Stability of well-posed stochastic evolution equation

Stability of well-posed stochastic evolution equation

Heliyon 5 (2019) e02832 Contents lists available at ScienceDirect Heliyon www.elsevier.com/locate/heliyon Research article Stability of well-posed...

275KB Sizes 0 Downloads 21 Views

Heliyon 5 (2019) e02832

Contents lists available at ScienceDirect

Heliyon www.elsevier.com/locate/heliyon

Research article

Stability of well-posed stochastic evolution equation S.A. Bishop โˆ— , S.A. Iyase, H.I. Okagbue Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria

A R T I C L E

I N F O

Keywords: Mathematics Ulams-Hyers stability Stochastic processes Impulsive and nonlocal conditions Evolution Equation

A B S T R A C T The stability of a non-classical stochastic evolution equation with impulsive and nonlocal initial conditions is examined from a general perspective. We investigate the e๏ฌ€ect of the nonlocal conditions on the well-posedness and the stability of the solution. We show that the concept of Ulam-type stability holds for this class of equation under the given condition (1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) < 1. An example is also provided to support our claim.

1. Introduction The progression in time of many physical problems is mostly de๏ฌned through a system of di๏ฌ€erential equations which can also be rewritten as a Cauchy problem. The interest in studying well-posedness of these problems together with the properties of their solution is on the increase. One of the major analytical di๏ฌƒculties in the theory of classical and quantum stochastic di๏ฌ€erential equations arise whenever the coe๏ฌƒcients driving the equation also consist of unbounded operators, a requirement that is largely unavoidable when dealing with di๏ฌ€erential equations. Ulam-Hyers (or Ulam-Hyers-Rissias) stability has been used extensively to study stability and has found applications in real life problems such as in economics, biology, population dynamics, etc. that deal with both linear and nonlinear systems. See [1, 2, 3] and the references therein. We consider the following impulsive quantum stochastic di๏ฌ€erential equation introduced by Bishop et al. [4]; ๐‘‘๐œ™(๐‘ก) = ๐ด(๐‘ก)๐œ™(๐‘ก) + ๐‘ˆ (๐‘ก, ๐œ™(๐‘ก))๐‘‘ โˆง๐œ‹ (๐‘ก) + ๐‘‰ (๐‘ก, ๐œ™(๐‘ก))๐‘‘๐ด+ (๐‘ก) ๐‘“ +๐‘Š (๐‘ก, ๐œ™(๐‘ก))๐‘‘๐ด๐‘” (๐‘ก) + ๐‘(๐‘ก, ๐œ™(๐‘ก))๐‘‘๐‘ก ๐‘ก โˆˆ ๐ผ = [0, ๐‘‡ ] โŠ† โ„+ , ๐‘ก โ‰  ๐‘ก๐‘˜ , ๐‘˜ = 1, ..., ๐‘š โ–ณ๐œ™(๐‘ก๐‘˜ ) = ๐ฝ๐‘˜ (๐œ™(๐‘ก๐‘˜ )), ๐‘ก โˆˆ ๐‘ก๐‘˜ ๐œ™(0) = ๐œ™0 โˆ’ ๐‘”(๐œ™), ๐‘ก โˆˆ [0, ๐‘‡ ].

(1.1)

ฬƒ ๎ˆฎ), ฬƒ ๐ด is the in๏ฌnitesimal generator of a family of semiHere ๐ฝ๐‘˜ โˆˆ ๐ถ(๎ˆฎ, group de๏ฌned in [4] while g is a continuous function. ๐œ™(๐‘ก+ ) = lim๐œ–โ†’0+ ๐œ™(๐‘ก๐‘˜ + ๐œ–) and ๐œ™(๐‘กโˆ’ ) = lim๐œ–โ†’0โˆ’ ๐œ™(๐‘ก๐‘˜ + ๐œ–) are the right ๐‘˜ ๐‘˜ and left limits of ๐œ™(๐‘ก) at ๐‘ก = ๐‘ก๐‘˜ while ฮ”๐œ™(๐‘ก๐‘˜ ) = ๐œ™(๐‘ก+ ) โˆ’ ๐œ™(๐‘กโˆ’ ) is the jump in ๐‘˜ ๐‘˜

*

the state ๐œ™ at ๐‘ก๐‘˜ and the coe๏ฌƒcients ๐‘ˆ , ๐‘‰ , ๐‘Š , ๐‘ are stochastic processes de๏ฌned in [4, 5, 6]. Associated with equation (1.1) is the following nonclassical stochastic di๏ฌ€erential equation (NSDE) with impulse e๏ฌ€ect: ๐‘‘ โŸจ๐œ‚, ๐œ™(๐‘ก)๐œ‰โŸฉ = ๐ด(๐‘ก)๐œ™(๐‘ก)(๐œ‚, ๐œ‰) + ๐‘ƒ (๐‘ก, ๐œ™(๐‘ก))(๐œ‚, ๐œ‰), ๐‘ก โˆˆ ๐ผ, ๐‘ก โ‰  ๐‘ก๐‘˜ , ๐‘˜ = 1, ..., ๐‘š ๐‘‘๐‘ก ฮ”๐œ™(๐‘ก๐‘˜ ) = ๐ฝ๐‘˜ (๐œ™(๐‘กโˆ’ ๐‘˜ )), ๐‘ก โˆˆ ๐‘ก๐‘˜ , ๐‘˜ = 1, ..., ๐‘š ๐œ™(0) = ๐œ™0 โˆ’ ๐‘”(๐œ™), ๐‘ก โˆˆ [0, ๐‘‡ ],

(1.2)

where (๐‘ก, ๐œ™) โ†’ ๐‘ƒ (๐‘ก, ๐œ™)(๐œ‚, ๐œ‰) is a sesquilinear-form valued stochastic process well de๏ฌned in [4]. ๐œ‚, ๐œ‰ โˆˆ DโŠ—E (D is a pre-Hilbert space and E is a linear space of exponential vectors). For details of these equations and how they are connected, we refer the reader to [4] and the references therein. Existence of solution of (1.1) using the equivalent nonclassical ordinary di๏ฌ€erential equation (1.2) with initial condition was ๏ฌrst considered by Ogundiran and Payne [7]. Later Bishop and Oguntunde [6] considered a weaker form of [7], where the evolution operator ๐ด = 0. In [4], the existence of solution of (1.1) was established with nonlocal conditions that are completely continuous. Several results on the qualitative and topological properties of solutions of (1.1) with and without the impulse e๏ฌ€ect have been studied [5, 6, 8, 9, 10]. In the case of ordinary di๏ฌ€erential equations (ODEs), functional ordinary di๏ฌ€erential equations (FODEs), etc. with impulse e๏ฌ€ect, local initial and nonlocal initial conditions, so much have been done on the existence of solutions and stability of solutions of these types of equations, see [3, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and the references therein. In [7, 21], the authors established Ulam stability of impulsive di๏ฌ€erential equations with local and nonlocal initial conditions respectively. Ulam-Hyers-Rassias stability was also considered by Liao and Wang

Corresponding author. E-mail address: [email protected] (S.A. Bishop).

https://doi.org/10.1016/j.heliyon.2019.e02832 Received 15 May 2019; Received in revised form 24 August 2019; Accepted 6 November 2019 2405-8440/ยฉ 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

S.A. Bishop et al.

Heliyon 5 (2019) e02832

[15]. Several other studies in literature show the use of this concept of stability [3, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recently Ali et al. [25] studied Hyersโ€“Ulam type stability of solutions of a coupled system of implicit type impulsive boundary value problems of fractional ODEs under some strict conditions. Within the context of (1.1), no study has been done on Ulamโ€™s type of stability. We study Ulam, Ulam-Hyers, Ulam-Hyers-Rassias types of stability for (1.1). Here the impulsive conditions are combinations of the nonlocal problem and the short term perturbations. We rely on the structure of the topological space and additional properties to establish the main result.

(ii) (1.1) is generalized U-H stable if โˆƒ ๐‘˜

obtain ||๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐œƒ๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€ (๐›ฟ). (iii) (1.1) is U-H-R stable with respect to (๐œ‘๐œ‚๐œ‰ (๐‘ก), ฮจ๐œ‚๐œ‰ ) if we can ๏ฌnd ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€,๐œ‘๐œ‚๐œ‰ > 0 and a ๐›ฟ > 0 such that for each solution ๐‘ฆ โˆˆ ฬƒ of (2.4) a solution ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) ฬƒ of (1.2) exists with ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) ||๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€ ๐›ฟ(๐œ‘๐œ‚๐œ‰ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ). (iv) (1.1) is generalized U-H-R stable with respect to (๐œ‘๐œ‚๐œ‰ , ฮจ๐œ‚๐œ‰ ) if ฬƒ ๐‘๐‘ƒ ,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€,๐œ‘๐œ‚๐œ‰ > 0 exists such that for each solution ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) ฬƒ of (1.1) with of (2.3) we ๏ฌnd a solution ๐‘ฆ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ)

2. Preliminaries We state the following de๏ฌnitions and notations of some spaces.

||๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€,๐œ‘๐œ‚๐œ‰ (๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ).

ฬƒ denotes its nonempty 1. ๎ˆฎฬƒ is a topological vector space, where clos(๎ˆฎ) closed subset. 2. ๐‘ ๐‘’๐‘ ๐‘ž(DโŠ—E) is a complex space of sesquilinear-form valued stochastic processes. ฬƒ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ), ฬƒ PC(๐ผ, ๐‘ ๐‘’๐‘ ๐‘ž(DโŠ—E)) are Banach spaces with the 3. PC(๐ผ, ๎ˆฎ), usual supremum norm de๏ฌned in [2, 12].

ฬƒ and ๐‘ž๐‘˜ , ๐‘˜ = 1, ..., โˆž, be a sequence De๏ฌnition 2.3. Let ๐‘ž โˆˆ ๐‘ƒ ๐ถ(๐ผ, ๎ˆญ) which also depends on ๐œ‚, ๐œ‰ such that the following holds: (i) |๐‘ž(๐‘ก)| โ‰ค ๐‘€๐›ฟ, ๐‘ก โˆˆ ๐ผ , and |๐‘ž๐‘˜ | < ๐›ฟ; (ii) ๐‘‘๐œ™(๐‘ก)=๐ด(๐‘ก)๐œ™(๐‘ก)+๐‘ˆ (๐‘ก, ๐œ™(๐‘ก))๐‘‘ โˆง๐œ‹ (๐‘ก)+๐‘‰ (๐‘ก, ๐œ™(๐‘ก))๐‘‘๐ด+ (๐‘ก)+๐‘Š (๐‘ก, ๐œ™(๐‘ก))๐‘‘๐ด๐‘” (๐‘ก) + ๐‘“ [ ] โ€ฒ โ€ฒ ๐‘(๐‘ก, ๐œ™(๐‘ก))๐‘‘๐‘ก + ๐‘ž(๐‘ก), ๐‘ก โˆˆ ๐ผ , ๐ผ = ๐ผ โงต ๐‘ก, ๐‘ก๐‘š ; (iii) ฮ”๐œ™(๐‘ก๐‘˜ ) = ๐ฝ๐‘˜ (๐œ™(๐‘กโˆ’ )) + ๐‘ž๐‘˜ . ๐‘˜ ฬƒ is a solution of (2.2). Then ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ)

Let ๐ผ0 = [0, ๐‘ก1 ], ๐ผ1 = (๐‘ก1 , ๐‘ก2 ], ..., ๐ผ๐‘š = (๐‘ก๐‘š , ๐‘‡ ], and ๐ผ๐‘˜ = (๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 ], where ๐‘˜ = 1, ..., ๐‘š, ๐‘ก0 = 0. ฬƒ is said to be a solution De๏ฌnition 2.1. A stochastic process ๐‘ง โˆˆ ๐‘ƒ ๐ถ(๐ผ, ๎ˆฎ) of (1.1) if it satis๏ฌes

Similar de๏ฌnitions can be obtained for (2.3) and (2.4). ฬƒ is a solution of inequality (2.2), By De๏ฌnition 2.1, if ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) then ๐œ™ is a solution of the following:

๐‘ง(0) = ๐œ™0 โˆ’ ๐‘”(๐‘ง) ฮ”๐‘ง(๐‘ก๐‘˜ ) = ๐ฝ๐‘˜ (๐‘ง(๐‘กโˆ’ ๐‘˜ ))

[ ] ||๐œ™(๐‘ก)||๐œ‚๐œ‰ โˆ’ ||๐‘†(๐‘ก โˆ’ ๐‘ ) ๐œ™0 โˆ’ ๐‘”(๐œ™)

๐‘ก

๐‘ง(๐‘ก) = ๐‘†(๐‘ก)[๐‘ง0 โˆ’ ๐‘”(๐‘ง)] +

๐œƒ๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€ โˆˆ ๐ถ(โ„+ , โ„+ ),

1 ฬƒ ,๐ฟ๐œ‚๐œ‰ ,๐‘€ (0) = 0, so that for a solution ๐œ™ โˆˆ ๐‘ƒ ๐ถ (๐ผ, ๎ˆฎ) of (2.2) we

๐œƒ๐‘๐‘™

โˆซ

๐‘ก

๐‘†(๐‘ก โˆ’ ๐‘ )(๐‘ˆ (๐‘ , ๐‘ง(๐‘ ))๐‘‘ โˆง๐œ‹ (๐‘ )

+

0

[ ] (๐‘ ) + ๐‘Š (๐‘ , ๐‘ง(๐‘ ))๐‘‘๐ด๐‘” (๐‘ ) + ๐‘(๐‘ , ๐‘ง(๐‘ ))๐‘‘๐‘ ), ๐‘ก โˆˆ 0, ๐‘ก1 +๐‘‰ (๐‘ , ๐‘ง(๐‘ ))๐‘‘๐ด+ ๐‘“ โˆ‘ ๐‘†(๐‘ก โˆ’ ๐‘ )๐ฝ๐‘˜ (๐‘ง(๐‘กโˆ’ (2.1) + ๐‘˜ )), ๐‘˜ = 1, ..., ๐‘š.

โˆซ

๐‘†(๐‘ก โˆ’ ๐‘ )(๐‘ƒ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘  +

๐‘–=๐‘—

0

(2.5)

So that by De๏ฌnition 2.3 (ii)-(iii), we obtain ] = ||๐‘†(๐‘ก โˆ’ ๐‘ ) ๐œ™0 โˆ’ ๐‘”(๐œ™) +

๐‘ก

[

Notation 2.1. Denote Ulam, Ulam-Hyers and Ulam-Hyers-Rassias by U, U-H and U-H-R respectively. Next, we introduce the concept of Ulam stability within the context of this paper. We state the following useful inequalities. Let ๐›ฟ > 0, ฮจ โ‰ฅ 0 ฬƒ be a non-decreasing function. Then and ๐œ‘ โˆˆ ๐‘ƒ ๐ถ(๐ผ, ๎ˆญ)

||๐œ™(๐‘ก)||๐œ‚๐œ‰

๐‘‘ โŸจ๐œ‚, ๐œ™(๐‘ก)๐œ‰โŸฉ โˆ’ ๐ด(๐‘ก)๐œ™(๐‘ก)(๐œ‚, ๐œ‰) โˆ’ ๐‘ƒ (๐‘ก, ๐œ™(๐‘ก)(๐œ‚, ๐œ‰)| โ‰ค ๐›ฟ, ๐‘ก โ‰  ๐‘ก๐‘˜ ๐‘‘๐‘ก | โ–ณ ๐œ™(๐‘ก๐‘˜ )(๐œ‚, ๐œ‰) โˆ’ ๐ฝ๐‘˜ (๐œ™(๐‘กโˆ’ ๐‘˜ ))(๐œ‚, ๐œ‰) + ๐‘”(๐‘ก)| โ‰ค ๐›ฟ, ๐‘˜ = 1, ..., ๐‘š

from which we get

โˆซ

๐‘ก

๐‘†(๐‘ก โˆ’ ๐‘ )(๐‘ƒ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘  +

0

+

๐‘˜ โˆ‘ ๐‘–=๐‘—

|

๐ฝ๐‘– (๐œ™(๐‘กโˆ’ ๐‘— )) +

๐‘˜ โˆ‘ ๐‘—=1

[ ] ||๐œ™(๐‘ก) โˆ’ ๐‘†(๐‘ก โˆ’ ๐‘ ) ๐œ™0 โˆ’ ๐‘”(๐œ™) +

(2.2)

|

๐‘‘ โŸจ๐œ‚, ๐œ™(๐‘ก)๐œ‰โŸฉ โˆ’ ๐ด(๐‘ก)๐œ™(๐‘ก)(๐œ‚, ๐œ‰) โˆ’ ๐‘ƒ (๐‘ก, ๐œ™(๐‘ก)(๐œ‚, ๐œ‰)| โ‰ค ๐›ฟ๐œ‘๐œ‚๐œ‰ (๐‘ก) ๐‘‘๐‘ก | โ–ณ ๐œ™(๐‘ก๐‘˜ )(๐œ‚, ๐œ‰) โˆ’ ๐ฝ๐‘˜ (๐œ™(๐‘กโˆ’ ๐‘˜ ))(๐œ‚, ๐œ‰) + ๐‘”(๐‘ก)| โ‰ค ๐›ฟฮจ๐œ‚๐œ‰ .

๐ฝ๐‘– (๐œ™(๐‘กโˆ’ ๐‘— )))||๐œ‚๐œ‰

โ‰ค ๐‘€(๐‘š + ๐‘ก)๐›ฟ.

0<๐‘ก๐‘˜ <๐‘ก

๐‘‘ โŸจ๐œ‚, ๐œ™(๐‘ก)๐œ‰โŸฉ โˆ’ ๐ด(๐‘ก)๐œ™(๐‘ก)(๐œ‚, ๐œ‰) โˆ’ ๐‘ƒ (๐‘ก, ๐œ™(๐‘ก)(๐œ‚, ๐œ‰)| โ‰ค ๐œ‘๐œ‚๐œ‰ (๐‘ก) ๐‘‘๐‘ก | โ–ณ ๐œ™(๐‘ก๐‘˜ )(๐œ‚, ๐œ‰) โˆ’ ๐ฝ๐‘˜ (๐œ™(๐‘กโˆ’ ๐‘˜ ))(๐œ‚, ๐œ‰) + ๐‘”(๐‘ก)| โ‰ค ฮจ๐œ‚๐œ‰

๐‘˜ โˆ‘

๐‘ž๐‘— )||๐œ‚๐œ‰ ,

๐‘ก โˆˆ (๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 ],

๐‘†(๐‘ก โˆ’ ๐‘ )๐‘ƒ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘  +

0

(2.3)

โ‰ค๐‘€

|

๐‘š โˆ‘ ๐‘—=1

๐‘ž(๐‘ )๐‘‘๐‘ 

0

๐‘ก

โˆซ

โˆซ

๐‘˜ โˆ‘ ๐‘—=1

๐ฝ๐‘— (๐œ™(๐‘ก๐‘— ))||๐œ‚๐œ‰

๐‘ก

|๐‘ž๐‘— | + ๐‘€

โˆซ

|๐‘ž(๐‘ )|๐‘‘๐‘ 

0

โ‰ค ๐‘€๐‘š๐›ฟ + ๐‘€๐‘ก๐›ฟ = ๐‘€(๐‘š + ๐‘ก)๐›ฟ.

(2.4)

Repeating the process for (2.3) and (2.4), we obtain similar results with respect to ๐œ‘๐œ‚๐œ‰ (๐‘ก) and ฮจ๐œ‚๐œ‰ .

Subsequently, ๐‘ก โˆˆ ๐ผ , ๐œ‚, ๐œ‰ โˆˆ (DโŠ—E)) and ๐‘˜ = 1, ..., ๐‘š except otherwise stated.

3. Main results

De๏ฌnition 2.2.

The following assumptions will be used to establish the main results: Let ๐พ๐œ‚๐œ‰ , ๐‘™๐‘˜ , ๐‘€ , and ๐ฟ๐œ‚๐œ‰ be positive constants.

(i) (1.1) is U-H stable if โˆƒ a real number ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€ > 0 such that for ฬƒ of (2.2) there exists each ๐›ฟ > 0 and for each solution ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) ฬƒ of (1.1) with a solution ๐‘ฆ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ)

๐ด1 . If (๐‘ก, ๐œ™) โ†’ ๐‘ƒ (๐‘ก, ๐‘ฅ)(๐œ‚, ๐œ‰) is continuous, for ๐œ™, ๐‘ฆ โˆˆ ๎ˆฎฬƒ we get ๐‘ƒ ||๐‘ƒ (๐‘ก, ๐œ™) โˆ’ ๐‘ƒ (๐‘ก, ๐‘ฆ)||๐œ‚๐œ‰ โ‰ค ๐พ๐œ‚๐œ‰ ||๐œ™ โˆ’ ๐‘ฆ||๐œ‚๐œ‰ .

||๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€ ๐›ฟ. 2

S.A. Bishop et al.

Heliyon 5 (2019) e02832 ๐‘ก

ฬƒ we have ๐ด2 . For ๐ฝ๐‘˜ โˆถ ๎ˆฎฬƒ โ†’ ๎ˆฎ,

+

ฬƒ ||๐ฝ๐‘˜ (๐œ™) โˆ’ ๐ฝ๐‘˜ (๐‘ฆ)||๐œ‚๐œ‰ โ‰ค ๐‘™๐‘˜ ||๐œ™ โˆ’ ๐‘ฆ||๐œ‚๐œ‰ , ๐œ™ โˆˆ ๎ˆฎ.

โˆซ

||๐‘ƒ (๐‘ , ๐œ™(๐‘ )) โˆ’ ๐‘ƒ (๐‘ , ๐‘ฆ(๐‘ ))||๐œ‚๐œ‰ ๐‘‘๐‘ ]

0

๐ด3 . Let ๐‘ก โ‰ฅ 0, then ||๐‘†(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐‘€ . ๐ด4 . For ๐‘” โˆถ ๎ˆฎฬƒ โ†’ ๐‘ƒ ๐ถ(๐ผ, ๐‘ ๐‘’๐‘ ๐‘ž(DโŠ—E)) we obtain

โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ) + ๐‘€

๐‘˜ โˆ‘ ๐‘—=1

๐‘™๐‘— ||๐œ™(๐‘ก๐‘— ) โˆ’ ๐‘ฆ(๐‘ก๐‘— )||๐œ‚๐œ‰

๐‘ก

ฬƒ ||๐‘”(๐œ™) โˆ’ ๐‘”(๐‘ฆ)||๐œ‚๐œ‰ โ‰ค ๐ฟ๐œ‚๐œ‰ ||๐œ™ โˆ’ ๐‘ฆ||๐œ‚๐œ‰ , ๐œ™, ๐‘ฆ โˆˆ ๎ˆฎ.

+๐‘€๐ฟ๐œ‚๐œ‰ ||๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ + ๐‘€

๐ด5 . For each ๐‘ก โˆˆ ๐ผ , let the function ๐œ‘๐œ‚๐œ‰ โˆˆ ๐ถ(๐ผ, โ„+ ) be non decreasing. Then

โˆซ

๐พ๐œ‚๐œ‰ ||๐œ™(๐‘ ) โˆ’ ๐‘ฆ(๐‘ )||๐œ‚๐œ‰ ๐‘‘๐‘ .

0

(3.1)

๐‘ก

๐œ‘๐œ‚๐œ‰ (๐‘ )๐‘‘๐‘  โ‰ค ๐‘๐œ‘ ๐œ‘(๐‘ก), ๐‘๐œ‘ > 0.

โˆซ

๐‘ƒ (๐‘ก) is a function. Case 1: When ๐พ๐œ‚๐œ‰

ฬƒ ๐‘ก โˆˆ [๐‘ก0 , ๐‘‡ ], Since the map ๐‘  โ†’ ||๐œ™1 โˆ’ ๐œ™0 ||๐œ‚๐œ‰ is continuous for ๐œ™ โˆˆ ๎ˆฎ, we let

0

Theorem 3.1. Let the conditions ๐ด1 โˆ’ ๐ด5 , and ๐ป4 in [4] be satis๏ฌed. Then (1.2) respectively (1.1) is generalized U-H-R stable with respect to (๐œ‘๐œ‚๐œ‰ (๐‘ก), ฮจ๐œ‚๐œ‰ ) provided (1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) < 1.

๐‘…๐œ‚๐œ‰ = sup ||๐œ™1 โˆ’ ๐œ™0 ||๐œ‚๐œ‰ ๐‘กโˆˆ[0,๐‘‡ ]

and

ฬƒ be a solution of (2.3) and ๐‘ฆ a unique solution Proof. Let ๐œ™ โˆˆ ๐‘ƒ ๐ถ 1 (๐ผ, ๎ˆฎ) of (1.1) where ๐œ™(0) = ๐‘ฆ(0) and ๐œ™0 = ๐‘ฆ0 . Then we obtain

๐‘ก

๐‘๐œ‚๐œ‰ (๐‘ก) =

๐‘ก

๐œ™(๐‘ก) = ๐‘†(๐‘ก โˆ’ ๐‘ ) [๐‘ฆ(0) + ๐‘”(๐œ™)] +

โˆซ

๐‘†(๐‘ก โˆ’ ๐‘ )[๐‘ˆ (๐‘ , ๐œ™(๐‘ ))๐‘‘ โˆง๐œ‹ (๐‘ )

Hence, from (3.1), we obtain

๐‘ก โˆˆ (0, ๐‘ก1 ],

๐‘ก

= ๐‘†(๐‘ก โˆ’ ๐‘ )([๐‘ฆ(0) + ๐‘”(๐œ™)] + ๐ฝ1 (๐œ™(๐‘กโˆ’ ))) + 1

โˆซ

||๐‘ฆ(๐‘ก) โˆ’ ๐œ™(๐‘ก)||๐œ‚๐œ‰ โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ )

๐‘†(๐‘ก โˆ’ ๐‘ )[๐‘ˆ (๐‘ , ๐œ™(๐‘ ))๐‘‘ โˆง๐œ‹ (๐‘ )

0

+๐‘€

(๐‘ ) + ๐‘Š (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด๐‘” (๐‘ ) + ๐‘(๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘ ], +๐‘‰ (๐‘ , ๐œ™(๐‘ )๐‘‘๐ด+ ๐‘“

๐‘ก โˆˆ (๐‘ก1 , ๐‘ก2 ],

โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ )

๐‘†(๐‘ก โˆ’ ๐‘ )[๐‘ˆ (๐‘ , ๐œ™(๐‘ ))๐‘‘ โˆง๐œ‹ (๐‘ ) + ๐‘‰ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด+ (๐‘ ) ๐‘“

+๐‘€๐‘๐‘˜ ๐‘…๐œ‚๐œ‰ + ๐‘€๐‘…๐œ‚๐œ‰ [๐ฟ๐œ‚๐œ‰ + ๐‘๐œ‚๐œ‰ (๐‘ก)]

0

+๐‘Š (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด๐‘” (๐‘ ) + ๐‘(๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘ ],

๐‘ก โˆˆ (๐‘ก2 , ๐‘ก3 ],

โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ) + ๐‘€

.

๐‘˜ โˆ‘ ๐‘—=1

๐‘™๐‘— ||๐œ™(๐‘ก๐‘— ) โˆ’ ๐‘ฆ(๐‘ก๐‘— )||๐œ‚๐œ‰

+๐‘€๐‘…๐œ‚๐œ‰ [๐ฟ๐œ‚๐œ‰ + ๐‘๐œ‚๐œ‰ (๐‘ก)].

. . = ๐‘†(๐‘ก โˆ’ ๐‘ )([๐‘ฆ(0) + ๐‘”(๐œ™)) +

๐‘š โˆ‘ ๐‘˜=1

Obviously, Lemma 2.1 in [23] cannot be applied directly in this case. ๐‘ For more on the Lipschitz function ๐พ๐œ‚๐œ‰ (๐‘ก), see the references [4, 5, 6, 7, 8]. ๐‘ Case 2: When ๐พ๐œ‚๐œ‰ > 0 is a constant independent of t. Again, subtracting ๐‘€๐ฟ๐œ‚๐œ‰ โˆฅ ๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก) โˆฅ๐œ‚๐œ‰ from both sides of (3.1) yields:

๐ฝ๐‘˜ (๐œ™(๐‘ก๐‘˜ )))

๐‘ก

+

๐‘™๐‘— ||๐œ™(๐‘ก๐‘— ) โˆ’ ๐‘ฆ(๐‘ก๐‘— )||๐œ‚๐œ‰

+๐‘€๐ฟ๐œ‚๐œ‰ ๐‘…๐œ‚๐œ‰ + ๐‘€๐‘…๐œ‚๐œ‰ ๐‘๐œ‚๐œ‰ (๐‘ก)

๐‘ก

โˆซ

๐‘˜ โˆ‘ ๐‘—=1

)) + ๐ฝ2 (๐œ™(๐‘กโˆ’ ))) = ๐‘†(๐‘ก โˆ’ ๐‘ )([(๐‘ฆ(0) + ๐‘”(๐œ™)] + ๐ฝ1 (๐œ™(๐‘กโˆ’ 1 2 +

๐‘ƒ ๐พ๐œ‚๐œ‰ (๐‘ )๐‘‘๐‘ .

0

0

+๐‘‰ (๐‘ , ๐œ™(๐‘ )๐‘‘๐ด+ (๐‘ ) + ๐‘Š (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด๐‘” (๐‘ ) + ๐‘(๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘ ], ๐‘“

โˆซ

โˆซ

๐‘†(๐‘ก โˆ’ ๐‘ )[๐‘ˆ (๐‘ , ๐œ™(๐‘ ))๐‘‘ โˆง๐œ‹ (๐‘ ) + ๐‘‰ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด+ (๐‘ ) ๐‘“

0

+๐‘Š (๐‘ , ๐œ™(๐‘ ))๐‘‘๐ด๐‘” (๐‘ ) + ๐‘(๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘ ],

๐‘ก โˆˆ (๐‘ก๐‘š , ๐‘‡ ].

(1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) โˆฅ ๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก) โˆฅ๐œ‚๐œ‰ โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ )

( ] Similarly, by de๏ฌnition (2.1), we obtain for each ๐‘ก โˆˆ ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 , ||๐‘ฆ(๐‘ก)||๐œ‚๐œ‰ โˆ’ ||๐‘†(๐‘ก โˆ’ ๐‘ ) [๐‘ฆ(0) + ๐‘”(๐œ™)] โˆ’

๐‘˜ โˆ‘ ๐‘—=1

๐‘ก

+๐‘€๐พ๐œ‚๐œ‰

๐‘†(๐‘ก โˆ’ ๐‘ )๐ฝ๐‘— (๐‘ฆ(๐‘กโˆ’ ๐‘— ))||๐œ‚๐œ‰

โˆซ

+๐‘€

๐‘†(๐‘ก โˆ’ ๐‘ )๐‘ƒ (๐‘ , ๐‘ฆ(๐‘ ))๐‘‘๐‘ ||๐œ‚๐œ‰

0

+

๐‘˜ โˆ‘ ๐‘—=1

๐‘—=1

( โˆฅ ๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก) โˆฅ๐œ‚๐œ‰ โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ )

๐‘ก

๐ฝ๐‘— (๐‘ฆ(๐‘ก๐‘— )) โˆ’

โˆซ

๐‘™๐‘— โˆฅ ๐œ™(๐‘ก๐‘— ) โˆ’ ๐‘ฆ(๐‘ก๐‘— ) โˆฅ๐œ‚๐œ‰ .

By applying Lemma 2.1 in [23], we obtain

โ‰ค ๐‘€(๐‘š + ๐‘๐œ‘ )(๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ), ๐‘ก โˆˆ ๐ผ. ( ] Therefore, for each ๐‘ก โˆˆ ๐‘ก๐‘˜ , ๐‘ก๐‘˜+1 , we get the following: ||๐‘ฆ(๐‘ก) โˆ’ ๐œ™(๐‘ก)||๐œ‚๐œ‰ โ‰ค ||๐‘ฆ(๐‘ก) โˆ’ ๐‘†(๐‘ก โˆ’ ๐‘ )[(๐‘ฆ(0) โˆ’

๐‘˜ โˆ‘ ๐‘—=1

๐‘˜ โˆ‘

โˆฅ ๐œ™(๐‘ ) โˆ’ ๐‘ฆ(๐‘ ) โˆฅ๐œ‚๐œ‰ ๐‘‘๐‘ 

0

๐‘ก

โˆ’||

โˆซ

๐‘ƒ (๐‘ , ๐œ™(๐‘ ))๐‘‘๐‘ ]||๐œ‚๐œ‰

โ‰ค ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€,๐œ‘๐œ‚๐œ‰ (๐œ‘๐œ‚๐œ‰ (๐‘ก) + ฮจ๐œ‚๐œ‰ ),

0

+๐‘†(๐‘ก โˆ’ ๐‘ )[||๐‘”(๐œ™) โˆ’ ๐‘”(๐‘ฆ)||๐œ‚๐œ‰

0<๐‘ก๐‘˜ <๐‘ก

๐‘š โˆ

)

(1 + ๐‘™๐‘˜ )๐‘’

๐‘˜=1

๐‘ƒ๐‘‡ ๐พ๐œ‚๐œ‰

(1 + ๐‘™๐‘˜ )๐‘’

and (1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) < 1. This completes the proof. 3

๐‘ƒ๐‘ก ๐พ๐œ‚๐œ‰

๐‘ก โˆˆ ๐ผ,

where ๐‘๐‘,๐‘™๐‘˜ ,๐ฟ๐œ‚๐œ‰ ,๐‘š,๐‘€,๐œ‘๐œ‚๐œ‰ โˆถ= ๐‘€(๐‘š + ๐‘๐œ‘ )

๐‘†(๐‘ก โˆ’ ๐‘ )||๐ฝ๐‘— (๐œ™(๐‘ก๐‘— )) โˆ’ ๐ฝ๐‘— (๐‘ฆ(๐‘ก๐‘— ))||๐œ‚๐œ‰

โˆ

>0

(3.2)

S.A. Bishop et al.

Heliyon 5 (2019) e02832

4. Example

Declarations

Let

Author contribution statement

1 ๐‘ƒ (๐‘ก, ๐œ™(๐‘ก))(๐œ‚, ๐œ‰) = (โˆ’ ๐œ™(๐‘ก))(๐œ‚, ๐œ‰), ๐‘ก โˆˆ ๐ผ = [0, 1], 2 and ๐ด๐œ™(๐‘ก)(๐œ‚, ๐œ‰) = ๐œ™(๐‘ก)(๐œ‚, ๐œ‰), ๐‘ก โˆˆ [0, 1].

(4.1)

S.A. Bishop, S.A. Iyase: Conceived and designed the experiments. H.I. Okagbue: Analyzed and interpreted the data. Funding statement

(4.2)

Also Let

This work was supported by Covenant University.

โ€–๐‘†(๐‘ก)โ€–๐œ‚๐œ‰ โ‰ค 1 = ๐‘€, ๐‘ก โ‰ฅ 0, ๐‘› โˆ‘ ๐œ™(0) + ๐‘”(๐œ™) = ๐œ™(0) + ๐œ…๐‘– ๐œ™(๐‘ก๐‘– ) = 1,

(4.3) Competing interest statement (4.4)

๐‘–=1

The authors declare no con๏ฌ‚ict of interest.

where 0 < ๐‘ก1 < ๐‘ก2 < ... < ๐‘ก๐‘› < 1, ๐œ…๐‘– > 0, ๐‘– = 1, ..., ๐‘› > 0, ๐‘š = 1, ๐‘ก1 = 1โˆ•2 and set โˆ‘๐‘› ๐‘–=1 ๐œ…๐‘– โ‰ค 1โˆ•3. Set ฮ”๐œ™(๐‘ก1 ) = ๐ฝ1 (๐œ™(๐‘ก๐‘– )) = ๐‘๐œ™(

Additional information No additional information is available for this paper.

1โˆ’ ), 2

and

Acknowledgements

โŸจ๐œ‚, ๐œ™(0)๐œ‰โŸฉ = โŸจ๐œ‚, ๐œ‰โŸฉ = ๐‘’โŸจ๐œ‚,๐œ‰โŸฉ = 1.

The authors will like to appreciate the anonymous reviewers for their valuable comments which have improved this work. Also, the support from Covenant University Centre for Research, Innovation and Discovery is highly appreciated.

Then we can have the following nonclassical evolution problem: 1 1 ๐‘‘ โŸจ๐œ‚, ๐œ™(๐‘ก)๐œ‰โŸฉ = ๐œ™(๐‘ก)(๐œ‚, ๐œ‰) + (โˆ’ ๐œ™(๐‘ก))(๐œ‚, ๐œ™๐œ‰), ๐‘ก โˆˆ [0, 1], ๐‘ก โ‰  , ๐‘‘๐‘ก 2 2 1โˆ’ ฮ”๐œ™(๐‘ก๐‘˜ ) = ๐‘๐œ™( ), ๐‘ก โˆˆ [0, 1] 2 ๐‘› โˆ‘ ๐œ…๐‘– ๐œ™(๐‘ก๐‘– ) = 1. ๐œ™0 = ๐œ™(0) +

References [1] Y. Li, Y. Shen, Hyers-Ulam stability of nonhomogeneous linear di๏ฌ€erential equation of second order, Int. J. Math. Math. Sci. 2009 (2009) 576852. [2] T. Miura, S.E. Takahashi, H. Choda, On Hyers-Ulam stability of real continuous function valued di๏ฌ€erentiable map, Tokyo J. Math. 24 (2) (2001) 467โ€“476. [3] A. Prastaro, Th.M. Rassias, Ulam stability in geometry of PDEs, in: Functional Equations, Inequalities and Applications, vol. 8, T.M. Rassias (Ed.), Springer, Dordrecht, 2003, pp. 139โ€“147. [4] S.A. Bishop, E.O. Ayoola, J.G. Oghonyon, Existence of mild solution of impulsive quantum stochastic di๏ฌ€erential equation with nonlocal conditions, Anal. Math. Phys. 7 (3) (2017) 255โ€“265. [5] E.O. Ayoola, Topological properties of solution sets of Lipschitzian quantum stochastic di๏ฌ€erential inclusions, Acta Appl. Math. 100 (1) (2008) 15โ€“37. [6] S.A. Bishop, P.E. Oguntunde, Existence of solutions of impulsive quantum stochastic di๏ฌ€erential inclusion, J. Eng. Appl. Sci. 10 (7) (2015) 181โ€“185. [7] M.O. Ogundiran, V.F. Payne, On the existence and uniqueness of solution of impulsive quantum stochastic di๏ฌ€erential equation, Di๏ฌ€er. Equ. Control Process. 2 (2013) 63โ€“73. [8] S.A. Bishop, T.A. Anake, Extension of continuous selection sets to non-lipschitzian quantum stochastic di๏ฌ€erential inclusion, Stoch. Anal. Appl. 31 (6) (2013) 1114โ€“1124. [9] S.A. Bishop, M.O. Ogundiran, O.P. Ogundile, On stability of quantum stochastic di๏ฌ€erential equation, Int. J. Mech. Eng. & Tech. (IJMET) 9 (9) (2018) 367โ€“374. [10] G.O.S. Ekhaguere, Lipschitzian quantum stochastic di๏ฌ€erential equations, Int. J. Theor. Phys. 31 (11) (1992) 2003โ€“2034. [11] S. Andras, J.J. Kolumban, Ulam-Hyers stability of ๏ฌrst order di๏ฌ€erential systems with nonlocal initial conditions, Nonlinear Anal. 82 (2013) 1โ€“11. [12] A. Bahyrycz, J. Brzdek, E. Jablonska, R. Malejki, Ulamโ€™s stability of a generalization of the Frรฉchet functional equation, J. Math. Anal. Appl. 442 (2) (2016) 537โ€“553. [13] N.B. Huy, T.D. Thanh, Fixed point theorems and the Ulam-Hyers stability in nonArchimedean cone metric spaces, J. Math. Anal. Appl. 414 (1) (2014) 10โ€“20. [14] Y.H. Lee, S.M. Jung, Generalized Hyers-Ulam stability of a mixed type functional equation, Abstr. Appl. Anal. 2013 (2013) 472531. [15] Y. Liao, J. Wang, A note on stability of impulsive di๏ฌ€erential equations, Bound. Value Probl. 2014 (2014) 67. [16] C. Parthasarathy, Existence and Hyers-Ulam-stability of nonlinear impulsive di๏ฌ€erential equations with nonlocal conditions, Electron. J. Math. Anal. Appl. 4 (1) (2012) 106โ€“116. [17] L. Pan, J. Cao, Exponential stability of impulsive stochastic functional di๏ฌ€erential equations, J. Math. Anal. Appl. 382 (2) (2011) 672โ€“685. [18] K. Shah, A. Ali, S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional di๏ฌ€erential equations with impulsive conditions, Math. Methods Appl. Sci. 41 (17) (2018) 8329โ€“8343. [19] Y.J. Wang, X.M. Shi, Z.Q. Zuo, M.Z.Q. Chen, Y.T. Shao, On ๏ฌnite-time stability for nonlinear impulsive switched systems, Nonlinear Anal. 14 (1) (2013) 807โ€“814. [20] Q. Wang, X.Z. Liu, Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, J. Franklin Inst. 349 (3) (2012) 1030โ€“1047.

(4.5)

๐‘–=1

We state that hypothesis ๐ป4 in [4] guarantees existence of solution of (4.5). Obviously, the map ๐‘ƒ de๏ฌned by (4.1) is continuous and hence, ๐ด1 holds. By setting ๐‘๐œ‘ = 1โˆ•2, ๐ด2 holds with ๐‘™๐‘˜ = 1โˆ•2. Also ๐ด3 holds by (4.3) and ๐ด4 holds by (4.4) so that ๐ฟ๐œ‚๐œ‰ = 1โˆ•3.

For ๐ด5 , assume that ๐œ‘๐œ‚๐œ‰ (๐‘ก) = ๐‘’2๐‘ก and ฮจ๐œ‚๐œ‰ = 1. Then, if ๐‘๐œ‘ = 12 , we get

๐‘ƒ = 1 . Thus ๐ด holds. Also the claim that the required result, where ๐พ๐œ‚๐œ‰ 5 2 2 < 1. 3 1 9โˆ•4(๐‘’2๐‘ก + 1)๐‘’ 2 ๐‘ก

(1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) < 1, holds. That is (1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) =

Lastly, we obtain โ€–๐œ™(๐‘ก) โˆ’ ๐‘ฆ(๐‘ก)โ€–๐œ‚๐œ‰ โ‰ค by (3.2) and by setting โŸจ๐œ‚, ๐œ‰โŸฉ = ๐‘’โŸจ๐œ‚,๐œ‰โŸฉ = 1. Thus, from Theorem 3.1, it follows that the problem (4.5) is generalized U-H-R stable with respect to (๐‘’2๐‘ก , 1). 5. Conclusion The Ulam-Hyers stability considered here involves a function say ๐‘ฆ(๐‘ก) which can closely solve (1.2) provided one can ๏ฌnd an exact solution ๐œ™(๐‘ก) of the given equation which is close to ๐‘ฆ(๐‘ก). Hence, by De๏ฌnition 2.2 (i), (1.2) is U-H stable if it has an exact solution and if there is a ๐›ฟ > 0 such that if ๐œ™(๐‘ก)๐‘Ž is an approximation for the solution of (1.2) then there is an exact solution ๐œ™(๐‘ก) of (1.2) which is close to ๐œ™. This means that in application, if one is studying stability problem of this type, one does not have to attain the exact solution (which is quite di๏ฌƒcult in this case). What is required is to obtain a function which satis๏ฌes De๏ฌnition 2.2 and U-H stability guarantees that there is a solution close to the exact solution. This is quite useful in many applications, e.g. numerical analysis, optimization, biology, economics, etc., where ๏ฌnding the exact solution is quite di๏ฌƒcult. It also helps, if the stochastic effects are small, to use deterministic model to approximate a stochastic one. It is pertinent to note that U-H stability considered here is independent of the conversant Lyapunov stability which states that (1.2) is Lyapunov stable if both ๐œ™(๐‘ก) and ๐‘ฆ(๐‘ก) are exact solutions of (1.2), see [1, 2, 3] and the references therein. This explanation can be repeated for U-H-R stability and the result follows for the Generalized U-H-R stability by using (ii)-(iii) in De๏ฌnition 2.2 and inequality (2.3). This implies that (1.2) is generalized U-H-R stable with respect to (๐œ‘๐œ‚๐œ‰ , ฮจ๐œ‚๐œ‰ ) provided ๐‘ƒ (Lipschitz function) is a constant. (1 โˆ’ ๐‘€๐ฟ๐œ‚๐œ‰ ) < 1 and ๐พ๐œ‚๐œ‰ 4

S.A. Bishop et al.

Heliyon 5 (2019) e02832

[21] J. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional di๏ฌ€erential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (6) (2012) 2530โ€“2538. [22] J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional di๏ฌ€erential equations and Ulam stability, Comput. Math. Appl. 64 (10) (2012) 3389โ€“3405. [23] J. Wang, M. Feckan, Y. Zhou, Ulamโ€™s type stability of impulsive ordinary di๏ฌ€erential equations, J. Math. Anal. Appl. 395 (2012) 258โ€“264.

[24] Y. Xu, Z. He, Stability of impulsive stochastic di๏ฌ€erential equations with Markovian switching, Appl. Math. Lett. 35 (2014) 35โ€“40. [25] A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional order di๏ฌ€erential equations, Adv. Di๏ฌ€er. Equ. (2019) 101.

5