imaginary zeros and all the other zeros pffiffiffiffiffiffiffiffiffiffiffiffiffi have strictly negative real parts. If a2 þ b2 ab > 1 þ f2 ; then detD(l, k) has exactly a pair of simple purely imaginary zeros and at least one zero with positive real part, where f is the minimal positive solution to the equation f sin (sf) = cos (sf). pffiffi pffiffi (v) detD(l,k) has a purely imaginary zero ih if and only if aþb ; 23 ða bÞ or aþb ; 23 ða bÞ lies on the curve R, where h 2 2 pffiffi pffiffi and tðhÞ ¼ 23 ða bÞ or uðhÞ ¼ aþb and tðhÞ ¼ 23 ðb aÞ: satisfies uðhÞ ¼ aþb 2 2
Theorem 2.3 (i) The trivial solution of system (1.1) is asymptotically stable if and only if jb + aj < 1 and a2 + b2 ab < 1. pffiffi pffiffi ; 23 ða bÞ or aþb ; 23 ða bÞ lies on the curve, then near (b, a) a Hopf bifurcation occurs in system (1.1), (ii) If either aþb 2 2 i.e., a unique branch of periodic solutions bifurcates from the origin. 3. Hopf bifurcation Set C ¼ Cð½s; 0; R3 Þ and k/ks = sups6h60k/(h)k. We define one solution x(t) of the system (1.1) by xt(h) = x(t + h), s 6 h 6 0. If x(t) is continuous, then xt ðhÞ 2 C. Let X(t) = (x(t), y(t),z(t))T. Let BC be the set of all the functions from [ s, 0] to R3. Thus we can rewrite the system (1.1) as
X_ t ¼ AðlÞX t þ RðlÞX t ;
ð3:1Þ
where AðlÞ : C ! BC is given by
8 duðhÞ > ; h 2 ½s; 0; > > > 2dh 3 < u1 ð0Þ þ au2 ðsÞ þ bu3 ðsÞ AðlÞuðhÞ ¼ 6 7 > 4 u2 ð0Þ þ au3 ðsÞ þ bu1 ðsÞ 5; h ¼ 0; > > > : u3 ð0Þ þ au1 ðsÞ þ bu2 ðsÞ and the nonlinear operator RðlÞ : C ! BC is
RðlÞu ¼
1 00 1 f ð0ÞBðlÞðu; uÞ þ f t0 ð0ÞCðlÞðu; u; uÞ þ ; 2 6
with BðlÞ : C C ! BC; CðlÞ : C C C ! BC being defined as follows:
BðlÞðu; uÞðhÞ ¼ 0;
h 2 ½s; 0
2
3
au2 ðsÞw2 ðsÞ þ bu3 ðsÞw3 ðsÞ 6 7 BðlÞðu; uÞð0Þ ¼ 4 bu3 ðsÞw3 ðsÞ þ au1 ðsÞw1 ðsÞ 5; au1 ðsÞw1 ðsÞ þ bu2 ðsÞw2 ðsÞ CðlÞðu; w; /ÞðhÞ ¼ 0;
h 2 ½s; 0
2
3
au2 ðsÞw2 ðsÞ/2 ðsÞ þ bu3 ðsÞw3 ðsÞ/3 ðsÞ 6 7 CðlÞðu; w; /Þð0Þ ¼ 4 bu3 ðsÞw3 ðsÞ/3 ðsÞ þ au1 ðsÞw1 ðsÞ/1 ðsÞ 5; au1 ðsÞw1 ðsÞ/1 ðsÞ þ bu2 ðsÞw2 ðsÞ/2 ðsÞ for u; w; / 2 C. By the Riesz representation theorem, there exists a matrix N(h, l) whose components are functions of bounded variation in h 2 [s, 0] such that
ðAðlÞuÞð0Þ ¼
Z
0
s
dNðh; lÞuðhÞ; u 2 C:
3688
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
It is easy to see that Hopf bifurcation may occur when satisfying l0 ¼ ðb0 ; a0 Þ 2 R2þ and the condition that A(l) has a pair of conjugate purely imaginary zeros. In fact, this is true if l0 2 R. In this section, we only discuss codimension one Hopf bifurcation, i.e., A(l) has a pair of conjugate purely imaginary zeros. Throughout this section, we assume that one of the following two cases is satisfied:
pffiffi 3 ð 0 2
(1)
0 l0 ¼ a0 þb ; 2
(2)
0 l0 ¼ a0 þb ; 3 ða0 b0 Þ 2 R:In Case (1), a2 þ b20 a0 b0 ¼ 1 þ x20 , where x0 ¼ a2 þ b2 ab 1. Let 2 p2ffiffi 0 pffiffi 0 l ¼ aþb ; 23 ða bÞ ; l0 ¼ a0 þb ; 23 ða0 b0 Þ ; kðlÞ be the analytical function satisfying k(l0) = x0 and 2 2 k(l) + 1 + l ek(l)s = 0 for all sufficiently small jl j, where x0 = tj . From Lemma 2.1, we know that ddv Refkðl0 Þg < 0; where v is the outward- pointing normal vector to the curve R at l0. So A(l) has only a pair of conjugate imaginary zeros ±ix0 at l0 = (b0, a0), where x0 = tj. In order to study the Hopf bifurcation, we need to compute the reduced sys-
a b 0 Þ 2 R; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffi
tem on the center manifold with the pair of conjugate complex, purely imaginary eigenvalues ±ix0. By this reduction we can determine the Hopf bifurcation direction and the stability of the bifurcating periodic solutions. For this purpose, we further assume that x f(x) – 0 when x – 0. It is easy to check that
qðhÞ ¼ ð1; d1 ; d2 ÞT eix0 h ;
h 2 ½s; 0;
where
d1 ¼ d2 ¼
ðix0 þ 1Þa þ b2 eix0 s j ; a2 eix0 s þ ðix0 þ 1Þb ðix0 þ 1Þb þ a2 eix0 s b2 eix0 s þ ðix0 þ 1Þa
;
is an eigenvector of A(l0) associated with the eigenvalue ix0. The adjoint operator A⁄(l0) is given by
(
ðA ðl0 ÞwÞðnÞ ¼
dw ; n 2 ð0; s; dn R0 wðsÞdNðt; l0 Þ; n ¼ 0: s
For the convenience in computation, allow the functions with the range in C3 instead of in R3. Thus the domains of we 1shall 1 3 ⁄ A(l0) and A (l0) are C ½s; 0; C and C ½0; s; C3 ; respectively, where C3 is the space of three-dimensional complex row vectors. It follows that ix0 is an eigenvalue of A⁄(l0) and
A ðl0 ÞpðnÞ ¼ ix0 pðnÞ for some nonzero row-vector function p(n), n 2 [0,s]. In order to construct the coordinates to describe the center manifold Cl near the origin, we use the bilinear form [6,16]
uð0Þ hw; ui ¼ wð0Þ
Z
Z
0
h¼s
h
hÞdNðh; lÞuðnÞdn wðn
n¼0
for w 2 Cð½0; s; C3 Þ and u 2 Cð½s; 0; C3 Þ. In particular, let h; i ¼ h; il0 . Then
hw; Aðl0 Þui ¼ hA ðl0 Þw; ui; hu; wi 2 DomðAðl0 ÞÞ DomðA ðl0 ÞÞ: We normalize q and p so that
hp; qi ¼ 1;
i ¼ 0: hp; q
By direct computation, we obtain that
2 ; d 1 ; 1Þeix0 n ; pðnÞ ¼ Dðd
n 2 ½0; s;
where 2
D ¼ fð2d2 þ d1 Þ½1 þ sð1 þ ix0 Þg1 : For each X 2 Dom (A(l)) with sufficiently small kl l0k, we associate it with the pair (z, x), where z = hp, Xi and x ¼ X zq zq ¼ X 2Refzqg. For a solution Xt of (3.1) at l with sufficiently small kl l0k, we define z(t) = hp, Xti and xðz; z; lÞ ¼ X t 2RefzðtÞqg. In fact, z and z are the local coordinates for Cl in the directions of p and p. It is easy to see that hp, xi = 0. D E Now, for the solutions Xt 2 Cl of (3.1), p; X_ t i ¼ hp; AðlÞX t þ RðlÞX t . Then, on the center manifold Cl with sufficiently small kl l0k, we have
z_ ðtÞ ¼ ix0 z þ gðz; zÞ;
ð3:2Þ
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
3689
where
wðt; hÞ ¼ w20 ðhÞ
z2 z2 z z3 þ w30 ðhÞ þ ; þ w11 ðhÞzz þ w02 ðhÞ 2 2 6
ð3:3Þ
and
gðz; zÞ ¼ Pð0Þf0 ðz; zÞ ¼ g 20 ðhÞ
z2 z2 z2 z þ : þ g 11 ðhÞzz þ g 02 ðhÞ þ g 21 ðhÞ 6 2 2
ð3:4Þ
It is easy to obtain
_ ¼ w
h 2 ½s; 0Þ; A0 w 2RefPð0Þf0 ðz; zÞqg; A0 w 2RefPð0Þf0 ðz; zÞqg þ f0 ðz; zÞ; h ¼ 0:
We rewrite this as
_ ¼ A0 w þ Hðz; z; hÞ; w
ð3:5Þ
where
Hðz; z; hÞ ¼ H20 ðhÞ
z2 z2 z3 þ H11 ðhÞzz þ H02 ðhÞ þ H30 ðhÞ þ ; 2 2 6
and
_ ¼ wz z_ þ wzz_ : w
ð3:6Þ
Expanding the above series and comparing the coefficients, we obtain
ðA0 2iw0 Þw20 ðhÞ ¼ H20 ðhÞ; A0 w11 ðhÞ ¼ H11 ðhÞ;
ð3:7Þ
ðA0 þ 2iw0 Þw02 ðhÞ ¼ H02 ðhÞ; . . . Noticing that
xðt sÞ ¼ wð1Þ ðt; sÞ þ zðtÞeiw0 s þ zðtÞeiw0 s ; 1 eiw0 s ; yðt sÞ ¼ wð2Þ ðt; sÞ þ zðtÞd1 eiw0 s þ zðtÞd eiw0 s ; zðt sÞ ¼ wð3Þ ðt; sÞ þ zðtÞd2 eiw0 s þ zðtÞd 2 where ðjÞ
wðjÞ ðt; sÞ ¼ w20 ðsÞ
z2 z2 ðjÞ ðjÞ þ w11 ðsÞzz þ w02 ðsÞ þ ðj ¼ 1; 2; 3Þ; 2 2
then it follows that
0
1
ay2 ðt sÞ þ bz2 ðt sÞ f ð0Þ B C Dðd2 ; d1 ; 1Þ@ bz2 ðt sÞ þ ax2 ðt sÞ A gðz; zÞ ¼ Pð0ÞGðwðz; z; hÞ þ 2RefzqðhÞg; 0Þ ¼ 2 ax2 ðt sÞ þ by2 ðt sÞ 0 3 1 3 ay ðt sÞ þ bz ðt sÞ 1 B C þ f 000 ð0ÞDðd2 ; d1 ; 1Þ@ bz3 ðt sÞ þ ax3 ðt sÞ A þ 6 ax3 ðt sÞ þ by3 ðt sÞ 00
1 1 1 1 Daðd1 þ 1Þ f 00 ð0Þx2 ðt sÞ þ f 000 ð0Þx3 ðt sÞ þ Dðd2 a þ bÞ f 00 ð0Þy2 ðt sÞ þ f 000 ð0Þy3 ðt sÞ 2 3 2 3
1 1 þ Dðd1 þ d2 Þb f 00 ð0Þz2 ðt sÞ þ f 000 ð0Þz3 ðt sÞ 2 3 h i 1 ð1Þ ð1Þ 00 2 2iw0 s 2 2iw þ z e 0 s þ 2zz þ w20 ðt; sÞz2 zeiw0 s þ 2w11 ðt; sÞz2zeiw0 s ¼ Daðd1 þ 1Þf ð0Þ z e 2 h i 1 2 2 eiw0 s þ 2zzd1 d 1 þ wð2Þ ðt; sÞz2zd 1 eiw0 s þ 2wð2Þ ðt; sÞz2 zd1 eiw0 s þ Dðd2 a þ bÞf 00 ð0Þ z2 d1 e2iw0 s þ z2 d 1 20 11 2 h i 1 2 2 e2iw0 s þ 2zzd2 d 2 þ wð3Þ ðt; sÞz2zd 2 eiw0 s þ 2wð3Þ ðt; sÞz2zd2 eiw0 s þ Dðd1 þ d2 Þbf 00 ð0Þ z2 d2 e2iw0 s þ z2 d 2 20 11 2 h i 1 h i
1 1 2 iw0 s 2 iw0 s þ Daðd1 þ 1Þf 000 ð0Þ z2zeiw0 s þ Dðd2 a þ bÞf 000 ð0Þ z2zd1 d þ Dðd1 þ d2 Þbf 000 ð0Þ z2zd2 d þ : 1e 2e 2 2 2 ð3:8Þ ¼
3690
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
Comparing the coefficients with (3.4), we have
h i 00 2 2 g 20 ¼ Df ð0Þ aðd1 þ 1Þ þ ðd2 a þ bÞd1 þ ðd1 þ d2 Þbd2 e2iw0 s ; 00 1 þ ðd1 þ d2 Þbd2 d 2 ; g 11 ¼ Df ð0Þ aðd1 þ 1Þ þ ðd2 a þ bÞd1 d
00 2 þ ðd1 þ d2 Þbd 2 e2iw0 s ; g 02 ¼ Df ð0Þ aðd1 þ 1Þ þ ðd2 a þ bÞd 1 2 h i 00 ð1Þ ð2Þ iw0 s 1 þ ðd1 þ d2 Þbwð3Þ ðt; sÞd 2 aðd1 þ 1Þw20 ðt; sÞ þ ðd2 a þ bÞw20 ðt; sÞd g 21 ¼ Df ð0Þe 20 h i 000 2 2 iw0 s þ Df ð0Þ aðd1 þ 1Þ þ ðd2 a þ bÞd1 d 1 þ ðd1 þ d2 Þbd2 d2 e h i 00 ð1Þ ð2Þ ð3Þ þ 2Df ð0Þ aðd1 þ 1Þw11 ðt; sÞ þ ðd2 a þ bÞw11 ðt; sÞd1 þ ðd1 þ d2 Þbw11 ðt; sÞd2 eiw0 s :
ð3:9Þ
We still need to compute w11(t, h) and w20(t, h) for h 2 [ s,0). Then we have
ðhÞ Hðz; z; hÞ ¼ 2RefPð0Þf0 ðz; zÞqðhÞg ¼ gðz; zÞqðhÞ gðz; zÞq z2 z2 z2 z þ qðhÞ ¼ g 20 ðhÞ þ g 11 ðhÞzz þ g 02 ðhÞ þ g 21 ðhÞ 6 2 2 2 2 z z z2 z ðhÞ: þ q g20 ðhÞ þ g11 ðhÞzz þ g02 ðhÞ þ g 21 ðhÞ 6 2 2
ð3:10Þ
Comparing the coefficients with (3.6) gives that
ðhÞ; H20 ðhÞ ¼ g 20 qðhÞ g02 ðhÞq ðhÞ: H11 ðhÞ ¼ g 11 qðhÞ g11 ðhÞq
ð3:11Þ
It follows from (3.7) that
ð0Þeiw0 h : _ 20 ðhÞ ¼ 2iw0 w20 ðhÞ þ g 20 qð0Þeiw0 h þ g02 q w Solving for w20(h), we obtain
w20 ðhÞ ¼
ig 20 ig02 ð0Þeiw0 h þ E1 e2iw0 h ; q qð0Þeiw0 h þ w0 3w0
ð3:12Þ
and similarly, we have
w11 ðhÞ ¼
ig 11 ig11 ð0Þeiw0 h þ E2 ; q qð0Þeiw0 h þ w0 w0
where E1 and E2 are both three-dimensional vectors, and can be determined by setting h = 0 in Hðz; z; hÞ. In fact,
Hðz; z; 0Þ ¼ 2RefPð0Þf0 ðz; zÞqð0Þg þ f0 ðz; zÞ:
ð3:13Þ
Noticing that
f0 ðz; zÞ ¼ GðX t ðhÞ; 0Þ 0 2 1 ay ðsÞ þ bz2 ðsÞ f 00 ð0Þ @ 2 ¼ bz ðsÞ þ ax2 ðsÞ A 2 ax2 ðsÞ þ by2 ðsÞ 0 3 1 ay ðsÞ þ bz3 ðsÞ 1 000 @ 3 þ f ð0Þ bz ðsÞ þ ax3 ðsÞ A þ Oðjuj4 Þ 6 ax3 ðsÞ þ by3 ðsÞ ð1Þ
2 ! f 00 ð0Þ 0a w ðt; sÞ þ zðtÞeiw0 s þ zðtÞeiw0 s ¼
2 2 a wð1Þ ðt; sÞ þ zðtÞeiw0 s þ zðtÞeiw0 s ! ð2Þ iw s iw s f 00 ð0Þ a w ðt; sÞ þ zðtÞd1 e 0 þ zðtÞd1 e 0 0 þ 1 eiw0 s 2 2 b wð2Þ ðt; sÞ þ zðtÞd1 eiw0 s þ zðtÞd ! ð3Þ 2 eiw0 s f 00 ð0Þ b w ðt; sÞ þ zðtÞd2 eiw0 s þ zðtÞd þ ð3Þ
2 eiw0 s 0 þ ; 2 b w ðt; sÞ þ zðtÞd2 eiw0 s þ zðtÞd
ð3:14Þ
and comparing with (3.5), we have
0
1 ad21 þ bd22 B C 2 C 2iw0 s ð0Þ þ f 00 ð0ÞB H20 ð0Þ ¼ g 20 qð0Þ g02 0q ; @ a þ bd2 Ae 2 a þ bd1
ð3:15Þ
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
0
3691
1
ajd1 j2 þ bjd2 j2 B 00 ð0Þ þ f ð0Þ@ a þ bjd2 j2 C H11 ðhÞ ¼ g 11 qð0Þ g11 0q Ae2iw0 s : a þ bjd1 j2
ð3:16Þ
From (3.7) and the definition of A0, we have
w20 ð0Þ þ Bw20 ðsÞ ¼ 2iw0 w20 ð0Þ H20 ð0Þ
ð3:17Þ
w11 ð0Þ þ Bw11 ðsÞ ¼ H11 ð0Þ;
ð3:18Þ
and
where
0
0 B ¼ @b
a b1 0 a A:
a b 0 Substituting (3.12) into (3.17) and noticing that D(s, iw0)q(0) = 0, we have
0
1
ad21 þ bd22 B C 1 00 E1 ¼ f ð0ÞD ðs; 2iw0 Þ@ a þ bd22 A; 2 a þ bd1 where
Dðs; 2iw0 Þ ¼ ð1 þ 2iw0 ÞI Be2iw0 s : Similarly, we have
0
1
ajd1 j2 þ bjd2 j2 B C 1 00 E2 ¼ f ð0ÞD ðs; 0Þ@ a þ bjd2 j2 A: 2 a þ bjd1 j Based on the above analysis, we can see that each gijin (3.9) is determined by the parameters in system (1.1). Thus we can compute the following values:
i 1 g g 20 g 11 2jg 11 j2 jg 02 j2 þ 21 ; 2b0 3 2 RefC 1 ðlð0ÞÞg ; U2 ¼ Refk0ðl0 Þg ImfC 1 ðlð0ÞÞg þ l2 Imfk0ðl0 Þg ; T2 ¼ w0 B2 ¼ 2RefC 1 ð0Þg;
C 1 ð0Þ ¼
ð3:19Þ
which determine the quantities of bifurcating periodic solutions in the center manifold at the critical value l0, i.e., U2 determines the directions of the Hopf bifurcation: if U2 > 0 (respectively, <0), then the Hopf bifurcation is supercritical (respectively, subcritical); B2 determines the stability of the bifurcating periodic solutions: the bifurcating periodic solutions are stable (respectively, unstable) if B2 < 0 (respectively, >0); and T2 determines the period of the bifurcating periodic solutions: the period increase (respectively, decrease) if T2 > 0 (respectively, < 0). Then we have the following results. Theorem 3.1. Let C1(0) be given in (3.19). Then (i) the bifurcating periodic solutions exist for l = l0 and if
RefC 1 ð0Þg > 0 ðrespectiv ely; < 0Þ; then the Hopf bifurcation is supercritical (respectively, subcritical); (ii) the bifurcating periodic solutions are stable (respectively, unstable) if
RefC 1 ð0Þg < 0 ðrespectiv ely; > 0Þ; (iii) T2 determines the period of the bifurcating periodic solutions: the period increases (respectively, decreases) if T2 > 0 (respectively, <0). Then we have, Theorem 3.2. Suppose that f00 (0) = 0, f000 (0) – 0. Let
h i h i pffiffiffi h ¼ 2k þ 4ðl þ mÞða bÞ2 ða2 þ b2 þ abÞ ð1 þ s þ w20 sÞða þ bÞ þ 3w0 ða bÞ h i pffiffiffi pffiffiffi þ 4 3ðm lÞða bÞ2 ða2 þ b2 Þ w0 ða þ bÞ 3ða bÞð1 þ s þ w20 sÞ ;
3692
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
then at l = l0, the system (1.1) undergoes a Hopf bifurcation. The direction of Hopf bifurcation and the stability of bifurcation periodic solutions are determined by the sign of hf000 (0). More precisely, if hf000 (0) < 0 (respectively, >0), then the bifurcating periodic solutions are orbitally asymptotically stable (respectively, unstable), and the Hopf bifurcation is subcritical (respectively, supercritical), i.e., the bifurcated periodic solutions exist for jlj2 > a2 + b2 ab(respectively,
h i 000 2 2 iw0 s g 21 ¼ Df ð0Þ aðd1 þ 1Þ þ ðd2 a þ bÞd1 d : 1 þ ðd1 þ d2 Þbd2 d2 e
ð3:20Þ
Therefore,
(
)
aðd1 þ 1Þ þ ðd2 a þ bÞd21 d1 þ ðd1 þ d2 Þbd22 d2 iw0 s : e 2RefC 1 ð0Þg ¼ Refg 21 g ¼ Re f ð0Þ 2 ð2d2 þ d1 Þ½1 þ sð1 þ iw0 Þ 000
From (2.1) and the definition of d1, d2, it is easy to find that
d1 ¼ Nd2 ;
jd1 j ¼ N;
jd2 j ¼
1 ; N
where
N¼
ð2b2 a2 abÞ2 þ 3a2 ða bÞ2 2a2 b2 abÞ2 þ 3b2 ða bÞ2
:
In fact, from (2.1), we can obtain
d1 ¼
z1 ; z2
d2 ¼
z2 ; z1
jz1 j2 ¼ N1 ;
jz2 j2 ¼ N2 ;
N¼
N1 ; N2
where
z1 ¼ 2b2 a2 ab
pffiffiffi 3aða bÞi;
z2 ¼ 2a2 b2 ab
pffiffiffi 3bða bÞi:
Then
9 8 b b 2= < ð a þ bN Þd þ a bN þ d þ d d 1 1 2 N N 2 Refg 21 g ¼ Re f 000 ð0Þeiw0 s 2 ; : 2d þ d ½1 þ sð1 þ iw Þ 2
1
0
8 9 bN31 N 42 z1 = 3 b < ð a þ bN ÞN Z þ ð a bN þ ÞN z þ 1 2 1 2 N N ¼ Re f 000 ð0Þeiw0 s : ; ð2N2 z2 þ N1 z1 Þ½1 þ sð1 þ iw0 Þ ( ) ½k þ lz1 z2 þ mz1 z2 ð1 þ s iw0 sÞ ; ¼ Re f 000 ð0Þeiw0 s ½ð1 þ sÞ2 þ w20 s2 c where
b bN 5 N4 N21 N32 þ 1 2 ; k ¼ 2ða þ bNÞN1 N 22 þ abN þ N N 3 5 b bN N l ¼ 2 abN þ N4 þ 2 1 2 ; N 2 N m ¼ ða þ bNÞN21 ;
c ¼ j2N2 z2 þ N1 z1 j2 : Then
Refg 21 g ¼ f 000 ð0Þ
1 ½ða þ bÞ2 þ 3ða bÞ2 ½ð1 þ sÞ2 þ w20 s2 c
h:
So we can see that Theorem 3.2 is true. This completes the proof.
h
4. Numerical simulation example In this section, some numerical results of simulating the system (1.1) are presented at different data of a, b, s. Using the method of numerical simulations, we will find that the theoretically predicted results are in excellent agreement with the
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
3693
numerically observed behavior. For this purpose, we must specify the activation function. Herein we take f(x) = tanh(x), i.e., we consider the system as follows:
8 > < x_ ¼ x þ a tanhðyðt sÞÞ þ b tanhðzðt sÞÞ; y_ ¼ y þ a tanhðzðt sÞÞ þ b tanhðxðt sÞÞ; > :_ z ¼ z þ a tanhðxðt sÞÞ þ b tanhðyðt sÞÞ;
ð4:1Þ
It is easy to check that f000 (0) = tanh000 (0) = 2 < 0. Obviously, the activation function f(x) satisfies the concavity and bound39 < 1; edness conditions. When a = 0.25, b = 0.35, s = 0.5, by a simple calculation, we have ja þ bj ¼ 0:6 < 1; a2 þ b2 ab ¼ 400 then from Theorem 2.3, we know that the origin is delay-independently asymptotically stable, which can be shown in Fig. 3. 3 < 1; which together with Theorem 2.3, Taking a = 0.5, b = 0.25, s = 0.25, by checking that ja þ bj ¼ 0:75 < 1; a2 þ b2 ab ¼ 16 pffiffi pffiffi implies that the origin is delay-independently asymptotically stable (see Fig. 4). Choosing b ¼ 1; a ¼ 36 (or 26), by Theorem 3.2, we know that the corresponding waveform and phase plot for s ¼ p4 are shown in Figs. 5 and 6, respectively. 0.8
x(t) y(t) z(t)
0.6 0.4 0.2 0 −0.2 −0.4 −0.6
0
20
40
t
60
80
100
Fig. 4. The trivial solution of (4.1) is asymptotically stable, where a = 0.5, b = 0.25, s = 0.25.
0.8
x(t) y(t) z(t)
0.6 0.4 0.2 0 −0.2 −0.4 −0.6
0
20
40
t
60
80
100
Fig. 3. The trivial solution of (4.1) is asymptotically stable, where a = 0.25, b = 0.35, s = 0.5.
3694
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
1 0.5 z
0 −0.5 −1 1 0.5 0 y
−0.5 −1
−1
−0.5
0
0.5
1
x
Fig. 5. The bifurcating periodic solutions occur when a ¼
pffiffi 6 ;b 3
¼ 1; s ¼ p4.
2
z
1 0 −1 −2 2 1 0 −1 y
−2
−2
−1
1
0
2
x
Fig. 6. The bifurcating periodic solutions occur when a ¼
pffiffi 6 ;b 2
¼ 1; s ¼ p4.
5. Conclusion In this paper, bidirectional ring network model has been investigated. Linear stability of the system is investigated by analyzing the associated characteristic transcendental equation. By means of space decomposition, we subtly discuss the distribution of zeros of the characteristic equation, and then derive some sufficient conditions ensuring that all the characteristic roots have negative real parts. By regarding the eigenvalues of the connection matrix of the system as bifurcation parameters, we discuss Hopf bifurcation of the equilibria. Meanwhile, with the help of center manifold reduction and normal form theory, we study Hopf bifurcation of the equilibria, and obtain the detailed information about the bifurcation direction and stability of various bifurcated periodic solutions. Finally, numerical simulations have demonstrated the correctness of the theoretical results. Acknowledgement This work is supported by the National Science Foundation of China for Distinguished Young Scholars (10725208). References [1] Huang L, Wu J. Dynamics of inhibitory artificial neural networks with threshold nonlinearity. Fields Ins Commun 2001;29:235–43. [2] Béair J, Campbell SA, Van den Driessche P. Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J Appl Math 1996;56:245–55.
L. Wang, X. Han / Commun Nonlinear Sci Numer Simulat 16 (2011) 3684–3695
3695
[3] Driessche PV, Zou X. Global attractivity in delayed Hopfield neural network models. SIAM J Appl Math 1998;58:1878–90. [4] Gopalsamy K, Leung I. Delay induced periocicity in a neural network of exctitation and inhibition. Physica D 1996;89:395–426. [5] Huang L, Wu J. The role of threshold in preventing delay-induced oscillations of frustrated neural networks with McCulloch–Pitts nonlinearity. Int J Math Game Theory Algebra 2001;11(6):71–100. [6] Hale J, Lunel SV. Introduction to functional differential equations. New York: Springer; 1993. [7] Wu J. Introduction to neural dynamics and signal transmission delay. Berlin: Walter de Gruyter; 2001. [8] Hale J. Theory of functional differential equations. New York: Springer; 1997. [9] Hale J, Kocak H. Dynamics and bifurcations. New York: Springer; 1991. [10] Chen Y, Huang Y, Wu J. Desynchronization of large scale delayed neural networks. Proc Amer Math Soc 2000;128:2365–71. [11] Faria T. On a planar system modelling a neuron network with memory. J Diff Equat 2000;168:129–49. [12] Wu J. Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 1998;350:4799–838. [13] Guo S, Chen Y, Wu J. Two-parameter bifurcations in a network of two neurons with multiple delays. J Diff Equat 2008;244:444–86. [14] Guo S, Huang L, Wang L. Linear stability and Hopf bifurcation in a two-neuron network with three delays. Int J Bifur Chaos Appl Sci Eng 2004;14:2799–810. [15] Peng J, Guo S. Synchronous dynamics of two coupled oscillators with inhibitory-to-inhibitory connection. Commun Nonlinear Sci Numer Simulat 2010;15:4131–48. [16] Belair J. Stability in a model of a delayed neural network. J Dynam Diff Equat 1993;5:603–23.