Heliyon 5 (2019) e02832
Contents lists available at ScienceDirect
Heliyon www.elsevier.com/locate/heliyon
Research article
Stability of well-posed stochastic evolution equation S.A. Bishop โ , S.A. Iyase, H.I. Okagbue Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria
A R T I C L E
I N F O
Keywords: Mathematics Ulams-Hyers stability Stochastic processes Impulsive and nonlocal conditions Evolution Equation
A B S T R A C T The stability of a non-classical stochastic evolution equation with impulsive and nonlocal initial conditions is examined from a general perspective. We investigate the e๏ฌect of the nonlocal conditions on the well-posedness and the stability of the solution. We show that the concept of Ulam-type stability holds for this class of equation under the given condition (1 โ ๐๐ฟ๐๐ ) < 1. An example is also provided to support our claim.
1. Introduction The progression in time of many physical problems is mostly de๏ฌned through a system of di๏ฌerential equations which can also be rewritten as a Cauchy problem. The interest in studying well-posedness of these problems together with the properties of their solution is on the increase. One of the major analytical di๏ฌculties in the theory of classical and quantum stochastic di๏ฌerential equations arise whenever the coe๏ฌcients driving the equation also consist of unbounded operators, a requirement that is largely unavoidable when dealing with di๏ฌerential equations. Ulam-Hyers (or Ulam-Hyers-Rissias) stability has been used extensively to study stability and has found applications in real life problems such as in economics, biology, population dynamics, etc. that deal with both linear and nonlinear systems. See [1, 2, 3] and the references therein. We consider the following impulsive quantum stochastic di๏ฌerential equation introduced by Bishop et al. [4]; ๐๐(๐ก) = ๐ด(๐ก)๐(๐ก) + ๐ (๐ก, ๐(๐ก))๐ โง๐ (๐ก) + ๐ (๐ก, ๐(๐ก))๐๐ด+ (๐ก) ๐ +๐ (๐ก, ๐(๐ก))๐๐ด๐ (๐ก) + ๐(๐ก, ๐(๐ก))๐๐ก ๐ก โ ๐ผ = [0, ๐ ] โ โ+ , ๐ก โ ๐ก๐ , ๐ = 1, ..., ๐ โณ๐(๐ก๐ ) = ๐ฝ๐ (๐(๐ก๐ )), ๐ก โ ๐ก๐ ๐(0) = ๐0 โ ๐(๐), ๐ก โ [0, ๐ ].
(1.1)
ฬ ๎ฎ), ฬ ๐ด is the in๏ฌnitesimal generator of a family of semiHere ๐ฝ๐ โ ๐ถ(๎ฎ, group de๏ฌned in [4] while g is a continuous function. ๐(๐ก+ ) = lim๐โ0+ ๐(๐ก๐ + ๐) and ๐(๐กโ ) = lim๐โ0โ ๐(๐ก๐ + ๐) are the right ๐ ๐ and left limits of ๐(๐ก) at ๐ก = ๐ก๐ while ฮ๐(๐ก๐ ) = ๐(๐ก+ ) โ ๐(๐กโ ) is the jump in ๐ ๐
*
the state ๐ at ๐ก๐ and the coe๏ฌcients ๐ , ๐ , ๐ , ๐ are stochastic processes de๏ฌned in [4, 5, 6]. Associated with equation (1.1) is the following nonclassical stochastic di๏ฌerential equation (NSDE) with impulse e๏ฌect: ๐ โจ๐, ๐(๐ก)๐โฉ = ๐ด(๐ก)๐(๐ก)(๐, ๐) + ๐ (๐ก, ๐(๐ก))(๐, ๐), ๐ก โ ๐ผ, ๐ก โ ๐ก๐ , ๐ = 1, ..., ๐ ๐๐ก ฮ๐(๐ก๐ ) = ๐ฝ๐ (๐(๐กโ ๐ )), ๐ก โ ๐ก๐ , ๐ = 1, ..., ๐ ๐(0) = ๐0 โ ๐(๐), ๐ก โ [0, ๐ ],
(1.2)
where (๐ก, ๐) โ ๐ (๐ก, ๐)(๐, ๐) is a sesquilinear-form valued stochastic process well de๏ฌned in [4]. ๐, ๐ โ DโE (D is a pre-Hilbert space and E is a linear space of exponential vectors). For details of these equations and how they are connected, we refer the reader to [4] and the references therein. Existence of solution of (1.1) using the equivalent nonclassical ordinary di๏ฌerential equation (1.2) with initial condition was ๏ฌrst considered by Ogundiran and Payne [7]. Later Bishop and Oguntunde [6] considered a weaker form of [7], where the evolution operator ๐ด = 0. In [4], the existence of solution of (1.1) was established with nonlocal conditions that are completely continuous. Several results on the qualitative and topological properties of solutions of (1.1) with and without the impulse e๏ฌect have been studied [5, 6, 8, 9, 10]. In the case of ordinary di๏ฌerential equations (ODEs), functional ordinary di๏ฌerential equations (FODEs), etc. with impulse e๏ฌect, local initial and nonlocal initial conditions, so much have been done on the existence of solutions and stability of solutions of these types of equations, see [3, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and the references therein. In [7, 21], the authors established Ulam stability of impulsive di๏ฌerential equations with local and nonlocal initial conditions respectively. Ulam-Hyers-Rassias stability was also considered by Liao and Wang
Corresponding author. E-mail address:
[email protected] (S.A. Bishop).
https://doi.org/10.1016/j.heliyon.2019.e02832 Received 15 May 2019; Received in revised form 24 August 2019; Accepted 6 November 2019 2405-8440/ยฉ 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
S.A. Bishop et al.
Heliyon 5 (2019) e02832
[15]. Several other studies in literature show the use of this concept of stability [3, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recently Ali et al. [25] studied HyersโUlam type stability of solutions of a coupled system of implicit type impulsive boundary value problems of fractional ODEs under some strict conditions. Within the context of (1.1), no study has been done on Ulamโs type of stability. We study Ulam, Ulam-Hyers, Ulam-Hyers-Rassias types of stability for (1.1). Here the impulsive conditions are combinations of the nonlocal problem and the short term perturbations. We rely on the structure of the topological space and additional properties to establish the main result.
(ii) (1.1) is generalized U-H stable if โ ๐
obtain ||๐(๐ก) โ ๐ฆ(๐ก)||๐๐ โค ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐ (๐ฟ). (iii) (1.1) is U-H-R stable with respect to (๐๐๐ (๐ก), ฮจ๐๐ ) if we can ๏ฌnd ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐,๐๐๐ > 0 and a ๐ฟ > 0 such that for each solution ๐ฆ โ ฬ of (2.4) a solution ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ) ฬ of (1.2) exists with ๐ ๐ถ 1 (๐ผ, ๎ฎ) ||๐(๐ก) โ ๐ฆ(๐ก)||๐๐ โค ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐ ๐ฟ(๐๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ ). (iv) (1.1) is generalized U-H-R stable with respect to (๐๐๐ , ฮจ๐๐ ) if ฬ ๐๐ ,๐๐ ,๐ฟ๐๐ ,๐,๐,๐๐๐ > 0 exists such that for each solution ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ) ฬ of (1.1) with of (2.3) we ๏ฌnd a solution ๐ฆ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ)
2. Preliminaries We state the following de๏ฌnitions and notations of some spaces.
||๐(๐ก) โ ๐ฆ(๐ก)||๐๐ โค ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐,๐๐๐ (๐๐๐ (๐ก) + ฮจ๐๐ ).
ฬ denotes its nonempty 1. ๎ฎฬ is a topological vector space, where clos(๎ฎ) closed subset. 2. ๐ ๐๐ ๐(DโE) is a complex space of sesquilinear-form valued stochastic processes. ฬ ๐ ๐ถ 1 (๐ผ, ๎ฎ), ฬ PC(๐ผ, ๐ ๐๐ ๐(DโE)) are Banach spaces with the 3. PC(๐ผ, ๎ฎ), usual supremum norm de๏ฌned in [2, 12].
ฬ and ๐๐ , ๐ = 1, ..., โ, be a sequence De๏ฌnition 2.3. Let ๐ โ ๐ ๐ถ(๐ผ, ๎ญ) which also depends on ๐, ๐ such that the following holds: (i) |๐(๐ก)| โค ๐๐ฟ, ๐ก โ ๐ผ , and |๐๐ | < ๐ฟ; (ii) ๐๐(๐ก)=๐ด(๐ก)๐(๐ก)+๐ (๐ก, ๐(๐ก))๐ โง๐ (๐ก)+๐ (๐ก, ๐(๐ก))๐๐ด+ (๐ก)+๐ (๐ก, ๐(๐ก))๐๐ด๐ (๐ก) + ๐ [ ] โฒ โฒ ๐(๐ก, ๐(๐ก))๐๐ก + ๐(๐ก), ๐ก โ ๐ผ , ๐ผ = ๐ผ โงต ๐ก, ๐ก๐ ; (iii) ฮ๐(๐ก๐ ) = ๐ฝ๐ (๐(๐กโ )) + ๐๐ . ๐ ฬ is a solution of (2.2). Then ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ)
Let ๐ผ0 = [0, ๐ก1 ], ๐ผ1 = (๐ก1 , ๐ก2 ], ..., ๐ผ๐ = (๐ก๐ , ๐ ], and ๐ผ๐ = (๐ก๐ , ๐ก๐+1 ], where ๐ = 1, ..., ๐, ๐ก0 = 0. ฬ is said to be a solution De๏ฌnition 2.1. A stochastic process ๐ง โ ๐ ๐ถ(๐ผ, ๎ฎ) of (1.1) if it satis๏ฌes
Similar de๏ฌnitions can be obtained for (2.3) and (2.4). ฬ is a solution of inequality (2.2), By De๏ฌnition 2.1, if ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ) then ๐ is a solution of the following:
๐ง(0) = ๐0 โ ๐(๐ง) ฮ๐ง(๐ก๐ ) = ๐ฝ๐ (๐ง(๐กโ ๐ ))
[ ] ||๐(๐ก)||๐๐ โ ||๐(๐ก โ ๐ ) ๐0 โ ๐(๐)
๐ก
๐ง(๐ก) = ๐(๐ก)[๐ง0 โ ๐(๐ง)] +
๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐ โ ๐ถ(โ+ , โ+ ),
1 ฬ ,๐ฟ๐๐ ,๐ (0) = 0, so that for a solution ๐ โ ๐ ๐ถ (๐ผ, ๎ฎ) of (2.2) we
๐๐๐
โซ
๐ก
๐(๐ก โ ๐ )(๐ (๐ , ๐ง(๐ ))๐ โง๐ (๐ )
+
0
[ ] (๐ ) + ๐ (๐ , ๐ง(๐ ))๐๐ด๐ (๐ ) + ๐(๐ , ๐ง(๐ ))๐๐ ), ๐ก โ 0, ๐ก1 +๐ (๐ , ๐ง(๐ ))๐๐ด+ ๐ โ ๐(๐ก โ ๐ )๐ฝ๐ (๐ง(๐กโ (2.1) + ๐ )), ๐ = 1, ..., ๐.
โซ
๐(๐ก โ ๐ )(๐ (๐ , ๐(๐ ))๐๐ +
๐=๐
0
(2.5)
So that by De๏ฌnition 2.3 (ii)-(iii), we obtain ] = ||๐(๐ก โ ๐ ) ๐0 โ ๐(๐) +
๐ก
[
Notation 2.1. Denote Ulam, Ulam-Hyers and Ulam-Hyers-Rassias by U, U-H and U-H-R respectively. Next, we introduce the concept of Ulam stability within the context of this paper. We state the following useful inequalities. Let ๐ฟ > 0, ฮจ โฅ 0 ฬ be a non-decreasing function. Then and ๐ โ ๐ ๐ถ(๐ผ, ๎ญ)
||๐(๐ก)||๐๐
๐ โจ๐, ๐(๐ก)๐โฉ โ ๐ด(๐ก)๐(๐ก)(๐, ๐) โ ๐ (๐ก, ๐(๐ก)(๐, ๐)| โค ๐ฟ, ๐ก โ ๐ก๐ ๐๐ก | โณ ๐(๐ก๐ )(๐, ๐) โ ๐ฝ๐ (๐(๐กโ ๐ ))(๐, ๐) + ๐(๐ก)| โค ๐ฟ, ๐ = 1, ..., ๐
from which we get
โซ
๐ก
๐(๐ก โ ๐ )(๐ (๐ , ๐(๐ ))๐๐ +
0
+
๐ โ ๐=๐
|
๐ฝ๐ (๐(๐กโ ๐ )) +
๐ โ ๐=1
[ ] ||๐(๐ก) โ ๐(๐ก โ ๐ ) ๐0 โ ๐(๐) +
(2.2)
|
๐ โจ๐, ๐(๐ก)๐โฉ โ ๐ด(๐ก)๐(๐ก)(๐, ๐) โ ๐ (๐ก, ๐(๐ก)(๐, ๐)| โค ๐ฟ๐๐๐ (๐ก) ๐๐ก | โณ ๐(๐ก๐ )(๐, ๐) โ ๐ฝ๐ (๐(๐กโ ๐ ))(๐, ๐) + ๐(๐ก)| โค ๐ฟฮจ๐๐ .
๐ฝ๐ (๐(๐กโ ๐ )))||๐๐
โค ๐(๐ + ๐ก)๐ฟ.
0<๐ก๐ <๐ก
๐ โจ๐, ๐(๐ก)๐โฉ โ ๐ด(๐ก)๐(๐ก)(๐, ๐) โ ๐ (๐ก, ๐(๐ก)(๐, ๐)| โค ๐๐๐ (๐ก) ๐๐ก | โณ ๐(๐ก๐ )(๐, ๐) โ ๐ฝ๐ (๐(๐กโ ๐ ))(๐, ๐) + ๐(๐ก)| โค ฮจ๐๐
๐ โ
๐๐ )||๐๐ ,
๐ก โ (๐ก๐ , ๐ก๐+1 ],
๐(๐ก โ ๐ )๐ (๐ , ๐(๐ ))๐๐ +
0
(2.3)
โค๐
|
๐ โ ๐=1
๐(๐ )๐๐
0
๐ก
โซ
โซ
๐ โ ๐=1
๐ฝ๐ (๐(๐ก๐ ))||๐๐
๐ก
|๐๐ | + ๐
โซ
|๐(๐ )|๐๐
0
โค ๐๐๐ฟ + ๐๐ก๐ฟ = ๐(๐ + ๐ก)๐ฟ.
(2.4)
Repeating the process for (2.3) and (2.4), we obtain similar results with respect to ๐๐๐ (๐ก) and ฮจ๐๐ .
Subsequently, ๐ก โ ๐ผ , ๐, ๐ โ (DโE)) and ๐ = 1, ..., ๐ except otherwise stated.
3. Main results
De๏ฌnition 2.2.
The following assumptions will be used to establish the main results: Let ๐พ๐๐ , ๐๐ , ๐ , and ๐ฟ๐๐ be positive constants.
(i) (1.1) is U-H stable if โ a real number ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐ > 0 such that for ฬ of (2.2) there exists each ๐ฟ > 0 and for each solution ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ) ฬ of (1.1) with a solution ๐ฆ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ)
๐ด1 . If (๐ก, ๐) โ ๐ (๐ก, ๐ฅ)(๐, ๐) is continuous, for ๐, ๐ฆ โ ๎ฎฬ we get ๐ ||๐ (๐ก, ๐) โ ๐ (๐ก, ๐ฆ)||๐๐ โค ๐พ๐๐ ||๐ โ ๐ฆ||๐๐ .
||๐(๐ก) โ ๐ฆ(๐ก)||๐๐ โค ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐ ๐ฟ. 2
S.A. Bishop et al.
Heliyon 5 (2019) e02832 ๐ก
ฬ we have ๐ด2 . For ๐ฝ๐ โถ ๎ฎฬ โ ๎ฎ,
+
ฬ ||๐ฝ๐ (๐) โ ๐ฝ๐ (๐ฆ)||๐๐ โค ๐๐ ||๐ โ ๐ฆ||๐๐ , ๐ โ ๎ฎ.
โซ
||๐ (๐ , ๐(๐ )) โ ๐ (๐ , ๐ฆ(๐ ))||๐๐ ๐๐ ]
0
๐ด3 . Let ๐ก โฅ 0, then ||๐(๐ก)||๐๐ โค ๐ . ๐ด4 . For ๐ โถ ๎ฎฬ โ ๐ ๐ถ(๐ผ, ๐ ๐๐ ๐(DโE)) we obtain
โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ ) + ๐
๐ โ ๐=1
๐๐ ||๐(๐ก๐ ) โ ๐ฆ(๐ก๐ )||๐๐
๐ก
ฬ ||๐(๐) โ ๐(๐ฆ)||๐๐ โค ๐ฟ๐๐ ||๐ โ ๐ฆ||๐๐ , ๐, ๐ฆ โ ๎ฎ.
+๐๐ฟ๐๐ ||๐(๐ก) โ ๐ฆ(๐ก)||๐๐ + ๐
๐ด5 . For each ๐ก โ ๐ผ , let the function ๐๐๐ โ ๐ถ(๐ผ, โ+ ) be non decreasing. Then
โซ
๐พ๐๐ ||๐(๐ ) โ ๐ฆ(๐ )||๐๐ ๐๐ .
0
(3.1)
๐ก
๐๐๐ (๐ )๐๐ โค ๐๐ ๐(๐ก), ๐๐ > 0.
โซ
๐ (๐ก) is a function. Case 1: When ๐พ๐๐
ฬ ๐ก โ [๐ก0 , ๐ ], Since the map ๐ โ ||๐1 โ ๐0 ||๐๐ is continuous for ๐ โ ๎ฎ, we let
0
Theorem 3.1. Let the conditions ๐ด1 โ ๐ด5 , and ๐ป4 in [4] be satis๏ฌed. Then (1.2) respectively (1.1) is generalized U-H-R stable with respect to (๐๐๐ (๐ก), ฮจ๐๐ ) provided (1 โ ๐๐ฟ๐๐ ) < 1.
๐
๐๐ = sup ||๐1 โ ๐0 ||๐๐ ๐กโ[0,๐ ]
and
ฬ be a solution of (2.3) and ๐ฆ a unique solution Proof. Let ๐ โ ๐ ๐ถ 1 (๐ผ, ๎ฎ) of (1.1) where ๐(0) = ๐ฆ(0) and ๐0 = ๐ฆ0 . Then we obtain
๐ก
๐๐๐ (๐ก) =
๐ก
๐(๐ก) = ๐(๐ก โ ๐ ) [๐ฆ(0) + ๐(๐)] +
โซ
๐(๐ก โ ๐ )[๐ (๐ , ๐(๐ ))๐ โง๐ (๐ )
Hence, from (3.1), we obtain
๐ก โ (0, ๐ก1 ],
๐ก
= ๐(๐ก โ ๐ )([๐ฆ(0) + ๐(๐)] + ๐ฝ1 (๐(๐กโ ))) + 1
โซ
||๐ฆ(๐ก) โ ๐(๐ก)||๐๐ โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ )
๐(๐ก โ ๐ )[๐ (๐ , ๐(๐ ))๐ โง๐ (๐ )
0
+๐
(๐ ) + ๐ (๐ , ๐(๐ ))๐๐ด๐ (๐ ) + ๐(๐ , ๐(๐ ))๐๐ ], +๐ (๐ , ๐(๐ )๐๐ด+ ๐
๐ก โ (๐ก1 , ๐ก2 ],
โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ )
๐(๐ก โ ๐ )[๐ (๐ , ๐(๐ ))๐ โง๐ (๐ ) + ๐ (๐ , ๐(๐ ))๐๐ด+ (๐ ) ๐
+๐๐๐ ๐
๐๐ + ๐๐
๐๐ [๐ฟ๐๐ + ๐๐๐ (๐ก)]
0
+๐ (๐ , ๐(๐ ))๐๐ด๐ (๐ ) + ๐(๐ , ๐(๐ ))๐๐ ],
๐ก โ (๐ก2 , ๐ก3 ],
โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ ) + ๐
.
๐ โ ๐=1
๐๐ ||๐(๐ก๐ ) โ ๐ฆ(๐ก๐ )||๐๐
+๐๐
๐๐ [๐ฟ๐๐ + ๐๐๐ (๐ก)].
. . = ๐(๐ก โ ๐ )([๐ฆ(0) + ๐(๐)) +
๐ โ ๐=1
Obviously, Lemma 2.1 in [23] cannot be applied directly in this case. ๐ For more on the Lipschitz function ๐พ๐๐ (๐ก), see the references [4, 5, 6, 7, 8]. ๐ Case 2: When ๐พ๐๐ > 0 is a constant independent of t. Again, subtracting ๐๐ฟ๐๐ โฅ ๐(๐ก) โ ๐ฆ(๐ก) โฅ๐๐ from both sides of (3.1) yields:
๐ฝ๐ (๐(๐ก๐ )))
๐ก
+
๐๐ ||๐(๐ก๐ ) โ ๐ฆ(๐ก๐ )||๐๐
+๐๐ฟ๐๐ ๐
๐๐ + ๐๐
๐๐ ๐๐๐ (๐ก)
๐ก
โซ
๐ โ ๐=1
)) + ๐ฝ2 (๐(๐กโ ))) = ๐(๐ก โ ๐ )([(๐ฆ(0) + ๐(๐)] + ๐ฝ1 (๐(๐กโ 1 2 +
๐ ๐พ๐๐ (๐ )๐๐ .
0
0
+๐ (๐ , ๐(๐ )๐๐ด+ (๐ ) + ๐ (๐ , ๐(๐ ))๐๐ด๐ (๐ ) + ๐(๐ , ๐(๐ ))๐๐ ], ๐
โซ
โซ
๐(๐ก โ ๐ )[๐ (๐ , ๐(๐ ))๐ โง๐ (๐ ) + ๐ (๐ , ๐(๐ ))๐๐ด+ (๐ ) ๐
0
+๐ (๐ , ๐(๐ ))๐๐ด๐ (๐ ) + ๐(๐ , ๐(๐ ))๐๐ ],
๐ก โ (๐ก๐ , ๐ ].
(1 โ ๐๐ฟ๐๐ ) โฅ ๐(๐ก) โ ๐ฆ(๐ก) โฅ๐๐ โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ )
( ] Similarly, by de๏ฌnition (2.1), we obtain for each ๐ก โ ๐ก๐ , ๐ก๐+1 , ||๐ฆ(๐ก)||๐๐ โ ||๐(๐ก โ ๐ ) [๐ฆ(0) + ๐(๐)] โ
๐ โ ๐=1
๐ก
+๐๐พ๐๐
๐(๐ก โ ๐ )๐ฝ๐ (๐ฆ(๐กโ ๐ ))||๐๐
โซ
+๐
๐(๐ก โ ๐ )๐ (๐ , ๐ฆ(๐ ))๐๐ ||๐๐
0
+
๐ โ ๐=1
๐=1
( โฅ ๐(๐ก) โ ๐ฆ(๐ก) โฅ๐๐ โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ )
๐ก
๐ฝ๐ (๐ฆ(๐ก๐ )) โ
โซ
๐๐ โฅ ๐(๐ก๐ ) โ ๐ฆ(๐ก๐ ) โฅ๐๐ .
By applying Lemma 2.1 in [23], we obtain
โค ๐(๐ + ๐๐ )(๐๐๐ (๐ก) + ฮจ๐๐ ), ๐ก โ ๐ผ. ( ] Therefore, for each ๐ก โ ๐ก๐ , ๐ก๐+1 , we get the following: ||๐ฆ(๐ก) โ ๐(๐ก)||๐๐ โค ||๐ฆ(๐ก) โ ๐(๐ก โ ๐ )[(๐ฆ(0) โ
๐ โ ๐=1
๐ โ
โฅ ๐(๐ ) โ ๐ฆ(๐ ) โฅ๐๐ ๐๐
0
๐ก
โ||
โซ
๐ (๐ , ๐(๐ ))๐๐ ]||๐๐
โค ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐,๐๐๐ (๐๐๐ (๐ก) + ฮจ๐๐ ),
0
+๐(๐ก โ ๐ )[||๐(๐) โ ๐(๐ฆ)||๐๐
0<๐ก๐ <๐ก
๐ โ
)
(1 + ๐๐ )๐
๐=1
๐๐ ๐พ๐๐
(1 + ๐๐ )๐
and (1 โ ๐๐ฟ๐๐ ) < 1. This completes the proof. 3
๐๐ก ๐พ๐๐
๐ก โ ๐ผ,
where ๐๐,๐๐ ,๐ฟ๐๐ ,๐,๐,๐๐๐ โถ= ๐(๐ + ๐๐ )
๐(๐ก โ ๐ )||๐ฝ๐ (๐(๐ก๐ )) โ ๐ฝ๐ (๐ฆ(๐ก๐ ))||๐๐
โ
>0
(3.2)
S.A. Bishop et al.
Heliyon 5 (2019) e02832
4. Example
Declarations
Let
Author contribution statement
1 ๐ (๐ก, ๐(๐ก))(๐, ๐) = (โ ๐(๐ก))(๐, ๐), ๐ก โ ๐ผ = [0, 1], 2 and ๐ด๐(๐ก)(๐, ๐) = ๐(๐ก)(๐, ๐), ๐ก โ [0, 1].
(4.1)
S.A. Bishop, S.A. Iyase: Conceived and designed the experiments. H.I. Okagbue: Analyzed and interpreted the data. Funding statement
(4.2)
Also Let
This work was supported by Covenant University.
โ๐(๐ก)โ๐๐ โค 1 = ๐, ๐ก โฅ 0, ๐ โ ๐(0) + ๐(๐) = ๐(0) + ๐
๐ ๐(๐ก๐ ) = 1,
(4.3) Competing interest statement (4.4)
๐=1
The authors declare no con๏ฌict of interest.
where 0 < ๐ก1 < ๐ก2 < ... < ๐ก๐ < 1, ๐
๐ > 0, ๐ = 1, ..., ๐ > 0, ๐ = 1, ๐ก1 = 1โ2 and set โ๐ ๐=1 ๐
๐ โค 1โ3. Set ฮ๐(๐ก1 ) = ๐ฝ1 (๐(๐ก๐ )) = ๐๐(
Additional information No additional information is available for this paper.
1โ ), 2
and
Acknowledgements
โจ๐, ๐(0)๐โฉ = โจ๐, ๐โฉ = ๐โจ๐,๐โฉ = 1.
The authors will like to appreciate the anonymous reviewers for their valuable comments which have improved this work. Also, the support from Covenant University Centre for Research, Innovation and Discovery is highly appreciated.
Then we can have the following nonclassical evolution problem: 1 1 ๐ โจ๐, ๐(๐ก)๐โฉ = ๐(๐ก)(๐, ๐) + (โ ๐(๐ก))(๐, ๐๐), ๐ก โ [0, 1], ๐ก โ , ๐๐ก 2 2 1โ ฮ๐(๐ก๐ ) = ๐๐( ), ๐ก โ [0, 1] 2 ๐ โ ๐
๐ ๐(๐ก๐ ) = 1. ๐0 = ๐(0) +
References [1] Y. Li, Y. Shen, Hyers-Ulam stability of nonhomogeneous linear di๏ฌerential equation of second order, Int. J. Math. Math. Sci. 2009 (2009) 576852. [2] T. Miura, S.E. Takahashi, H. Choda, On Hyers-Ulam stability of real continuous function valued di๏ฌerentiable map, Tokyo J. Math. 24 (2) (2001) 467โ476. [3] A. Prastaro, Th.M. Rassias, Ulam stability in geometry of PDEs, in: Functional Equations, Inequalities and Applications, vol. 8, T.M. Rassias (Ed.), Springer, Dordrecht, 2003, pp. 139โ147. [4] S.A. Bishop, E.O. Ayoola, J.G. Oghonyon, Existence of mild solution of impulsive quantum stochastic di๏ฌerential equation with nonlocal conditions, Anal. Math. Phys. 7 (3) (2017) 255โ265. [5] E.O. Ayoola, Topological properties of solution sets of Lipschitzian quantum stochastic di๏ฌerential inclusions, Acta Appl. Math. 100 (1) (2008) 15โ37. [6] S.A. Bishop, P.E. Oguntunde, Existence of solutions of impulsive quantum stochastic di๏ฌerential inclusion, J. Eng. Appl. Sci. 10 (7) (2015) 181โ185. [7] M.O. Ogundiran, V.F. Payne, On the existence and uniqueness of solution of impulsive quantum stochastic di๏ฌerential equation, Di๏ฌer. Equ. Control Process. 2 (2013) 63โ73. [8] S.A. Bishop, T.A. Anake, Extension of continuous selection sets to non-lipschitzian quantum stochastic di๏ฌerential inclusion, Stoch. Anal. Appl. 31 (6) (2013) 1114โ1124. [9] S.A. Bishop, M.O. Ogundiran, O.P. Ogundile, On stability of quantum stochastic di๏ฌerential equation, Int. J. Mech. Eng. & Tech. (IJMET) 9 (9) (2018) 367โ374. [10] G.O.S. Ekhaguere, Lipschitzian quantum stochastic di๏ฌerential equations, Int. J. Theor. Phys. 31 (11) (1992) 2003โ2034. [11] S. Andras, J.J. Kolumban, Ulam-Hyers stability of ๏ฌrst order di๏ฌerential systems with nonlocal initial conditions, Nonlinear Anal. 82 (2013) 1โ11. [12] A. Bahyrycz, J. Brzdek, E. Jablonska, R. Malejki, Ulamโs stability of a generalization of the Frรฉchet functional equation, J. Math. Anal. Appl. 442 (2) (2016) 537โ553. [13] N.B. Huy, T.D. Thanh, Fixed point theorems and the Ulam-Hyers stability in nonArchimedean cone metric spaces, J. Math. Anal. Appl. 414 (1) (2014) 10โ20. [14] Y.H. Lee, S.M. Jung, Generalized Hyers-Ulam stability of a mixed type functional equation, Abstr. Appl. Anal. 2013 (2013) 472531. [15] Y. Liao, J. Wang, A note on stability of impulsive di๏ฌerential equations, Bound. Value Probl. 2014 (2014) 67. [16] C. Parthasarathy, Existence and Hyers-Ulam-stability of nonlinear impulsive di๏ฌerential equations with nonlocal conditions, Electron. J. Math. Anal. Appl. 4 (1) (2012) 106โ116. [17] L. Pan, J. Cao, Exponential stability of impulsive stochastic functional di๏ฌerential equations, J. Math. Anal. Appl. 382 (2) (2011) 672โ685. [18] K. Shah, A. Ali, S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional di๏ฌerential equations with impulsive conditions, Math. Methods Appl. Sci. 41 (17) (2018) 8329โ8343. [19] Y.J. Wang, X.M. Shi, Z.Q. Zuo, M.Z.Q. Chen, Y.T. Shao, On ๏ฌnite-time stability for nonlinear impulsive switched systems, Nonlinear Anal. 14 (1) (2013) 807โ814. [20] Q. Wang, X.Z. Liu, Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, J. Franklin Inst. 349 (3) (2012) 1030โ1047.
(4.5)
๐=1
We state that hypothesis ๐ป4 in [4] guarantees existence of solution of (4.5). Obviously, the map ๐ de๏ฌned by (4.1) is continuous and hence, ๐ด1 holds. By setting ๐๐ = 1โ2, ๐ด2 holds with ๐๐ = 1โ2. Also ๐ด3 holds by (4.3) and ๐ด4 holds by (4.4) so that ๐ฟ๐๐ = 1โ3.
For ๐ด5 , assume that ๐๐๐ (๐ก) = ๐2๐ก and ฮจ๐๐ = 1. Then, if ๐๐ = 12 , we get
๐ = 1 . Thus ๐ด holds. Also the claim that the required result, where ๐พ๐๐ 5 2 2 < 1. 3 1 9โ4(๐2๐ก + 1)๐ 2 ๐ก
(1 โ ๐๐ฟ๐๐ ) < 1, holds. That is (1 โ ๐๐ฟ๐๐ ) =
Lastly, we obtain โ๐(๐ก) โ ๐ฆ(๐ก)โ๐๐ โค by (3.2) and by setting โจ๐, ๐โฉ = ๐โจ๐,๐โฉ = 1. Thus, from Theorem 3.1, it follows that the problem (4.5) is generalized U-H-R stable with respect to (๐2๐ก , 1). 5. Conclusion The Ulam-Hyers stability considered here involves a function say ๐ฆ(๐ก) which can closely solve (1.2) provided one can ๏ฌnd an exact solution ๐(๐ก) of the given equation which is close to ๐ฆ(๐ก). Hence, by De๏ฌnition 2.2 (i), (1.2) is U-H stable if it has an exact solution and if there is a ๐ฟ > 0 such that if ๐(๐ก)๐ is an approximation for the solution of (1.2) then there is an exact solution ๐(๐ก) of (1.2) which is close to ๐. This means that in application, if one is studying stability problem of this type, one does not have to attain the exact solution (which is quite di๏ฌcult in this case). What is required is to obtain a function which satis๏ฌes De๏ฌnition 2.2 and U-H stability guarantees that there is a solution close to the exact solution. This is quite useful in many applications, e.g. numerical analysis, optimization, biology, economics, etc., where ๏ฌnding the exact solution is quite di๏ฌcult. It also helps, if the stochastic effects are small, to use deterministic model to approximate a stochastic one. It is pertinent to note that U-H stability considered here is independent of the conversant Lyapunov stability which states that (1.2) is Lyapunov stable if both ๐(๐ก) and ๐ฆ(๐ก) are exact solutions of (1.2), see [1, 2, 3] and the references therein. This explanation can be repeated for U-H-R stability and the result follows for the Generalized U-H-R stability by using (ii)-(iii) in De๏ฌnition 2.2 and inequality (2.3). This implies that (1.2) is generalized U-H-R stable with respect to (๐๐๐ , ฮจ๐๐ ) provided ๐ (Lipschitz function) is a constant. (1 โ ๐๐ฟ๐๐ ) < 1 and ๐พ๐๐ 4
S.A. Bishop et al.
Heliyon 5 (2019) e02832
[21] J. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional di๏ฌerential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (6) (2012) 2530โ2538. [22] J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional di๏ฌerential equations and Ulam stability, Comput. Math. Appl. 64 (10) (2012) 3389โ3405. [23] J. Wang, M. Feckan, Y. Zhou, Ulamโs type stability of impulsive ordinary di๏ฌerential equations, J. Math. Anal. Appl. 395 (2012) 258โ264.
[24] Y. Xu, Z. He, Stability of impulsive stochastic di๏ฌerential equations with Markovian switching, Appl. Math. Lett. 35 (2014) 35โ40. [25] A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional order di๏ฌerential equations, Adv. Di๏ฌer. Equ. (2019) 101.
5