C h a p t e r
1 2
Stretching David A. Boyce, PT, EdD, OCS
1. What is stress relaxation? It is a physical property of viscoelastic structures, such as a muscle tendon unit (MTU). If an MTU is elongated to a specific length and held in that position, the internal tension within the MTU decreases with the passage of time. Clinically, this is what occurs during a static stretch of an MTU.
2. Define creep. Creep occurs when an MTU is elongated to a specific length, and then allowed to continue to elongate as stress relaxation occurs. Clinically, this is what occurs when a therapist performs a stretch in which joint range is increased during the stretch repetition. Creep is partially responsible for the immediate increase in joint range of motion (ROM) during a stretch repetition.
3. When stretching a muscle joint complex, what structures are influenced? • • • • • •
Joint capsule Ligaments Nerves Vessels Skin MTU
4. What is ballistic stretching? Ballistic stretching places the muscle joint complex at or near its limit of available motion, and then cyclically loads the muscle joint complex (bouncing motion at the end ROM). The rate and amplitude of the stretch are variable. Ballistic muscle stretching is indicated for preconditioning a muscle joint complex for activities such as sprinting, high jump, or other events that depend on the elastic energy in an MTU to enhance the performance of a particular movement pattern.
5. Define static stretching. Static stretching is a technique that places a muscle joint complex in a specific ROM until a stretch is perceived. The position is held for a specific period of time and repeated as necessary to increase joint ROM.
6. Describe some commonly used proprioceptive neuromuscular facilitation (or active inhibition) stretching techniques. • Hold-relax—the muscle to be stretched is placed in a lengthened but comfortable starting position. The patient is instructed to contract the target muscle for approximately 5 to 10 seconds. After the 10-second contraction, the patient is instructed to relax the target muscle completely as the therapist passively increases joint ROM. This is repeated for a specific number of repetitions. Intensity of the stretch is limited by the patient. 99
100
Special Topics
• Hold-relax-antagonist contraction—the muscle to be stretched is placed in a lengthened but comfortable starting position. The patient is instructed to contract the target muscle for approximately 5 to 10 seconds. After the 10-second contraction, the patient is instructed to relax, and then contract the muscle opposite (reciprocally inhibiting the target muscle) the target muscle, actively increasing joint ROM. Intensity of the stretch is limited by the patient. • Antagonist contraction—the muscle to be stretched is placed in a lengthened but comfortable starting position. The patient is instructed to contract the muscle opposite (reciprocally inhibiting the target muscle) the target muscle, actively increasing joint ROM. Intensity of the stretch is limited by the patient.
7. What is the optimal number of stretch repetitions? The optimal number of stretch repetitions is 1 to 4.
8. How is the optimal number of stretch repetitions determined? According to Taylor, 80% of an MTU’s length is obtained by the fourth repetition of a static stretch. The first stretch repetition results in the greatest increase in MTU length. Application of this information suggests that only 1 to 4 stretch repetitions may be necessary during a clinical or selfstretching session. Other studies have suggested 5 to 6 stretch repetitions, however.
9. What is the optimal amount of time that a stretch should be held? Recent literature suggests that optimal stretch times are between 15 and 60 seconds. Most of the literature advocates stretch times between 15 and 30 seconds.
10. How often must stretching be performed to maintain gains experienced during a stretch session? Bohannon found that stretch gains lasted 24 hours after a stretching session of the hamstrings. Zito reported no lasting effect of two 15-second passive stretches of the ankle plantar flexors after a 24hour period. Clinically, this suggests that stretching should be performed at least every 24 hours.
11. If an individual stretches on a regular basis, how long will the gains realized during the stretching regimen be retained? According to Zebas, after a 6-week regimen of stretching, gains realized during that period were retained for a minimum of 2 weeks and in some subjects a maximum of 4 weeks.
12. Does muscle stretching increase performance? It depends on the activity. Athletes that perform ballistic events depend on stored elastic energy within tight muscle joint complexes to generate force beyond standard contractile force production. Stretching has been found to decrease performance in elite runners and sprinters. Research has shown, however, that stretching can increase performance, especially as it relates to the economy of gait.
13. Does stretching decrease the chance of injury? Yes, usually. Flexibility imbalances can predispose an individual to injury. Some research has suggested that stretching was associated with increased injury rates in female athletes. The athletes created a flexibility imbalance from stretching, which ultimately resulted in injury. The key to injury prevention is to eliminate or prevent flexibility imbalances.
14. Does stretching decrease pain? Yes. Personal testimony abounds that stretching decreases soreness. Research suggests that stretching is successful in decreasing delayed-onset muscle soreness.
Stretching
101
15. Should a muscle joint complex be warmed up to optimize the effects of a stretch? Not necessarily. Logically, it seems that increasing tissue temperature before stretching would increase viscoelastic properties of the soft tissues surrounding a muscle joint complex; however, research has shown that stretching with or without a warm-up yields the same results.
16. Should joint mobilization precede stretching? Yes. Joints exhibiting decreased joint play should be mobilized before stretching to decrease the effects of abnormal joint compression and distraction.
17. What stretching technique results in the greatest flexibility gains? According to a recent systematic review, static stretching of the hamstrings seems superior to other forms of stretching (e.g., proprioceptive neuromuscular facilitation techniques). However, based on the literature, it is difficult to state this with certainty.
18. What effect does stretching position have on hamstring flexibility gains? Range of motion improvements when stretching the hamstring muscles are not dependent upon the position that the stretch is performed. Thus whether stretching in the standing, seated, or supine position, range of motion gains appear to be the same.
19. Does age influence the extensibility of muscle and tendon? It does appear that with increasing age the extensibility of the muscle tendon unit decreases (related directly to the calf muscle tendon unit). This is important with regard to normal ambulation, balance, and fall prevention in the older adult. A flexibility program directed toward the calf musculature appears to be a logical prevention program for the older adult.
20. Does stretching the gastrocnemius muscle in subtalar supination result in greater ankle dorsiflexion range of motion? It is often theorized that stretching the gastrocnemius muscle in subtalar neutral position will result in increased gastrocnemius muscle length because the totality of the stretch will be directed more specifically towards the target muscle (gastrocnemius) rather than the stretch force being dissipated across the midtarsal and subtalar joints. The literature suggests that there is no significant difference in the dorsiflexion ROM gains between individuals that stretched while maintaining the subtalar joint in supination versus pronation.
21. Does stretching alter joint position sense? A brief stretching regimen of 3 stretches held for 30 seconds had no effect on knee joint position sense.
Bibliography Bohannon R: Effect of repeated eight-minute muscle loading on the angle of straight leg raising, Phys Ther 64:491-497, 1984. Gajdosik R, Vander Linden D, Williams A: Influence of age on length and passive elastic stiffness characteristics of the calf musle-tendon unit of women, Phys Ther 79:827-838, 1999. Godges J: The effects of two stretching procedures on gait economy, J Orthop Sports Phys Ther 10:350-357, 1989. Kisner C, Colby L: Stretching. In Therapeutic exercise: foundations and techniques, ed 3, Philadelphia, 1996, FA Davis.
102
Special Topics
Larsen R et al: Effect of static stretching of quadriceps and hamstring muscles on knee joint position sense, Br J Sports Med 39:43-46, 2005. Smith CA: The warm up procedure: to stretch or not to stretch, J Orthop Sports Phys Ther 19:12-16, 1994. Taylor DC: Viscoelastic properties of muscle tendon units: the biomechanical effects of stretching, Am J Sports Med 18:24-32, 1990. Zito M: Lasting effects of one bout of two 15-second passive stretches on ankle dorsiflexion range of motion, J Orthop Sports Phys Ther 26:214-220, 1997.
C h a p t e r
1 3
Manual Therapy Richard Erhard, PT, DC, and Sara R. Piva, PT, MS, OCS
1. What is manual therapy? Manual therapy is the use of skilled hand movements performed by physical therapists, chiropractors, or other health professionals to improve tissue extensibility, increase range of motion, induce relaxation, mobilize or manipulate soft tissue and joints, modulate pain, and reduce soft tissue swelling, inflammation, or restriction. Manual therapy uses joint or soft tissue techniques. Joint technique intends primarily to increase joint mobility, whereas soft tissue technique intends to increase soft tissue mobility. Hands-on procedures such as mobilization, manipulation, massage, stretching, and deep pressure are all components of manual therapy.
2. When is manual therapy treatment indicated? This therapy is used to treat detected motion impairment that causes pain, loss of range of motion, and disability. Joint techniques are indicated when the motion impairment is caused by loss of the normal joint play and the assessment reveals a reversible joint hypomobility. When motion impairment is caused by excessive joint mobility, manual therapy techniques that involve the thrust component are generally contraindicated. Motion impairment caused by weakened or shortened muscles is an indication to use soft tissue techniques. Once pain has been reduced and joint mobility improved by using manual therapy, it is much easier for a patient to regain more efficient movement patterns and restore maximal function by combining manual therapy with therapeutic exercise and other rehabilitative activities. Therefore manual therapy is not a technique to be used in isolation during the overall episode of care.
3. What is joint play? The normal movement that occurs between two articular surfaces is termed joint play. Because there is no perfect congruency between joint surfaces, joint play has to exist for full movement to