Chinese Astronomy
4 (1980) 202-206
Pergamon Press. Printed in Great Britain 0146-6364/80/0601-0202-$07.50/0
Acta Astr. Sinica 20 (1979) 1 9 9 - 2 0 3
STATISTICAL
Wang
ANALYSIS
Zhen-ru,
OF THE
Qu Q i n - y u e ,
University, and Luo L i a o - f u
RPDIO
Lt~4INOSITY
OF P U L S A R S
Department of Astronomy, Nanjing Department of Physics, Inner-blongolia University
Lu Tan
Received 1978 June 7
ABSTRACT. The r e s u l t s
of statistical
a n a l y s e s o f t h e r a d i o l u m i n s o t i y o f 81
p u l s a r s o b t a i n e d i n t h i s p a p e r a p p e a r t o be i n f a v o u r o f t h e view t h a t t h e radio emission originates statistical
relations
in regions close to the light cylinder.
The v a r i o u s
g i v e n i n TABLES 1 and 2 may p r o v i d e some c l u e s on t h e
radio emission.
i.
INTRODUCTION
Less t h a n two y e a r s from t h e d i s c o v e r y o f p u l s a r s , n e u t r o n s t a r was b a s i c a l l y
established
t o JP 1953, were e x p r e s s e d i n [4]. authors in a previous statistical the theoretical
[1-3].
t h e p h y s i c a l model u s i n g a r o t a t i n g
Doubts on t h i s model, p a r t i c u l a r l y
in regard
An e x p l a n a t i o n i n t h i s c a s e was g i v e n by t h e p r e s e n t analysis
[5].
In t h e Appendix ( F i g . 3 ) , we have g i v e n
c u r v e u s i n g t h e method o f [5] which t a k e s a c c o u n t o f m a g n e t i c d e c a y , and we
s e e t h a t t h e c u r v e r e p r e s e n t s w e l l t h e 81 p u l s a r s o b s e r v e d .
This s t a t i s t i c a l
analysis of
o b s e r v e d d a t a on p u l s a r s p r o v i d e s a s t r o n g s u p p o r t f o r t h e m a g n e t i c d i p o l e model o f a rotating neutron star. Radio e m i s s i o n from p u l s a r s have b e e n o b s e r v e d f o r a l r e a d y 10 y e a r s , b u t t h e q u e s t i o n of its mechanism is far from having been solved, and also opinions differ widely as to the location of the radio emission [6]. The radiating mechanism and region being an obviously important topic in the theory of pulsars, we shall
attempt here to apply further statistical
analyses to the observed data on pulsars, with the aim of finding some clues and evidences on these questions.
2.
STATISTICAL ANALYSES OF OBSERVED DATA
On the great volume of observed data of pulsars given by Taylor and Manchester [13], we have made 13 different statistical analyses.
As ordinate, we always take either the logarithm
of the radio luminosity ig L R or the log of its ratio to the energy decay rate,
Ig(LR/E),
and for the abscissa, we take the various significant quantities such as log of the period,
Radio L u m i n o s i t y o f P u l s a r s
lgR
t i m e p a r a m e t e r T = P/2P, log o f i t s
log o f t h e d e r i v a t i v e o f t h e p e r i o d l g P, l g o f i t s
lg t ,
log o f t h e s q u a r e o f i t s
c y l i n d e r l g Be2 and log o f i t s
surface magnetic f i e l d energy decay r a t e ,
203
l g B02, t h a t o f t h e f i e l d
The r a d i o l u m i n o s i t y v a l u e s LR a r e t a k e n from [7].
The e n e r g y d e c a y r a t e i s E = ( 2 ~ ) 2 I P / P 3,
t a k e n t o be 10 ~s g c m - 3 . B0 and B a r e t h e f i e l d e and a t t h e l i g h t c y l i n d e r a c c o r d i n g t o t h e d i p o l e model, t h e y a r e g i v e n by
t a k e n t o be 106 cm, and t h e age o f t h e p u l s a r ,
c a l c u l a t e d from Eqn. (2) i n t h e Appendix. coefficient
at the surface
24Ix 4
where R i s t h e r a d i u s o f t h e p u l s a r ,
TABLES 1 and 2 l i s t
at the light
l g E.
I b e i n g t h e moment o f i n e r t i a ,
3I¢~pp
#, i s
CGVSu n i t s a r e u s e d t h r o u g h o u t .
the following results
from t h e s t a t i s t i c a l
y, t h e r e g r e s s i o n e q u a t i o n , t h e s t a n d a r d e r r o r S, s . e .
analyses: the correlation in the g r a d i e n t of the
r e g r e s s i o n l i n e S B , and s . e . i n t h e i n t e r c e p t SA. TABLE 1 r e f e r s t o u s i n g l g ( L R / ~ . two c o r r e l a t i o n diagrams i n v o l v i n g Ig Be a r e shown i n F i g s . 1 and 2.
Table 1 corr.coeff
Irl
l
regression equation
]!
y
-- Bx
5s
+ a
lgP
0.25
IgLe ~- -0.811gP + 27.55
1.10
0.35
0.14
lgib
0.30
lgL• ~ 0.361gib + 32.98
1.08
0.i3
1.91"
lgs.,
0.19
(lgLa ~ 0.221gB~ + 22.35)
1.12
0.13
3.09
0.36
IgLR
1.06
0.06
0.23
lgx
0.36
IgLa ~ --0.4118x + 33.51
1.06
0.12
1.67
Igt
0.35
IgLA ~ --0.651gt + $6.45
1.06
0.20
2,65
0.38
lgLa .L 0.311g~ + 17.69
1.05
0.08
2.73
~- 0 . 2 0 1 g ~
+ 27.01
Table 2 --Icorr.coeff
regression equation
Irl
SD
y ----B~ + a LR
1.~
0,43
0.17
Ig-~8- ~ --0.651g/b -- 14.46
1.30
0.16
2.29
0.20
( l g - ~ - ~ --0.30lIB| + 2.26)
1.41
0.16
3.90
IgB,2
0.67
lg ~
1.06
0.06
0.23
Igr
0.58
lg--~- ~ 0.841gx -- 16.76
1.17
0.13
1.84
lgt
0.62
I g ~ -~. =~ 1,451gt--24.52
1.13
0.21
2.82
0.44
lg T
0.42 lgB~
lIP
age
~ 1.881gp - 4.62
~ --0.491gB~ - - 3.32
The
204
Radio Luminosity of Pulsars
lgL.
4
.:...'.;':... o•
.
28
•
o• •
26
•
•
ooe oe
•
25,
•
•
•
•
°o
o ° •
•
•
• • •°
•
•e
24
I
1
J
I
I
I
i
•
i
I
1
2
$
4
5
6
7
8
9
10
-
I
,i
!
n
12
1~...
Fig. I C o r r e l a t i o n diagram between Ig LB and Ig Bo2
--2
--3 --4 -5
•
o.
• •
--8 -9
--lO
I
I
I
I
l
r
I
I
I
I
I
1
l
2
3
4
f
6
7
8
9
10
.11
i2
Fig. 2 Correlation diagram between Ig(L/E)
3.
and Ig B 2
DISCUSSION
According to the theory of statistical significance, for a sample size of about 80, if IYI>0.22 we have significance at the level of e=0.05, significance at the level of e = 0.01.
and if IYI > 0.28, we have
The values of y given in the tables differ widely
among themselves; the least one, y= .19 (or .20) is between Ig and this value is not significant even at the 0.05 level.
B02 and Ig LR (or ig ( L / ~ ) ,
Thus these two quantities do
not seem to be linearly correlated, and it is pointless in this case to fit a regression line.
On the other hand, the correlation coefficient between ig Be2 and Ig LR ~or Ig ~ L / ~ )
is highly signi£icant - at the 0.01 level.
Therefore, results of our analysis favour the
view that the radio emission originates in the vicinity of the light cylinder and not on the surface.
The correlation between Ig P and Ig
LR is significant at the 0.05 level, while
all the other correlations not mentioned so far are significant even at the 0.01 level.
Radio L u m i n o s i t y o f P u l s a r s
Among t h e l a t t e r ,
there is still
205
a s p r e a d i n t h e a c t u a l v a l u e s , t h e l a r g e s t one b e i n g
between l g Bc2 and l g ( L £ E ) . B e s i d e s , t h e above r e g r e s s i o n a n a l y s e s have l e d t o t h e f o l l o w i n g r e s u l t s : (i) rate
Because LR~E°. 31, we have L B / E ~ - 0 . 6 9
is,
t h a t i s to say, the l a r g e r the energy decay
t h e l a r g e r w i l l be t h e r a d i o l u m i n o s i t y LR, b u t t h e r a t i o
l u m i n o s i t y and t h e e n e r g y d e c a y r a t e w i l l be s m a l l e r . the radio emission is,
between t h e r a d i o
Or , we can say t h a t ,
the larger
t h e s m a l l e r i s i t s p r o p o r t i o n a t e s h a r e i n t h e e n e r g y decay.
t h a t LR~BoO. 4, which means t h a t t h e s t r o n g e r t h e f i e l d
at the light cylinder is,
Noting the greater
w i l l be t h e r a d i o e m i s s i o n , b u t t h e f r a c t i o n o f e n e r g y t h a t i s t r a n s f o r m e d i n t o t h e r a d i o p a r t w i l l be p r o p o r t i o n a t e l y l e s s .
For example, t h e two p u l s a r s ,
NP0532 and PSR0835 have
t h e l a r g e s t known Be2 and t h e i r LR a r e a l s o l a r g e , b u t t h e i r L~/E a r e t h e l e a s t .
This i s
p r o b a b l y caused by t h e r a p i d i n c r e a s e u n d e r a s t r o n g f i e l d
in the p r o p o r t i o n o f r a d i a t i o n
e m i t t e d i n t h e v e r y s h o r t w a v e l e n g t h r a n g e and as p a r t i c l e
radiation.
T h i s view i s
s u p p o r t e d by t h e d i s c o v e r y o f s t r o n g y r a d i a t i o n from t h e s e two o b j e c t s . (ii)
Any r e a s o n a b l e r a d i a t i n g mechanism must a c c o u n t f o r t h e c o r r e l a t i o n s
TABLES 1 and 2. radiation
and have g i v e n t h e o r e t i c a l
radiation
and t h e p e r i o d (~ p-m).
statistical
listed
in
R e c e n t l y , many p e o p l e [8] have p r o p o s e d t h e mechanism o f c u r v a t u r e
relation
relation
between t h e r a t e o f d o i n g work by c u r v a t u r e
There i s s t i l l
some d i s t a n c e between t h i s and t h e
£ R ~ P - 0 " 8 1 g i v e n i n TABLE 1, and i t r e m a i n s an i n t r i g u i n g problem t o
f i n d a r a d i a t i n g mechanism t h a t can a c c o u n t f o r t h e v a r i o u s c o r r e l a t i o n s
ennumerated above.
APPENDIX Repeating the statistical analysis in [S] for 81 pulsars, we have found the statistical curve shown in Fig. 3 and the equations --/=(7.8-I-1.3)XI0-", v~
~=(3.54+1.85)X10-"7 s e e
where I i s t h e moment o f i n e r t i a
of the pulsar,
(1)
~0 i s t h e i n i t i a l
m a g n e t i c moment, ~ i s
t h e m a g n e t i c d e c a y p a r a m e t e r , t h e v a l u e g i v e n h e r e i s t h e median v a l u e . about t h e c u r v e i s about 0 . 6 0 . t
= 2/~ = 1.8 × 106 y r .
From t h e median v a l u e o f ~, we f i n d t h e m a g n e t i c d e c a y t i m e ,
I f we t a k e i n t o a c c o u n t t h e s c a t t e r
t o have t h e p r o b a b l e bounds ( 1 . 2 - 3.7) × 106 y r . calculate
The mean s c a t t e r
i n ~, we f i n d t h e decay time
Using t h e v a l u e s o f ~ g i v e n h e r e , we can
t h e t r u e age o f t h e p u l s a r a c c o r d i n g t o t h e e q u a t i o n
, = ~11 ~ ( ~ + D.
(2)*
For those pulsars with known P but unknown P we can also use the following formula, deriveable from the theory in [S], for calculating their ages:
where I'.
~V/, • = e(t-~oo) = ~6,e k"~'~ l~l
* The f o r m u l a (2) was i n d e p e n d e n t l y d e r i v e d i n [5] i n [9]
(4)
206
Radio Luminosity of Pulsars
--8 --9 --10
--12 Ig.-..-r.
,,, " • .. %e "eO •
--14
" "
--15
• " °:~ "," " ° "
--16
..
. ~ - .953
--17 I 11
1o
1 12
Fig. 3 Statistical
I
13
relation
. i '14
~ 15
l 16
t 17
~_
b e t w e e n l g ( P / P 3) a n d l g T
REFERENCES [1 ] [ 2] [3] [ 4] [5 ]
[6] [7] [ 8] [9]
Gold, T . Nature, |18(1968), 731; ~ 1 ( 1 9 6 9 ) , 25. Oold~eieh, P. and Julian, W. ]K., Ap. •., 157(1969), 869. Ostriker, g. P. and Gunn, J. E., Ap. g., 157(L969), 1395. Phys. Today, 28(1975), N~. 3, 19. Qu Q i n - y u e , ~Jang Z h e n - r u , Lun T a n , Luo L i a o - f u , Ke~ue Yongbao 2] ( 1 9 7 6 ) Olnzburg, V. L. aufl Zheleznyakov, V. V., A~t. Rev. Astron. a.d Ap., 15(1975), 511. Taylor, J. H. and Manchester, R. N., A. g., 80(1975), 794. ~ord. G. and Buseh~uero R., M. iV., 179(1977)o 99. Lyne, A. G., Ritchlng, R. T. amd Smith, F. G., M. N., 171(1975), 579.
ON GAS DYNAMICAL Cai
MODELS
176.
OF G A L A X I E S *
Department of Mechanics, University of Science and Technology
Shu-tang
of China ABSTRACT,
This paper discussed
used in gas dynamical models. collapse,
the
the reaction state
quantities
still
t h e n we m u s t ,
(2)
out that
and the equation The p r e s e n c e
of the gas dynamical equations
(1),
when d e a l i n g
of continuity
of turbulence
simplifying
assumptions,
holds
coworkers even if
in general,
are precisely there
is
equations
turbulence,
take account
for
with gravitational are inapplicable
only affects
m o t i o n i s g i v e n a n d i f we n e g l e c t
small
for
The e q u a t i o n s
small perturbations,
if
the basic-
higher-order
then the equations
a r e o f t h e same f o r m a s i n t h e a b s e n c e o f t u r b u l e n c e .
C. C. L i n and h i s theory
are large,
If the basic-state
a n d i f we make c e r t a i n
perturbations
is pointed
law o f m a s s c o n s e r v a t i o n energies
motion.
the range of applicability It
small used by
hence Lin's
I f we w i s h t o go t o t h e n e x t a p p r o x i m a t i o n ,
of turbulence.
* Translator's Note: Because of the non-specific ences to Chinese sources, only the abstract will
character of the text be translated here.
and its
heavy refer-