Stereochemistry of a thermal rearrangement in the (CH)12 series. Establishment of the suprafacial nature of a [1,5] carbon migration

Stereochemistry of a thermal rearrangement in the (CH)12 series. Establishment of the suprafacial nature of a [1,5] carbon migration

TetrahedronLettersNo.47, pp. 4159-4162,1969. PergamonPress. Printed in Great Britain. STERECCREMISlRYOFA 'MERMALREMRAEGEMENT IB TRE (Cl&s SERIES. ES...

248KB Sizes 0 Downloads 18 Views

TetrahedronLettersNo.47, pp. 4159-4162,1969.

PergamonPress. Printed in Great Britain.

STERECCREMISlRYOFA 'MERMALREMRAEGEMENT IB TRE (Cl&s SERIES. ESTABLISHMENT OF DIE SUPRAFACIALNATURE OF A [1,51 CARBON MIGRATION Leo A. Paquetteend J&n C. Stowell* Departmentof Chemistry,The Qio State University,Columb_m,chio 45210 (Receivedin USA 7 August 1969; receivedin UICfor publication9 September1969) Heating of cis,syn,cis-tiicyclo~8.2.0.02~s (9 at 120' for ]dodeca-5,5,7,ll-tetraene 24 hr has been reported to result in the formationof equal smouuts of benzene end hydrocarbcm 2.i

form&y

lhe stereochemistry of cwas not determined. l?xethermlrearraugemsnt of&to

involvesthe [lj5]

migrationof C-l frau C-2 to

C-6,

a

sigmatropic

change

2

which,

if concerted,would be restrictedfor reasons of orbital synmetryconservationto the use of 2

a suprafacialorbital at the migrationlxrmi.nus. However, while the preferredconformation of I cs~ be consideredto resemble closelythe tub structurei, this arrangementdoes not lend itself geometricallyto such a concertedbond migration. Also, althoughalternative tub conformation&wouldnot

suffer fkpran such a stereochemicaldisadvantsge,the non-boded

interactionspresent in & suggest,a priori, that this structuralarrangementmight be ener-

\9I

k_

2

getically inaccessible. Consequently,the bond reorgsnizatiouin 1 could be occurringin non-concertedfashionv&

diradicalLwhich would cyclizeto give either 6 or &

*The Ohio State UniversityPostdoctoralFellow, 1969.

4159

The ease

4160

with

No.47

which severalbonds in kare rupturedhas alreadybeen note&,"' in addition,the con-

&)-(&_& ._I

6

2..

diticmerequired for the &-gresxrsngement than that tided

I

can be construedto be smtmore

by a concertedintrsmolecuJ.ar Cl,51shift,aJ_though very few excmples 4

of

sucha

vigorous

carlxmmigraticm

are

knmn.

Cm

the

other

hand,

Schrijderls observationthat2_is

a single iscrmer is difficultto rationalizeti the basis of intermediateb

since energy con-

siderationsdisclosethat formationof 6 and lfrcan this diradicslshouldbe equally facile. In the preeentpaper,we wishtoreport thatthermolyais of &leads

uniquely to hsndto

describebriefly the phutoisomerizatian & this (C?I& polyolefin. When powdered ceric anmvmiumnitrate is slowly added to a solutionof cyclobutadieneircm tricarbm1

(8_)and a cis,izansmixture of ~,8-dichlorobicyclo[4.2.O]octadiene (s5 in ace-

tone at rocentemperature,the Diels-Alderadducts &O_and &&Fe 52$. Colunmchrcmrrtcgraphy

formed in a combinedyield of

of the product cm neutrsl aluminaresults in reedy separationof

cnck 2.5-3.0 (m, 6H, methine motca~), 4.14.25 (m, 2H, mp 131-132' CS,

c+s-dichloride3'

>CX_CI),5.87 (8, 2~, cyclotiteneprutons),end 6.05-6.25 (broadenedtriplet, ZH, vinyl protons)] from the txiscrmer

l&6 mp 94-95' [SC2

2.5-3.1 (m, 6H, methine protrms),4.1-

4.70 (m, 2H,>aJZl), 5.87 (8, 2H, cyclobuteneprotons),and 5.96.4 (m, 2H, vinyl potons)]. 'IheAereochemicelLconfQuraticms of send

sare

in accardsncewith establishedprecedence,7

symn&ry-c~trolJ.edsecondaryabital interacticmsoperativein the transitianstates for 8

cycloedditionto a

and spectroscopicevidence. Far example, it follows that because the

dichlorocycloh.&ane moiety in 2 stericallyinhibitsthe amoach top surface, thishalcgenatedring necessarily

becomes

etothe

of cyclokddiene fran the developingethylelle Widge.

Additionally,the exo orientaticmof the cyclobutenering was confirrszd by dechlorinationof god mp

zwith

sodiumwene

in 'IHFsolution (6% yield). the resulting

hydrocarbon

(I&,

25.526.5',e dlspleysa highly symmetricalnmr spectrum (CDt&) casisting inter alia of a --

single sharp si.n&iet at b 5.84 due to the four equivalentcycloktene protons. The exo,exo stereochemistry of &2_is further substantiatedbyccanparisanwith the spectrwnof lJ(see below).

4161

No.47

Cl

d

+

Cl Ce+4 l

\

Fe(CO),

acetone

4_

/d!27 / 4

pyrolysis

of Eat

A

6

hv A ether

500' and 15 mu readily affords the iscmsric (CH),shydrocarbon&

e which proved to be identicalin all respectswith the thermal rearrangementproduct of &. Ultravioletirradiation(Hanovia45Ow light source) of a l$ solutionof e in ether far ap10,ll

proximately3 hr at room temperaturegives l2_and 13 in equal smounts. of lJdisplsys, inter alia, two cyclobutenesingletsat B 6.27

Ihe nmr spectrum

end 5.62. This photoreerrange-

ment affords additionalconfirmati~ of structure6 since &2_wouldnot be expectedfromthe irradiationof 1. Psrtiel decompositionof such an equimolarmixture of gend undergoesthenml rearrangementslightlymore rapidly than lJ

lJat 500' revealedthat 12 Ihermalrearrsngementof pure

lJgave only 6_,indicatingthat the endo oyclobutenering in &is

cleavedexclusivelyunder

these conditions. 'Iheidentificaticnof pyrolysisproduct gas stereoisomergrequires that the thermal rearrangementof &be necessarilysuprafacial. It w

well be that the transitionstate for

this sigmatropicchange is not severelyconstrainedas in 3 sion interactionspresent in &&

rather, the unfavorablerepul-

be balancedagainstthe internalangle strain that develops

as the cyclooctatriene ring attains planarityas in &.

In this conformation,the pentadienyl

systemrequired for the 1,5-suprafacialbonding is capable of maintainingthe approximateco-

4162

No.47

? l -________ ___,

2

planaritynecessary

rules.

for application

chemicaloutcome of the reexrengement

of 1 denotes

In

4

any case,

the

stereo-

once again the considerableimportanceof

orbitsl symetry control in a polyene where a mltitude of alternativebond rearrsngemznts are possible. A-

Wewishtothank

BadischeAnilinundSodaFabrikfar

agenerous gift of

the cyclooctatetraene reqdred in the weparation of 8_md s References 1.

G. Schr&lerand W. Martin, Annew. Chem., & h 130 (1966).

117 (1966);Anuew. Chem. Intern.Ed. En&,

2. R. B. woodward end R. Hoffmnn, J. Am. Chem. Sot., 5 3.

25ll (1965).

G. S&r&r, w. Martin and H. Rtittele, Angew. Chem., 8~ 33 (1969);Angew. Chem. Idem. Ea. ~ngl., s 6g (19693.

4. J. A. Berson,Accts. of.Chem. Res., S 5. R. Huisgen, G. Boche, W. He&t1 w 3 585 (d.

152 (1968).

and H. Huber, Ang&

$,

595 (1966);Angew. Chem.

6. Satisfactoryelementelanalyses ('-0.3) were obtainedfor all new chemistry,see G. Schr&r, 7. For a review of cyclooctatetraene Verlsg Chemie,Weinheim/Bergstr., Germany, 1965.

mupounds.

"Cyclooctatetraen,'l

8. R. Hoffmann and R. B. woodward,J. Am. Chem. sot., 8~ 4388 (1%5). 9. Spectraldata for 6_may be f-a

in reference1.

10.

G. s&+&r snd'w. Martin have also observedthis photorearrangement [unpublishedresults mentioned in G. S&r&r and J. F. M. Oth, Angew. Chem Intern.Ed. I&@., 6_, 414 (1967)];however, stereochemicalassignmentswere not made by these authors since the stereochemistryof 6_was mlmown to them.

ll.

In contrast,irradiationof 6_unaer triplet conditions(acetonesolution)&fords & /I QIP L

'