Stabilization, Regulation, and Optimization of Multirate Sampled-Data Systems

Stabilization, Regulation, and Optimization of Multirate Sampled-Data Systems

STABILIZATION, REGULATION, AND OPTIMIZATION OF MULTIRATE SAMPLED-DATA SYSTEMS Patrizio Colaneri Riccardo Scattolini Nicola Schiavoni D i p a r t i m e...

1MB Sizes 0 Downloads 72 Views

STABILIZATION, REGULATION, AND OPTIMIZATION OF MULTIRATE SAMPLED-DATA SYSTEMS Patrizio Colaneri Riccardo Scattolini Nicola Schiavoni D i p a r t i m e n t o di E l e t t r o n i c a e I n f o r m a z i o n e P o l i t e c n i c o di Milano Milano, I t a l y

I. I N T R O D U C T I O N

In c l a s s i c a l digital control systems, it is usually a s s u m e d t h a t both the p l a n t i n p u t s - u p d a t i n g and t h e p l a n t o u t p u t s - m e a s u r e m e n t a r e p e r f o r m e d at a unique c o n s t a n t r a t e and in a s y n c h r o n o u s fashion. However, t h i s h y p o t e s i s is sometimes not realistic, for economical and/or t e c h n o l o g i c a l r e a s o n s , and, f u r t h e r m o r e , r e l a x i n g it o f t e n allows the designer to obtain improved control p e r f o r m a n c e s . Hence, one is lead to c o n s i d e r the s o - c a l l e d multirate sampled-data control systems, which are c h a r a c t e r i z e d by the f a c t t h a t each input is u p d a t e d a t an i t s own r a t e and each o u t p u t is m e a s u r e d at an its own rate. The a n a l y s i s and the design of such s y s t e m s has recently received a great deal of attention. For an o v e r v i e w of the a r e a see, e.g., [11-[31. T h e r e a r e t w o p r i m a r y r e a s o n s of i n t e r e s t in m u l t i r a t e CONTROL AND DYNAMIC SYSTEMS, VOL. 71 Copyright 9 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

95

96

PATRIZIO COLANERI ET AL.

digital control. A f i r s t s t r o n g m o t i v a t i o n behind t h e i r use is due to the possible presence of t e c h n o l o g i c a l c o n s t r a i n t s which enforce the use of control schemes where sensor m e a s u r e m e n t s and c o n t r o l c a l c u l a t i o n s have to be p e r f o r m e d at different sampling rates, see, e.g., [4]-['/]. This t y p i c a l l y o c c u r s in one of the f o l l o w i n g cases" (i) Some s e n s o r s r e q u i r e a s i g n i f i c a n t t i m e b e f o r e t h e y s u p p l y the m e a s u r e m e n t s of the p l a n t o u t p u t v a r i a b l e s to the regulator. For example, such a s i t u a t i o n o c c u r s in c o n t r o l l i n g chemical p l a n t s w h e r e e x p e n s i v e c h r o m a t o g r a p h s are used to measure composition products. These m e a s u r e m e n t s a r e t h e n i n f r e q u e n t and d e l a y e d w i t h r e s p e c t to those of other variables measured by s e n s o r s not s u f f e r i n g of such a l i m i t a t i o n . (ii) A small n u m b e r of s e n s o r s is used to m e a s u r e a l a r g e n u m b e r of o u t p u t v a r i a b l e s at d i f f e r e n t times, or t h e s e n s o r s allow one to m e a s u r e all the p l a n t o u t p u t s a t the s a m e r a t e and time, but h a r d w a r e c o n s t r a i n t s p r e v e n t one f r o m t r a n s m i t t i n g d a t a s i m u l t a n e o u s l y f r o m all the s e n s o r s to t h e c o n t r o l p r o c e s s i n g unit. (iii) The p l a n t o u t p u t s a r e all m e a s u r e d a t the s a m e r a t e and time, but t h i s r a t e is less t h a n t h a t of t h e p l a n t i n p u t s u p d a t i n g allowed by the c o n t r o l a p p a r a t u s e s . (iv) Some a c t u a t o r s a r e m a n i p u l a t e d less f r e q u e n t l y t h a n o t h e r s in o r d e r to r e d u c e the e f f o r t of t h e s e a p p a r a t u s e s . As a second r e a s o n , it has been shown t h a t the use of multirate and periodically time varying controllers can significantly improve the closed-loop performance of a s a m p l e d - d a t a s y s t e m in t e r m s of model m a t c h i n g , s e n s i t i v i t y r e d u c t i o n , d i s t u r b a n c e r e j e c t i o n , pole and z e r o a s s i g n m e n t with state feedback, see, e.g., [1], [8], [9]. However, these promising results usually refer to the sampled v e r s i o n of the s y s t e m , while p a r t i c u l a r c a r e has also to be paid to t h e i n t e r s a m p l e b e h a v i o r which can be s i g n i f i c a n t l y d e t e r i o r a t e d by the m u l t i r a t e input u p d a t i n g , see [10]. A deep d i f f e r e n c e e x i s t s in the two f o r m e r c l a s s e s of applications of multirate controlwhen a multirate approach is used to improve c o n t r o l performances, the frequencies and phases of inputs-updating and outputs-measurement are free design parameters to be d e t e r m i n e d by the c o n t r o l s t r a t e g y in o r d e r to o p t i m i z e the

STABILIZATION, REGULATION, AND OPTIMIZATION

97

r e q u i r e d p e r f o r m a n c e s . On the c o n t r a r y , when a m u l t i r a t e solution is enforced by technological c o n s i d e r a t i o n s , the same p a r a m e t e r s are problem d a t a and must be faced by the adopted control s ynt he s i s technique. In t hi s paper, a t t e n t i o n will be focused on this last s i t u a t i o n . Hence the p r o b lem a d d r e s s e d will be to design a m u l t i r a t e d i g i t a l regulator once the i n p u t s - u p d a t i n g and o u t p u t s - s a m p l i n g m e c h a n i s m s ar e fixed. R e s e a r c h in m u l t i r a t e control can be t r a c e d back to the l a t e f i f t i e s [11]-[13]; however, it has received m ore and m o r e a t t e n t i o n only in the pa s t decade. For an overview of the most s i g n i f i c a n t r e s u l t s of the a r e a the r e a d e r is r e f e r r e d to [3], [14]. In [ 1 4 ] a t t e n t i o n is focused on the a n a l y s i s of a control s t r u c t u r e where a d i f f e r e n t sam pl i ng r a t e is a s s o c i a t e d with any pair of i n p u t - o u t p u t v a r i a b l e s , then impulse modulation models are developed and c r i t e r i a to assess closed-loop stability are presented. Several s y n t h e s i s a l g o r i t h m s have r e c e n t l y been proposed in a l i near time-invariant setting. Among them, the p o l e - p l a c e m e n t appr oa c h has been considered in [15]-[21]. The Linear Quadratic Gaussian (LQG) technique has been applied in [4], [22]-[26], while some s y n t h e s i s a l g o r i t h m s based on c o s t - f u n c t i o n minimization have been p r e s e n t e d f o r c o n t r o l l e r s with a p r e s c r i b e d s t r u c t u r e [5], [27]-[29]. Some predictive and self-tuning multirate control a l g o r i t h m s have been proposed in [6], [7], [30], [31]. The o u t p u t r e g u l a t i o n problem, t h a t is the problem of z e r o i n g the s t e a d y - s t a t e e r r o r to the maximum possible e x t e n t in p r e s e n c e of exogenous signals of p r e s c r i b e d dynamics has been t r e a t e d in [32]-[34]. Finally, the case of com pl et el y a s y n c h r o n o u s sampling has been t r e a t e d in [35]. The aim of this paper is to review the main a s p e c t s concerning the application of popular s y n t h e s i s techniques, namely the p o l e - p l a c e m e n t approach and the LQG method, to the m u l t i r a t e control problem. Specifically, the a s s u m p t i o n is made t h a t the plant under control is a d i s c r e t e - t i m e l i near t i m e - i n v a r i a n t system. It is also assumed t h a t each o u t p u t has its own f r e q u e n c y and phase of m e a s u r e m e n t and each input has its own f r equency and phase of updating. The p ap er is organized as follows. In Section 2, the discrete-time linear time i n v a r i a n t model of the p l a n t under control is introduced and the sampling and u p d a t i n g

P A T R I Z I O C O L A N E R I ET AL.

98

m e c h a n i s m s a r e given a p r e c i s e m a t h e m a t i c a l f o r m u l a t i o n . Further, it is a l s o s h o w n how m u l t i r a t e s y s t e m s c a n be c a s t e d into t h e w i d e r c l a s s of p e r i o d i c s y s t e m s . Then, in Section 3 some preliminary results on the structural properties ( st ab i I i zab i I i ty, detectability and zeros ) of the m u l t i r a t e system are given in terms of the o r i g i n a l plant under control. Section 4 deals with the pole-placement and LQG methods when the system state is assumed to be available f o r control, while, since our main goal is to design output feedback controllers, in Section S the problem of state reconstruction is considered. In p a r t i c u l a r , t w o s t a t e o b s e r v e r s a r e p r e s e n t e d : in t h e f i r s t one t h e p o l e - a s s i g n m e n t t e c h n i q u e is a g a i n a p p l i e d , w h i l e t h e s e c o n d is d e r i v e d by r e s o r t i n g to t h e K a l m a n f i l t e r i n g approach. In Section 6 the previous results on state f e e d b a c k and s t a t e observers are joint t o g e t h e r with the a i m of d e r i v i n g s t a b i l i z i n g f e e d b a c k c o n t r o l l a w s . F i n a l l y , t h e c l a s s i c a l o u t p u t r e g u l a t i o n p r o b l e m is f a c e d in S e c t i o n 7 w h e r e , u n d e r s o m e p a r t i c u l a r a s s u m p t i o n s on t h e i n p u t s updating, a suitable regulation structure is presented w h i c h g u a r a n t e e s t h e a s y m p t o t i c t r a c k i n g of given r e f e r e n c e s i g n a l s in s p i t e of t h e p r e s e n c e of p e r s i s t e n t d i s t u r b a n c e s and plant u n c e r t a i n t i e s .

II.

THE PLANT, THE INPUTS-HOLDING AND THE OUTPUTS-SAMPLING MECHANISMS

Let the system under control be described by the following discrete-time linear time-invariant stochastic model

:p.

x(t+l) y(t)

w h e r e A~Rn'

= Ax(t) = Cx(t) n

, B~R n ,

+ Bu(t)

(1.b)

+ M w (t) 2

m

2

, M ~R n ' q , C~ R

p' n

, M ~R p ,

1

w

2

are

uncorrelated

(1.a)

+ M w (t) a 1

zero-mean

identity covariance matrices,

p

and w

2

i.e.,

gaussian

white

and 1

noises

with

,--~

~

{~

~

9

~"

~-

"~i

.

9

~,

"~i

~

~

,--~

.

("+

"~i

I

~-'o

::7

0

~

~ s

..

o cr

~*

. . . .

o~

~,..

A --]~

IA

O

~,,..0

(1)

. . . . +

~

~ ~-~

~

"d

+

~

~

~

o

~. ~

I

.]~

~*

~

-.~

(1)

o-"

9 --.

~"

(1)

~

"'~

O

-

~

~.

-.

"~

~ ~

~

+

-.

~ ;~

~

~'~

~

~-'

~.

~ "-

~

~

o

~ 9

cr

C::

~*

~ -.

=g

"

~ (1)

0~

-.

~ .-.

_ O

~.

~

'E~

~0

el)

~

-~.

0

(Tq

""

~

~

~

~-

~

..

o

m

o

1~

~

~

Ln

F)"

~.

~,

(]:)

9:

~-

~

-

o

<:

~

~

:

~'

~

.

~,

(~

~

0

~

0

I

~

=-

~

~

.

"

~

~

~

.

~.

~

~

~

.

~.

w ~" ~

~

~

g"

~"

(I)

~

..

~

~

.~-

~.

o

~ ~ ~

~

~

o

~-~

~

~ ' ~

__

~*o

g.~

~ O

~ ~

"~

--"

cL <

~.~

-

O

~

o

--~ )

0

>

o

r"

Z

o

r"

~

HI +

Nt ,,..,

,1-]l +

,-,it ,....

",i

,i,-,+

0

i-.

~" ,,

m (~

Z ~.

:~ =.

~*~ -,

Z ._.

~

~.

0

~

,~

~

~-.

==

""

i-.o

,-4"

I~ O

~

C~

13o"

~

:~

~

~

~ . ~~

=~"

~I~

.-

,-It A

T~ d,,~

o

~'%

~ m ' "

o

~

~

o

~

+

~,

~

""

-,

.,

0

""

+

o

~,

~

- ~.

,_.

~

(1)

I~

- -

~

~

=

~

:~ =.

-

~

~

~

~,.~

~+

"li

~

~+

~ ..

-"

~

~"

~

~

u~

0

O

~

"

,,~

i

-~_.

I

~r

-

o ~

m

~i'~

~

o ~= ~

, ~.

('l)

,,--] t

~

~ ~

~ ~+

9

4~

.~

9

.~

"m (I)

"E~

+

X

pl,.

m

9

9

t

r~

0

+

"-~

<:

II

+

'--'

.-4

~

..

~

..

~"

0

r-,"

~

I:::L O'-" ~,.

~

II ~-.

'-b

~ .~

-~

~

~

0

o

::~

<: ~(I)

o"

Z

>

0

O

N

"~ >.

--

-~

z

x

.,.~

i[i~

9

i[-

II~ 1 7 6

~

~

9-

~

~

~

II

d~T

I~) ~

~

5.~

~

.,-., o

,.c::

i

,[.-,

o

o

o"

,,iq

gl

", i oi i l .iw~e o

~,iii.i

~D

II

~

"" 0

~ ,

~

~

+

(._,

~

o

:>.,

"~

~-

+

<:!

~

+

~-

f~

X

II

00

~,"

m

<

v

,

I

l' . .

9.

tJ

I

'~

.

,->

II 9.

o

-

o

.

I

,

.

I

.

"o

~

~

0

~

~ ' ~

~~

~

II

z

~

N

o

C~ "

+~[i~

II..

,

. ~2

"--" Z

~.

~ ..--, ~~

o-~

L,

o~

+.,

.

~

+a

:~

.

.~

e X N ,.~

r A "~

~

.0

o

~1

X

r .,-,

"'-'

~

9 ~

0

..

.

~

"~

(D

~-o

b,~

~

+-~

o~

~

~

~.

..X

~ ~o

~

o

~

"F~ ~

~'~ _

o r.., ..

~,

~

o~

o.~

-o

~

1~ ~)

~

.~

t~ o

r.., Ei

c"l:l

"~ " " ~

N

"0

o

~

~

1~ .i~

. ~ .,-,

= ~'~ I~ ~-~

~

"~--'

+'2~

~-&~ I~ "~

~ ~.~

,i-a

0"~ ~

~

~,

+.,

,,

d

~ ' B ~

El m ~

-~

~.

~

,-:

~

txo

~

~

+

~-~

~

~

II

~

c r ~u'}

~

~

~"

~.

(I)

b0

,_

~i,. ~

9

C~

""

-.

~

u~

1-11

-

~

I~ '-b ~

o

~

0

m

~

~

{A F ,~

~

_.N

~

0

"o

~

~

,.

o-

~

~

B'~+~

~ "

~

C~

'

""

1~,~

{A

~

,.

~"

~"

~

m

C

o

~.T;"

~"

o

~,

~

.~

o

~"

'~

.,--

9

~

DJ

~"

'-"~

~

~

..

+

~

~

+

~

~

I~

.~

~

~

=

I ~ ~_.,o

o

'-"<

~

~

~

o

~

~

9

~ ,,

~..

m

%

~

~

0

CL.

~

I~

<1

~

~

"-~

~@

~

~

~+

~

.~

~

~

~

~

-"

~

,_..

~

m

-

-cr

~

.

.

.

-

~

9

--

-'.

.

o

~

~

I~ ~

~

o

..

~

~

0

0

"

~,

:~

~

o ~

u~ ~...,.

~..

o

~

.

~-~

~

~

u~

~

~

o ~

"

.~

,-,

._.

c

,_,

~

-

~

.~

~

~

m

C)

m



~;

9

,_..~-

"0 "

-I,

..

o

..

I

-

"--"

.-.

"o

.

o-

0.

,~

-~

cr

0

o

0

""

o

~D

0

.-0

u

~

II

~

'-~

o

(~

--]n 9

o

CI

~

~

~

~

~

~r

~'~

r~ r~

~~

~~

~"

~

r~

t~

o

--,

-.

0

c~

c ~ ,-..

N

~"

c~

_

~'~

~

~

~~

~

~

-~'~ ~ ~

~

~ ~

T

~'(~

~ ~

~

~ ~>

~-~ . 0 ~,

0 ~ .----'~

~

~ o

,_., ~

9

=.

~

~

~

,.

~

~'~

~=

~ ~

~.

~

~

z

>+

,

~

~

I

~e~

Cr

N

~r" ~,.,.

,

"

~, .-.

-~

~

0

i/l

II

r

--

~

=

Z:r

Z::r

~,.0

>

0 "--b

m

Cr

N

I-+

'--

~

00

,--.

,.

~"

~ 0

~

'-"

~v

,v

~

;--"

--

~.~o

-.

"~

~

(~

~

,~

~

00

O0

.

'-h

1::::

m

~"

,<

0

~r

0

~"

~

;'-'"

~N

~

o -

~"

"~ ~ ~. ' o ~

~.~

,~

~

~"

g

I:~

0

9

0

"~I

0

CO

~

"I./I " i-I. 0

~.q~

-h

'-1

~

0

~"

~o ~

~.~o~. o o ~ o~~-~.

~oo

0

~ ~-.o--= ~.-~

~=

~_.~'~

N

~

~

<

,'-".

~

~

o

--

9

N

0

o

z

~o

0

0

N CD

0

~=.~.

,.-!

~r'

e-+

'-o

0

N (I) ,.-I 0

0

~=..o

m

~,,..

=~ ~ ~

0

"

-.~"

O~~

'-I

~~

~~~

~_

~ ~~;-.~ ~

-~

r~

~ =('Dq -~'~~ . ~ . . o ~ . ~ - ~

('D

..~

~

.,~

~~

r-~

0~

""

0~ " ~

~"

. ~

~

~ ~

~ ~

~.~

~

,..~. 0

~-

~.~

"-~~

~ ~ ~~ =~ ~ ~ ~

~=

~..

~= "~ ~- ~,

'--' " 1 ; " - - '

,_,

.,~

~9 , ~ . ~

0

~'

~

.7,

~; .~ ~ ~

o.~ ~"

0"

~

"-~

0

CD

0

.---...~

'~

~"~ . o~ ~

~o

~.~

~

0~

~.g

="~ ~ "~ ~~'~a~~.. ~

(Y~

0

o~

-....I

~o , -- ' ~ "1

0

@

0

9 ~ ~ ~~

~,=<~=~

?~

nn

N

s 9

N-

~

Z

""

>,_.

-.

~--

~

""

--]1

,I ~'~

~-

~

IV

--

('1

o

cD i./1

.,r

('1)

~...o

~e

-.

(')

~"

~

~. e

,...

~

~.>

~,

~

~

-----~o

~e

.---..

~.

,....

b.,.~ ~

"I

o

~

- . _-:. ~ ~

.

-z~~

~,.~

~-~

9

9

~.~~ ~

o

-~a~T

.

.~.~o~_

~-

[--,

5

N

-

105

STABILIZATION, REGULATION, AND OPTIMIZATION

If lar is a t r a n s m i s s i o n z e r o of ~, w i t h o u t b e i n g r an e i g e n v a l u e of ~P, t h e n t h e r e e x i s t s ~, such t h a t ~'=/a, w h i c h is a t r a n s m i s s i o n z e r o of ~o.m

(ii)

In t h e s p e c i a l c a s e w h e r e S ( . ) - 0 , i.e., t h e i n p u t s a r e u p d a t e d a t any t i m e i n s t a n t , s y s t e m (3) s i m p l y r e d u c e s to u(t)=r(t). This allows one to neglect Eq. (3.a) and c o n s i d e r s y s t e m (12), as f a r as t h e z e r o s a r e c o n c e r n e d , as t h e c a s c a d e c o n n e c t i o n of ~P and N. T h e o r e m 5 [33] If S ( . ) = 0 , t h e n t h e s e t of t r a n s m i s s i o n zeros b e l o n g s to t h e s e t of t h e t r a n s m i s s i o n z e r o s of P ' I I

of

(12)

IV. STATE-FEEDBACK CONTROL LAWS In this section, we extend the main classical stabilization techniques, namely Pole-Placement (PP) and Linear-Quadratic (LQ) c o n t r o l , to t h e c a s e of m u l t i r a t e s y s t e m s . To t h i s end, we c o n s i d e r t h e T - p e r i o d i c s y s t e m (7.a) and a s s u m e that its s t a t e ~(.) is a v a i l a b l e for control. Since our ultimate goal is to design output f e e d b a c k c o n t r o l l e r s , ~ we m a k e r e f e r e n c e in t h e s e q u e l to p e r i o d T, i n s t e a d of T. N

A. POLE-PLACEMENT The TIR of s y s t e m

(7.a) w i t h w =0, 1

is e a s i l y

determined

as

~(k+l)-

~ ~(k) + r"

(13)

r'(k)

where (k) .= ~(kT) , r(k) "= [ r ( k T ) ' a n d $, 1~ a r e r e s u l t holds.

suitable

r(kT+l)'

matrices,

for

... r ( k T + T - 1 ) ' ] ' which

the

following

,--

Ir

0

II

J~

,0

o"

"-'

o

+

,-+

,0,~

~,

~

F

_,

N

~-

~-.~

~ ~

o-

- r+

o ~ ('!)

0

o 0~

o

m

~

m

~

~

0

~

,-0

0

~

('1)

0

~

--m

~-oo

,~

m

o

o

~Z

~,

0

~

II

,~

o

~,

~

~

c~

~

~'

-i

~,

9

o~'

~

9

.+

~ ~ ~

0 m

~

5. ~

~ ~

~ ' ~~.

~"!~ "1

o '-"b

~

~"

+

~

1~ ~

~ "

~

~

o

~

~ ~ ,-.

~ (1)

'-'"

~

=~"

0

"~ ~ "1

,-""

~ @

r~ ""

,. II

0

"

~

~ ~

~-' ~ ~

+

+

9

~

-.

~"

~-'

o ~ ~ ~ 0 ,-...

o ~-'(1) 0

'-'~

~'~

m

X

~

C~ O~ ~ ~ ,-~ "1

~

n)

"1

~O.~o

('1) ~ < m

~,~

~

~ ~"

7'

~.

~,

,...

"o

@

~.. I 0 0

~" ~

1~

~

m cr

~0

~

0

~

-"

-"

~

~

(~

Cr

z o

I

~

'-"

-

T~

-

,-. "~

0

,-. c r

too.

,_..

~'c~

'~"

.-1~

~.~

,e,~4 ~9

,-.

o ~

~'.~ ,-.

~ o .__.

.___,

o"

r~

'-'"

~

-

o

~

0

~"

~--

~,--. ~I~"

o- b

~

m ~.~

m

~

~;

~

=

~

o~

=~

~

~

x~

m

~

r~ ~..

~

~

~

~"

~

o ~"

o

~-

~.

~

,.

o

~--

o

~

~"

0

~ ~

~

.. Z

~

~

0

~-.

"~' ' m

~-o

~-

a..

a=

-H

~," ~" E9 ~

~

~

m

.~"

(~

~ o -~

---~ " ~'~

~

o

o

~r

e-,

0,,.., ~

N

m

cr

0

~

0

~

~,

~

~',H ~ " ;~'~ ~

L

~

i

"~i

,0

'-]

~

,0

~

~

I

m

B

m

i-,~

m

0

I-~

~

0

~

~

~

~

0

o

o

..

-

;~,

'-1>

+

;~,>

{/1

~'0

~

~

"-~

o

o

0

--.

~

0

~e "

0

'-1 0

~> '-'1> ~>

~

'--] ~,

+

~'~

+

"-]

~

~'~

"]

~

,--,.

~

B ~m

~

~

II

II

~ ~

"

.:

"

m

o

m

~

0

"

~

9

0

o

m

"-' a'~ ,.-.

~

~

~

II

~,_.

,~5

;~+m

~]N 0 + ,,--. ~ ,.T3 ~ "

m

~o

9

~ 0

:.

"

'~

~-" ~

~ ~

0

4

..,u

II .,0

~>

"~i

"-"

..

~

m

9

N

0

> z

0 z

0

~q

G~

n

~..

'--'0

~

+

~

~

~

>

"~i

'-"

0

0(1)

II

N 0 ~

~"~

0

~"" ~ e-+

0

~-'" ~'~

r~

~

V

~"~

0

"I ~ 0

o

m

0

0

I

"~

1~

"~

~ ~ ~ ~

CT ~ .

o"*

~)

+

0"

~-+ 0 0

~)

,.

(1)

~ ~.. 0

.~ ~ F"

~Oo

-~

~'~-

C~cr

+

t~

C~

0

o

~

~

I

~

0

~

~--

~'~

~

-.

N

'-'

~

~)

~o

+

II

9.:

~

g

o

U1

0,-.,-,

(/1 0

'-I

0

,'~

0

0

o

~ ~ CL~:J

~-~

00

0

0 0

9

~

9 "

0

0

0 + '-1

i""

i""

+ '-1

7"

o

0 ~

._ ~

0

O"

9

~n

0

0

C~

,.~

~" ~

e-~

,-'. ('1)

0

0.,.~

~00~,

0

~ ~ 0 ~ a..~'-~

~-~"

~

O0 -~.

-]

,--~.

II ~

"~

~

~

0

~

~

~

0" ~

0

0

1~

~

(1)

0

0 ~

,---

0

C7" ~._~

~.~m ~

~,"0

~ ~'~"~

~

~=

~1 _~ (1)

'-'"

_]

9

,-,. ~

,.--

~

[-1"1

~o

>

N

oo~

0--o

~

,-..

,-,.

8

0

0

~

,,.-,,

0

I--,.,' 9

r~

g)

0

b,,-, 9

1: 0

0

~0

I--'.

'--'

0

0

~

~

~

o

I--.'-

0

,~

~

o 0

~_~

o

~

~o

~=

"b

~.

~....

~--...

,,-j

(I)

0

8

c)

<: ['11

zr

"3"

0

I"11

c-+

0

rll

-] >

~

m r-+

o

@ B

cr

"~ o

-] =r

m 9

~-"

~'

~"

9

ID.

~ re 0"

0

~

0

~

~

~ "1

0

-"

~=~

~

~

~D

0

~'

'--'- ~ 9 ~ ~'"

~

,~,~

~~

m ~.

0

o,

~

~

o

~

(1) "'b

(1)

---

~--

0

o

2

I

o ,--- ~

[",3

r*

o

"4,----

~

~

'1~

r-~

cr

~.. N

~-.

~

--.

~~ ' ~ "

~

"~

(1)

o

0 "~

~'~"

~

~

~

0

o

o

II

re

r

~

=~

0

~~-*

'-"

re

"1

(1) 0

~

II

0

o

--.

~

"" ~-,

[%1

+

"0

"1

+

~

D~

'--J

~~

+

+

~

~~

~

"" ~

0 13.

~D

I

0 CD

"1

~

rn

0

9 Z

N

9

Z

9

r"

X~

z

[',4

~o

?'*

o

Zr

--"

=

"-m

0

o

o

.~. ,<

-

o"

c::

--.

_.

o

13

=" (1)

~, o"

=

o

~

,_,.

ro

-o

""

ct) o

-m

~

~

.

o

o

~

~

~

"0

~

""

~"

I:~

~'0

~-c~

F'~"

0

~ m cr --

,0 m ~I ,...

~

9

~,

~

;~

~,r"

.

.

--"

o ~

~

~

~<~

('1)

~

~

o~,_,,.

~

0

~

"~

~ ,-,.

I::> )0r ~

.

. [--,

9 ~ ,

"

~

o

-.

~ +

-. r9 ' ,

, ,.-,

o r',

~

~

,-.

~

• :~

m

=r o

-

3

,-.

~

=

c% ~..

I~

~ I~

r

,-,. ~'m,

~:~

~

o

~

,

~'

~

~ ~-'

i:>,

r',

+

~

+

II

+ . ~

u~ (1)

~

:::Y'

-

-" ~

~

~ 4~

~'-"

~ --

+

'--]

~

o,-,

-

.

+

~

~

-I~

~

-~, ~

~,

o

o ~

~

~:

~

="

~,

:~

~ ~ ('t)

o

~

r~ ~-.

~ -. ~

~ ,-,"

cT

~"

o

III

~

~"

III 0

~

:~

~"~

~ ~ (I)

~

o

Z ~

~

rm'

-~

;::;-

::::r'

g

~

o

'-"

=r

"

cry.

~

~

~~"

,-"

o=~

~-~ =~'

~

"~

o ~ = o

~o

~

< ~ - ~ ~

F'~'~

~

--o

~ 0 ~--, "Z:~ c r 9

_

cD

~

o - ~ ' = # ~

,-" ~- "

u~

~',~

o,9.,, ~: ,-,- ~

@~

o

~+

ct)

~

o

0

o

m -]

7.

0

0-

"~

o

~'~ ~ o

~

,,

l.n

Oh

c~'~H

('I)

r-l.

CZ, "

~ r~

u'l ~ (1)

~.,

--,

i-,o

0., Z:r ~

t~

~n

.

~~,o

0

0

i,--o

I~

~

0

~

~'!~

,-+

0n ~ ' o

"Cl ~ r-t. ,_,. ~).0 ~. ~

O~

c~ r ~

~

~

o "~

o

0..

Zr 0

0 ,-I

~==,o

0

0 --,

~" ('1)

~

~

..o

'-'"

"~ -I~ .

0

0

0

~-'

0

I~'~

'

+ r',

,_,

~

, ........

~

+

+

~

I

"+

+

_.

~" "~

~r

--]

II

w--.o

~

x

--

--

ox

II

~=.o

,_

~

.'~

~.

,,-.o

c~

,_.

~

~

, ~

r~

.-~

,,

+

~e~

~

~

~"

m

ox

r-~

--]

c~

""

0 ~

~

,-~

'-1

~

Im

o

.

0

,,

~-,

I

~.]

""

--,

~

~

~

~

9

c~

"q

~o

U~

"" C)

I

U1

('I)

l,n

0

~ ~..

~ o 0~ .~.~.~

~.

~ Oo

i.,]

~

~

C)

u~

i...~ 9

~

~ o~

0~

~.

=.

~'

~',

o

,

i~"

-~~

CI)

~

'-'"

0n

~

r,

~ ,-..

~

~

0

o

~Z

m

.,-i o,..i

o

..

o

[--

o-~

<

~: ~ ~

""

Z 0

--.~

~

o

.~

ffl

~-, ~-~

o

_~

o

~

~

o

o

9 0

(D

I~

o

~

i

..

"

cr

,_._.,

II ,i.l

~

o

0

+'~

o

t_~

~

,.~

O4

,.--i

0

~ ,,,,-I

~o

~

~ o

"~

0

::~

"-I~

~

""

(p

~

II

' ,..-1

o~

~

0 .,

II

[--

~

i~

0

~

~,

.

~,

o

-~

0

= ~ o

0 0

--'

o

"C

0

..~

~

~

..~

t~

.~

~

:

o

"~ b "S o ~ =

=

-,-,

t~

-~.-

~ t~

I./1

"~'~

"'~

~ o

'+~

o

~

~I . ~

r .~ gl ....~ . ~

:n

o

~

'-"

~"

~,_,

t~

o

"

o

~'~

0

"~

~

~ 0 ..0 ~

~bo~

; ~

~

I~ ..-.

~'~

L~)

bO O0

m

~

e.+

r

I

+

"-"

o,q

,_,

~o

Z

Zr.~

0

0

~~

o

-x

o

~~

~

C~

C~

,-..

~

0

~ :~

~

V

~

o

~

i

II

~

0

~

0

0

~

o~

.~:~

~D

~<

0

m

~'o

~

r~

Cr. (D

~'~'~

~ ~m

e

o

""

~

o~~

--.~

~ m

~"

--.

~"

~.

m

~

o

~

~

o

N

~

o

~

~

~

~.,

Z

~

~

g

~

~-.

~.

,

-

o

~

i

I

0

~

&

&

..-:

:~

0

.

| ~.

o

X

2.

~

~.

~

0

,,~

"

-~

~.

:~

:~

..q

~

~-

~

~,

~

~ ~

Oo C~' "b ~,

~-~

"~

~-~"

ocr ~

~"

m

~

-o

""

~

0

0

oc

--"

cvo

~

o

P

o

,_, v

~

~

~

o

~ ~ 0 Y

o e't" ~ cr'~ "-'s "-s

=

~

:~

~

~ ~ ~

,-, F~" ~ ~

~

_

0

> z

o

~>

t-.n 0 c~

o

(1)

a)

0

(1)

~

CY

~

,,-+ (1)

,X:D

0

0"

~ -0 . ~,-~

r-+ Ul

~" ~ .

~o

{~

CI)

0

'-'"

~

~" ~

(A .-..

o

.~

(I)

~.~~

cz

0

O~

~

,... ~ "

~ "

~c~

~-~

~l~ C1)

,--

c~

~

9

(1)

~ ~ P ,.... u~

:~

"o"

c)

'~- "

--zr

~ o

~.

~o.~ - .o . ~~

o ,--'

r+

C)

~-~ ~

a) O~

< ,_,

,.+ o

'~~

~-

~

~ .---. '-"

"

-.

0 c-F

Cl)

~

c)

'-"

".-" (1)

~,

~

4"

o

0

~"

0

0 "I (I)

~

Cl)

cI)

"-b .. o~.

~ ,..

'-'" CL

ul

0

0

,v~"

I

~a)

~ ,-..

..

,.~--]

~ ~

~

Oc~ '~"

~

'-"~

~

.--.

~

(D" "rl

'-"

e~

~

X

~

I~

o

0

-.

--]

-

Ixc' :::~' ~ "

c~ ,-..

~~

CI) "S

Zr" Cl)

(~"

(-,)

I

~D

~:~

{n

,-4'< ~

C3

~

~

-~

C

"D

9

"1

ca

r-~

o

~v

"~

~~" -

",I

8

,~

o " _ ,I,,'--"

'-'" '--' Cb

,e,

"I

w,..

zr' (I)

r

C:z.

(I)

cr"

CL (I) r (I) o r-+

u'}

t-,.

9

~ ~.~..--~ zr' 9

~- ~.

~'..~

"-"

~o "+ 9

C: ,-..

"J u}

0

o

,-b o

(I)

0

(I)

.-j

cI)

r-F

i,-.-9 U')

,I,,

(I)

:::r"

('I)

~" cD

-]

o

o

0

~

0rr~

II

""

,-+

'=r'J

~,=,,.

C:Z. r-+ '-'" 0

o 0

I~

~ Zr (1)

~

(,J 0

~-+

'---'

I~" "~' r'+

"n

.-,

-I'-

,~,

,.-.-,

t

4"

'0' ~ ~ ~

r-*

(3

0

~.

II

I~

~

,-+ + .,I

"~

0 CL i,.-,9

(I) '-I

I

..]

CI)

0

'-'b (I) "I CI)

cI)

o

~

~ 0 ..--.

ci)

'~

~C)

.-,

'~'I

.~,

I>'

"D

I:>

4-

'---'

~"

D-

"D "11

I

]i

.~.

rD

(I) "J

i,-,~

> (~

m

el)

(-i,.

m

('I)

N m O"

~..I~

t--tin CV

o

-

=r

"1 N ('I)

~..,~

0

('b

i...~ ~

<~

@

Cr' ,-'.

9

"1

~

r-+ ~ ~ 0

,-~. " ~

l-e

-,1

,---~ ~ '-~ ~

0~ ~:: 0~ ~

CI)

'-~

~

o

0

"I I,~

~" 0

o

{11 CI) "0

~'u

~,-.~

~

@

0 "1

=r' 0 ,-.

.

I

'

,-,.

,_.

:

N

,,

,

!

,._. ,...,

N~r~

.

~

I1}

0

~

~1~

,--,

0

(1)

(I)

~.,,~

m

cl)

IXI

~.., ,,

(I)

m

u~

0

o

I~ h-K u~

>q"

+ (1) ~ '-J>O (,~

.=. , e , , ~ =:1

9

~~ ' ~.....-~ o ~'~

O ~

~ 9I d

~'~

x 0 O~

o

N

"~

+

~"

~

+

r'~

I

,-

+

~"

T

§

~

,~1

.-:

"~

~

~-

0

o

""

0

o.

cr

~ .

(1)

(~

~

r-+

t-'+ 0

~

::

~,

~

0

c~

z

~

"~

t-t.]

1~1

~,

~ (I)

9

~

i

r+

m

'-m

m

m

c F.~ o_ -I

=.

0

(1)

8. o

~ '~

'--

_ ~:~~

~

~.

IN

9

z

0 Z

N

(9 m" 0

~-~~

T~

r-+

X

m r-+

GO 4~

CT

GO 4~

I

F"

r-e

r-+

r-+

r-+ +

o

,.

,_..

~-~

~

~~-~

~-,. ~

Cr

0 ~ CT

~=,.,

m'~

~"

..

o

0

~=.~o

0 "

e-+

~

m

~.

-I

"

~-"

o

8

o

0

+

>

+

+

~r~

8

~'~

""

0

X

c)

0 "'1

,"4"

'-'I

,-.-

0

0

~-

";~

0

~

>

,0

>

o~

~

~"

-j

m

m"

Cr

m

~

"/-:~" 9

F"

~

~

'-I

,...

ill

~'~..-:

(~

-~

~-~

~

~ ~

~.

~..

"~

o

~~

0

'~

"~

~o~

~

=~'~"-~

~.. "~

~'~

~-~

.~.~o

2.~

~"

~o ~vO ~ ~

~ o ~'J i.-.o

=r

~ x~

~o ~

~

CT

m

~--

'~

~

~o

-

~. ~

~

~'~

~-

="

~

II

II

~

-

-

~

'-"

"

II

~:~

~

.

~. ~..

~

0

m

0

(~

~

(~

0

o

..

0

0

>

Z

-]..

"~

~.

cr ~" ~

0

~

CD

,-t

~..

~-.

~D

m

(,,,,) r~j

o

0

,-..

m 0

~-

0

i,--.

0

~ E ~'"

~

(-,)

-4

~"

+

'--'

""

o~"

~-~

:_.,

~.-,

0"~

0

I

o

~I

~"

~

~,.~

0 9 CL,.Q

~

'-'1

03 0'~ : : el) Ca :~-'*

('I)

('1)

('1)

~D

~

0

~'~'~

~

o

~"

~

"b

O0 (J1 ~

~

~

~

~

~ ,.+

,

~'~.

:::r (1)

II

,

(I)

....

~:r

~"

~'~

(I)

~'~

"I 't~

(1)

0

('I) ~1

c~

~'o

~..

CD

~ ,-j

0

o

~

1:::

"

"~

X

~+

~

m

0

o.

0

0

9

"~

0

0

0 ('~ 0~

,-'-

"~

J:~

~I~

~

~

0

0

co

'-~"

(~

~-'~

@

,-I

O

M '~

(I)

"r

~PE

0

0"

0

=r ~ r+

Z

(1) 0

~ ~

,-.~

0

~r

c-~ N

~

g~o

D

~-..

I

~

I t--

I

"li

"~

o

I

,

+

0

~a

ca

,

~-~

+ "-J

~.~

-

e~

(1)

03

~"

+

II

+ ~

O~

o~-

EL

.~'~

O"

O

r+

O O

r" O

~--

r+

o

~

'

O

03

03

I

O 2:

N

E

E; O

m

9

"-'"

'-"

CY'

B

O

O

O

,_,. ~:r

5

N

~"'.

~

'Ea

o..

-- e

,.~

~.

o

~'P==

O

"~

O

~

,.~

o~,

t-+

,-.. ~

;:::r

O

0

o

,.-..

9

~/)

i

?+

ao~" 0 ~:~ ~

~

~"

.,,o

~

~

--

~

n

"1

"O

e-+ =r' CD

O"

N

N

O"

O" i.,-,. ,,, i,-,...

i.-,, 9

~'-"' 9

"""

CT

i,--.

~''

I~

~

mF

..

=-

=r

'-'"

L0 00

?-+

~

~

~

,-'] ,--

o

~' ?..+

::::r.

S"

,--.

a

,-,.

"'1

o

~-"

0 ~....

2

c::

v

;:>

0 v

4-

v

v

,~

0

o

88

+

~-~

09

,~

~-~

oo

~

o

~-.

G3

(1)

('1)

~"

~_+" ~

0

_

"

~r~

~'~ ~

o

~

~

~

~-.. 0

0 c-+

~

~

v

'~

~_~

~

o

8

§

8

4,-.

+

r+

[vj

,--,

C9

of ~

4,

~-~ o

0

~

,._.

9

9

119

STABILIZATION. REGULATION, AND OPTIMIZATION

(iii)

Do not A., J

(iv)

exist

two

distinct

eigenvalues

of

A,

A

i

and

1~ I>-1 {~j I->1 such that AT .= AT.; i

Do not

'

exist

'

l

eigenvalues

A of

J

A,

A~l,

I Al=l,

such

that AT=I; (v) The pair (~(.),F(.)) is detectable; Then (a) The solution of the LQG problem (7), (33) e x i s t s and is given by system (34); (b) The closed-loop T-periodic system is a s y m p t o t i c a l l y stable and given by eqs. (35), (36); (c) The optimal p e r f o r m a n c e index is given by (38), w h e r e F(.) is the unique T-periodic positive semidefinite solution of the T-periodic d i f f e r e n c e Lyapunov equation

C37).ii VII. OUTPUT REGULATION The classical robust output regulation problem consists of determining a suitable regulator which guarantees the asymptotic tracking of given r e f e r e n c e signals in spite of the presence of p e r s i s t e n t d i s t u r b a n c e s and plant u n c e r t a i n t i e s . For this kind of problem to have a solution, a well known f a c t is t h a t the control signals must be f r e e to cover the same functional class as t h a t of the r e f e r e n c e and d i s t u r b a n c e signals. It is then a p p a r e n t t h a t problems g e n e r a l l y a r i s e when dealing with n o n s t a n d a r d u p d a t i n g mechanisms, a p a r t from the p a r t i c u l a r case w h e r e the exogenous signals are constant functions. Strictly speaking, the exact solution of the output regulation problem does not exist, and only p a r t i a l solutions can be achieved [33]. Hence, f r o m now on, it will be assumed t h a t the plant input is updated at any time instant. A. STATEMENT The plant described by

P

under

control

is

assumed

square

and

2

~

o

C~ ,,<

~.

0

"1

~

e

0

m t< m e-~

o

c+ ~" (1)

o

m t< m r-+

II

o

,/~

('D

~"

~

-,

~ ('D

0

e.+

0

~"

~"

(1)

D" (1)

0

~

I

"li

~,

,..

=

o '--'

o

m

('D

~

.

m

~ I:~

0

m

('D

I'D

~

~

=

C/~

0

~

~

:~

~

~

(1)

tl

~

"I

,-1 ~

C~.

m

~

o '-~

~-

~

:::r ~ ~

""

CY"

o

6"~

~

i.--i

~ ""

~

~--

'l'l]l 0~

,.... ~

CD

,

""

0

'-'"

0

~+ '-"

~

m

~

0

~

~ ,-'-

~

i--0

"I

~'"

0

~

(I)

.

>'

~

.

9

('~

~

r-~

~

(-1

~

t~

r+

~

II

+ '--

CD

o

m

~

().q

o

0

m

,_~

~

'--b

.~'~:

o~"

~=

~

I::L " ~

.-~

I~1

E

o

~ '-'"

~-.

9

~

"~

~-

"0

"I

~

'I:::I

CD

:~

"

,--..

9

('1 fll

-.

:~

-

9

m

"1 ~

~

I~

+

X

II

+

,~.

+

tm -] > t-"

> Z rrl

0

STABILIZATION, REGULATION. AND OPTIMIZATION

e(t) "= y~

121

- y(t)

the problem considered in the p a p e r is"

Output Robust A s y m p t o t i c Regulation Problem (ORARP) Find a c o n t r o l l e r ~' such that: (i) The closed-loop system (P,N,~') is a s y m p t o t i c a l l y stable; (ii) The output r e g u l a t i o n c o n s t r a i n t lim

t-)oo

e(t)

= 0

holds t r u e f o r any y~ any x (0), in a

and d(t), g e n e r a t e d by g with robust way, i.e., for all

e

perturbations

of

matrices

p r e s e r v e the a s y m p t o t i c s y s t e m (~P,N,E).m The block scheme r e p o r t e d in Fig. 1.

of

A

B, C, D

'

stability

the

of

overall

I

and the

D

2'

which

closed-loop

control

system

is

B. SOLUTION Denote by 2~ the set

of the distinct

eigenvalues

of 8

e

and

by

2~ the

union

(without

repetitions)

of

Je

and

the

e

set of the d i s t i n c t eigenvalues of system ~P. Then, l e t t i n g 0 denote the zero m a t r i x of any size, the following solvability condition f o r ORARP can be s t a t e d :

Theorem 15 [32], [34] Suppose that: (i) The p a i r (A,B) is stabilizable; (ii)

The p a i r (A,C) is detectable; A-)t I

B

e

(iii)

Det (

)~'0, C

0

e

e

P A T R I Z I O C O L A N E R I ET AL.

122

(iv)

There

does

not

exist

a

couple

of

and ~ j' L~i h-~1 I~ j I'-I ' ~uch that ~ -i ~ '

elements

of

~,

A

j

T h e n , ORARP a d m i t s a s o l u t i o n . l l x

I

(0)

~

g

.....

Y

I ~

0

+

N~

)0 e~

-

I

u

v

P

>

g

1

N

Fig. 1" The block s c h e m e of t h e o v e r a l l c o n t r o l s y s t e m .

This theorem supplies a sufficient condition for the e x i s t e n c e of g; in o r d e r to s t a t e a r e s u l t s p e c i f y i n g i t s structure, some definitions are necessary. L e t t h e m i n i m a l p o l y n o m i a l of m a t r i x A be e

V Z

V-1 +

a

z el

V-2 +

a

z

+

...

+

e2

Then, d e f i n e t h e m a t r i c e s

a

z eV-1

+

a eli

1l)

,-..

o

o

~f)

o

o

<

o

~

~

o"

..

(m

'-I

9

r

o

o _

o

-~

~ T

ID.(~

0

~o ~ o~ ~'~ ,_.. ~ o

~

0

""

~

~

~ ~ . ~ ~

~

o

9

,_..

~

~

~'~.

~

0,,-. 9

m

~'

o

-

~.

~....

~-~ o ~

~

o

c~

-

~

~

~

~

~

~

~Zr

' < o ~

00

~@

.

~

~ ~ ~

w

~ ~ ~~- -" ~ ,

~

~ ~

~ ~ ~ ~U ~

=o~

~

o

o

~r~

~

~

~-.. Cr

,~

>

~-,r~

C~

<

+

~x

~

~

<

~--

~r+

>

,

X

"~

~

~--

~

~I

/11

~

~

fll

~

x

13"

I~

. . . . . . 0~ 0~

~

/ll

x

0~

13"

>

!

'

I

i

i ~

,

~

|

~

C"~I

!

'

0

0

0

I~I

i

'

,

I

~

i

i ~

~

,"

0

0

0

-"

''

>I

0

0

0

0

0

9

9

9 Z

N

C

> 7. U

9

m

9

N

124

PATRIZIO C O L A N E R I ET AL.

m u l t i r a t e s y s t e m s can be used to s y n t h e s i z e s y s t e m ~r f o r instance the pole-placement or t h e LQG m e t h o d s . These t e c h n i q u e s should be applied to t h e c a s c a d e c o n n e c t i o n of s y s t e m s ~ , :P and ~V, w i t h input v and o u t p u t e~=-~. Hence, t h e o u t p u t t r a c k i n g c o n s t r a i n t is r o b u s t also w i t h r e s p e c t to v a r i a t i o n s of o r d e r and p a r a m e t e r s of ~r as long as a s y m p t o t i c s t a b i l i t y is p r e s e r v e d . The s a m e p r o p e r t y holds f o r as c o n c e r n s v a r i a t i o n s of the o r d e r n of t h e p l a n t ~P. It is w o r t h n o t i c i n g t h a t , t h o u g h the input of ~' is t h e v a r i a b l e e~, the c o n t r o l l e r is able to a s y m p t o t i c a l l y b r i n g o

to z e r o t h e d i f f e r e n c e e b e t w e e n t h e r e f e r e n c e s i g n a l y and t h e p l a n t o u t p u t y at all t i m e i n s t a n t s , not only a t t i m e s w h e r e the o u t p u t is m e a s u r e d . The block s c h e m e of Fig. 1 shows t h a t the s t r u c t u r e of t h e o v e r a l l c o n t r o l s y s t e m is v e r y s i m i l a r to a p o s s i b l e one f o r monorate systems. However, by c o m p a r i n g the s u f f i c i e n t c o n d i t i o n s of T h e o r e m 1 f o r the s o l v a b i l i t y of ORARP w i t h t h e d i s c r e t e - t i m e v e r s i o n of t h e n e c e s s a r y and sufficient conditions for the solvability of the same p r o b l e m in t h e m o n o r a t e case, it may be o b s e r v e d t h a t c o n d i t i o n (iv) h e r e does not have a c o u n t e r p a r t t h e r e . As a matter of f a c t , this condition guarantees (but is not n e c e s s a r y f o r ) the d e t e c t a b i l i t y f r o m y of t h e s t a t e of t h e s y s t e m (~t,~P,JV), along w i t h the s t a n d a r d c o n d i t i o n s (ii) and (iii). The consequence of t h a t is the impossibility of a s y m p t o t i c a l l y z e r o i n g t h i s way the s y s t e m e r r o r f o r some e x o g e n o u s s i g n a l s f o r whom it can be b r o u g h t to z e r o when the outputs are always measured.

VIII. CONCLUDING REMARKS T h i s p a p e r has r e v i e w e d some r e c e n t results about stabilization and regulation of multirate sampled-data systems. F i r s t , a p r e c i s e m a t h e m a t i c a l f o r m u l a t i o n of t h e input and o u t p u t mechanisms has been given in t e r m s of a discrete-time periodic system. Then, its structural p r o p e r t i e s have been i n v e s t i g a t e d and r e l a t e d to t h o s e of t h e u n d e r l y i n g t i m e - i n v a r i a n t plant. The c l a s s i c a l p o l e - p l a c e m e n t and LQ t e c h n i q u e s have

125

STABILIZATION. REGULATION, AND OPTIMIZATION

then been used for deriving stabilizing state feedback c o n t r o l l a w s and s t a b l e s t a t e o b s e r v e r s . F i n a l l y , it has been shown how to s e l e c t a p r o p e r regulator structure, which, in some significant cases, guarantees zero-error regulation in t h e face of wide c l a s s e s of e x o g e n o u s s i g n a l s , d e s p i t e t h e p o s s i b l e lack of i n f o r m a t i o n due to t h e o u t p u t s - s a m p l i n g .

APPENDIX Let

S be

the

discrete-time

T-periodic

system

described

by

x(t+l) - A(t) x(t) + B(t) u(t) y(t) = C(t) x(t) + D(t) u(t) w h e r e t e Z , A(t)ER n'n B(t)eR n'm C(t)ER p'n D(t)ER p'm Denote by ~ (t,z) t>z, the transition matrix ~

A

i.e.,

~

*

of

A(.)

~

~ (t,z):=A(t-l)A(t-2)...A(z).

Matrix

A

~ (z+T,z)

is

A

the so-called m o n o d r o m y matrix associated with A(.). Its eigenvalues do not depend on z and are called c h a r a c t e r i s t i c m u l t i p l i e r s of ~. S y s t e m 5e is a s y m p t o t i c a l l y stable if and only if all its c h a r a c t e r i s t i c multipliers a r e inside t h e open u n i t disk. Now, d e f i n e t h e l i f t e d input, t h e s a m p l e d s t a t e and t h e l i f t e d o u t p u t as u(k) "= [u(kT+T)'

u(kT+T+I)'

...

u(kT+T+T-I)']'

y(kT+z+l)'

...

y(kT+z+T-l)']'

^

x(k) "= x(kT+z) y(k) "= [y(kT+T)' respectively, (0-
w h e r e 1: is a given i n i t i a l sampling x(T)=x(O). The l i f t e d or t i m e - i n v a r i a n t 5e a s s o c i a t e d w i t h 5~ is e a s i l y o b t a i n e d above as

x(k+l) = A x(k) + 13 u(k)

time (TIR) from

.j .< H, LM Z < 0 L; 9 N

~r

X

II

,U

~

~ ~, ~ ..~

I--,

+ t~ ~9, II .

"~ .

.

l:I:1

.-,

I--

L)

" ,,

o,.~

I--,

..

9

II

,._., .

.

,L)"

9

.

"

.

9

,---,

,~ II

,._., .

f-

II

o,--~

H"

II

+

.-, I

cq

-,--~

.II . . .

e,

+ I~ ~_.

II

U

""' + I~

+

"~

E

.,.._,

+ I~ ~L. 1~

'~ II

o,.~

,I~

o,,

A

i

+

o,.--~

+

o,-.~

II

i + I~

,..-i ~

I + I~

,..-I ~

i

.-~

+ '~' U

II

~176 o'--i o,,

V

C)

o

""

".~ ~

+~ I:I::I

t~ ~

.,.~

N ._-

~~1~ o o

I~

~

o

~L,.

.Eo

I:Z,

I::::

+_,

,,--i

~. #~

+-'

o,--~

-~~'-

~I

o .

"D

~O " ~~ o . ~L~-,. ~ N . ~ ~....N O ~

I.~ ~ ~

O r I.-,

O'~ +'; I-, ~ O 1:~ I/~ ~-,

o~ ~ ~,o~-.a O

L)

I-, o ~) ..~

~

"

1~ o

1~ 6

o

~

o ;:;m .,.~

..-,

"

o

1~

00

o6

k.,

~

0

"T:

.._,

o ~ lD ,_,

~

o,--q

,~~o

,---,

+-'

(1.) ,-~ .D

c/l

.l_l

o

"~

~I

,---.,

STABILIZATION. REGULATION. AND OPTIMIZATION

127

feedback controller based on m u l t i r a t e sampling of the plant output," I E E E T r a n s . A u t o m a t . Contr., AC-33, 812-819, 1988. [3] M. Araki, "Recent development in digital control theory," Proc. 12th IFAC W o r l d Congr., 9, 251-260, 1993. [4] D.P. Glasson, "Research in m u l t i r a t e estimation and control," The A n a l y t i c S c i e n c e Corp., Rep. TR1356-2, 1980. [5] P. Colaneri, R. Scattolini and N. Schiavoni, "A design technique for m u l t i r a t e control with application to a distillation column," Proc. 12th IMACS W o r l d Congr., 589-591, 1988. [6] R. Scattolini, "Self-tuning control of systems with infrequent and delayed output sampling," Proc. I E E P a r t D, 135, 213-221, 1988. [7] J.H. Lee, M.S. Gelormino and M. Morari, "Model predictive control of m u l t i - r a t e s a m p l e d - d a t a systems" a s t a t e - s p a c e approach, 55, 153-191, 1992. [8] P.T. Kabamba, "Control of linear systems using generalized s a m p l e d - d a t a hold functions," I E E E T r a n s . A u t o m a t . Contr., AC-32, 772-783, 1987. [9] T. Mira, Y. Chida, Y Kaku and H. Numasato, "Two-delay robust digital control and its a p p l i c a t i o n s - avoiding the problem of unstable limiting zeros", I E E E t r a n s . A u t o m a t . Contr., AC-35, 962-970, 1990. [10] K.L. Moore, S.P. Bhattacharyya and M. Dahleh, "Capabilities and limitations of multirate control schemes," A u t o m a t t c a , 29, 941-951, 1993. [11] G . M . Kranc, "Input-output analysis of multirate feedbac system," I R E T r a n s . A u t o m a t . Contr., 3, 21-28, 1957. [12] R.E. Kalman and J.E. Bertram, "A unified approach to the theory of sampling systems," J. F r a n k l i n I n s t . , 267, 405-436, 1959. [13] E. I. Jury, "A note on m u l t i r a t e sampled-data systems," I E E E T r a n s . A u t o m a t . Contr., Ac-12, 319-320, 1967. [14] M. Araki and K. Yamamoto, "Multivariable m u l t i r a t e sampled-data systems: state space description, t r a n s f e r c h a r a c t e r i s t i c s , and Nyquist criterion," I E E E T r a n s . A u t o m a t . Contr., AC-31, 145-154, 1986.

128

PATRIZIO COLANERI ET AL.

[15] A.B. Chammas and C.T. Leondes, "On the design of linear time invariant systems by periodic output feedback: P a r t I-II. Discrete-time pole assignment," I n t . J. Contr., 27, 885-903, 1978. [16] A.B. Chammas and C.T. Leondes, "Pole assignment by piecewise constant output feedback," I n t . J. Contr., 29, 31-38, 1979. [17] P.P. Khargonekar, K. Poolla and A. Tannenbaum , "Robust control of linear time invariant plants using periodic compensation," I E E E T r a n s . A u t o m a t . Contr., AC-30, 1088-1096, 1985. [18] M. Araki and T. Hagiwara, "Pole assignment by multirate sampled-data output feedback," Int. J. Contr., 44, 1661-1673, 1986. [19] T. Hagiwara and M. Araki, "Design of a stable feedback controller based on m u l t i r a t e sampling of the plant output," I E E E T r a n s . A u t o m a t . Contr., AC-33, 812-819, 1988. [20] P. Colaneri, R. Scattolini and N. Schiavoni, "Stabilization of multirate sampled-data systems," A u t o m a t i c a , 26, 377-380, 1990. [21] P. Colaneri, R. Scattolini and N. Schiavoni, "Regulation of Multirate Sampled-Data Systems," C-TAT, 7, 429-441, 1991. [22] N. Amit, "Optimal control of m u l t i r a t e digital control systems," Stanford Univ, Rep. N. SUDAAR 523, 1980. [23] T. S/Sderstr~m and B. Lennartson, "On linear optimal control with infrequent output sampling," Proc. 3rd I M A t o n i . on Control T h e o r y , 605-624, 1981. [24] M.C. Berg, N. Amit and J.D. Powell, "Multirate digital control system design," I E E E T r a n s . A u t o m a t . Contr., AC-33, 1139-1150, 1988. [25] H . M . A1-Ramany and G.F. Franklin, "A new optimal multirate control of linear periodic and t i m e - i n v a r i a n t systems," I E E E T r a n s . A u t o m a t . Contr, 35, 406-415, 1990. [26] P. Colaneri, R. Scattolini and N. Schiavoni, "LQG optimal control of m u l t i r a t e s a m p l e d - d a t a systems, I E E E T r a n s . A u t o m a t . Contr., AC-37, 675-682, 1992. [27] J.R. Broussard and N. Halyo, "Optimal m u l t i r a t e output feedback," Proc. o l 23rd C o n l . D e c i s i o n Contr., 1984, 926-929.

STABILIZATION.REGULATION.ANDOPTIMIZATION [28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

129

R. Scattolini and N. Schiavoni, "Design of m u l t i r a t e control systems via p a r a m e t e r optimization," Proc. o f 26th C o n f . D e c i s i o n Contr., 1556-1557, 1987. M. E. Sezer and D.D. Siljak, "Decentralized m u l t i r a t e control, I E E E Trans. Automat. Contr., AC-35, 60-65, 1990. P. Carini, R. Micheli and R. Scattolini, "Multirate s e l f - t u n i n g predictive control with application to a binary distillation column," Int. J. S y s t e m Sc., 21, 51-64, 1990. R. Scattolini, "A m u l t i r a t e s e l f - t u n i n g c o n t r o l l e r for multivariable systems," Int. J. System Sc., 23, 1347-1359, 1992. P. Colaneri, R. Scattolini and N. Schiavoni, "Stabilization and regulation of multirate s a m p l e d - d a t a systems," Proc. Int. Syrup. MTHS-91, 511-516, 1991. P. Colaneri, R. Scattolini and N. Schiavoni, "The output control problem for m u l t i r a t e sampled-data systems", Proc. 31 C o n f . Dec. Contr., 1768-1773, 1992. R. Scattolini and N. Schiavoni, "On the output control of m u l t i r a t e systems subject to a r b i t r a r y exogenous signals," I E E E Trans. Automat. Contr., 643-646, 1993. V.S. Ritchey and G.F. Franklin, "A s t a b i l i t y c r i t e r i o n for asynchronous multirate linear systems," IEEE Trans. Automat. Contr., AC-34, 529-535, 1989. R.A. Meyer and C.S. Burrus, "A unified analysis of multirate and periodically time-varying digital f i l t e r s , " I E E E Trans. C i r c u i t s S y s t . , CAS-22, 162-167, 1975. S. Bittanti, "Deterministic and stochastic linear periodic systems," T i m e S e r i e s and L i n e a r S y s t e m s , Springer Verlag, 141-182, 1986. P. Bolzern, P. Colaneri and R. Scattolini, "Zeros of d i s c r e t e - t i m e linear periodic systems," I E E E T r a n s . Automat. Contr., AC-31, 1057-1058, 1986. O.M. Grasselli and S. Longhi, "Zeros and poles of linear periodic d i s c r e t e - t i m e systems," C i r c u i t s S y s t . S i g n a l P r o c e s s . , 7, 361-382, 1988. O.M. Grasselli and S. Longhi, "The geometric approach for linear periodic discrete-time systems," Linear A l g e b r a Appl., 158, 22-60, 1991.

130

[41]

[42]

PATRIZIO COLANERI ET AL.

S. Bittanti, P. Colaneri and G. De Nicolao, "The difference periodic Riccati equation for the periodic prediction problem," IEEE Trans. Automat. Contr., AC-33, 706-711, 1988. P. Colaneri and G De Nieolao, "Optimal s t o c h a s t i c control of m u l t i r a t e s a m p l e d - d a t a systems," Proe. 1st E u r o p e a n Contr. C o n f . , ?.519-2523, 1991.

ACKNOWLEDGEMENTS This paper has partially been supported by CNR (Centro di Teoria dei Sistemi) and MURST (407~ and 60Z funds).