Studies of phosphorus compounds using the magnetic resonance spectra of nuclei other than phosphorus-31

Studies of phosphorus compounds using the magnetic resonance spectra of nuclei other than phosphorus-31

CHAPTER 4 STUDIES OF PHOSPHORUS C O M P O U N D S U S I N G THE MAGNETIC RESONANCE SPECTRA OF NUCLEI OTHER T H A N PHOSPHORUS-31 G. MAVEL~ CONTENTS ...

6MB Sizes 1 Downloads 69 Views

CHAPTER 4 STUDIES OF PHOSPHORUS C O M P O U N D S U S I N G THE MAGNETIC RESONANCE SPECTRA OF NUCLEI OTHER T H A N PHOSPHORUS-31 G. MAVEL~

CONTENTS

1,

Abstract

252

Introduction

252

2. Proton Resonance Studies 2.1. Proton Chemical Shifts 2,1.1. Groups directly linked to phosphorus 2.1.2. Groups linked to phosphorus via a heteroatom 2.1.3. Solvent effects on chemical shifts 2.2. Coupling between Hydrogen and Phosphorus 2.2.1, Introduction 2.2.2. The correlation of J values with bond type 2.2.3. Relative signs of coupling constants 2.2.4. PH coupling constants of directly bonded hydrogen and phosphorus 2.2.5. PCtt coupling constants 2.2.6. PCCH and related couplings 2.2.7. PXCtt and related couplings (X = O, N, S) 2.2.8. Other peculiarities in PH coupling constants 2.2.9. Other proton coupling constants 2.2.10. Solvent effects on coupling constants 3.

Fluorine Resonance Studies

3.1. Fluorine Chemical Shifts 3.2. Coupling between Fluorine and Phosphorus 3.2.1. Introduction 3.2.2. PF coupling constants in triply- and quadruply-connected phosphorus compounds 3.2.3. PF coupling constants in penta-connected phosphorus compounds 3.2.4. PF coupling constants in R3PF2 compounds 3.2.5. PF coupling constants in R2PF3 compounds 3.2.6. PF coupling constants in RPF4 compounds 3.2.7. PF coupling constants in hexa-connected compounds 3.2.8. PCF and similar couplings 3.2.9. Other peculiarities of P . . . F couplings 3.2.10. Solvent effects on fluorine coupling constants t Institut National de Recherche Chimique Appliqu6e, Paris 251

254 254 255 256 256 257 257 259 262 263 266 268 270 272 273 275 276 276 279 279 280 281 282 283 285 286 286 287 287

252

G. MAVEL

4. Resonance Studies of Other Nuclei 5.

288

Structural Applications of NMR 5.1. Studies on Molecular Conformation 5.1.1. Phosphonitrilic derivatives 5.1.2. Dioxaphospholan derivatives 5.1.3. Oxyphosphoran compounds 5.1.4. Phosphorylides 5.2. Studies on Molecular Asymmetry 5.3. Tautomerism and Intramolecular Reorganization 5.3.1. Tautomerism 5.3.2. Intramolecular reorganization

6.

NMR Applications to Reactions and Reactivity Studies 6.1. Intermolecular Studies 6.1.1. Solute-solvent interaction, hydrogen bonding 6.1.2. Lewis complexes 6.1.3. Extraction properties of organophosphorus compounds 6.1.4. Metallic complexes of organophosphorus compounds 6.2. Reaction Studies: Mechanisms and Kinetics

7. Miscellaneous Studies index index index index index

I. II. III. IV. V.

294, 294 294 295 296 297 298 300

Appendix Formula Formula Formula Formula Formula

288 288 288 290 291 292 292 294 294 294

Proton resonance studies on inorganic compounds Proton resonance studies on organic compounds Fluorine resonance studies on inorganic compounds Fluorine resonance studies on organic compounds Resonance studies on metal complexes

References

300 301 301 338 340 345 350

ABSTRACT This review article deals with progress achieved in the field of N M R studies on phosphorus compounds, with special emphasis on organic compounds. It gives a comprehensive account of the information derived from the resonance spectra of proton, fluorine, and other nuclei (except 31p). F r o m an exhaustive literature survey, all the significant features have been tabulated and a complete formula index has also been set up (more than 1500 entries). Besides trying to provide bibliographical information to those concerned with phosphorus structural chemistry, the purpose has also been to present, whenever it is possible, a tentative rationalization of available data, in relation to molecular features (geometry, hybridization, inductive effects...). Structural and kinetic applications are briefly covered. References to 31p resonance spectra are given in the Appendix.

1. I N T R O D U C T I O N

The interest in phosphorus chemistry, especially in that of organic phosphorus compounds, is still growing, as shown by the Heidelberg (1964) and Toulouse (1965) meetings. Undoubtedly, nuclear magnetic resonance

STUDIES OF PHOSPHORUS COMPOUNDS

253

has emerged as a technique of primary interest--its usefulness is probably greater than that of infrared spectroscopy--in the study of related structural problems. This is evidenced by the fact that more than 150 publications have appeared, during 1965, dealing with N M R studies of phosphorus compounds. Current achievements in the use of infrared spectroscopy (1964, 31b)t and phosphorus resonance have been reported. However, proton and fluorine resonance studies of phosphorus-containing compounds have not been generally reviewed (but see 1965, 112), and it is the purpose of this article to present the available information in a readily accessible form (tables, graphs and formula indices), and to correlate major structural features with N M R spectral parameters, in particular the spin-spin couplings involving phosphorus and proton or fluorine. Historically, phosphorus compounds yielded the first well recognized examples of spin-spin couplings (1951, 1, 2; 1953, 1, 2; 1956, 2, 4) because of the large coupling between phosphorus and directly bonded hydrogen or fluorine. Later, when N M R was still in its infancy as a spectroscopic technique, phosphorus resonance was found very useful for analytical purposes despite the relatively low resolution attainable: a number of reviews have appeared from time to time; they were edited by Muller, Van Wazer, Maier, and Groenweghe, inter alia (1956, 2, 4; 1958, 1; 1961, 21; 1962, 14, 20, 32; 1963, 16a; 1964, 52, 69, 71; 1965, 71). Proton resonance, first hardly considered (1960, 22; 1961, 21), offered in the early 1960's better spectral resolution, resulting in an important increase in its application; fluorine resonance had a similar influence a few years later. Nowadays, when resolution in phosphorus resonance is attaining approximately the same standards as for proton or fluorine (1963, 3a), it is wiser to speak of co-operation rather than of competition. The smaller sensitivity remains a serious disadvantage for high resolution phosphorus resonance but, however, double resonance and INDOR technique should overcome this difficulty (see 1963, 3b; 1964, 90b; and Chapter 2). Other nuclei have been employed only occasionally for examining phosphorus compounds. In this review our primary interest lies in organic phosphorus compounds studied through the resonance of hydrogen, fluorine and other nuclei; but not from phosphorus resonance; in many instances, comparisons with simple inorganic compounds (hydrides, halides) are found to be valuable. As will be seen later, the related silicon or germanium compounds exhibit the same trends as regards spin-spin coupling; chemical shifts behave differently, due to "line reversal" (E. B. Baker, J. Chem. Phys. 26, 960, 1957), but behave similarly in relation to electronic effects (1962, 8; 1963, 15; 1964, 36; 1965, 41). t Reference numbers include the publication year in this article. The literature survey was concluded on 1 December 1965.

254

G. MAVEL

2. PROTON RESONANCE STUDIES 2.1. Proton Chemical Shifts Chemical shifts observed in organo-phosphorus compounds (Fig. 1) are quite sensitive to changes in molecular structure. This is of primary interest because of analytical uses; unfortunately, any attempt to interpret them in detail is hopeless because of the number of intervening intra- or intermolecular contributions: from localized electronic charges (especially lonepair electrons on P, N, O, S ...); from magnetically anisotropic heteroatoms in p p m

8

6

2

4

downf[e[d/TMS 0 CHsP~ CH3P(O).~

-

-

CH3P(S).~

CH311+-. . . . .

--,

CH3~.~

CH3SP-, .. ,

CsHsP-

,,

, CH3NP--

CHsOP--

, CBHsOP-

t- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,-i .~ P H

Fia. 1. Characteristic proton chemical shifts in phosphorus compounds. or bonds (especially phosphoryl, thiophosphoryl groups); hydrogen bonding; solute-solvent interaction (see Section 2.1.3). While for each of these contributions theoretical or empirical formulae have been proposed, their accuracy is questionable (1965, 12a; 1965, 81a); moreover, the necessary basic data for using them are generally lacking for organo-phosphorus compounds. A rough estimate of the importance of intramolecular contributions is obtainable from chemical shift--~aCH coupling correlation diagrams (1963, 60a; 1965, 28a). However, when discussing homologous series of parent compounds, the observed trends may be interpreted on the basis of inductive effects, according to the concept (1960, lla; 1964, 53b) of phosphorus

STUDIESOF PHOSPHORUSCOMPOUNDS

255

compounds as mainly involving a bond systems: electronegative substituents make the phosphorus more positive and cause the proton resonance signals to be shifted downfield (1961, 19; 1964, 52; 1965, 80, 82). In a few cases mesomeric effects seem to play a significant part; e.g. in keto phosphonates (1962, 7) the P(O)CH2C(O) proton signals are particularly shifted downfield (at the same time, they exhibit an important increase in acidic character). Some specific cases will now be considered. As the amount of available data on PH groups is limited, and because they are very sensitive to impurities and are not always observed in proton spectra (1965, 43), they do not lend themselves to discussion. Here, we quote only chemical shifts (on the z scale) for PH2- 11.2-11.4; P H 3 8.1 ; PH4 + 3.6-4.0 (varies according to the solvent) (1965, 31). In the first analysis they follow the polarity and hybridization changes.

2.1.1. Groups directly linked to phosphorus The downfield shift previously referred to has been observed in some instances, for example: (i) Chlorinated compounds (Fig. 2): the CH2 and CH 3 resonances are rather complex in P(X)(C2Hs)a spectra and are difficult to analyse (1961, 22; 1964, 72), but they are well separated in ClzP(X)(C2H5) and thus are easy to interpret (1963, 46) because of the first order character of the spectra. (ii) Substitution on methyl phosphonium CH3P+R3: the chemical shift changes (1964, 52; 1965, 47) are rather well correlated with inductive effects, as described by Taft's o-! or o" coefficients (Fig. 3) (1957, 8; 1958, 68a; 1959, 8a; 1960, 14a; 1963, 69a). However, irregularities appear when dealing with even the simplest nonhomologous series, e.g. (1964, 52):'~ P(X)(CH3)3

X = none O S +

P(X)(CH2~'CH3)3

CH3

CH2

CH3

0.89 1.93

1.20 1.65 1.81 2.52

0.96 1.10 1.17 1.28

1.74

2.47

P(--)4 Evidently, the description of phosphoryl or thiophosphoryl groups as completely polar is rough; the contribution of d-orbitals, even if rather small, t Throughout this article all chemical shifts are in ppm, downfield relative to TMS for IH shifts; all couplings are in c/s.

256

G. MAVEL

o3

0

"o

-$

1

E

O_ {3-

._c

C_H3P~ CH3CHzP~

CH3P(O)~ CH3CH2P(O)~,

CH3C_H2P(S)~

C_H3P(S).~

3 L

0

FIG. 2.

1 2 Number of chlorine atoms substituted on P

Influenceof chlorine substitution on chemical shifts of CH groups directly linked to phosphorus.

may be significant (as the p - d promotion energy is comparable with the PnI-PI~ protonation energy), especially through simple or double backdonation (1961, 5a). 2.1.2.

Groups linked to phosphorus via a heteroatom

Intramolecular shielding contributions are greatly reduced by the interposition of a heteroatom (N, O, S, Se). However, when one has allowed for the major influence of the latter, sensitivity to substituents is once again observed (1962, 30), for example, in chloro derivatives (Fig. 4). 2.1,3.

Solvent effects on chemical shifts

Apart from PH groups (and other exchangeable groups such as P(OH), P(NH2), etc.), chemical shifts are not too sensitive to non-polar or moderately

257

STUDIES OF P H O S P H O R U S C O M P O U N D S trl

z~ l-O

.>-

2

~'~

CH~PR * 3

"O

t-

o "t3

c" ,_

,

0

\

m

>

*0.5

;Eo~ TAFTof R's FIG. 3.

Correlation of methyl chemical shift in CH3+PR3 with Taft inductive constants of R groups (from data punished in 1964, 52; 1965, 47).

polar solvents. Figure 5 shows some CHaOP groups studied as neat compounds (full lines) and as 5 ~ w/w solutions in carbon tetrachloride (dashed lines). A more detailed study (1963, 43) revealed that significant solvent effects occur only for chlorinated molecules, possibly due to the polarizability of chlorine atoms--the magnitude of the effects increasing in the order CHaNP, CHaSP, CHAP, CHaOP, and with the nature of the solvent in the order CHCI3, CCI4, cyclo C6H12. More specific interactions (e.g. hydrogen bonding and complexing) are reviewed in Section 6.1. 2.2. 2.2.1.

Coupling Between Hydrogen and Phosphorus

Introduction

As mentioned previously, fine structure from spin-spin coupling was recognized in phosphorus compounds early in the history of NMR. Actually, directly-bonded PF and PH couplings were quite easy to detect; P O C H , P N C H and P S C H couplings were noticeable, but were then too minute to be measured with accuracy from 3~p resonance spectra. Proton and fluorine resonances were found to be more suitable for measuring these small coupling

258

O.

MAVEL

constants, and Fig. 6 tabulates typical values of spin-spin coupling constants; some unusual couplings are presented in Table 1. Routine applications have been reviewed elsewhere (1965, 81), here our interest is in the tentative correlation of coupling constants. We discuss here

~inppm downfield/TM5

2.5 ~

CH3NP aSP(O)cH

3.C

CH~NP(O) CH3NP(S) CH3CFJ2NP CH3C_HSP .2(S)

; 3.5

4

.

0

~

CH3OP(O)

~ 4.5 0

FIG. 4.

CH3CH2OP(5I CH3CH2OP(O) ~

-

~

>

Numberof chlorineatomssubstituted,on P

Influence of chlorine substitution on chemical shifts of CI-I groups linked to phosphorus through a heteroatom (after 1962, 30),

PH couplings: 13CH and F H coupling constants are dealt with in Section 2.2.9. H H couplings do not provide especially useful data, except for PH 3 (from PHD2 measurements) one infers J ( H P H ) = 13.2c/s (1964, 79e). The coupling is higher than J ( H N H ) in NH 3 ( = 10.4c/s), possibly due to a greater polarizability and hyperconjugafion of the lone pair electrons on phosphorus. Unfortunately, in some cases it is really necessary to take into account signs of coupling constants, and because relative sign determinations are still rare in studies of phosphorus compounds; some conjecture is unavoidable at the present time.

259

STUDIES OF PHOSPHORUS COMPOUNDS TABLE 1.

SOME UNUSUAL PROTON COUPLINGS

Coupling PH

FH

J (c/s)

PmPH PmPCH PvPCH PvAsCH PSiCH PNPCH PvC(O)CH PvC(O) OCH PvC(O)OCCH PvSC(O) CH

12 6-7 17-18 15.5

F2PH

42 124 31.5 ,~120 121

5 1.2 1.5 1.8

FPH P pentaco-ord. (Fax) (Feq) P-hexaco-ord. FCPH FCCPH

1965, 110 1964, 66 1964, 21

FPCH :--P(X)

4-6

1964, 17a

RaPF2 RzPF3 (Fax) (Fee) RPF4 P-hexaco-ord. FPNCH FPOCH FCPNCHytides

11-16 12-14 2 6-12

1960, 16; 1963, 51 1963, 51

8

1.5; 4.0 0-2 2-3

1965, 88 1964, 14, 18; 1965, 105 1965, 105 1964, 64

HSiPSiH

7

1965, 31

/

2.2.2.

1960,15 1964, 44 1964,44 1964,44 1965, 85 1964, 3 1962, 31 1962, 31 1962, 31 1962, 31

1965, 91

\

Other

References

The Correlation of J values with bond type

For H H and laCH coupling constants, attempts (1965, 133) to correlate experimental couplings with the nature of bonds, or with the molecular geometry (1964, 95), have been made by assuming that the Fermi contact contribution predominates: similar correlations can be made more easily for interacting P and H nuclei. Using the approach of Gutowsky, McCall and Slichter (1953, 1), such an attempt was first presented by P. J. Frank (1958, 2) in order to explain qualitatively PF and P H couplings in simple phosphorus oxyacids, by considering both inductive and mesomeric effects. Due to the importance of polarity of PF bonds, inductive effects are said to predominate in (I)

FP(O)OH

[

F

and

(II)

FP(O)OH

F

OH

260

G. MAVEL HO

4

2i

3 t

1i

TM5 i

pprn

t CH3 P(Se)CI 2

i

CH3 P(5) C[2

CH~ P(O) Ct2

I

CH3 PCI 2 ,, I~ CH3 P(S)(OCH3) 2

~i

't

CH,~ P(O)(OCH3) 2

i

ii ~ il

CH3 P(O)(OCH~)Ct

ii "1 H°ll Ii °

Ii

ppm FIG. 5. Solvent influenceon chemical shifts of representative methyl groups (after 1961, 17). Competing PF bonds in (I) are less polar than the PF bond in (II); hence, J(PF)I >J(PF)u, in accord with experimental findings. (Fluorine couplings are discussed at length in Section 3.2.) In the parent hydrogen compounds (III)

HP(O)OH

I

H

and

(IV)

HP(O)OH

I

OH

mesomeric effects (such as H P - ( O ) = O + H ) are said to take over; as they increase with the number of hydroxyl groups, J(PH)m
261

STUDIES OF P H O S P H O R U S C O M P O U N D S

I J] 0

10

20

30

+~ c/s

40

C--_:-_-:2-_---l--q-_-_-Z..-EIS-IISJSSs--_3CH3P( CH31P +-

r--I

I

--J::::::-_L-J cH3 E (o).~ |

, E(o)cH=, _P(O)CH_%

E(O)CHC(O)-

CH3P(S)~ I/

I 1~ t~1

~

P = CH (ylides)

)E(C_---C)1_3H

r

--

\1l

H

/P_(C-= C)~_3 _

~

H\ H/C=CP -

Lrans ~

cis

--'-3 C_H3C_Pt C_H30P

CH3CH20_P-

m

r

CH3 SP_-

iT-i:-_--~

"-1 F{NP-

F ~-

_____~-_-------j

CH3Np-

~1 C_H~CH2N_PH.H met al~

ortho r

meta Imm

,,I . ~ H ortho~ ortho 1~3

__..~ H ~_P(O)~ ,~H

~*---

H

.~_P_H

1B0-225

~P(O)H

490 - 710

~/P(S) _FI 490- 650 ortho~ 0' ~'IG. 6.

~O--PH

--P+H T 10 '

2'o

490- 600

3~0

Characteristic proton coupling constants compounds.

in phosphorus-containing

When describing couplings as mainly governed by the Fermi contact term, the missing link is given by Walsh's qualitative rule (1960, 1; 1961, la; 1962, 28) from which we may conclude that the phosphorus concentrates s character in bonds with the more electropositive groups. On these grounds, one can discuss experimental data in specific cases in relation to hybridization

262

o. MAVEL

and polarity changes (the two being intimately related), due account being taken of relative signs of coupling constants when these are available. Obviously, the range of applicability of such a rule is restricted by possible rehybridizations, as discussed later for PH couplings (see Section 2.2.4), but in the case of closely related compounds its application is more justifiable. 2.2.3. Relative signs of coupling constants As is well known (see for example, 1965, 81a, Section 4.5.1), absolute signs are difficult to determine experimentally (e.g. in an electric field or an anisotropic matrix), but relative signs of two coupling constants can be obtained from: (i) second order spectral analysis (in high fields, 1962, 26; 1963, 46, 70: in low fields, 1963, 6; 1965, 30); (ii) double resonance experiments (1963, 41, 65a, 70; 1964, 44; 1965, 14); (iii) double quantum experiments (1963, 3). As an example, the 25 Mc/s aH spectrum of iso-C3HTP(S)C12 (Fig. 7) is second order, with two dissimilar doublets (the relevant 60 Mc/s spectrum being first order). Its analysis results unambiguously in opposite signs for

25

Me/s

experi mentat

c~ 6,5 c/s

theoretical

,-~,4 e/s

il •.e--- H, increasing

FIG. 7. Second order 1H resonance spectrum of methyl groups in liquid (CH3)2 CHP(S)C12 (after 1963, 46).

263

STUDIES OF PHOSPHORUS COMPOUNDS

TABLE 2. P

RELATIVE SIGNSOF HYDROGEN-PHosPHORUSAND OTHERCOUPLING CONSTANTS

H

+ --

PPH

PIIIPIII PINCH3 PIIICHz(CH3)

+ + --

Pm -- Pv

--

P+CH3

--

P+CH2(CH3) -PIIICH = c ~ H

PvCH3 -PvCH2(CH3) -same sign (+ ?)

PmCCH3

+

P+CCH3

+

PvCCH3

+

PPCH

+

HPCH

+

P

- - ~ H

same sign H

PmOCH2CH3 P(O)OCH2CH3 P(S)OCH2CH3

same sign opposite sign same sign

P C H and P C C H 3 couplings (in complete agreement with spin decoupling experiments). From the references quoted previously (as well as 1964, 31; 1965, 27, 29, 63, 80), relative signs may be assumed as listed in Table 2. Inspection of this table reveals that: (i) there is a lack of sufficient data especially for POCH, POCCH and, moreover, PSCH and P N C H coupling constants; (ii) P C H couplings are extremely sensitive to changes in phosphorus hybridization and in the substituents on the carbon atom. For instance, PH and PCH3 couplings have the same sign in (CH3)2PH and an opposite one in the complex (CHa)2PH ... AI(CH3)a (1965, 63). Fortunately, for some coupling constants, in particular PH, it may be assumed that signs are invariant; hence the discussion can be restricted to moduli. 2.2.4.

PH coupling constants of directly bonded hydrogen and phosphorus

From PH3 to the (hypothetical) compound P(O)H3, phosphorus hybridization changes from ~p3~ to partly sp3d in accordance with Walsh's rule; at the same time, coupling constants vary from +200 to +400c/s (extrapolating approximate data on RH2P(O) (1962, 6 ) - - P + H couplings seem in the same range, as estimated from (CH3)2PH...BH 3 (or AI(CH3)3) data t Bond angles HXH are 93° for PH3, 107° for NH3 (1960, lla; 1964, 53b). Ammonia hybridization is not so far from sp3 while PH3 is nearly pure p3.

264

G. MAVEL

(1955, 1 ; 1965, 63).), suggesting a positive Fermi contact contribution when s character increases. This is entirely supported by: (i) coupling constants in the series PH2-, PHa, PH, + (1965, 31), respectively 138-140; 182-192; 548 (according to solvent used), where the hybridizations a r e ,~p2 ,,~p3, ,~, spa respectively; (ii) couplings in the series PH4 +, (CH3)PHa +, (CHa)2PH2 +, (CHa)3PH + (1965, 29) (see Fig. 8). When a methyl group is substituted for hydrogen, thus reducing the s character of the remaining phosphorushydrogen bonds, coupling constants are similarly reduced.

550

8

540

o

17

= 530

16

520

15

510

14

50C

,

eH~

'

~

,

PH2(CH3)' ~ PH3(CH3)÷

FIG. 8.

_

13

P(CH3)~,

PH(CH3)~

P r o t o n a n d methyl couplings to p h o s p h o r u s in +PH=(CHa)4-x. (Courtesy o f D r . H. D r e e s k a m p , 1965, 29.)

This applies equally for smaller changes in: (i) triply-co-ordinated phosphorus compounds, e.g. (1965, 4); PH3:183

C6HsPH2:205.5

(C6Hs)zPH: 219.0

(ii) phosphorylated or thiophosphorylated compounds, e.g. (1958, 1, 1965, 133): (C6Hs)2P(O)H: 490 (CHa)2P(S)H:455

(CH30)2P(O)H: 694

CrHs(RO)P(S)H:536

(CHaO)2P(S)H:645

One observes that on going from one series (e.g. phosphorylated compounds) to another (e.g. thiophosphorylated compounds), the rule is not

265

STUDIESOF PHOSPHORUSCOMPOUNDS

valid as we can assess only one of the intervening factors. Thus, while we are strictly limiting ourselves to homologous series, there are some irregularities as for (1963, 41) 182.2

PHa:

CH3PH2:186.4

(CH3)ePH: 191.6

or (1965, 110): F2PH: 182.4. A careful study of similar couplings (1965, 133) helps such a discussion. In XYP(O)H the following couplings are observed: C6Hll(C2H50): 515

(C6Hll)2:427

88

~

~

(C2H50)2:680 165

(C6H5) 2:490 C6Hs(C2HsO): 565 (C2HsO)z: 680 *-- 75 ~ ~ 115

or the following differences: [(CzHs)zN]z : [(CzH5)2N](iC3HTO) 64 ~ ~ [(C2Hs)2N]2 : [(C2Hs)zN](tC4H9 O) +-- 58 ~ ~

: (iC3HTO)z 49 : (tC4H90)z 59

Thus deviations from linearity may be found that depend upon the respective electronegativity of the substituents and of hydrogen itself. P(O)H in such compounds is not an unchanging entity and rehybridization occurs between all of the four groups bonded to phosphorus. Generally speaking, linearity is more exactly followed when X and Y are much more electronegative than hydrogen (e.g. dialkylamino or alkoxy groups). For X and Y groups which are not so different from hydrogen (e.g. n-alkyl or even aryl groups), rehybridization becomes more important, eventually reversing expected trends (e.g. for X, Y --- CH3 or X = CH3, Y = H). The same qualitative explanation is valid when passing from XYP(O)H to XYP(S)H (or eventually XYP(Se)H). In passing, from triply- to quadruplyco-ordinated compounds, the electronegativity change from replacing the %

lone pair electrons (~/P:) with oxygen, sulphur or selenium (~/P(X))is SO /

J

great that rehybridization plays but a minor part in the observed changes. One observes (1965, 133) the expected decrease for X and Y groups which are much more electronegative than hydrogen (e.g. alkoxy and even aryl groups), but not when X and Y are close to hydrogen in electronegativity (e.g. n-alkyl groups), where there is complete rehybridization of the whole system, sulphur itself being similar in electronegativity to hydrogen. Thus Walsh's rule is found to be useful as a first approximation when hybridization perturbations are small. This conclusion is also reached later for other phosphorus coupling constants.

266

G. MAVEL

2.2.5. PCH coupling constants A discussion of P C H couplings in relation to electronegativity and s character was first presented by Kaesz et al. (1964, 52) for the simple series (CHa)aP ... P(O) ... P(S) ... (CH3)4 P+. Numerous data are now available that permit a more detailed discussion. A characteristic feature of P C H couplings is their easy sign reversal (1963, 41, 70), as can be seen from the results shown in Table 2; one observes (1964, 90a; 1965, 63): (CHs)aP

+ 2.8

(CH3CH2)aP

- 0.5

(CHa)aP(O) - 13.4

(CHaCH2) 3P(O) - 11.3

(CH 3)aP(S) - 13.0

(CHaCH2)3P(S) - 11.9

(CH3)4 P+

(CH3CH/)4P + - 12.8

/ in ylides - - C H ~ P ~ - 1 2 - 1 3

- 14.0

(probably having a negative sign) (1965, 85).

CXC angles are 99 ° for (CH3)3P (108 ° for (CH3)aN) (1960, l l a , 1964, 53b), 106 ° for (CH3)3P(O) (1965, 131a). True penta-co-ordinated compounds are rare enough; we quote here (1965, 56)

comQre ond OH3 with with couplings (assumed signs) ( - ) 11 ; ( + ) 5.2; ( - ) 13.6 for hybridizations Nsp3d 2, ,~p3, ,~sp3, thus following qualitatively Walsh's rule. The data suggest a negative Fermi contact term,-~ supported first by data on P(CHa)Ha +, P(CH3)2H2 +, P(CHa)aH +, P(CH3)4 + (1965, 29) (see Fig. 8); as the dectronegativity of substituents (CH a to H) increases (right to left), the s character and the coupling modulus go up. Similar behaviour is found for the coupling modulus in methyl dialkyl phosphonates or thiophosphonates (1961, 17) (see Fig. 9). When dealing with methyl phosphines - - C H a P R2--, they should have a negative coupling contribution, except for (CHa)aP, (CHa)2PH , CHaPH2, for which the coupling constants are known to be positive (1965, 63): the latter is probably true for C6HsP(CH3)2 (1965, 4); for chlorinated compounds (Fig. I0), starred compounds may be taken as negative with some confidence and internal consistency requires that the black dotted compounds also have t According to Hund coupling ( ~' ~, ~ ); for PH the same is positive ( ~ ~ ).

STUDIES OF PHOSPHORUS COMPOUNDS

267

equally negative couplings. The sensitivity to chlorination is seen to decrease abruptly from triply-connected (ca. 15c/s) to quadruply-connected compounds (a few c/s); this is in relation to competition between chlorine atoms and the heteroatom (P(O) or P(S)). Up to now we have considered hybridization changes on the phosphorus atom only; when they take place on the C H bond similar conclusions emerge; for instance, the fair correlation of P C H coupling in RR'CH+P(C6Hs)a with Taft's o5 and 0"Rcoefficients for the R groups. I IJ(PCH~)I oupling in c/s

~R=CH3 ~

H

3P(5)(OR)2 . /

~ 10

5

R= C2

Hs

KR=nC,H,

~

- ~R=nC4H,

CH3P (O)(ORh

o

I -0.05

I -0.10

i ) -015 ~r-" TAFT of R

FIG. 9. Correlation of PCH couplings in phosphonates or thiophosphonates with Taft inductive constants (after 1961, 17). Comparison of the parent phosphorus and nitrogen compounds is interesting. Earlier we have given bond angles for PH3, NH3, P(CH3)a, N(CHa)a; the corresponding reduced]" coupling constants 31P--H, ~5 N - - H are: PHa : 161

NHa : 216

P ( C H 3 ) 3 : 2.5

N(CHa)3 : 3.5

Thus, despite the greater polarity of nitrogen-hydrogen bonds, there is a definite increase in the reduced couplings, paralleling the increase in s character. This is consistent with Fermi contact contribution being dominant in these compounds. In contrast with these facts, when discussing the structurally similar species PH4 + and NH4 + the polarity takes over and the corresponding reduced couplings are about 485 and 235 respectively. t Defined as J/ltp or J/~N (P in nuclear magnetons). Nitrogen couplings are taken from references 1964, 8a, 8b and 1965, 8b.

268

G. MAVEL

~,I J coupting I 30

CH3CH2_P(O) Cl-13CH2P ($)

25

20

CHLP C_HLP(O)

15

CH3CH_2_P C H3c_H2 P (0)

,p(

•,

CH3C__.ZP(S)

10

5

0

FIG.

I 2 Number of chlorine atoms substituted on P

10. Influence of chlorine substitutionon the PCH coupling constantsinvolving alkyl groups directly linked to phosphorus.

2.2.6. PCCH and related couplings (i) In saturated groups one observes a somewhat regular variation from +13.7 for (CHaCH2)aP to +18 for (CHaCHE)aP(O) (1965, 63) and even larger values for five-co-ordinated compounds (CHaCH2)aPC12, or for t butyl groups (24.8 for (CHa)aCP(O)C12 (1960, 23, no. 81)). This suggests a positive Fermi contribution (such as predicted by the Hund coupling ~'~T~).

STUDIES OF P H O S P H O R U S C O M P O U N D S

269

This is also apparent when considering chlorinated compounds (Fig. 11): when the substituent electronegativity increases, the coupling increases (we have noticed the opposite behaviour for PCH, i.e. coupling decreases for PCH with increase of electronegativity; this fact is to be remembered when discussing the apparent anomaly in these couplings (see Section 2.2.8): V(Pcci l is greater than J[(PCH)[).

251 IJ

couplingI in c/s

!

C_H3SP (O)

I

CH3o_P

CH3N_P(S)

(o)

CHsNP(O) 15' C_H3NP CH3C_H20_P(S) CHsCH2N_P CH3C_H2OP(O) 10, CH3CH20_P

0

1

2

Number of chtorine atoms substituted on P

FIG. 11. Influence of chlorine substitution on the PH coupling constants involving CH groups linked to phosphorus through a heteroatom (after 1962, 30). Fruitful comparisons may be drawn with the parent silicon or germanium compounds (1963, 15, 70; 1964, 36). P... n 3 coupling in: CH3PHz: +4.1 SiH3PH2: 16.2 GeH3PH2:15.3 (CHa)2PH: +3.6

(SiHa)2PH: 17.5

(CH3)aP:

(SiH3)aP:

+2.8

16.9-17.2

As the electronegativity is much lower for Si or Ge (1.8 against 2.5 for C, and 2.1 for H and P), the polarity of intervening bonds is lowered and couplings increased.

270

G. MAVEL

P... H couplings in: SiH3SiH2PH z CH3CHzPH2

P... H3 P... H2 2.0 18.5 --~ + 14.0 ~ - 2.0 (estimated)

No anomaly appears in the Si compound and the coupling constant decreases when the number of intervening bonds increases. (ii) In unsaturated compounds long range couplings are frequently observed (1962, 19; 1963, 33; 1964, 22, 89; 1965, 11); their sensitivity to substituents is important and seems much more regular than in saturated compounds, e.g.: (CHa)2P(S)C ~-~CCH3

2.4

(C6Hs)2P(S)C~-CCH3

4.0

(C6Hs)2P(O)C~-CCH3

3.8

(RO)2P(O)C--=CCH3

7.4

(C6Hs)2P(O)(C~-C)2CH 3

1.6

(RO)2P(O)(C ~ C ) 2 C H 3

2.2

(Taft inductive constants being respectively -0.05, +0.10, + 0.25 for CH3, C6H 5 and RO.) 2.2.7. PXCH and related couplings (X = O, N, S) A greater amount of data is available for discussion of this kind of coupling but very little is known as regards relative signs: some information on triethyl phosphite, phosphate and thiophosphate shows that irregularities are very likely to occur (1964, 31 ; 1965, 30). We quote here the following values for some typical coupling constants: P(OCH3)3: 10.5

P(SCH3) 3 : 9.8

P[N(CH3)2] 3: 9.0

P(O)(OCH3)3 : 11.0

P(O)(SCH3) 3 : 15.1

P(O)[N(CH3)2] 3:9.5

P(S)(OCH3)3 : 13.4

P(S)(SCH3)3 : 17.5

P(S)[N(CH3)2]3 : 11.0

P(Se)(OCH3)3:14.1 P+(OCH3)4:11.2 (1965, 24a) C=P(OCH3)3:12.0 (ylides) (1965, 101)) Their similarity and the data for chloro compounds (Fig. 11) are consistent with the coupling constants having similar signs for POCH, PNCH, PSCH.

STUDIES OF PHOSPHORUS COMPOUNDS

271

Some regularities are observed, e.g. in (RO)zP(O or S) (OAr or SAr) (1964, 90b): R = CH3 J(POCH3)

R = C2H5 J(POCH2)

12.0 13.2 14.3 15.6

8.0 8.8 9.5 9.8

(RO) 2P(O)OAr (RO) 2P(S)OAr (RO) 2P(O)SAr (RO) 2P(S)SAr

Much earlier, Axtmann, Shuler and Ebefly (1959, 2) had shown the regular change of coupling in (RCH20)3P(O), in relation to the electronegativity of R; Dudek (1960, 5) extended the relationship to obtain a correlation with the Hammett constants (1964, 73) or, better still, with the Taft inductive parameters. Couplings in CH3OP(O)R z (1962, 30) or in phosphonates and phosphinates (1965, 14) behave similarly. Evidently, the nature of the X heteroatom is of primary importance in the behaviour of PXCH couplings. This is clear when comparing correlations 6 and J in these groups (1962, 25, 30; 1965, 128). (Similar correlations have been discussed for PCH3 groups (1964, 52)). From numerous data for simple methyl and ethyl derivatives one obtains the representative average lines of Fig. 12. As the influence of molecular geometry and other similar factors is smoothed, 6-Jcorrelations are mainly governed by inductive effects. Coupling value and coupling sensitivity (i.e. line position and slope) are found to vary as POCH < P N C H < PSCH CH3CH2XP... < CH3XP... Slopes are respectively, in c/s per ppm, CH3CH2OP

8.2

CH3OP

17.8

CH3CH2NP

12.5

CH3NP

20.3

CH3CH2SP

16.3

CH3SP

24.1

The important decrease from CH3 to CH3CH2 follows the decrease in the inductive effect. Conversely, for a given alkyl group (methyl or ethyl), the sequence O, N, S, is in the order of their electronegativities: the heteroatom polarity screens coupling transmission according to the following schemes: CHa~,.--> O ~ ,

p

CH3 - - - + N

P

CH 3 -~

S

• +-

P

272

G. MAVEL

I (P-CH3)I CH3C-H2S\P (CH3)zNP

\\CH3SP \

20 CH~C_H2 NP 15 ~OP

~

~ k

,S i CH~X t Pin ppmlTM~

,

6.0

~' 3,5

3.0

2.5

2.0

FxG. 12.

Correlation of chemical shifts and PH coupling constants in alkyl groups linked to phosphorus through a heteroatom (after 1962, 25, 29, 30).

The consistency of such an explanation is exemplified by the following compound (1965, 45):

(o)

(CH3)2CHOPN(CH3)2

I

F

for which F... NCH3 coupling is apparent but not F... OCH, due to the greater "polar screening" of O with respect to N. 2.2.8. Other peculiarities in PH coupling constants (i) Anomalies in long range couplings. As noted previously, one observes generally (1961, 18; 1962, 7, 26; 1963, 46; 1964, 52; 1965, 21, 47, 63) that [J(PCCH)I > [J(PCH)I (a similar anomaly that is apparent for o~--CH3--P couplings in n-alkyl groups (1961, 18) is attributed to second order effects (1964, 52)); but note that ]J(PSiSiH) I < IJ(psiH) I (1964, 36). The same is found with Pb, Hg and Sb in place of P (1965, 81a, Section 4.5.2); calculations made by Klose (1962, 20a) show that such an anomaly can be explained by using plausible molecular integrals. From experimental facts it may be

STUDIES OF PHOSPHORUS COMPOUNDS

273

inferred that J(PCH) is the small difference (positive or negative) of two important terms whereas J(PCCH) is the sum of the same kind of terms, but reduced in magnitude. (ii) Virtual couplings. Virtual coupling (1965, 81a, Section 5.1.1) is said to occur for three nuclei A, B, C when A is strongly coupled to C but not significantly to B; the A signal then exhibits the same fine structure as if A were equally coupled to B and C because B and C are themselves strongly coupled. Evidently nothing similar to this appears in the C part of the spectrum due to the asymmetry of virtual coupling condition JBc >> Jno The simplest example is provided by the 1H spectrum of (1960, 20): CH~

\ /

/ P1--Pz

CH~

CH 3

\ CHa

where JP,cn'3 appears to equal JP2cn'3: in fact, the observed splitting is equal 1 to z(JPlcn'3 +JP2cw). Many examples of virtual coupling are to be found in phosphorus complexes of transition metals (see Section 6.1.4). In systems such as CH3P ... metal... PCH3 the 1H signals from CH3 appear as "triplets by coupling with both phosphorus nuclei, themselves strongly coupled through the metal atom" (1963, 20, 36; 1964, 48). In fact, all intermediary cases are found, according to the complex conformation and the strength of the P... P coupling (1963, 38; 1964, 50) (see Fig. 13). Similar features have been found for the aH spectra of CH 3 (1964, 75a) in CHaCHzP ... metal... PCHzCH 3 as well as C6HsP (1960, 4; 1963, 4) and, perhaps, (CH3)zNP (1963, 38). Actually, virtual couplings are but a case of "deceptively simple spectra"; as is shown (1960, 9a; 1961, 2a) by the analysis of the ultrasimplified model, AA'XX' (with JAX = JA'X' = y ~ Jxx' = J' and JAA" = JAX' = JA'X = 0), a central peak appears made from superimposed bands at a distance of

+_j2/4(j')2. 2.2.9.

Other proton coupling constants

(i) Proton-fluorine coupling through phosphorus. Some typical data are given in Table 1 ; they show that coupling constants have a great sensitivity to phosphorus hybridization and molecular geometry (1963, 51).

274

G. MAVEL

/

/ i/ J FIG. 13. Virtual couplings in metal complexes according to the relative strength of phosphorus-phosphorus and proton-phosphorus couplings (after 1963, 38; 1964, 50).

16C

15C

14C O

-~

-

130

}20

0.95

0.ge

0.97

o,e8

0.e9

1.00

CH bond index

FIG. 14. Correlation of 13CH couplings in phosphorus compounds with the CH bond index (after 1963, 45).

STUDIES OF PHOSPHORUS COMPOUNDS

275

In R2PF3 compounds, because of the trigonal pyramidal structure, it is possible for the equatorial and axial fluorines to be distinct (see Section 3.2.3); one observes for HPF (1964, 66):

Je.

~ 31.5 c/s ~ 124c/s

for CH3PF (1963, 51): Jeq ~ 2c/s

J~x ~

12-14c/s

As seen later, these trends are reversed when dealing with the related PF couplings (Jax
represented as a double bond P = O rather than P+O-, the same as in S = O (1964, 43). In f~ict, from PCH 3 couplings the reverse conclusion would be drawn (see Section 2.2.5). 2.2.10. Solvent effects on coupling constants Sensitivity of proton couplings (and especially PH between P and H nuclei (1961, 23)) to change of solvent has been known for a long time: the nature of the solvent is generally more important than concentration (1965, 47). Althoug h the experimental findings are somewhat scattered, generally speaking, the variation of coupling constants depends on (a) phosphorus coordination (for phosphonium compounds it is much greater than for phosphorylated compounds (1964, 38; 1965, 47); and (b) on solvent polarity (1963, 8): pyridine, e.g., being much more effective than CDC13 (1964, 73). An extensive study of CH3P, CH3OP, CH3NP, CH3SP groups in carbon tetrachloride, chloroform and cyclohexane (1963, 43) indicates the greatest sensitivity for chlorinated compounds (perhaps due to chlorine polarizability) in cyclohexane. For [J[ (in c/s), in passing from the neat compound to the cyclohexane solution, one observes CH3POC1z 16.25 ~ 16.75 CH3OPOC1 z

17.1 ~ 16.1

CH3SPOC12

23.5 ~ 21.8

the first coupling constant is negative (see Section 2.2.5), while the two other may be of the same sign (possibly positive) (see Section 2.2.7).

275

a. MAVEL

Of course, it is difficult to assess all of the factors contributing to such minute effects. The situation is somewhat clearer when dealing with the stronger complexing found when using Lewis bases or acids, e.g. : (CHa)2PH

+ 191.6

(CH3)2PH

+ 3.6

(CH3)2PH...BH 3 350 (1955, 1) (CHa)2PH...AI(CH3) a (CHa)3P

(+)2.9

(CH3)aP... BH3

(-)10.8

(CH30) 3P

11.35

(CH30)3P...B(CHa) 3 9.6

- 6 . 6 (1965, 63)

(1965, 9)

(1965, 128)

(In such compounds one observes coupling between boron and phosphorus, between phosphorus and protons through boron (1955, 1; 1964, 95; 1965, 9, 39): P... B behaves like a covalent bond.) Complexing is expected to produce the same effect as increasing substituent electronegativity: data for the two first compounds agree with this idea (see Sections 2.2.4 and 2.2.5); for the latter, no conclusion can be drawn due to the lack of reliable data (see Section 2.2.7). On the same grounds, the influence of uranyl complexing on phosphoryl compounds has been investigated (1965, 14), [J[ increases as shown here: (RO)2P(O)H

AJ = 61.0 c/s

(RO)2P(O)CH 3

0.6 C/S

R2P(O)OCH 3

0.7 c/s

R2P(O)OCH2CH a

0.4 c/s

but without a sufficient consistency.

3. FLUORINE RESONANCE STUDIES 3.1.

Fluorine Chemical Shifts

Because the number of electrons (and they are not only s electrons) in fluorine is so much greater than in hydrogen, the sensitivity of fluorine chemical shifts (Fig. 15) to inter- or intramolectdar effects is reduced. As a first approximation it is possible to reduce chemical shifts to their intraatomic terms or, in a simpler way, to a paramagnetic contribution of the considered nucleus (1954, 2; 1962, 33a) which usually dominates the shielding. This factor is related to the bond ionicity (and, thus, to the number of imbalanced p electrons, and hence to the bond ionicity) and explains the

277

STUDIES OF PHOSPHORUS COMPOUNDS

important 6 variations observed in - - M F groups when changing the nature of M; the same applies--with reduced effect for 5 in - - M C F 3 groups (1962, 33). Nevertheless, for a given M (e.g. 31p), this term of the paramagnetic contribution is by no means the only significant term. The analysis has to be more detailed (1961, 16a; 1964, 42a), thus affording a basis used for the discussion of 6 in the series of interconverting molecules, PFs, (PF4C1), 8 ( P F ) in p p m -150

- 50

-100

relative to CF3COOH *50

0 J......

~

,

~

~PF

~P(O)F

J PF5 I

:J

,-equatorial

RPFk

axial /

~ E-

-

|

S

R2 PF3

R3PF2

PFs-

[]

I

-I 0

FIG. 15.

equatoriall

I

I

I

i

-I00

-50

0

+50

Characteristic fluorine chemical shifts in p h o s p h o r u s c o m p o u n d s .

PFaC12, PF2Cla, PFC14 (1964, 53) (see Section 3.2.3). The results are somewhat complicated, as is found for the arsenic parent compounds (1965, 2b); changes in the tr and the rc bonds more or less cancel one another and the observed trends are obscured. Once again, one is restricted to empirical correlations within homologous series, as was the case for XYP(O)F compounds (1964, 17a), for which a fair additivity holds, with the following increments (in ppm): XorY

XorY

F

11.7

C2H 5

-4.5

RO

10.4-9.4

CH2=CH

-

6.4

R2N

10.2

C6H 5

-

8.2

OH

8.9

CHa

- 12.6

OC6H s

7.7

278

G. MAVEL

-¢ o o

o

>~

/

E c ," -20

E,o7

0

~CC{3

CH2C[

r').Bu~/" -30

/o~,~ .0

+.5

o7 o~R F I G . 16.

Correlation of fluorine chemical shifts in RPF4 compounds with Taft inductive constant of R.

t.) o

/

.E u

60 ~

50 + 035

CF3PX2

/ct

' • 0,85

' ~.0,95

)

E~

of X's

FIG. 17. Correlation of fluorine chemical shift in CF3PX2 and (CF3)2PX Compounds with Taft inductive constant of X's.

STUDIES OF PHOSPHORUS COMPOUNDS

279

The measurements have no obvious correlation with substituent electronegativity. Clearer cases are found, e.g. for axial and equatorial fluorine nuclei in RzPF 3 (1964, 53), the screening increases with the substituent dectropositivity: R

Axial

Equatorial

C12 (CH3)2

--67.4 + 4.8

+41.5 +88.6

Chemical shifts are measured relative to CFC13; 6(CFaCOOH ) = 6(CFC13) - 7 7 . 5 p p m (1965, 112) or 78.8 ppm (1964, 53). The same occurs for fluorine screening in RPF4 (all fluorine nuclei are equivalent) but to a larger extent (Fig. 16). Similarly, in CF a groups, regularities appear only for closely related compounds, such as CFaPXX' or (CFa)2PX (X, X' = halogens) (Fig. 17). 3.2.

CouplingBetween Fluorine and Phosphorus

3.2.1." Introduction Evidently, many of the introductory remarks made for phosphorus-proton couplings (see Section 2.2. I) are still valid here; in addition, analytical applications of fluorine couplings are possible (Fig. 18). Typical values of the latter are given in Table 3. TABLE 3.

UNUSUALFLUORINECOUPLINGS(IN C/S)

Coupling PF

/

>P-<~F

FF FH

References

F (l to 7) (0 to 3)

F (0 to 60) PPF 2 PNPF 14 FPF 25 - 50 (eventually up to 140) FPCF 15-16 Cf. Table 1

1965, 4 1964, 27 1961, 12 1960, 16; 1963, 51; 1964, 53, 66, 84 1965, 112

Firstly, our interest is focused on PF couplings as these are by far the most frequently studied; by analogy with PH couplings, we may assume with some confidence that their relative sign is always the same. (It would be negative according to the "predictions" derived from calculations by J. A. Pople and D. P. Santry (1964, 75b).) For available PCF and other couplings it seems

280

~. MAVEL

reasonable that no sign change occurs. Unfortunately, very few experimental relative sign determinations have been made (1961, 12). Secondly, apart from the relationship between coupling and bond hybridization (its relation to phosphorus co-ordination is not so clear (1964, 71)) [J[ PF [n c/s SO0

1000

750

1250,

1500

~PF t

.....~ ~ P ( O ) F

I PF s ~"'

! RPF~

I

'1

axial ) R2 PF 3

I equatorial ) , R3

N%R/ N "~ \F

PF~

(phosphonitril[c

cpds.)

I PF~-

[]

B equatoria[l •

i

500

i

750

1000

&0

15'oo

FIG. 18. CharacteristicPF coupling constants in phosphorus compounds. we also have to take into account its correlation with bond polarity and rehybridization: these two effects are likely to be competitive, and data interpretation is not so straightforward. The balance of these will depend on specific cases, which will now be discussed. PF coupling constants in triply- and quadruply-connected phosphorus compounds Hybridization changes have the major effect in controlling such coupling in triply-connected phosphorus compounds: the coupling modulus increases with substituent electronegativity; e.g. (1963, 28, 51, 53; 1964, 33; 1965, 4, 89, 105, 110, 113): 3.2.2.

PFa : 1400 PF2--CI: 1390 --NCO: 1310

--CF3:1245 --[N(CH3)2]:1195

PF--C12 : 1320 --(NCO)2:1226

--(CF3) 2:1013

--[N(CH3)2] 2:1013

281

STUDIES OF P H O S P H O R U S C O M P O U N D S

In phosphorylated compounds, as rehybridization occurs, polarity effects take over, except when there is a constant number of fluorine atoms (1963, 28, 62; 1964, 27; 1965, 88): P(O)F 3 : 1055

(compare P(S)F 3 : 1170)

P(O)F2--CI: 1120

--CH 3 or

P(O)F--C12:1175

--CI(OR): 1121

C6H5:1102-1103

--(OR)2:1050

Actually, when dealing with XYP(O)F compounds (1964, 17a), an additivity rule is found, the increments of which are very sensitive to rehybridization possibilities: C6H50 : 499

C2H 5 : 585

RO : 481--484

CH3 : 556

F : 474

C 6 H 5 : 555

R2N : 462

C H 2 ~ C H : 547

HO : 458 3.2.3.

PF coupling constants in penta-eonnected phosphorus compounds

These coupling constants have been much investigated and an extensive review has been recently devoted to them (1965, 112). Their interest lies in their relation to phosphorus hybridization, as will be discussed now. The five hybrid orbitals are built from s, p and d atomic orbitals, d for d~ in a trigonal bipyramidal conformation (I) or dx2y2 in a square pyramid (II).

(I) e

)e

(If) e~

e e

o

In the bipyramid, the electronegative substituents are generally found on apical sites (1963, 53), for instance, PC13F2 (F axial, C1 equatorial) has a dipole moment (1965, 56a) of about zero; but exceptions are known, especially for bulky substituents, e.g. [(C2Hs)zN]zPF3, (1964, 66); (CF3)2PF3 (1963, 51 ; 10

PNMgS

282

c. MAVEL

1965, 112). As discussed later, s character is greater for equatorial bonds and, in the limiting case, equatorial hybrids would concentrate the whole s character as Spxpy with the axial ones as pzdz2. The existence of the square pyramid structure in phosphorus compounds is questioned, because frequently a strong intramolecular fluorine exchange occurs. Any PF coupling would be eliminated in intermolecular exchange. This is consistent with the insensitivity of this phenomenon to the medium; moreover, the averaged coupling below the transition point equals noticeably the coupling above this point. On the possible nature of this exchange (tunnelling, vibrational excitation), see references 1960, la and 1965, 69a. The exchange enthalpy has been measured for some compounds (1964, 66; 1965, 75, 88). All fluorine nuclei appear to be equivalent in the 19F spectrum of PF5 (1953, 1); the same is true for PC12F 3 or PBr2F 3 at room temperature and even at -22°C, but no longer at - 130° (1964, 53, 66; 1965, 75). For PF4CI the fluorine nuclei are equivalent down to about - 150 ° but a slight broadening appears at this temperature (1965, 17): in the solid state this compound exists at PC14+F - (1956, la). From fluorine resonance information it is often difficult to separate a tetragonal hybridization without exchange (all fluorine atoms equatorial), and trigonal with rapid exchange. Thus, in contrast with earlier conclusions (1960, 16), CF3PF4 is tetragonal, with C F 3 at the apical site; the same is true for CzHsPF 4 or CzFsPF4, but (CH3)zNPF 4, which exhibits fluorine equivalence at room temperature, is trigonal with (CH3)2N at an equatorial position (1964, 14). Whenever exchange takes place observed couplings should be discussed with caution, as they may be averaged over a varying number of axial and equatorial fluorine nuclei, especially for RPF4 compounds or, for instance, in PF5 ..... PF3C12, PF2C13, PFC14. Actually, in such a series, inductive and polar effects interplay, as evidenced by observed dipole moments (1965, 56a). 3.2.4.

PF coupling constants in R3PF 2 compounds

In this simple case fluorine atoms are expected to be axial, as for (1963, 53; 1965, 34): g CCL5

F C6H5

F

F

Walsh's rule gives a fair understanding of the experimental results as may be seen from the data compiled by Schmutzler (1965, 112) (see Fig. 19).

283

STUDIES OF PHOSPHORUS COMPOUNDS

._~ 110(

8 looo 900 800 700

I 600 500 -(~5

FIG. 19.

0

+0.5

+1.0

Eo-* of R's

Correlation of P F coupling constants in R3PF2 c o m p o u n d s with Taft

inductive constant of R's. 3.2.5. PF coupling constants in R2PF a compounds Usually, two fluorine atoms are apical and one equatorial, and the exchange is normally slow enough to allow separate coupling constants to be observed. Actually (1965, 112) : J(PFa=) ,,~ 0.80 to 0.95 J(PVe~) The exchange enthalpy from one position to the other is about 6-7 kcal] mole for C12PF3 and Br2PF 3. The high value of about 12 for (CH3)2NPF 4 may be due to bulkiness of the dimethylamino group (1964, 66; 1965, 75). If the Fermi contract term predominates, the results indicate that the s character is greater in the equatorial bonds. Allowing these assumptions, it is possible to extend the explanation. For this purpose we describe orbitals in such penta-co-ordinated phosphorus by the two following kinds of hybrids (1964, 26a): 1 2 equatorial ~ (s sin a - d=2cos a) + ~ Px 1

1

axial-~(scoso~+d=2sina)+-~pz where a is an adjustable parameter. If we assume that the Fermi contact term is controlled mainly with the s content of phosphorus orbitals, we have: Jax Je~

--

3 2

Cot 2 c~

284

G. MAVEL

' Ja/Je in RR'PF3 .95(

o

o

.90(

.850

/

.800

FIG. 20.

o

i

I

0.0

~05

__ *I,0 £0"~ of R's

Ratio of axial and equatorial PF coupling constants in RR'PF3 compounds versus the Taft inductive constants of R's. /

~s character in RR'PF 3

.25

equatoria[ .20

~ ÷ . ~

.15

axia[

7 0.0

I +0,5

r +1.0 Z~

FIG. 21.

),, of R ' s

Calculated s c h a r a c t e r in R R ' P F 3 c o m p o u n d s versus t h e Taft inductive constants of R's.

285

STUDIES OF PHOSPHORUS COMPOUNDS

with: I 2 (Jox/seq) (s character),~ = ~ cos ct = 3 + 2(Jax/Jeq )

1 (s character)eq = ~ sin z e -

1 3 + 2(J.~/J~q)

The experimental ratios yield an estimate of these characters. To illustrate: R (CH3) 2 CH3(CrHs) (C6H5)2 CI(CrHs) Cl2t Br2

Jax/Jeq

Sax

Seq

0.804 0.840 0.864 0.924 0.945 0.998

0.174 0.179 0.182 0.190 0.193 0.199

0.217 0.213 0.211 0.206 0.204 0.200

t In the solid state CI2PF3 exists as PCI~ PF 6 (1956, la; 1957, 3a).

As the electronegativity of R increases (F electronegativity being always greater), axial and equatorial bonds tend to have equal s characters, according to Walsh's rule (Figs. 20 and 21). Despite its assumption that all equatorial orbitals are equivalent irrespective of substituents (thus underestimating Seq and overestimating Sax), this model gives some information regarding the nature of bonds in R2PF a. 3.2.6.

PF coupling constants in RPF 4 compounds

Once again, the accepted structure is questionable. While the fluorine resonance spectrum is ineffective when discussing the structure of CH3PF4, both infrared and Raman spectroscopic data (1965, 29a) indicate that the molecule is bipyramidal. In a few cases, such as (CHa)2NPF 4 (Ja~ = 751--2; Jeq = 871-5),'~ the bipyramidal structure is found. When exchange does occur, the mean coupling is governed mainly by inductive effects (except for very electronegative substituents; for (21,J = 1000 c/s (1965, 17), or for F itself, J = 930 c/s). R

CH3

CH2C1

CF3

a,(R) J(PF)

--0.05 967

+0"17 997

+0'41 1103

CC13 l

about +0.44 1124

t To be compared with [(CH3)2N]2PF3(Ja± = 793; Yeq = 916)(1964, 14, 66). Walsh's rule predicts the observed trend despite the competing polarity change.

286

G. MAVEL

3.2.7. PF coupling constants in hexa-connected compounds In such compounds the phosphorus hybridization is octahedral, sp3d 2, with four equatorial and two axial substituents, which interchange rapidly (in PF6- or C H 3 P F 4 H - ) (1964, 21), or not at all (in CH3PF 5- or C 6 H s P F s - ) (1965, 88, 115). Exchange enthalpy has been measured in one instance (1965, 88): slow exchange is found in PF 5 complexes with basic groups (amines, sulphoxides ...) (see Section 3.2.10). In the latter case, once again:

[J(PFax)l < [J(PFeq)l 3.2.8.

PCF and similar couplings

Data of this type are much rarer than for the corresponding P... H coupling constants. Nevertheless, one may note that: (i) "long range anomalies", so common for proton couplings (see Section 2.2.8(i)), are not observed so frequently, e.g. (1962, 33; 1965, 89) : CF3CF2CFEPI2 (CF3CFECF2) zPI 37

but

25

36

CFaCFzCF2PC12 36

24

(CFaCFzCF2)EPC1

58

36

54-58

(ii) there is no definite indication of sign change; (iii) Walsh's rule is obeyed rather well, especially in homologous series, such as CF3PX2, (CF3)2PX (see Fig. 22) (1963, 54; 1965, 89, 113). IJ (_PcE~)I in

CFaPX2

cps

9C

/S (CF3)2PX

70 ¸

50 0.0

1"2

i

*0.5

• 1.0

rcr I

Of X's

FIG. 22. Correlation of PF coupling constants in CF3PX2 and (CF3)2PX compounds with Taft inductive constants of X's.

STUDIES OF PHOSPHORUS COMPOUNDS

287

The lack of pertinent data precludes any discussion for more remote groups but the coupling changes appear to be very small. As regards perfluorophenyl groups, pertinent data are reported in Table 3. 3.2.9.

Other peculiarities of P ... F couplings

No information is available as regards the possibility of "virtual coupling" or the magnitude of laCF couplings. Fluorine-proton couplings through phosphorus have been reported previously (see Section 2.2.9(i)); one notes that the trend is reversed relative to PF couplings:

Iso l < IJ. l but a sign change cannot be excluded. Lastly, fluorine-fluorine couplings through phosphorus are known (Table 3) for some R2PF3 compounds (1965, 112); they show a fair correlation with the relevant PF couplings. 3.2.10.

Solvent effects on fluorine coupling constants

In all cases reported, such effects involve complex formation, for example: (i) PF5 in the presence of basic molecules (1960, 18) forms a complex assuming a nearly octahedral conformation in which equatorial and axial fluorine atoms are distinct, at room temperature (e.g. PF 5 +pyridine) or at least, at low temperature (e.g. PF 5 + ether). Coupling (about 740c/s)is greatly reduced relative to PF5 (916-930) but is still greater than PF 6- coupling (=710c/s). (ii) C6H5PF 4 also forms complexes with basic molecules (1965, 88), e.g. pyridine, dimethylformamide (acetonitrile is not strong enough and triethylamine is too bulky). Once again, the coupling constant (840-880) is reduced relative to C6HsPF 4 (973). (iii) PFC14 and PF2C13 with pyridine (1963, 28). The previous trend in coupling constants is reversed for the former complex: PFC14 : 992-996

C~HsN. PFC14 : 1049

but not for the latter: PF2CI 3 : 1045-1048

CsHsN. PFzC13 : 983

This is possibly because of structural distortion (chlorine atoms and pyridine molecules being rather bulky).

'288

G. MAVEL

4. R E S O N A N C E

STUDIES

OF OTHER

NUCLEI

As may be seen from the formula indices, given in the Appendix, very few studies on organophosphorus compounds by using resonance of nuclei other than 3ap, all, and X~F have been reported. As it is difficult to draw consistent conclusions from the limited data, we content ourself by merely quoting the references. (i) Deuterium on inorganic compounds: 1964, 25a, 28b. (ii) Boron-ll (especially on adducts): 1955, 1; 1963, 63; 1964, 17, 95; 1965, 9, 26, 55. (iii) Carbon-13, on P(O)(NMe2)3: 1957, 4. (iv) Oxygen-17 on phosphorus oxyacids, phosphites, phosphates, phosphonates: 1963, 12. 5. S T R U C T U R A L

APPLICATIONS

OF NMR

The majority of NMR studies are now undertaken by chemists, and there is a wide range of interests: analysis, identification of functional groups (e.g. phospholinic or phospholenic rings (1964, 76; 1965, 96a), of compounds, of isomers, and so on (1963, 62). However, it is possible to distinguish some main trends. 5.1.

Studies on Molecular Conformation

Many kinds of compounds have been investigated: cyclopolyphosphines (1963, 32), phosphocyclic (1960, 10; 1963, 26; 1964, 94), or phospho juxtacyclic (1964, 91; 1965, 21) compounds (especially adamantan-like (1964, 7, 95; 1965, 128)), phosdrin and homologues (1961, 26, 27) and others (1960, 16; 1963, 51, 53; 1964,2, 14,21 ; 1965, 48, 115), e.g. 1H NMRis capable of identifying /PC6Hs\ conformations of C6HsP ( ) P C 6 H 5 in solution when infrared \PC6H5 / spectroscopy cannot help. We will devote our attention to the four following items. 5.1.1. Phosphonitrilie derivatives Without trying to review all the investigations involving proton and fluorine resonance on trimeric (1961, 3a, 29; 1964, 3, 17b, 34, 74; 1965, 36, 37, 53a, 64, 66), tetrameric (1963, 2; 1964, 3, 42, 90) or higher (1965, 2a) (up to n = 8) derivatives, we shall select some illustrations of the more important studies in this field (1962, 34a). 3~p resonance is very fruitful in this respect (1962, 34a; 1963, 38a) but is limited by its lower sensitivity.

289

STUDIES OF PHOSPHORUS COMPOUNDS

Band multiplicity gives some indication as regards the nature of substituted groups (containing protons or fluorines) and the number of different sites they are occupying, e.g. two chemically shifted doublets appear in the proton spectrum of (I) (with relative intensity 2 : 1) but only one doublet in the spectrum of (II):

A

B

•, , /

A

,,

P

/\ (I)

N

B

/\ .N

,,"\//\ B"

/

(II)

N

p/

/

N

B

N

\//\

A

P,/

N

B

A=Ct B =N(CH3)z One can also distinguish between structure (III) with two possible conformations and structure (IV) with only one: A

A

A

P

P

/\ (m)

N

A

/\ N

0v) /

N ;

N p-/

/ \ / / \

~"

B g N A Coupling constants are often very sensitive to geminal substitutions and simpler to interpret than chemical shifts (1964, 34; 1965, 2, 37, 64). (Long range couplings may obscure the pattern, especially for higher homologues (1965, 2, 92).) Examples of PNCH 3 couplings (in c/s) are found as follows: ~NCH3 11-12 for P . "NCH3

12-13 for

/NCHa P~"C6H5

p/NCH3 17-18 for . ",C1

For PF couplings, one observes (1963, 2):

/F

850-925 for P " , F But P,.//NCH3

/v

925-975 for P,,\C1

NCH3 and P,,/ yield very similar couplings (1964, 34). "\NCH3 "\NH 2 These are valuable tools for analyzing substitution patterns in phosphonitrilic derivatives (1965, 64).

290

G. MAVEL

5.1.2. Dioxaphospholan derivatives The marked increase in the hydrolysis rate of (¥) CH20 (v)

OCH 3

\/ P

/% CH20

O

relative to that of aliphatic phosphates (1965, 26a) has been attributed, for a long time, to steric strain (independent findings (1965, 116a; 1965, 127a) agree with such an explanation), thus reducing the 2p~-3d~ character of P--O(--C--C) bonds (1961, 5a; 1963, 36a). Such compounds with either a quadruply- or a triply-connected phosphorus exhibit a proton spectrum with a characteristic multiplicity for OCHzCH20 , even at high temperatures (up to 150° for /O--CH2 C6HsP

) \O--CH2

(1961, 19; 1965, 38, 40). (Conversely, the spectrum reduces to a simple doublet in ionic species, such as + CH20 O N(CH3)4

\J

P CH20

O S

(1965, 32).) This pattern may be analysed as an AA'BB'X system, suggesting an asymmetry of the dioxaphospholan ring, similar to that proposed for the tetramethyl homologue (1963, 69 no. 472; 1964, 37): (CHa) 2C--O (Vl)

\ /

PC1

(CHa)2C--O that is,

\

p

STUDIES OF PHOSPHORUS COMPOUNDS

291

This agrees with the existence of two mixed isomers for the monomethyl derivative (VII) (1964, 37): CHaCHO

L

(wi)

/

PR

CH2O

The related nitrogen compounds CH2N

\ /

p--

CH2N

l exhibit a somewhat similar behaviour (1965, 1). Thus, the ring strain, as proposed by several authors (1965, 116a; 1965, 127a), seems questionable, at least for liquids or dissolved compounds. 5.1.3. Oxyphosphoran compounds These derivatives have been investigated intensively by Ramirez and his co-workers (1963, 55, 59; 1964, 78, 79; 1965, 98, 104), including studies of true pentaoxyphosphoranes CI-I2--O

O--

\/ P---O-/\

CH2--O

O--

and spiro pentaoxyphosphoranes CH2--O

/ O--C

\p/ /\

CH2--O

O--C

\

as mixed oxyphosphoranes

CH2--O

I

]

CH2--O

N--

\/

/\

P--N--

N--

292

G. MAVEL

or the related zwitterions O--C--C6H s

\ + --]1 (CH3) 2N] 3P--O--nC / O--5-ZC--C6H 5 to be compared with

/

O--C--C6H 5

II

(C2H50) 3P--O--C

I

O~C--C6H s in relation to the great sensitivity of these structures to slight substituent changes. Reviews of all this work have been published recently by Ramirez (1964, 77; 1965, 97). 5.1.4. Phosphorylides Proton resonance studies seem quite appropriate to investigate the nature of PC bonds, when a CH group is in the 0~position with respect to a phosphorus atom (1965, 85). Compare the methylene resonance at 1.8ppm lowfieM relative to TMS (J ,-~ 15 c/s) in +

(CH3)aSiCHzP(CH3)3CIand the methine resonance at 1.0ppm highfield relative to TMS (J ,,~ 8 c/s) in (CHa)aSiCHP(CH3)3 which is in accordance with the ionic structure of phosphorylides (ylides) --

+

--CH--P----~--~--CH--P ....

5.2.

Studies on Molecular Asymmetry

This problem--in fact a subsidiary of the preceding one--started with Finegold's finding (1960, 8) of a non-equivalence in the CH2 part of the 1H spectrum of CH3P(S)(OCH2CHa) 2. Instead of the first explanation proposed by Finegold (proposing a different conjugation strength between P(S) and the two ethoxy groups), such a feature is probably related to molecular conforma-

293

STUDIES OF PHOSPHORUS COMPOUNDS

tion, the two methylenes or the two hydrogen nuclei of each methylene being non-equivalent.

\

CH3 i'

S

"~0 - -

C- -

Hf \ H The latter explanation seems the best one, as proposed by Waugh and Cotton (1961, 28) from a study of C6HsS(O)OC2H 5. It has been suggested (1965, 38a) that the non-equivalence is that of the oxygen lone pair contributions, due to steric hindrance on CH2 groups. The same non-equivalence has been observed in CH3P(OC2Hs)2 HP(S)(OC2Hs)2, CH3P(S)(On-C3H7)2, but not in CHaP(O)(OC2Hs)2 C1P(S)(OC2Hs)2, HP(O)(OC2Hs)2, (CHaS)P(OC2Hs) 2 (1961, 8, 17). A wider investigation (at variable temperatures) by Siddall and Prohaska 1961, 24; 1962, 35, 36) of the three following families RP v .--=. ROPv(C6Hs):-=..

R=

iso C 3 H 7 , s e c C 4 H 9

R O P n i .---:-:

showed in the first one a hindered rotation of R, in the two others the existence of a stable isomer with an "up" conformation 0

0~

"0

Recently, Siddall and Prohaska found the same non-equivalence in adducts of diphosphonates and uranyl (or lanthanum, thorium) nitrates (1965, 119). Another kind of molecular asymmetryis offered by both tautomeric forms of CH3COC

=

C(OH)CH 3

1

C6HsCH

I (CH30)2P(O)

~ ~

CHaCO--CH--COCH 3

I

C6HsCH

E (CH30)2P(O)

294

G. MAVEL

for which the aH resonance spectra of the methoxy groups appear as distinct doublets, from the equal coupling to phosphorus (1965, 99).

5.3.

Tautomerism and Intramoleeular Reorganization

5.3.1. Tautomerism Proton resonance (1958, 6; 1959, 6, 9), as well as phosphorus resonance spectroscopy (1957, 2; 1959, 5; 1960, 17), and other physico-chemical techniques (1961, 6a), give evidence for complete displacement in the process phosphite~phosphonate. The same is true for thiophosphite~thiophosphonate (1958, 6; 1959, 9) and phosphinite ~ phosphine oxide (1962, 6). Other tautomerisms have been investigated (1965, 21, 99). 5.3.2. lntramoleeular reorgan&ation N M R is especially useful in detecting such transpositions in either pure compounds, or in reaction media (1962, 11). In most cases the mechanism is undoubtedly in termolecular (see Section 6.2) but, however, see reference 1964, 60. 6. NMR APPLICATIONS TO REACTIONS AND REACTIVITY STUDIES In addition to other factors, electronic features of molecules play a signicant role in determining intermolecular properties: e.g. the behaviour of (Me2N)3PO in either chloroform (Lewis acid) or ether (Lewis base) gives some insight into its properties as electron donor and as an electron acceptor (1965, 78). 6.1.

Intermolecular Studies

6.1.1. Solute-solvent interaction, hydrogen bondingt Up to the present time a wide range of interactions has been covered, especially: (i) liquid-gas transition in PH3 (1958, 5), and in P H F 2 (1965, 110); (ii) mixtures: water + TBPO (tributylphosphate) (1959, 8; 1963, 10, 11 a); inorganic acid+TBPO (1960, 21a; 1963, lla); phosphoric or phosphonic acid (or salt) + different solvents (water, alcohols, acetone, dimethyl-sulphoxide, trimethyl phosphate) (1963, 14; 1965, 33, 72); 1"We discuss here intermolecular hydrogen bonding, but, in some cases, chelation studies are possible (1963, 1), and these are related to intramolecular reorganizations (1964, 60).

STUDIES OF P H O S P H O R U S C O M P O U N D S

295

(iii) behaviour of some species (phosphines, phosphites, phosphonates, phosphinates) or of some functional groups (CH3P--, CHaOP--, CH3SP--, CH3NP--) in solvents (carbon tetrachloride, chloroform) (1961, 1, 23; 1962, 17; 1963, 43); (iv) hydrogen bonding in hydrogen dialkyl phosphates, phosphonates, phosphinates (1963, 16), when PH peaks are observed, as they are very sensitive to acido-basic impurities and disappear easily in the spectra (1965, 42, 43). 6.1.2. Lewiscomplexes By mixing a "neutral" organophosphorus compound with a Lewis base (ethers, ketones, amines, etc.) or a Lewis acid (chloroform, e.g. boron compounds (organic (1963, 25; 1964, 95; 1965, 128), or inorganic compounds), boron bromide (1965, 26), metathioboric acid (1964, 63), we have some estimate of electronic charge distributions in it (1955, 1; 1960, 18; 1961, 3; 1962, 4, 15; 1963, 25, 28, 50, 67; 1964, 31a, 54, 63, 69, 95; 1965, 9, 26, 39, 46, 55, 68, 88, 128, 131). Adduct exchange (e.g. Me3P. Gall a + M%N ~ M e 3 N . Gall3 + Me3P) has been also considered (1965, 127). For instance, it is possible to compare PF s in the following acidity sequence (1965, 68): BF3 < SnC14 < TIC14 < PF5 < A1C13 A more extensive investigation (1963, 44) of some triply- and quadruplyco-ordinated compounds, chloroform proton resonance being used as a basicity probe (1962, 26a; 1965, 5a; 1965, 38b), results in the following conclusions (Fig. 23). (i) For given substituents, basicity increases as P <- P(S) < P(Se) ~ P(O) (compromise of steric and electronic effects); (ii) For a given phosphorus co-ordination (~/P(O), for example) and with /

various substituents, basicity increases apparently as RSP-- < ROP-- < RP-- < RzNP--Comparisons may be drawn with calculated polarities of phosphoryl bonds (1962, 30; 1963, 69b; 1964, 65a). 6.1.3. Extractionproperties of organophosphorus compounds Phosphoryl compounds are known to yield adducts quite easily with a number of transition metal ions. This is extensively used to extract these species (some radioactive) from a nitric acid phase and to concentrate them in an organic phase. Despite the complexity of this phenomenon (especially

296

G. MAVEL

when using synergistic compounds like TTA, thenoyl trifluoroacetone), NMR studies can be useful, especially for identifying true species in mixtures: nitric acid-organophosphorus compound (1960, 21a, 1963, l la); water+ organophosphorus compound (1959, 8 ; 1963, 10, 1 la); synergist + organophosphorus compound (1963, 64; 1964, 31a); cation+organophosphorus compound (1963, lla; 1964, 31a; 1965, 14, 119). In the latter instance, chemical shifts are quite insensitive, except when dealing with diphosphonates (RO)2P(O)P(O)(OR')2 (1965, t9); then, NMR enables one to distinguish between complexing with (RO)2P(O) and (R'O)2P(O), when R # R'.

6.1.4. Metalliccomplexes of organophosphoruscompounds Triply- (or very rarely quadruply- (1965, 132)) connected phosphorus compounds are known to yield quite easily adducts with transition metals. Since 1956 a great number of these have been investigated with the aid of NMR (1956, 3) (see Formula Index V). When hydrogen or fluorine nuclei 8ppm

9ppm

Ho .

1728

CHC[a (neat) CH3 P (5)C{2 P (O) C{3 CH:~SP(O)Cl2

I 7. 43 17. 53 I Z 61 I ?' 67 68 J 7.70

(CH30)3PS

17

(CHsO)3 P (CHsS)zP(S)CH:~ (CHsO) P (O) Ci 2 CH3 P (O)F2

I ~71 I ?"?3

17.?4

[(c.,)=N]= P CH3P (O)C[2

I 7.75

I 7.77

(CH30)2P (S) CH3 (CH30)3PSe

1778

17.8A

(CH3)2NP(O)C[2 (CH30)2 P (O) C[ (CH3 S)3PO (CH30)2 P (0) SCH3

I ?. 87 I 8.00 I 8,08

(CH30)2 P(O)H (CH30)s PO (C2H50) ~ PO (CH30)2P(O)N(CH3)2 CH~ P (O)(OC2Hs)2

[(CH3)zN]3PO F I o . 23.

18'22 I 8.25

18.41 I 8,59

18.61 19.11

Chemical shift of CHCla infinitely diluted in phosphorus compounds (after 1963, 44).

STUDIES OF PHOSPHORUS COMPOUNDS

297

are directly attached to a metal atom they exhibit an enormous upfield change of chemical shift (up to 40 ppm), due to their high electronic density (1957, 3; 1960, 2, 3, 4; 1961, 4; 1962, 6a); the relevant theory has been presented recently (1964, 16). The observed chemical shift variation between diamagnetic ligands and paramagnetic chelates ("contact shifts" (1963, 30; 1964, 58, 59; 1965, 118, 132)) provides a useful means of estimating spin densities in complexes, i.e. the extent of n bonding between metal and phosphorus d orbitals. According to the nature and conformation (1964, 24) of the complex, the observed couplings within the phosphorus-containing molecule can exhibit (1960, 4; 1964, 25, 47; 1965, 123, 129) (but not always (1965, 23, 132)) a noticeable variation (eventually, any phosphorus-hydrogen (or fluorine) coupling will disappear if the side relaxation phosphorus-unpaired metal electron is rapid enough to "wash out" phosphorus spin states (1965, 118)), e.g. (1965, 123): PF a 1441

Ni(PF3)4 ~ 1300 Pd(PF3)4:1400

Moreover (as discussed previously in Sections 2.2.8(ii) and 2.2.10), splittings may appear in the spectra as virtual couplings, because of coupling through the metal atom. The same occurs between phosphorus and hydrogen (or fluorine) atoms directly attached to the metal atom (1964, 24), e.g. (1962, 6a) one observes in H"-,ptJPEt3 ," " X/ "'-PEt3

JP... (.. Pt..) ... H ~ 14-16 c/s (JPtH ~ 1300 c/s)

In (P(C6Hs)3)-ReH 5 the 1H resonance of the ReH group appears as a triplet (n = 2) or a quartet (n = 3) with J ~ 19 c/s (1964, 62c). The preceding features are very useful when discussing the structures of complexes (1961, 4; 1963, 4, 20, 36; 1964, 23, 24, 48, 75, 75a), especially for the couplings through metal atoms; for example, in the cis and trans conformation the J values are about 12 to about 120 c/s, respectively

Metal II /

:98

G. MAVEL

6.2. Reaction Studies: Mechanisms and Kinetics A great variety of reactions have been investigated; these include: (i) solvolysis of tetrabenzylpyrophosphate (1959, 3); (ii) reaction of urea with dimethyl phosphonate (1961, 20); (iii) protolysis of trimethyl and dimethylphenylphosphonium (1961, 25; 1964, 26); (iv) synthesis of 1,2-alkadienyl phosphonates (1962, 24); (v) alcoholysis of (Me2N)3P(O) (1963, 11); (vi) synthesis of phosphinates (1964, 32); (vii) prototropic isomerization of acetylenic esters (1964, 53c); (viii) oxidation-reduction HzPO¢- -* HPO~- (1964, 61); (ix) pyridinolysis of methyl diaryl phosphonates (1964, 73); (x) reaction of N-haloamides with triply connected phosphorus (1964, 93); (xi) alcoholysis of R3PX 2 compounds (one observes the intermediate +

species R3POR' ... XHX) (1964, 101); ppm downfield/TMS, 4

S

l

1

B 2

I

I (CH3)z NH (CH3)z NP /

I

OH-NH I

t~=O

9. I c/s

tc = 15 mln

1

iJ, ril Fil

,I

9.1 c/s tc =30 min

I

9.1 c/s fc = 60 min

I

,I

9. I c/s t~ = 120 rain 9. 1-9.7 c/s

tc =500 min Afler degassing of (CH3)z NH

FIG. 24.

,T] 9J-9.7c/s

N M R study of the alcoholysis of [(CH3)zN]3P with (CHa)aCOH (after 1963, 11).

STUDIES OF PHOSPHORUS COMPOUNDS

299

(xii) conversion C 1 C H 2 P O 2 H 2 -* C H a P O a H 2 (1965, 52); (xiii) reaction of H3PO 3 with HBr (1965, 58); (xiv) isotopic exchange in mono or dialkyl phosphonates (1961, 10; 1962, 16, 22; 1965, 52), in hypophosphorous acid (1963, 16a), in amino derivatives (1965, 127), and others (1963, 60b); (xv) intermolecular reorganizations in mixtures: H 2 0 q- HF + P 2 0 5 (1959, 1), H3POa+H3PO 4 (1960, 11; 1965, 57); P(SBu)a+PC13 or P(SBu)3+P(SMe)a (1963, 49); P(OR)3+P(NR'z)3 (1965, 59). Such studies were initiated and extensively undertaken by Van Wazer and his co-workers (1959, 1 and later publications) using alp resonance. A recent review has been given (1965, 108). The reorganization facility is greater for triply- than for quadruply-connectedphosphorus, and greater for hydrogen and heteroatom-bound groups (RO, RS ...) than for alkyl groups. To give some idea of NMR capabilities in this field we present spectra obtained in situ during alcoholysis of the dimethylamino group (1963, 11) (see Fig. 24). The reaction rate can be obtained by observing the 1H spectra of the methyl peaks of the starting alcohol, (CH3)3COH; the reacted alcohol, ( C H 3 ) 3 C O P ... , and the evolved dimethylamine. One observes that the first amino group is easily replaced, the second one is partially replaced at a slower rate, while the third remains.

7. M I S C E L L A N E O U S

STUDIES

For the sake of completeness, the following NMR studies are listed. (i) Broad line studies on solid samples--generally inorganic (1950, 1; 1954, 1 ; 1960, lb; 1962, 31 ; 1963, 48; t964, 25a, b, 98; 1965, 18, 122a). (ii) Low fieM spectra (1957, 5, 6, 7; 1958, 4; 1960, 6, 7, 9; 1961, 15; 1963, 4a, 5; 1964, 31, 79c; 1965, 30) or free precession studies (1958, 3). (iii) Relaxation time measurements (1963, 71 ; 1965, 132b). (iv) Biochemical compounds (ADP, ATP, DPN, steroids, phospholipids ...) (1960, 13, 14; 1961, 5, 9; 1963, 35a, 38b, 39; 1964, 54a; 1965, 12, 18, 36, 37, 72a, 87). Lastly, there are a number of papers dealing with NMR work on organophosphorus compounds, but these are lacking in spectral data (1964, 11, 15; 1965, 10, 21a, 25, 60, 62, 79, 84, l15a, 116, 122, 124, 126, 130, 132a).

300

G. MAVEL

APPENDIX

The following proton (indices I, II) or fluorine (indices III, IV) resonance data as well as the information on metal complexes (index V) are obtained from the study of H

proton resonance,

P

phosphorus resonance,

F

fluorine resonance,

B

boron resonance,

Lf low field experiments. When data are extracted from catalogues of spectra (Varian; M.C.A., 1960, 23), the serial number of the relevant spectrum is quoted (no .... ). Formulae of inorganic compounds have their symbols arranged alphabetically, except that phosphorus always comes first. Formulae of organic compounds have their symbols arranged alphabetically, except that phosphorus always comes first, followed immediately by carbon and hydrogen.

STUDIES OF PHOSPHORUS COMPOUNDS

301

FORMULAINDEXI. PROTONRESONANCESTUDIESON INORGANICCOMPOUNDS Compound PBrH4 PCaH202 PCI3 PCI30 PDHO2 PDH2 PD2H PD202PD6NO4 (ND4D2PO4) PFH202 PF2H PF2HO2 PF6I-I PHNa203 PI~IO42PH2KO2 PH2KO4 PHzLiO2 PH2Na PHxNaO2 PHzNaOa PH2NaO4 PH202PH204PH3

References

Compound

1954, 1 1956, 4 1963,49 1963,44 1964, 28b 1960, 15 1960, 15; 1964, 79d 1964, 28b 1964, 25a 1959, 1 1965, 110 1959, 1 1960, 7 1956, 4; 1957, 6 1964, 6 1956,4;1957, 6;1963,71 1950, 1; 1960, 1 1957, 6 1965, 31 1956, 4; 1957, 5, 6, 7; 1960, 9; 1963, 71 1956, 4 1960, 1 1961, 15; 1964, 79b 1964, 61 1953, 1; 1956, 4; 1958, 2, 5; 1960, 15; 1963, 70; 1964, 79d; 1965, 31

PH302

PH303

PH304 PH4Br PH4I PH6NO4

References 1953, 1, 2; 1956, 4; 1957, 6; 1958, 1, 2, 4; 1960, 6; 1962, 10; 1963, 12, 16a 1953, 1, 2; 1956, 4; 1957, 6, 7; 1958, 2, 4; 1960, 6, 11; 1963, 12, 1965, 57, 58 1963, 12, 14; 1964, 61 1965, 29, 31 1954, 1 1950, 1; 1960, lb; 1963, 71

P2BaH2Os P2CaH2Os P2F2H205 P2HNa305 P2HO5P2H4 P2H405 P2H407

1960, lb 1960, lb 1959, 1 1956, 4; 1963, 69 1957, 2 1960, 15; 1964, 44 1960, 11, 21; 1965, 57, 58 1959, 1

P3C14F2N3 P3H2N2Na307

1961, 12 1964, 69

P4H24N6013

1956, 4

FORMULAINDEXIL PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

PCHC140 PCHF7 PCH2C1F4 PCH2C13 PCH2C1302 PCHaBrC1S PCHaBr2

CH2C1P(O) C12 [CF3PF4H]CH2C1PF4 CH2C1PC12 CCI3PO2H2 CH3P(S)BrC1 CH3PBr2

PCH3Br2S

CH3P(S)Br2

PCH3C12

CH3PCI2

References 1960, 23 (No. 187) H 1964, 21 I-IF 1963, 51 F; 1964, 71 P 1962, 32 P 1964, 70 H 1962, 32 P 1962, 31 H ; 1962, 32; 1963, 40 P 1962, 31 H, 1962, 32 P

1960, 19; 1962, 10, 32; 1963, 40 P; 1961, 17, 1962, 28; 1963, 45; 1964, 55 H

G. MAVEL

302 FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

PCH3C120

CH3P(O) C12

PCH3C12OS

CH3SP(O) C12

PCH3CI202

CH3OP(O) C12

PCH3CI2S

CH3P(S)C12

PCH3C12Se PCH3F20

CH3P(Se)CI2 CHaP(O)F2

PCH3F4 PCH312 PCH4CI PCH4C102 PCH4C103 PCH4FO2 PCH 5

CH3PF4 CH3PI2 CH2C1PH2 CH2C1P(O)(OH)H CH2C1PO3H2 CH3P(O)(OH)F CH3PH2

PCHsO2 PCH503

CH3PO2H2 ; CH3OPOH2 CH3PO3H2

PCH6Br PCH7KNO3 PCH9IN3S PCHllN203

CH3OPO2H2 CH2OHP(O)(OH)H (CH3PH3)+Br CH3OP(O)(OK)NH4 [CH3P(S)(NH2)3]+ICH3P(O)(ONH4)2

PC2HF6

(CF3) 2 P H

PC2HF6S PC2H4C103 PC2H4C130 PC2H4FO2 PC2HsC1F PC2H5Clz PC2HsCI20

(CF3)2P(S)H (CH20) 2P(O)CI (CH2C1)2P(O)C1 (CH20) 2PF C2HsPC1F C2HsPC12 C2HsP(O)C12

PC2HsCI2OS PC2HsC1202 PC2HsC12S PC2HsC12S2 PC2HsF2 PC2HsF20

C2HsOP(S)C12 C2HsOP(O)C12 C2HsP(S)C12 C2HsSP(S)CI2 C2HsP(O)F2 C2HsPF2

References 1961, 17; 1962, 26, 28, 1963, 43, 44, 45 H 1962, 26, 30; 1963, 43, 44, 45 H 1962, 26, 30, 1963, 43, 44, 45 H 1961, 17; 1962, 28, 30; 1963, 43, 44, 45 H 1961, 17; 1962, 28 H 1951, 1, 2PF; 1953, 1, 1964, 17a F; 1962, 31; 1963, 43, 44, 45 H 1963, 51 F; 1964, 71 P 1963, 40 P 1965, 43 H 1965, 52, H 1962, 32 P 1964, 17a F 1956, 4 P; 1957, 2; 1963, 41, 70H; 1962, 32 P 1961, 17; 1962, 10, 1965, 52 H; 1962, 32 P 1959, 6 H 1965, 52 H 1965, 29 H 1962, 16 H 1963, 68 H 1964, 69 P 1957, 1 F; 1963, 54 HPF; 1964, 41 H 1964, 19 I-IF 1963, 60 H 1962, 32 P 1965, 105 HPF 1956, 4 P 1962, 31; 1964, 55 H 1960, 23 (No. 115); 1961, 18, 1962, 35 H

1962, 29 H 1962, 29 H 1961, 18 H 1962, 29 H 1956, 4 P 1962, 31 H

303

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXII, PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

References

PC2HsF4 PC2H6C1 PC2H6C10 PC2H6C102

C2I-IsPF4 (CH3)2PC1 (CH3)EP(O)CI CH3(CH30)P(O)C1

1963, 51 F; 1964, 71 P 1960, 19P; 1964, 44 H 1962, 32 P 1961, 17; 1962, 26, 30

PC2H6C102S PC2H6C103

(CH30)2P(S)C1 (CH30) 2P(O)C1

1962, 31 H 1962, 26, 30; 1963, 44, 45 H 1956, 1 H 1962, 31 H 1963, 49 HP 1962, 32 P 1962, 25; 1964, 96 H; 1962, 32 P 1961, 17; 1962, 25; 1963, 43, 44, 45 H; 1962, 32 P 1961, 17; 1962, 25 H 1964, 18; 1965, 105 HFP; 1964, 96 H 1963, 51 F 1964, 14 HF 1956, 4; 1962, 32 P; 1957, 2; 1963, 41, 70; 1964, 95 H 1962, 10 H 1964, 32 HP 1958, 6; 1959, 9 H; 1963, 70a; 1965, 133

H

PC2H6C12N

(C2HsO)P(O)(OH)C1 (CH3) 2P(S)CI CH3(CH3S)P(S)C1 (CH3S) 2PC1 [(CHa) 2N]PCI2

PCzH6C12NO

[(CH3)2N]P(O)C12

PC2H6CI2NS PC2H6F2N

[(CH3)2N]P(S)C12 [(CH3)2N]PF2

PC2H6F3 PC2H6F4N PC2H7

(CH3) 2PF3 [(CH3)2N]PF4 (CH3) 2PH

PCzH702 PC2H702S

(CH3)2PO2H C2H5OP(O)~'I2 (CH30) 2P(S)H

PC2H703

(CH30) zP(O)H

PC2H8Br PC2HloNOzS2 PC2HloNO3S PCzH1 IlN3S

(CH3) 2PH2+Br(CH30) 2P(S)SNH4 (CH30) 2P(O)SNH4 [C2HsP(S)(NH2)3]+I -

PC3H3F6S PC3H4FsO PCaHsF20 PC3H6Br3 PC3H6C102

(CF3) 2PSCI-I3 CF3(CH30)PCHF2 CH2 = CHCH2OPF2 CH3CHBrCH2PBr2; CH3CHPBr2(CH2Br) C H a C H - O , PCI C[H2__O

PC2H6C1S PC2H6C1S2

P

PC3H6C103

CHaCH--O \ I ?P(O)C1 CH2--O

1956, 4; 1958, I; 1963, 70a P; 1958, 6; 1959, 6, 9; 1962, 16, 22, 30; 1963, 44, 45 H 1965, 29 H 1962, 31 H 1962, 31 H 1963, 68 H 1964, 19HF 1965, 4 4 H 1965, 105HPF 1965, 35H 1964,

37 H

1963, 60 H

~4

G. MAVEL FORMULAINDEX1I. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

PC3H6CI3N20 PCaH6C130 PC3H6C1302 PC3H7C120

C13P(NCH3)2CO (CH3)2CC1P(O)C12 CH2C1CH(CH3)OP(O)C12

PC3H7C12S PC3H7F20 PC3H703 PC3Hs PC3HsFO2 PC3HsIO3 PC3H9

n-,i-C3HTP(S)C12 n-C3H7OPF2 CH20\ I ?POCH3 CH20 CH2CH(CH3)PH2 CH3(C2HsO)P(O)F (CH30) 2P(O)CH2I (CH3)3P

PC3H9C12 PC3H9F2

CH3(C2Hs)PH (CH3)3PC12 (CH3)3PF2

PC3H90 PC3H9OS2 PC3H9OS3

(CH3)3PO CH3P(O)(SCH3)2 (CH3S)3PO

PC3H902 PC3HgO2S

CH3(C2HsO)P(O)H CI-I3P(S)(OCH3)2

PC3H903

(CH30)3P, CH3P(O)(OCH3)2

PCaH903S

CH3(C2HsO)PO2H (CHaO)aPS; (CH30)2P(O)SCH3

PC3H903Se PC3H904

(CH30) 3PSe (CH30) 3PO

PCaH9S PC3H9S3

(CH3)3PS (CHaS)3P; CH3P(S)(SCH3)2

PC3H9S4 PC3H10

(CH3S)3PS (CH3)3PH+

PC3HloC1

(CH3)3PHC1

n-,i-C3H7P(O)C12

References 1964, 94 H 1960, 23 (No. 391) H 1963, 60 H 1960, 23 (No. 80); 1961, 18; 1962, 35; 1963, 46 H 1963, 46 H 1965, 105 HPF 1965, 38 H 1965, 42 H 1964, 17a F 1960, 23 (No. 202) H 1961, 25; 1963, 25, 39a, 41, 70; 1964, 43, 52; 1964, 95 H 1962, 32 P 1964, 52 H 1963, 51 F, 1965, 112 FP 1964, 43, 52 H 1965, 32 H 1962, 31; 1963, 8, 43, 44,45 H 1958, 1 P 1961, 17; 1963, 44, 45; 1965, 32 H 1959, 6; 1960, 23 (No. 86, 151); 1961, 17; 1962, 17, 26, 30; 1963, 44, 45; 1965, 128, 132b H 1962, 29.H 1962, 26, 30; 1963, 44,45 H 1963, 44, 45 H 1959, 2; 1960, 5, 22, 23 (No. 3); 1962,17, 26, 30; 1963, 14, 43, 44, 45; 1965, 128 H 1964, 44, 52 H 1962, 31; 1963, 44, 45; 1965, 32, H; 1962, 32 P; 1963, 49 HP 1962, 31; 1963, 45 H 1961, 25; 1964, 43; 1965, 29 H 1964, 52 H

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXII.

305

PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS

Formula

Compound

References

PC3Ht 1BrN3S PC3H 11N203S PC3H12N30 PCaH12N3S PCaH13BrN3S

[CH 2 = CHCHzP(S)(NH2)3]+I[CH3OP(O)OH]-[NH2 = C(NH2)SCH3] + (CH3NH) 3PO (CH3NH) 3PS [nC3H7P(S)(NH2)3]+Br-

1963, 68H 1961,20H 1962, 18I-I 1963, 2714 1963, 68H

PC4H3F60 PC4HsF60 PC4H6BrO

(CF2)3C(OH)PH2 (CF3) 2P(OC2H5) CH--CH2\ ]l ~P(O)ar CH--CH2 / CH--CH2.. I1 >P(O)C1 CH--CH2 / (CFa)EPN(CH3)2

1965, 91I-IF 1963, 54HPF

PC4H6C10 PC4H6F6N PC4H6N3

(NC) 2PN(CH3)2

PC4H7C1203 PC4H7C1204 PC4HsC102

CHC12P(o)(O~(cH2)3 (CH30)EP(O)OCH = CC12 CHaCHO CH2

i

PC4HsC103 PC4HsC104 PCaHsC130 PC4HsC1304 PCaHsF3 PC4H9 PC4H9C103 PC4H9C120 PC4H9F20 PC4H9F4 PC4HgO3 PC4H904 PC4H904S PC4H10CI PC4H10CIO2

PCI

1964, 5 H 1963, 60H 1963, 54 FIPF; 1964, 41HF 1964, 96; 1965, 3 2 H 1960, 23 (No. 189) H 1962, 30H 1964,79bH

/

CH20 CH2CIP(o)~O~(cH2)3 (CH30)2P(O)OCH = CHC1

CH3(C2Hs)CC1P(O)CI2

CC13CH(OH)P(O)(OCHa) 2 (CH2)4PF3 (CH3)2P(CH = CH2) (CH3)2C = CHPH2 CH3CHO \ I ?P(OCH3) CH20 n, s or t C4H9P(O)C12 n C4H9OPF2 n C4H9PF4 CH20\ I ?POC2Hs CH20 (CHzO)zP(O)OCzH5 (CH30) 2P(S)OC(O)CH3 (CzHs)zPC1 (C2H50)zPC1 CH3(i-CaH70)P(O)C1

1960, 23 (No. 188) H 1961, 2 6 H 1960, 23 (No. 392) H 1961, 19; 1962, 30I-I 1963, 51F 1964, 52I-I 1965, 431-I 1964, 37H 1960,23(No.81, I16); 1961, 18; 1962, 35; 1963, 6 6 H 1965, 105HPF 1963, 51F 1965, 38H 1964, 12 P 1962, 31I-I 1964, 62aH 1962, 29H 1962, 31H

306

G. MAVEL FORMULAINDEXIf. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

PC4HloC102S PC4HloC103 PC4HloC1S2 PC4HloC1S3 PC4HIoC12N PC4HloC12NO PCgHIoC18NSb PC4HIoFO2 PC4HloF2N PC4HloF3 PC4HloF4N PC4HloNO2 PC4Hll PC4HllOS PC4HllOS2 PC4HllO2

Compound

(CzRsO)2P(S)C1

PC4HllO2S PC4HllO2Se PC4FI1103

(C2HsO)2P(O)C1 (CzHsS) zPC1 (C2H5S)2P(S)C1 (C2H5) zNPCI2 (CzHs)zNP(O)CI2 (C2Hs)zPCI2 • SbC16 CH3(i-C3H70)P(O)F; C2H4(C2HsO)P(O)F (C2H5)2NPF2 (C2Hs)2PF3 (C2Hs)2NPF4 (CH3)zNP(OCHz) 2 (CzHs)2PH; CH3(C3HT)PH CH3(i-C3HTO)P(S)H C2HsP(O)(SCH3)2 C4H9OP(O)H2 CHa(C3H70)P(O)H (C2HsO) 2P(S)H (C2HsO)zP(Se)H (CEHsO)P(O)H; CzHs(CzHsO)PO2H

PC4H1104 PC4H12 PC4H12A1 PC4H12AsS PC4H12CI

(CH3) 2C(OH)P(O)(OCH3)H (CH30)2P(O)OC2H5 (CH3)4P + (CH3)2A1P(CH3)2 (CH 3)2P(S)As(CH3) 2 (CH3) 4PCI

PC4I-112C1N2 PC4H12C1N2S PC4H12C1604Sb PC4H12FN2

[(CH3)2N]2PC1 [(CH3)2N]2P(S)C1 (CH30) 4P+SbCI6[(CH3)zN]zPF

PC4H12F3N2 PC4H12Ga PC4H12I PC4H12In PC4Hx2N

[(CH3)zN]2PF3 (CH3)2GaP(CH3)2 (CH3)4PI (CH3) 2InP(CH3)2 (CH3)2NP(CH3)2

PC4HlzNO3

(CH3) 2NP(O)(OCH3)2

PC4H14C1N2

(CH3) 2P [N(CH3) 2]NH2C1

PCsH8C10

CH3C--CH2 \ II ~P(O)C1 CH--CH2 /

References 1961, 8; 1962, 29 FI 1956, 1; 1962, 29 H 1962, 32 P 1962, 29 H 1962, 25 H 1962, 31 H 1963, 61 H 1964, 17a F 1965, 105 HPF 1963, 51 F 1964, 14 F 1961, 19; 1962, 25 H 1962, 32 P 1958, 1 P 1965, 32 H 1964, 32 l i p 1958, 1 P 1958, 1 P; 1961, 8 H 1962, 20 P 1956, 4; 1958, I; t962, 20; 1965, 133 P; 1959, 6; 1961, 8, 10, 18; 1962, 16, 22, 29; 1963, 33 H 1964, 32 l i p 1962, 30 H 1964, 43; 1965, 80 H 1965, 4 H 1964, 44 H 1961, 17; 1964, 90a, 1965, 121a H 1964, 96 I-I 1962, 31 H 1965, 24a H 1964, 18; 1965, 105 YI, P, F 1964, 14 F 1965, 4 H 1964, 52 H 1965, 4 H 1963, 25 H; 1965, 24 H,P 1962, 25, 30; 1963, 44 H 1965, 24 H, P

1963, 60 H

307

STUDIES OF PHOSPHORUS COMPOUNDS

FORMULA INDEX II,

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

References

PCsI-I9 PCsH9CI2

(C4H6)PCH3 (C4H6)P(CH3)CI2

1964,76H 1964, 7 6 H

PCsH9C1203

1960, 23 (No. 192) H

PCsH90 PCsH902 PCsHgO3

CHCI2P(o)(O'~/(CH2)4 \O/ (C4H6)P(O)CH3 (CH2CH)2P(O)OCH3 P(OCH2)3CCH3

PCsH903S

P(S)(OCH2)3CCH3

PCsH904

P(O)(OCH2)3CCH3

PCsH9S PCsHloC102

(CH30)2P(O)(OCH2C ~ CH) CH3OP(O)(OCCH3)2 (CH3)2P(S)(C ~- CCH3) (CH3) EC(CH20)2PC1 O CH2C1P(O)~o~(CH2)4

1962, 39; 1964, 95; 1965, 25aH 1962, 39; 1965, 25a, 128H 1962, 30H 1965, IOOH, P 1965, I l H 1964, 79bH

1964, 76H 1964, 5 H 1962, 39; 1964, 95; 1965, 25a, 128, 129 H

PCsH10C103 PCsHloFzN

NPFz

PCsH~oF3 PC 5H 11C120

(CH2) sPF3 (CH3) E(C2Hs)CP(O)C12

PCsHllOS3 PCsHllO3

(CH3S)2P(O)SCH2CH = CH2 (CH30)2P(O)(CH2CH = CH2); CH3(CH30)P(O)(OCH2CH = CH2) CH3OP(O)(OCHECH2) 2 (CH30)2P(O)(OCHECH = CH2) (CH30) zP(O)COOC2H5 (CH30)2P(S)OCOOCzHs; (CH30)(CH3S)P(O)OCOOC2H5 (CH30) 2P(O)OCOOC2H5 CH2BrP(O)(OC2Hs)2 CH3P(O)(SC4H9)C1 CH2C1P(O)(OC2Hs)2 C2Hs(i-C3H70)PF CH3P(O)(OC2H 5)(SC2H4F) (CHa)aP(CH = CH2)I CH2IP(O)(OC2Hs)2 (CH3S) 2P(S)SCH2C(O)NHCH3 (CH30) EP(O)SCH2C(O)NHCH3 [(CH3)2N]zPCN CH3(n-C4H9) PH CH3OP(S)(SCzHs)2

PCsHI104 PC5HllO5 PC5HllOsS PCsHll06 PCsH12BrO3 PCsH12C1OS PCsH12C103 PCsH12FO PCsH12FO2S PCsH12I PCsH12IO3 PCsH12NOS4 PCsH 12NO4S PCsH12N3 PCsH13 PC5HI3OS3 PCsH1302

CH3P(OC2Hs)2

1960, 23 (No. 190) H 1965, 105H, P, F 1963, 51F 1960, 23 (No. 393); 1963, 66H 1965, 32H 1965, 32, 125H 1960, 5 H 1962, 30 H 1962, 30 H 1962, 31 H 1962, 31 H 1960, 23 (No. 201) H 1963, 49 H, P 1960, 23 (No. 191) H 1956, 4 P 1962, 31 H 1964, 52 H 1960, 23 (No. 203) H 1965, 32 H 1961, 2; 1962, 30 H 1964, 96 H 1962, 32 P 1965, 32 H 1961, 8 H

Formula

Compound

PCsH1302S

CHaP(S)(OC2Hs)2

PC5H1303

CHaP(O)(OC2Hs)(SC2H5) CH3P(O)(OC2Hs)2

PC5HI303S PCsH14 PC5H14BF403 PCsH15 N2 PCsH1707S

CHa(CH30)P(O)(OCaHT) CH3SP(O)(OC2H5)2 (CH3)3(C2H5)P+ [(CHaO)aP(C2Hs)]BF4 CHaP[N(CH3)2]2 (CH30)2P(O)SCH(COOC2Hs)2

PC6H2F5 PC6H3 PC6H4C1F4

PC6H903

1960, 8; 1961, 8, 17, 28; 1962,29It 1962, 31H 1961, 8, 17; 1962, 29; 1963, 33,44H 1965, 32, 125H 1962, 30H 1965, 80H 1965, 12811 1962, 25; 1963, 2511 1962, 31H 1965, 4H, F 1964, 97H 1963, 51F

C6F5PH2 P(C ~ CH)3

C1C6H4PF4

1965, 105H, P, F

PC6H4FO2 PC6HsCI2 PC6HsC120 PC6H5C19OSb PC6HsCIgSb PC6HsF2 PC6HsF4 PC6H6Ct30 PC6H6C1904 PC6H6F3 PC6H6F904 PC6H702 PC6H703 PC6H704 PC6HsCI2 PC6H9 PC6H9C1604

References

C6HsPCIa C6HsOPC12 C6HsOPC13. SbCl6 C6HsPC13. SbCI6 C6HsPF2 C6H5PF4 CH ~ CCH2CH = CCICH2P(O)C12 (CC13CH20)aP(O) C6HsPFaH (CF3CHgO)aP(O) C6H5PO2H2 C6H5PO3H2 C6HsOPO3H2 C6HsPCI2 P(CH = CH2)3 (CHC12CH20)3P(O) P--0

1963, 61H 1963, 61H 1963, 61H 1963, 61H 1965, 113 F, P 1963, 51 F 1965, 83 H 1965,22, 23(No.45)H 1964, 66 F 1960, 5 H 1956, 4 P 1963, 60b; 1965, 33H 1965, 33H 1959, 4 H 1963, 3, 41H 1960, 5H 1962, 39; 1964, 95; 1965, 128H

PCoH903S

1962, 39H

PCoH904

1962, 39; 1964, 95; 1965, 128H

PC6H9S PC6HloBrO PC6HloC10

( C H 9 2 P ( S ) ( C ~ C C H = CH2)

(CH3CCH2)aP(O)Br (CH--CH2) EP(O)OCH2CHEC1 CHaCH--CH2\

I

.~P(O)C1

CHaC -----CH - -

1965, l l H 1964, 5aH 1963,60H 1964, 5, 5aH

309

STUDIES OF PHOSPHORUS COMPOUNDS

F O R M U L A I N D E X II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula PC6H10C102

Compound CH = C(CH3)~O

References 1960, 23 (No. 349) H

C(CH3)2 - - c P ~ o PC6H10C130 PC 6H 11

C3H7CH = CC1CH2P(O)C12 (C2H5)2P(C ~-~CH)

1965, 83H 1964, 22H 1965, 96aH

CH~ PC6H11C1203 PC6H11C1204 PC6HllO PC6HllO2

PC6H1103 PC6HllO5 PC6H12CIO2 PC6H12C103 PC6H13C120 PC6H1303S3 PC6H1304 PC6HlaO5 PC6H14C1S2 PC6H14F4N PC6H14NO2

H

CHC12P(O)(OCH2) 2C(CH3)2 (C2H4C10)2P(O)(OCH = CH2)

~,p(o) i H3 CH3 (CH2CH) 2P(O)(OC2Hs) (CH3CCH2) 2P(O)OH CH3CHCH2 \ I >P(O)OH CH3C = CH/ (CH2 = CHCH20)zP(O)H (CH3COO)CH = CHP(O)(OCH3)2 [(CH3)zCO]2PC1

1960, 23(No. 194) H 1960, l c H 1965, 96aH 1964, 5, 99H 1964, 5 a H 1964, 5, 5aH

(CHa)2N(CH2)2P(OCH2)2

1959, 6 H 1965, 49 H 1963, 49 (No. 472); 1964, 37 H 1965, 83 H 1960, 23 (No. 193) H 1960, 23 (No. 395); 1963, 66 H 1962, 31 H 1960, lc H 1965, 7 H 1965, 125 H 1962, 32 P 1964, 14 F 1961, 19; 1962, 25; 1965, 38 H 1961, 19 H

(CH30)2P(S)N()O

1965, 32 H

C3HTCH = CC1CH2PO3H2 CH2C1P(O)(OCH2)zC(CH3)2 CH3(C2Hs)2CP(O)C12 (CH3S)2P(O)SCH2COOC2H5 (CH2 = CHO)P(O)(OC2Hs)2 CH3C(O)P(O)(OC2H5)2 (CH30) 2P(O)CH2COOC2H5 (n-C3HTS)2PCI [(C3HT)2N]PF4 [(C2Hs) 2N]P(OCH92

PC6H14NO3S PC6H~5

P(C2H5)3

PC6H15Br2 PC6H15F2

(C2H5)3PBr2 (C2Hs)aPF2

PC6H15F3N PC6H15NO4

C2H5[(C2H5)2N]PF3 (C2HsO)2P(O)NOC2H5

N___/

1956, 3; 1961, 22; 1963, 14; 1964, 31, 52 H 1964, 52 H 1963, 51 F; 1965, 112 F,P 1964, 66 F 1965, 76 H

3fb

G. MAVEL

FORMULAINDEXIf. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PC6H 15N20382 PC6H150 PC6HÂ502S PC6H150282 PC6H1503

Compound CH3OP-(O) (S)SCHzCONHN+(CH3) 3 (C2H5)3P(O) CH3P(O)(OCH3)(SC4H9) (C4H90)(CaHsO)P(S)H (C2HsO)2(C2H5S)P(S) (C2HsO)3P; (CzHsO)2P(O)C2H5

CH3(CH30)P(O)(O-n-C4H 9) (i-C3H70)2P(O)H

PC6H1503S

(C2H50)3P(S)

PC6H1504

(CzH50)2P(O)SC2H5 (C2H50) 2P(O)CH2SCH3 (CEH50)3P(O)

PC6H15S PC6H~6 PC6HI6A1 PC6H16C1N20 PC6H 16Ga PC 6H 16In PC6H16N PC6H161NO2 PC6H16NO2S PC6H16NO3 PC6H 16NO3S PC6H17N20 PC6H17N2OS PC6H18A10 PC6HI 8NOS3 PC6H18NO2S PC6HlsNO3 PC6H18NO3S PC6HIsNO4 PC 6H 18NS3 PC6HlsN3

(C2Hs) 3PS (CH3)2(C2Hs)zP + (CH3)2A1P(C2Hs)2 (C3H7NH) 2P(O)C1 (CH3)2GaP(C2Hs)2 (CH3) 2InP(C2H~)2 (CH3)2NP(CzHs)z (CH3) 2NP(OC2I-I5)2 (CH3)2NP(S)(OC2H5)2 (C2H5)2NP(O)(OCH3)2 (CH20) 2P(O)SN(CH3)4 [(CH3)2N]2P(OC2Hs)

[(CH3)2NhP(S)(OC2Hs)

(CH3)3A1OP(CH3)3 (CH3S) zP(O)SN(CH3)4 CH3(CH30)P(O)SN(CH3) 4 CHa(CH30)P(O)ON(CH3) 4 (CH30)2P(O)SN(CH3)4 (CH30)2P(O)ON(CH3)4 CHa(CH3S)P(S)SN(CH3)4 [(CH3)2N]aP

References 1961, 2FI 1964, 52H 1963, 49FI, P 1965, 133 P 1962, 2 9 H 1960, 22, 23(No 5); 1961, 18; 1962, 26, 29; 1965, 128 H; 1964, 31 Lf 1965, 125 H 1959, 6; 1960, 23 (No. 377); 1963, 46 I-I; 1958, 1; 1965, 133 P 1960, 22, 23 (No. 47); 1962, 26, 29 H; 1962, 32 P 1962, 29 H 1963, 17 H 1959, 2; 1960, 5, 22, 23 (No. 6); 1962, 26, 29; 1963, 44, 69 (No.482); 1965, 128 I-I; 1963, 5, 6; 1964, 31 Lf 1964, 52 H 1965, 65 H 1965, 5 H 1965, 127 H 1965, 5 H 1965, 5 H 1964, 62a P 1962, 25 H 1963, 11 H 1962, 31 H 1965, 32 I-I 1962, 25 I-I 1963, 11 H 1965, 111 H 1965, 32 H 1965, 32 H 1965, 32 H 1965, 32 I-I 1962, 31 H 1965, 32 H 1961, 19; 1962, 25, 38; 1963, 11, 25, 38, 44, 45; 1964, 96 I-I

311

STUDIES OF PHOSPHORUS COMPOUNDS

FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

PC6H18N30

[(CH3)aN]3P(O)

PC6H18N3S

[(CHa)2NI3P(S)

PC6HlsN9 PC6H19BrN3S PC 6H 190 7S PC6H21N60

[(CH3)2N313P [(CH3NH) 3P(S)(nC3H7)]+Br(CH30) (C2HsO)P(S)CH(COOC2H5) 2 [(C143)2NNH]3P(O)

PC7I-I7F4 PC7H704 PC7HsCIO

C6H5CH2PF4; CH3C6H4PF4 (C6H402)P(O)(OCH3) CH3(C6Hs)P(O)C1

PC7I-IsF3 PC7H9 PC7H9S PC7HloCIF404 PC7HloC13F204 PC7HIoC1504 PC7HllO3 PCyH12C10

CH3(C6Hs)PF3 CH3(C6Hs)PH CH3P(S)(C ~ CCH3)2 (C2HsO)2P(O)OC(CF2CI)CF2 (C2H50) 2P(O)OC(CFC12)CFC1 (C2H 50) 2P(O)OC(CCI3)CC12 (CH30)2P(O)CH2CH CH2 CH3C--CH2 \ J[ ~P(O) OCHzCH2C1 CH--CH2~ =

(CHCH2)2P(O)OCH(CH3)CH2C1 PC7H12C103 PC7H13 PCTH13C1N3S PC7H13OS PC7H1302

PC7H1303 PC7H1305 PC7H13OsS PCTH1306 PC7I-114BF403 PC7H14BrO3 PC7H14BrO4 PC7H14NaO4 PC7H1404Zn PCTHIsO2

CH2C1P(O)(OCH2CH = CH2) (C2Hs)2PC = CCH3 [C6HsCH2P(S)(NH2)3]+C1 CH3(C4Hs)P(O)SC2H5 (CH3CCHz) 2P(O)(OCH3) CH3CH--CH2\ ] )P(O)(OCH3) CH3C = CH / CH3(C4Hs)P(O)(OC2Hs) (C2HsO)2P(O)C ~ CCH3 (C2HsO)2P(O)CH = C = CH2 (CH3COO)C(CH3) = CHP(O)(OCH3)2 CH30(CH20) 2P(OCCH3) 2 (CH30)2P(S)C(CH3) = CH(COOCH3) (CH30)2P(O)C(CH3) = CH(COOCH3) (CsH903PC2Hs)BF4 (C2HsO)zP(O)CH2CH = CHBr; (C2HsO)2P(O)CHzCBr = CHz (C2HsO) 2P(O)CHBrC(O)CH3 (C2HsO) 2P(O)CHNaC(O)CH3 (CzHsO) 2P(O)CHZnC(O)CH3 (CaHs) 2P(O)CH2C(O)CH3

References 1961, 17, 19; 1962, 25; 1963, 43, 44, 45; 1965, 78, 13214 1962,25;1963,11,44, 45PI 1965, 1314 1963, 6814 1962, 3114 1963, 52H 1963, 51F 1964, 12 P 1960, 23 (No. 195); 1962, 35H 1963, 51F 1962, 32 P ~ 1965, 11 t t '1964,10014 1964, 100H 1964, 10014 1965, 3214

1963, 60H 1962, 31H 1964, 2 2 H 1963, 6814 1964, 9 9 H 1964, 5a14 1964, 5, 5a14 1964, 99H 1963, 33; 1964, 53c 14 1964, 53c H 1965, 49 H 1965, 97H, P 1961, 26, 2 7 H 1961, 26, 2 7 H 1965, 128H 1962, 7, 2 6 H 1962, 31H 1963, 13 P 1963, 13 P 1962,31H

312

G. MAVEL F O R M U L A I N D E X II.

Formula PC7H1503

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Compound C2Hs(C2H 50)P(O)CH2C(O)CH3 CH3CH = CHP(O)(OC2Hs)2 CH2 = CHCH2P(O)(OC2Hs)2 P (0 CzH5)

(C2H50) 2P(S)CH2C(O)CH3

PC7H15OaS PCTH1503S3

(CH3S)2P(O)SCH(CH3)COOC2H5;

PC7H1504

(CHaS) 2P(O)S(CH2)2COOC2H5 (C2H50) 2P(O)CH2C(O)CH3 (C2H50) 2P(O)C(CH3)CH2

%/

PCTHIsO5

(C2HsO) 2P(O)C(O)CzH5 (CH3CO) EP(OCH3)3

PCTH1702S

CH3(CH30)P(O)[OCH(CHa)COOC2H 5] (C3HTO)2P(S)CH3

PC7H1702S3 PC7H1703

(CzHsO)2P(S)SCH2SC2H5 (C3HTO)2P(O)CH3

PC7H1704 PCTH 1s PC7H18C13FN3 PCTH18F2N3 PC 7H 1sNO2 PC7H19Si PC7H20CISi PCTH2oNO3S PCTH21N203

CHa(C2Hs)3 P+ [(CH3)2N]aPCI(CFC12) [(CH3)2N]3P = CF2 (iCaH70)[(C2H 5)2N]P(O)H (CH3)3SiCH = P(CH3)3 (CH3)3SiCH2P(CH3)3+CICH3S(C2H 50)P(O)ON(CH3) 4 CHaO[(CH3) 2N]P(O) ON(CH3) 4

References 1962, 7, 261-1 1963, 34H 1963, 34; 1965, 83H 1965, 2 8 H 1962, 31 H 1965, 3 2 H 1962, 7, 26 H; 1963, 13 P 1964,911-1 1965, 7 H 1963,55,57,59;1964, 77H, P;1965,99H 1965,125It 1961, 17; 1963,44, 46 H

(CHaO)2P(O)(OneoCsH11)

PCsH9

[(CF93C(OI-I)]2PH C6FsP[N(CH3) 2]CI C6HsC(CI) = CHP(O)C12 C6C15SP(S)(OCH3)2 C6C15SP(O)(OCH3)2; C6CIsOP(S)(OCH3)2 C6CIsOP(O)(OCH3)2 C6FsP(CH3) 2 C1 (CH30)2P(S)O(O~C~ 1 CI C6HsCH = CHPH2

PCsH9C120 PCsH9F4 PCsH903

(CH3)2(C6Hs)P(O)C12 [(CH3)2C6H3]PF4; C6Hs(CH2)2PF4 C6HsCH = CHPO3H2

PCsH3F1202 PCaH6CIFsN PCsH6C130 PCsH6C1502S2 PCaH6C1503S PCaH6C1504 PCsH6F5 PCsHsC13OaS

1962, 2 9 H 1961, 17; 1963, 44, 46H 1964, 28aH 1965, 65H 1956, 4 P 1964, 64H, P, F 1965, 59, 133 H, P 1965, 85, 8 6 H 1965, 85H 1965, 32H 1965, 32I-I 1965, 91 H, F 1965, 4 H , F 1965, 8 3 H 1964, 90b H, P 1964, 90b H, P 1964, 90b H, P 1965, 4 H , F 1962, 30H 1963, 9 H, P; 1965, 43 H 1960, 23 (No. 198) H 1963, 51F 1963, 47 I-I

313

STUDIES OF PHOSPHORUS COMPOUNDS Formula

Compound

PCsH10C10

C2Hs(C6Hs)P(O)CI

PCsH11

C6HsP(CH3)2

References 1960, 23 (No. 196); 1962,35H 1964, 26H

Ck PCsH11C12

(CH3)

1963, 18H

CL

PCsHlaCI20

1963, 18H

PC8H110

1963, 18H

PCsHllOS PCsHllO2 PCsHllO2S PCsHllO3

C6Hs(C2HsO)P(S)H C6Hs(C2HsO)P(O)H C6HsP(S)(OCH3)2 [(CH3)2C6H3]PO3H2 (Ctt30)z(C 6H5)P(O)

PCsH1104 PCsHllS PC sH a183 PCsH13N202 PCsH1303

(CH30) 2(C6H50)P(O) C6HsP(S)(CH3)2 C6H 5P(S)(SCH3)2 (CH3NH) 2P(O)(OC6Hs) (CzHsO)2P(O)C - CCH = CH2

PCsHI4BF403 PCsH14C10 PCsH14C102 PCsH14C130 PCsH14NO3 PCsH15F4 PCsH1503

PC8HI$O4

PCsH1505 11

C6H10 = C = CHPO3H2 (C6H903PC2H5)BF4 CH3C - - CH2 [J "~/P(O)OCH(CH3) CHEC1 CH--CH2 / CH2C1CHzCH(CH3)OP(O)(CH2CH) 2 CsH11CH = CC1CH2P(O)CI2

N ~ H P(0)(OCaHs)2 n-CsH15PF4 (i-C3H70)2P(O)C ~ CH (C2HsO)2P(O)CH = C = CH(CH3) (C2HsO)2P(O)CH2C = CCH3 (C2HsO)2P(O)C -= CC2H5 C2Hs(CzHsO)P(O)CH(CH3)C(O)CH3 (C2HsO)2P(O)CH = CHC(O)CH3 ; (C2HsO)2P(O)C(O) cyclo C3H5 C6HIoOzP(O)OC2H5 .O--CH(C2Hs) CH3OP(O)~ / I \O--C(CH3)(COCH3)

1965, 133 P 1965, 133 P 1965, 32H 1960, 23(No. 152) H 1960, 23 (No. 87); 1962, 36H 1962, 30H 1965, 93H, P 1965, 32H 1965, 127H 1962, 1914; 1963, 35 H, P 1965, 2 0 H 1965, 128H 1963,60H 1964, 79bH 1965, 83H 1965, 51H 1963, 51F 1960, 12; 1963, 33 H 1962,24; 1964, 53cH 1963, 35 H, P; 1964, 53cH 1964, 53cH 1962, 7FI 1962, 7 H 1965, 7 H 1964, 12 P 1965, 103H PNMRS

314

G. MAVEL

FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

PCaHI6CIO

Compound

---•P

(0) CL

References

1960, 23(No. 197) H

CH3CCI = CHCH2P(O)(OC2Hs)2 n-CsHllCH = CC1CH2PO3H2

1963, 34H 1965, 83H

PCsH16NOaS3

(c.3s 2P(o)sc.2c(o N()o

1965,32H

PC8H16NO4 PC8H17C120

(CH20) 2P[N(CH3)2](OCCH3)2 CH3(C2Hs)(C4H9)CP(O)CI2

1965, 9 7 H 1960, 23 (No. 396); 1963, 6 6 H

PCaH16C103

/CH3 1965, 96b11

PCsH170 '-----" OH

PCsH1702

~

P02H

cydo C6HI I(C2HsO)P(O)H PCsH1702S2 PCsH1703

PCsH1704

n-C6H 1I(C2HsO)P(O)H (C2HsO)2P(S)SCH2CH = CHCH3 C2Hs(C2HsO)P(O)CH2C(O)C2H5

i-C3HvC(O)C(CN3)2P(O)(CH3)OH (C2HsO)2P(O)CH(CH3)CH = CH2; (C2HsO)2P(O)CH2CH = CH(CH3) (C2H 50) 2P(O)CH2C(O)C2H 5; (C2H50) 2P(O)CH(CH3)C(O)CH3 (CaHsO)2P(O)C(CH3)CH = CH2 I OH

~

PCsH1705 PCsHasBrO PCsH18C10 PCsHlsC103 PCsH 18F3 PCsHI 8NaO4 PCsHI 8NO3S3 PCsH18NO4S2 PC8H19 PCsH19N2

:~CH3

1960, 23 (No. 153); 1962, 2 3 I t 1963, 70a P 1965, 133 P 1963, 53aH 1962, 7 H 1963, 7 H 1963, 34;1964, 6 0 H 1962, 7, 2 6 H 1964, 9 1 H

1964, 91 H

P(O) (0 C2H5)2

(C2H 50)2P(O)C(O)i-C3H7 (C2H 50) 2P(O)CH2COOC2H5 (t-C4Hg) 2P(O)Br (n-C4Hg)2P(O)C1 (t-CgH9) 2P(O)C1 n-C6H 13CHC1C112P(O)(OH) 2 (t/'C4H9) EPF3 (2-C2H 5)C6H 12P(O)(ONa)(OH) (C2H50) 2P(S)SCH2C(O)NHCH2SCH3

(CzHsO)2P(O)SCHzC(O)NHCHzSCH3

(n-C4H9) zPH (i-C4H9)2PH CsH17PH2 (t-C4H9 N) = P(NH, t-C4H9)

1965, 7 I t 1962, 7,26FI 1964, 4 H 1962, 31H 1964, 4 H 1963, 4 7 H 1963, 51F 1965, 33H 1962, 2 9 H 1962, 2 9 H 1962, 32 P 1964, 62b P 1965, 74 P 1963, 2 7 H

315

STUDIESOF PHOSPHORUSCOMPOUNDS

FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

PCsH1903

(C4H90)2 P(O)H

PCsH1904

(2-C2Hs)C6H12PO3H2 (n-C4H90)2PO2H (2-C2H5)C6H 12OPO3H2

PCsH1905

~

O\p (0CH3)3 (?)

o'

References

1956, 4; 1965, 133 P; 1959, 6; 1960, 23 (No. 378);1963,11, 16; 1964, 65H 1965, 33H 1963, 16H 1965, 33H 1965, 28H

PCsH2oNO4 PCsH21N20

(C2H5)4P+ (C2H5)4PI (C2H5)2NP(OC2Hs)2 [(C2H5)2N](i-C4H90)P(O)H CH30(CH2 = CH--CH20)P(O)N(CH3)4 [(CH3)2N]2P(Ot'C4H9)

PCsH21N2OS PCsH21N202 PC8H22BN2 PCsH24N302 PCsH25BF403

[(C2H5)2N]2P(O)H (CH3)2NP(S)(Ot-C4H9) (CH3)2NP(O)(Ot-C4H9) [(CH3)2N]2BP(C2Hs)2 [(CH3)2N]2P(O)ON(CH3)4 [(CzHsO)3P(CzHs)]BF4

1965, 65H 1964, 52H 1962, 25H 1965, 133 P 1965, 32H 1962, 25; 1963, 11; 1964, 75H 1965, 59, 129, 133 P 1963, I 1 H 1962, 25H 1964, 72H 1965, 32H 1965, 128H

PC9H902 PC9HloCI3OS3 PC9H11C1203 PC9H11F4 PC9H11028

C6HsP(O)(OH)CH = C = CH2 (CH3S)2P(O)SCH2(C6H2C13) CHa(CH30)P(O)[OCH2(C6H2C13)] (m,p-C3H7)C6FI4PF4 CH3(C6Hs)P(S)CH2COOH

1965, 20H 1965, 32H 1965,125I-1 1963, 51F 1965, 93 P

PCgH1103

C6H4P(O)(oO~/(CH2)3

1960, 23 (No. 154) H

PC9H1104

C6HsCH = CHP(O)(OH)(OCHa) [(CH3)2C6H2]OEP(O)(OCH3)

1963, 47 H 1964, 12 P

PCsH2o PCsH2oI PCsH2oNO2

PCgHllO5

ll20\ /0.

i

1965, 97 H, P OCH 3

PC9H12BrS4 PC9H12C10

(CHaS)2P(S)SCH2C6H4Br (i-C3H7)(C6H5)P(O)CI

1965, 32 H 1960, 23 (No. 82); 1961, 24; 1962, 35

PC9H12C102

(i-C3H70)(C6H5)P(O)C1 CH3(CH30)P(O)CH2C6H4C1 (CH30) 2P(O)CH2C6H4CI; CH3(CH30)P(O)(OCHzC6H4C1) CH3[(CH3)2N]C6H3P(O)H(ONa)

1961, 24 H 1965, 32 H

H

PC9H12C103 PC9H13NNaOz

1965, 125 H 1956, 4 P

316

G. MAVEL F O R M U L A I N D E X II.

P R O T O N RESONANCE STUDIES O N O R G A N I C C O M P O U N D S

Formula PC9H1302 PC9H1303 PC9H1304 PC9H14N

Compound (i-C3H7)(C6Hs)PO2H (CH3)2C6H3P(O)(OCH3)H (C2H50)2P(O)C ~ CC ~ CCH3 (CH30) E(C6HsCH2)P(O) CH3(CH30)P(O)(OCHzC6Hs) (CH30) 2(C6HsCH20)P(O) ; (CHaO)(C2H 50)(C6HsO)P(O) (CH3)zPN(CH3)(C6Hs)

PC9H1504 PC9H1506 PC9H15Os PCgH16C102

cH3 (C2HsO)2P(O)C ~ CCH = CHCH3 (C2HsO)2P(O)C ~- CC(CH3) = CH2 (C2HsO)2P(O)CH2C =-- CCH = CH2 (CH2 = CHCH20)3P(O) [CH3(CH3CO)C(O)]2P(O)(OCH3) [CH3(CH3COO)C(O)]2P(O)(OCH3) /CH2--CCH3 CH2C1CH2CH(CH3)OP(O)( II

XCHE--CH

CH2C1C(CH3)2CH2OP(O)(CH2CH)2 PC9H 16NO3 PCgH17C1204 PCgH1703 PCgH1704

PC9H1705 PCgHlsCI3N20 PC9HlsN30 PC9H19C1203

PC9H1902 PC9H1902S2

1960, 23 (No. 88); 1962, 35 H 1963, 70a P 1963, 33 H 1964, 7; 1965, 125 H 1965, 125 H 1962, 30 H 1964, 62a P 18H

PC9H1402 PC9H1503

References

1963, 35; 1964, 53c H 1963, 35 H 1964, 53c H 1960, 22, 23 (No. 7); 1965, 32 H 1963, 56, 59 H, P 1963, 58 H, P 1964, 79b H 1964, 79b H

(0)(OCzHs)z

1965, 51H

CH3 (C2HsO)2P(O)CH(OCzHs)CH = CC12 C2Hs(C2HsO)P(O)CH = C(CH3)OC2H5 (C2HsO)EP(O)CH = C = C(CH3)2 (C2HsO)2P(O)CH = C(CH3)OCzH5 (CeHsO)2P(O)C(O)C4H7 (CH30) zP(O)C(O)C6H 11

1962, 7 H 1962, 7 H 1964, 53c H t962, 7 H 1965, 7 H 1965, 7 H

~--P

/O--CH(n-C3H7) CH3OP(O)(x, I

O--C(CH3) (COCH3) CIaP[NC4Hg]2C(O) CHaCH

1965, 103 H 1964, 94 H 1961, 19 H

L CHz _]3 (n,s-C4H90)2 P(O)(CHC12)

~

P (01(OCH3)

(C2HsO)2P(S)SCH2C(CH3) = C(CH3)2 and four isomers

1960, 23 (No. 117, 199); 1962, 36 H !960, 23 (No. 155); 1962, 23 H 1963, 53a H

317

STUDIES OF PHOSPHORUS COMPOUNDS

FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PC19H1903

PC9H1903S PC9H1904

Compound CH3(C2HsO)P(O)C(CH3) = C(CH3)OC2H5 C2H 5(C2H50)P(O)(CH2)3C(O)CH3 i-C3H7C(O)C(CH3)2P(O)(CH3)(OCH3) CH2 = CHCH2P(O)(Oi-C3H7)2 (C2HsO)2P(S)CH : C(CH3)OCEH5 (C2H 50) 2P(O)(CH2)3C(O)CH3

CH3"~ (C2H50)2 P(O)" "o"

PC9H20CIO3 PCgH21OS2 PC9H2102S PC9H2103

References 1962, 7 H 1962, 7 H 1963, 7 H 1965, 83H 1962, 31H 1962, 7 H 1964, 91H

(C2H50) 2P(O)C(O)t-C4H 9 [(2-C2H5)C6H120](CH2C10)P(O)H (n-C 8H150)(CHzC10)P(O)H CH3P(O)(SC4H9)2; CH3OP(SCaH9) 2 CH3P(S)(OC4H9)2 CH3P(O)(On-C4H9)2 CH3P(O)(Ot-C4H9)2 (i-C3H70)3P

1965, 7 H 1963, 16H 1963, 16H 1963, 49H, P 1961, 17H 1961, 17H 1964, 65H 1960,23(No. 61,156); 1962, 36; 1963, 46

(n-C3H70)3P(O)

1959, 2; 1960, 5, 22, 23 (No. 8);1963,44 H; 1965, 30Lf 1960, 23 (No. 89); 1962, 36H

H

PC9H2104

(i-C3H70) 3P(O) / O - - CH(C2Hs) (CHaO)aP(x CH__;

1964, 77, 79H, P

PC9H21S4 PC9H23BrNOS3 PC9H23N2OS PC9H24A10

I C2H5 (C3H7S)3P(S) (CH3S)P(O)S(CH2)2N+CH3(C2H5)2Br[(CH3)2N]2P(S)OC(CH3)2C2H5 (CH3)3POAI(C2Hs)3; (C2Hs)3POAI(CH3)3

1962, 32 P 1965, 32,34H 1962, 31H 1965, lll H

PCloHloCI502S2 PCaoHloC1503S PCloHloC1504 PCloHloF5

C6C15SP(S)(OC2Hs)2 C6C15SP(O)(OC2Hs)2; C6C15OP(S)(OC2Hs)2 C6C15OP(O)(OC2Hs)2 C6FsP(C2Hs)2

1964, 90bH 1964,90bH 1964, 90bH 1965, 4H, F

PCgH21Os

PCloH11Clz PCloHllS PCloH12C104 PCloH12C1302 PCloH12FsN2 PCIoH1204

~

PClz

(CH3)2P(S)(C ~ CC6H5)

(C6H 50)(CIC2H40)(CH2CHO)P(O) CC13(i-CaH70)(C 6H50)P(O) C6FsP[N(CH3)2] 2 [CH2 = CHCH(CH3)O]2(C6HsO)P(O)

1965, 133H 1965, 11 H 1960, lc H 1960, 23 (No. 118) H 1965, 4 H, F 1962, 36 H

G. MAVEL

318

FORMULA INDEX II.

PROTON RESONANCESTUDIES ON ORGANIC COMPOUNDS

Formula PCloH1303 PC10H1304 PCloH14C10

Compound O

References

C6H5P(O)(CH2)4

1960, 23 (No. 158) H

(CHaO)2P(O)CH = CH(C6Hs) (CH30) 2P(O)C(O)C 6H4(CH3)

1965, 52H 1964,8H 1960, 23 (No. 83, 84, 200); 1962, 35 H

(s, t, i-CgH9)(C6Hs)P(O)C1

H20\ ? \

1965, 97H, P

PCloH14NO4

N (OH3)2 PCIoHIsC1N PC10H1502

(C2Hs) 2NP(C6Hs)C1 (CH3) 3CNHP(C6Hs)C1 CsHs(t-C4H9)P(O)OH C 6Hs(i-C3H 7)P(O)(OCH3) C6Hs(C2HsO)zP

PCloHIsO3

C 2Hs(C6H 5)(C2H 50)P(O) C6Hs(C2HsO)2P(O) (C6HsO(n, s-C4H90)P(O)H

PCloH1504

(CH30)2P(S)OSCH3 and isomers CH3 (C6HsO)(C2HsO)2P(O)

PCloH17N6

C6HsP[N3(CH3)2]2

PCloH1503S2

PC 1oH 18C130 PCloH19 PCloH19C1N3S PCloH19N4S PCloH1904 PCloH1905 PCloH1906S2

1960, 23 (No. 92); 1962,36H 1965, 13H

1961, 7 H

PCloH1703

PC 1oH 18C102

1964, 451-1 1964, 4 5 H 1960, 23 (No. 90); 1962, 35H 1962, 3 5 H 1960, 23 (No. 159); 1962,36H 1960, 23(No. 160) H 1960, 23 (No. 91); 1962,36H 1960, 23 (No. 62); 1962, 36; 1963, 1 6 H 1964, 35H, P

CH2C1CH2CH(CH3) OP(O)[CH2C(CH3)] 2 CH2CIC(CH3) 2CHaOP(O)[CH2C(CH3)] 2 n-C7HIsCH = CC1CHEP(O)C12 (nCgH9)2PC - CH [CH3NH) 3PSCH2C6H 51+C1C6HsP(S)[NHN(CH3)212 (CaHsO) EP(O)C(O)CsH9 CH3(CH30) P(O)C(CH3) aCOC(CH3) 2COOH (CH30) 2P(S)S[CHCOOC2Hs]CH2COOCEH5

1964, 79b H 1964, 79b H 1965, 83 H 1962, 9 H 1963, 68 H 1963, 52 H 1965, 7 H 1963, 7 H 1962, 30 H

STUDIES OF PHOSPHORUS COMPOUNDS

319

FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PCloH1907

Compound CH3(CH30) C--O--C(CH3)OH I I CH3C CCH3 r i O O -

\

PCloH2oC103 PCloH2102S2 PCloH2103 PCloH2104 PCloH2105 PCloH2106 PCloH22C103 PCloH22C1S2 PC1 oH22NO4 PC1oH22NOsS3 PC1oH2204 PC1oH2303 PC1oH24N PC1oH24NO2 PCloH24NO2S PCloH25N20 PCloH2505 PCloH26C1N2 PC1 oi-I27Si2 PC11H12C1303 PCllH1202 PC 11H 14C13N20 PCllH1502

PCllH1505 PC 11H16C10 PC 11H17C1N PCllH1702

-

-

1963, 56, 59 H

/ r'(O)(OCH3)

n-C7HtsCH = CC1CH2PO3H2 n-C3H7CH = CCICH2P(O)(OC2Hs)2 (C2H 50) 2P(S)SCH2C(CH3)C(CH3) 2 C2Hs(C2HsO)P(O)C(CH3) = C(CHa)OCEH5 (C2HsO)2P(O)CH2CH = C(CH3)OC2H5 (CEH50) 3P[OC(CH3)]2 /O--CH(C2Hs) (CH30)3P(N I O--C(CH3)COCH3 (n-C8H17)CHC1CH2POaH2 (n-CsH11S)2PC1 (C2HsO)2P(O)CH2C(O)N(C2Hs)2 (CHaS) 2P(O)S(CH2) 2N+H(C2Hs)2COO COOH (C2H 50) 2P(O)[CH(CH3)]2OC2H 5 (CH30) 2(n-CsH17)P(O) (C4H9)2PNH(C2Hs) (t-C4HgO)2PN(CH3)2

1965, 83H 1965, 83H 1963, 53aH 1962, 7 H 1963, 34H 1962, 2 1 H 1965, 104H t963, 47 H 1962, 32 P 1960, 23 (No. 397) H 1965, 34 H

[(C2H5)zN]2POC2H5 P(OC2Hs)5 (?) (C4H9) 2PNH(C2H 5)NH2C1 [(CH3)3Si]2CP(CH3)3

1962, 7 H 1960, 23 (No. 161) H 1965, 24H, P 1963, l l H 1963, l l H 1962, 31H 1964, 28 H 1965, 24H, P 1965, 85 H

CH2 = CHCH2P(O)(OCH3)(OCH2C6H2C13) C6HsP(O)(OH)CH = C = C(CH3)2 C6HsNPC13NC4H9

1965, 125 H 1965, 2 0 H 1964, 94 H

(t-C4H90)2P(S)N(CH3)2

\

/ c(o) C6Hs(cyclo CsHgO)P(O)H /

PCllH1503

-

References

C6HsP(O)

\

1963, 16H

O--CH(CH3)

\

/

CH2

O--CH(CHa) C6H5CO II bP(OCH3)3 CHO / (3-C5H11)(C6Hs)P(O)C1 CH3(C4H9)NP(C6Hs)C1

C2Hs(C6Hs)(i-C3H70)P(O) (CH3) 2C 6H3P(O)(Oi-C3H 7)H

1960, 23 (No. 162) H 1965, 97 H, P 1962, 35 H 1964, 45 H 1960, 23 (No. 163) H 1963, 70a P

320

G. MAVEL

FORMULA

INDEX

II.

PROTON

RESONANCE

Formula PC11H1703

STUDIES

ON ORGANIC

COMPOUNDS

Compound

References

-I-

(~2~~~)2(~6~5CH2>P~O)

PCllHleN PCllHlgN205S

CH2CIC(CH3)2CH20P(O)[CH2C(CH,)]2 NP (0) (0 C,H,),

1960, 23 (No. 1962, 36 H 1964, 62a P 1965. 32 H

93);

1960, 23 (No. 1962, 36 H 1964, 79b H 1965. 8 H

119);

1965,

PCllH2104 PC11H2105

PCllH2106S2 PCllH2107 PCld-hOg PCllH2303

. ~~2~~~>2~(~)~~~)~6~~1 (CH30)2PC(CH3)2COC(CH&COOCH3 CH~(CH~O)P(O)C(CH~)ZCOC(CH~)~ COOCH3 (CH30)(CH3S>P(O)SCHz(CHCOOC2H~) CH2COOC2Hs

[CH3(CH,CO)COl2P(OCH3)3 [CH3(CH3COO)CO]2P(OCH3)3

(i-C3H@)2P(O)(cjd

CsHg)

8 H

1965, 6 H 1963, 7 H 1963, 7 H 1965,

32 H

1963, 56, 57, 58, 59; 1964,77 H, P 1963, 57, 59 H, P 1960, 23 (No. 63) H

.O-CH~CJHT) PC1 l&306

(CH30)3P’

-



\O-&CH3)(COCH3) PC1 lHxN202

t(C2H5)2Nl2P(O)CH2CoCH3 0

PGIHZSOS

‘P (0 C,H,),

(?I

1964, 77 H, 104 H 1962, 31 H 1965,28

P;

1965,

H

d

1965, 4 H 1962, 13; 1963, 61 H 1963, 61 H 1963, 51 F 1962, 32 P; 1963, 42 H NH

PGzHllN202

\ P(O) (OCsHd

1964, 68, 69 P

NH’ PC12H110

1962, 1965, 1963; 1963, 1962,

32; 77 16 16 36

1965, H H H H

133 P

321

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEX IL PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PClxH12NO3 PC12H12OS3

PC12H1204

Compound

1964, 67I-I, P; 1964, 68 P

(C6HsO)2P(O)NH2

[

~P(O)

1965, 50H

[ ~p(o)

1965, 501-1

C6H5 P~/--NHz

PC12H13N2

References

1962, 12H

CN

PC12H1304 PC12H15C1205

15N30

(CH3OhP(O)(O~,PC~0H 7)

(C2HsCOO) CH2P(O)(OCH3) [OCH2(C6H3C12)]

PC 12H

NH PC12H1502 PC12H1503 PC12H1505

PCI2HI6Br PC12H16C103 PC12H16NO5 PC12H1703 PC12H1705 PC12H19N2 PC12H190 PC12H1902

1965, 125H 1965, 50H

3

/

OCCH3 C6HsP(O)~c_~ H (CH3)2 (C2HsO)2P(O)C = CC6H5

(CzHs0)zP(0) C~G (0)

C4H6PBr(CHg(CH2C6Hs) CIC6H4CH = CHP(O)(OC2Hs)2 C6HsCC1 = CHP(O)(OC2H5)2 (C2HsO)2P(O)CH = CH(p-NO2C6H4)

C6HsP(O)(OH)C(CH3)2CH2C(O)CH3 (C2HsO)2P(O)CH = CHC6H5

C6HsCH2P(O)(OCH3)(OCH2COOC2Hs) [CH2N(C2Hs)]2PC6H5

C6H5(i'C3HT)2P(O) C6H5(i, n-C3H70) 2P

C6Hs(i-C3HT)(i-C3HTO)P(O)

PC12H1902S

1962, 30H

(OC2H5) 2 ~ C~Hs(n,i-C3HTO)zP(S)

1960, 23 (No. 379) H 1962, 19 P 1960, 23 (No. 380) H

1964, 76 H 1964, 98a H 1965, 83 H 1965, 52 H 1960, 23 (No. 381) H 1964, 98a; 1965, 52 H 1965, 125 H 1965, 1 H 1962, 36 H 1960, 23 (No. 65, 165); 1961, 24 H 1960, 23 (No. 64); 1962, 36 H 1965, 133 P 1960, 23 (No. 120, 121); 1962, 36 H

322

G. MAVEL FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

PC12H1903

C6Hs(n, i-C3H70)2P(O)

PC12H1904

(C6HsO)(C3H70)2P(O)

PC12HEoNO3 PC12H2104

(CHaO)(CH3NH)P(O)O[C 6H4(t-C4H9)] (CH2 = C(CH3)CH20)3P(O) (cyclopropyl methyl O)3P(O) [CHEC(O)]2NP(O)(On-CgH 9)2 BloH~3P(C6Hs)2 (cyclo-C6H11)2P(O)H (cyclo-C6H 11)(cyclo-C6H 110)PO 2H

PC12H22NO5 PC12H23B10 PC12H230 PCa2H2303 PC12H2304 PC12H2305 PC12H23S PC12H24B9 PC12H24C|O3 PCa2H24C105 PC12H2502S2 PC12H27 PC12H27F2 PC12H270 PC12H2702 PC12H2703

(cyclo'C6H110)2PO2H /O--CH(n-C6H 13) CH3OP(O),~ [ "O--C(CH3) (COCH3) (cyclo-C6H11)2P(S)H B9H13[(C6H5)2PH] CsHllCH = CC1CH2P(O)(OC2Hs)2 CH3COO(CH2) 8CHC1CH2PO3H2 (C2HsO)2P(S)C(CH3)2CH2CH = C(CH3)2

References 1960, 23 (No. 382); 1962,36H 1960, 23 (No. 51,52); 1962, 36H 1962, 30H 1960,22,23(No. 9) H 1960, 23 (No 166) H 1964, 93H 1963, 63 B 1963,70a;1965,133 P 1963,16H 1963, 16H 1965, 103H

1963, 70a P 1963, 63 B 1965, 83 H 1963, 47 H 1963, 53a H 1959, 6; 1960, 22, 23 (n-CaH9)3P (No. 49) H (CzHsO)2P(S)SC(CH3)2CH = CI-ICH(CH3)2 1963, 53a H 1963, 51 F; 1965, 112 (n-C4Hg)3PF2 P,F 1960,22,23 (No. 10) H (n-C4H9)3P(O) 1960, 22, 23 (No. 11, (C4H90)P(C4H9)2 12) H 1962, 36 H C6H5(C3H70)2P 1960, 22, 23 (No. 13, (C4H9)P(O)(OC4H9)2

14, 15) H (C2HsO) 2P(O)(n-CsH17)

PC12H2703 S

(t-C4H90) 3P (n, t-C4H90)3P(S)

PC12HE7OaSe PCI2H2704

(t-C4H90)3P(SO (C4H90)3P(O)

PC12H2706 PC12H2754 PC12H28NO2 PClzH2sNO2S PC12H3oA10 PC12H3oC17NaSb PC 12H3oN3

(n-C6H 130)2P(O)H [C4H90(CH2) 20]2P(O)H (n-C4H9S)3P(S) (CH3)2NP[OC(CH3)2C2H5]2 (CH3)2NP(S)[OC(CH3)2C2H512 (C2Hs) aPOAI(C2Hs)3 [(CEHs)aN]3PC1 • SbCI6 [(CEHs)3N]aP

1960, 23 (No. 167) H 1964, 65 H 1960, 22, 23 (No. 48); 1964, 65 H 1964, 65 H 1958, 3 Lf; 1959, 2, 8; 1960, 5, 21a, 22, 23 (No. 16, 17, 18); 1961, 24; 1963, 10, lla; 1963,44; 1964, 65 H 1963, 16 H 1963, 16 H 1962, 32 P 1962, 31 H 1962, 31 H 1965, 111 H 1963, 61 H 1963, 61 ; 1964, 45 H

323

STUDIES OF PHOSPHORUS COMPOUNDS F O R M U L A INDEX II.

P R O T O N RESONANCE STUDIES O N O R G A N I C C O M P O U N D S

Formula

Compound

References

PC12Ha0N30 PClzHa2C1N4

[t-CaH9NH]aP(O) [(C2Hs)2N]3PNHzCI

1963, 27 H 1964, 45 H

PCI3HloD30 PC13H11Br204 PC13H11C1204 PC13HllN208 PC13H13 PC13H130

(C6Hs)2P(O)CD3 (BrC6H40) 2P(O)(OCH3) ((71. C6H40)2P(O)(OCH3) (NO2. C6H40)2P(O)(OCH3) CH3P(C6Hs)2 (CH3OC6H4)(C6Hs)PH CH3P(O)(C6Hs)2 (C 6Hs)2P(S)(OCH3) (C6Hs)2P(O)(OCH3) (C6H 50)(C6H 5CH20)P(O)H C6Hs(CH3OC6Ha)PO2H CH3(C6H50) 2P(O) (C6HsO) 2P(O)(OCH3) (C2HsO)2P(O)C(O)C6H4C2H5 (C6Hs) 2P(S)CH3

1964, 79dH 1964, 73H 1964, 73H 1964, 73H 1963,42H 1963,42; 1965, 7 7 H 1964, 1 H 1965, 32H 1965, 6 H 1963, 16H 1963,42H 1964, 69 P 1962, 30; 1964, 73 H 1964, 8 H 1965, 93H, P

PClaH13OS PC13H1302 PC13H1303 PC13H1304 PCi3H13S PC13H16C103 PC13H1903

PC13H1907

C6HsCHe P(O]~cI. (C2HsO)2P(O)CH2CH = CHC6H5 (C2H50)2P(O)C(CH3) = CH(C6Hs) CH3CO

C(CH3)-Q//-~/==O

o'~'P'~'6CH3)3

PCI3H2102 PC13H2~O3

C6Hs(t'C4Hg)(i'C3HTO)P(O)

PC13H2104

(i-C3H 70)2P(O)(OC 6H4 • CH3)

PC13H2504

(i-Call 70)2P(O)C(O)C 6H11 C(CH3) 2

PC13H2702

3-CsH1 lOP(O)

(i-C3H70) 2P(O)CH2C6H5

1964, 7 H 1963, 34H 1965, 52H 1965,97,98H 1960, 23 (No. 168) H 1960, 23 (No. 66); 1962, 36 H 1960, 23 (No. 94, 95, 96); 1962, 36 H 1965, 7 H

/\

/o

\/

CH(CH3)

1960, 23 (No. 169) H

C(CH3) 2

PC13H2703

(CHz)3\o>P(O) (n'C loH21)

1960, 23 (No. 170) H

(s-CgH90)2P(O)(cyclo-C5H9) PC13H2704 PC13H28NO4

(n-C 4H90) 2P(O)C(O)t-C4H9 (C4H 90) 2P(O)C(O)N(C2H 5)2

1962, 36 H 1960, 23 (No. 383) H 1960, 23 (No. 204, 205, 206) H

PC13H28N303

CH3C = 0 I COP+[N(CH3)2]3

II

CH3CO-

1965, 97 H, P

324

G. MAVEL

FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Compound

Formula

References

PC13H29N202 PCI3H290 PC13H29S PC13H3oF2N3 PC13H3o[

[(C2Hs)2N]2P(O)CH = C(CH3)OC2H5 (n-C6H 13)2P(O)CH3 (n-C6H 13)2P(S)CH3 [(C2Hs)EN]3P = CF2 CH3(C4Hg)3PI

1962, 31H 1965, 93H, P 1965, 93H, P 1964, 64H, P, F 1965, 47H

PC14Hll PC14H11C1204 PC14H12C103

(C6H582PC ~ CH (CIC6H40)2P(O)(OCH = CH2) C6HsCH = CHP(O)(OH)(OC6H4C1) CL

1964, 22H 1960, l c H 1963, 4 7 H

PC14H12C1302S

C,6H5 (CH30)P(O)S~ )~Cl Cl

PC14H13 PC14H13N20 PC14HI302 PC14H13025 PC14H1303 PC14H1304 PC14H14C1S2 PC14H14NO PC14H150 PC14H1502

(C6Hs)2PCH = CH2 C6HsP(O)(NC4H4)2 (C6Hs) 2PCH2COOH (C6Hs)2P(S)CH2COOH (C6Hs)2P(O)CH2COOH (C6HsO)2P(O)(OCH = CH2) (C6HsCH2S)2PC1 (C6Hs)2PCH2C(O)NH2 CH(CH30. C6H4)P(C6H5) CH3(C6Hs)CHP(O)(OH)(C6Hs)

PC14H15Oa PC14H1504 PCI4H1505 PC14H16NO PC14HITN2 PC14H17N20 PC14H17NES PClaHITO2 PC14H1903

(C6HsCH20)2P(OH) ((]Ha. C6H40)2P(O)H (i-CaH70) 2(phthalidyl)P(O) (C6Hs)2P(O)N(CH3)2 (C6Hs) 2PNHN(CH3)2 (C6Hs) 2P(O)NHN(CH3)2 (C6Hs) 2P(S)NHN(CH3)2 C6HsP(O)(OH)CH = C = C6Hlo C6Hs(cyclopropyl methyl O)2P(O) C6HsCH = CHP(O)(OH)(OC6H11) (C6HsO)[CH3(CH2 = CH)CHO]2P(O)

PC14H1904 PC14H1905

PC14H20FsN2

1965, 134 H, P 1963, 39 H, P 1964, 54 H 1965, 93 H 1965, 93 H 1960, lc H 1962, 32 P 1964, 54 H 1963, 42 H 1960, 23 (No. 97); 1962, 35 H 1964, 69 P 1963, 16 H 1962, 36 H 1965, 111a H 1963, 52 H 1963, 52 H 1963, 52 H 1965, 20 H 1960, 23 (No. 171) H 1963, 47 H 1960, 23 (No. 98) H 1960, 23 (No. 384) H

(i C3H70)e P(O) -

1965, 32H

C (0)

~/

(CH30) 2P(O)CH(C6H 5)CH(COCH3)2 (CHaO)2P(O)CH(C6H 5)C(COCH3) = C(CHa)OH C6FsP[NH, t-C4H912 C(CH3)2

1964, 77 H

C6H5P(O)

1960, 23 (No. 172) H

1964, 77 H 1965, 4 H , F

/\

PC14H210

\/

CHCH3 C(CH3)2

STUDIES OF PHOSPHORUS COMPOUNDS

325

FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PC14H2106

Compound /O--CH(C6Hs) (CHaO)3P~ [ "O--C(CH3) COCH3

(C2HsO)zP(O)CHzC(O)N(C2Hs)C6H5

PC14H22NO4 PC14H2302

C6Hs(s'C4Hg)(s-C4H90)P(O)

PC14H2303

[(CH3)2C 6H3](i-C3H7)(i-C3H70)P(O) (i'C3H 70) 2[C6H5(CH2)2]P(O) (s'C 4I-190)2(C6H5)P(O)

References 1964, 77; 1965, 104 H, P

1960, 23 (No. 207) H 1960, 23 (No. 99); 1962, 36 H 1960, 23 (No. 173) H 1960, 23 (No. 67) H 1960, 23 (No. 68); 1961, 24; 1962, 36 H

(i-C3H70)2[CH3. C6H4CH2]P(O) (C4H90) 2(C6HsO)P(O)

PC14H25N2 PC14H26NO5 PC14H2703

C6HsP[N(C2Hs) 212 (CsH 110)zP(O)N[C(O)CH2]2

PC14H28C103 PC14H29Br2 PC14H29IN

C7H15CH = CC1CH2P(O)(OC2Hs)2 [(CaH9)3PCBr = CH2]+BrCH2CN(CaH9) 3PI

1962, 36 H 1960, 22, 23 (No. 20, 53); 1961, 24; 1962, 36 H 1960, 23 (No. 100); 1962, 36 H 1964, 45 H 1964, 93 H 1960, 22, 23 (No. 21, 69)H 1965, 83 H 1964, 54b H 1965, 47 H

PC14H2903

(n-C10H21)P ( O ) C ) ( C H 2)4

1960, 23 (No. 174) H

PC14H2904

(n-C4HgO)2P(O)C(CH3)2CH2C(O)CH3

1960, 23 (No. 385) H

PC14H2304

[C3H70] 2[(CH3)2C6H30]P(O)

(C4HgO)2(cyclo-CsH9)P(O)

PC14H30C102 PC 14H30NO4

/O--CH(C6H13) (CHaO)3P~ I xO---C(CHa)(COCH3) (CHECOOH)(C4Hg)3PC1 (n-C4H90) 2P(O)CH2C(O)N(C2Hs)2

PC14H310 PC14H3103

(CsH 110)2(t-C4Hg)P(O)

PClsHa2Br

C2Hs(C4H9) 3PBr

PCI 5H11N204 PC15HI3 PC15H1302 PC15H1303 PClsHI502 PCIsH16NO2 PC15H1702

[(NC) C 6H40]2P(O)(OCHa) (C6H5)2PC - CCH3 (C 6Hs) 2P(CH2) 2COOH C6HsCH = CHP(O)(OH)(OCH2C6Hs) (C6H5)2P(O)(OCHECH = CH2) (C6Hs) EP(O)C(O)NH(CzH 5) CH3(C6Hs)CHP(O)(OCH3)C6H5

PClsHI703 PC15H1704

(C6Hs)2P(O)(Oi'C3H7) C6Hs(C2H40)P(O)(C6H4 • OCH3) CHaOP(O)(OCH2C6Hs)2

PC14H2906

(i'C3H70)2P(O)CH2C(O)N(i'C3H7)2 (CH3)2(C 12H25)P(O)

1965, 104H 1965, 47 H 1960, 23 (No. 398) H 1960, 23 (No. 399) H 1965, 70 H 1960, 23 (No. 175, 386) H 1965, 47 H 1964, 73 H 1964, 22 H 1964, 54 H 1963, 47 H 1965, 6 H 1963, 1 H 1960, 23 (No. 101); 1962, 35 H 1965, 6 H 1963, 42 H 1960, 5 H

326

G. MAVEL

FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PClsHlsBr PClsH19N20 PCIsH2IN30

Compound CHa(C2Hs)(C6Hs)2PBr (C6H5)2P(O)N(CH3)N(CH3)2

[ ~P(O)

References 1965,117H 1963, 52H 1965, 50 H

/O--CCH3 PClsH2105

PC15H2304 PC1sH2502 PClsH2503

(CH30)3P~

I CH--CCOCH3 I C6Hs (n-Call 90) 2P(O)C(O)C6H 5 (t-C4H90)(3CsH110)P(O)C6H5 (i-C3HTO)2P(O)C3H6(C6H5) (s-C4H90)2P(O)CH2(C6H 5)

PC 1sH250 4

(s'C4H90) 2P(O)(OC6H4CH3)

PC15H26I PC15H2704

CH3(C4H9)2(C6I-Is)PI (CsH90)3P(O)

PC15H3102 s PC15H3103

(n-C6H 13)2P(S)CH2COOCH3 (n-C 6H13)2P(O)CH2COOCH3

PC t 5H32C1 PC15H32NO4 PClsH3303

(CH2 = CHCH2)(C4H9)3PC1 (n-C 6H 130)2P(O)C(O)N(CH3) 2 C6H 5P(O)[OCH(C2Hs)2]2 CsH 11(CsH110)2P(O)

PC15H3304

(CsHIIO)3P(O)

PC 15H36N3

[(C2Hs) 2NCH2]3P

PC16Hll PC16H1802 PC16H1803 PC16H190 PC16H1902 PCt6H1904

(C6H5)2P(C ~ C)2H (C6Hs)P(CH2)3COOH (CsH170)zP(O)H (C6Hs)2P(O)(t'C4H9) (C6Hs)2P(O)(Ot-C4Hg) (s'C4H90)(C 6H50) 2P(O)

PC16H20N PClaH21N20 PC~6H21N2S PC16H22NOsS PC16H2304

[C6Hs(CH2)20]2P(O)H (C6Hs) 2PNH(t-C4H9) (C 6H5)2P(O)N(C2H 5)N(CH3)2 (C6H5)2P(S)N(C2H 5)N(CH3)2 (C6Hs)2P+(OCH3)[N(CH3)2ICHaSO4(CsH90) 2(C6HsO)P(O)

(cyclo-CsH9)(3-CsH110)2P(O)

1964, 77; 1965, 99 H,P 1960, 23(No. 176) H 1960, 23(No. 177) H 1962, 36H 1960, 23 (No. 70); 1962, 36H 1960, 23 (No. 178); 1962,36H 1965, 47H 1960, 22, 23(No. 22, 71, 102, 103); 1962, 361-1 1965, 93H, P 1965, 93H, P 1960 23(No. 104) H 1965, 47H 1960, 23 (No. 400) H 1962, 36H 1960,22,23(No. 19)H 1959, 2; 1960, 5, 22, 23 (No 23, 24, 25, 26, 105, 106); 1962, 36;1964, 28aH 1961, 19H 1964, 2 2 H 1964, 54H 1956, 4 P 1964, 88H 1965, 6 H 1960, 23 (No. 72); 1962,36H 1963,16H 1964,45H 1963, 52H 1963, 521-I 1965, l l l a H 1960,23(No. 73,107, 108); 1962, 3 6 H

327

STUDIES OF PHOSPHORUS COMPOUNDS I~ORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

References

/O--C(CH3)C(O)C6H 5

PC16H2307

(CH30)3P~

1965,97H, P

PC16H2504 PC16H26C104 PC16H26N206 PC16H2703

(i'C3H70)2P(O)C(O)C6H4(i'C3H7) C8H17CH(OH)CH2P(O)(OH)(OC 6H4C1) CH3(C3H7)3P +, picrate

PC16H3504

(C12HzsO)P(OC2Hs)2 [(2"C2H 5)C6H 120] 2P(O)H [(2-C2H5)C 6H 120] 2PO2H

1964, 8 H 1963,47H 1963, 2 9 H 1960, 23 (No. 75); 1962, 3 6 H 1960, 23 (No. 74); 1962,36H 1960,23(No. 76,109); 1962, 36H 1960, 23 (No. 54, 55, 77);1962,36H 1965, 4 7 H 1960, 23 (No. 401) H 1959, 6 H 1963, 16H 1963, 16H

PC17Ht3 PC17H13S PC17H2oNO2 PC17H2103 PC17H2104 PC17H22Br PC17H22I PCI7H36Br PC17H36C103 PC 17H36NO4

(C6Hs)2P(C - C)2CH3 (C6H5C = C)2P(S)CH3 (C 6Hs)2P(O)CONH(C4H9) (C2H 50)2P(O)CH(C 6H 5)2 (C 6H 5CHO)2P(O)(OC3H 7) CH3(t-C4Hg)(C6Hs)2PBr CH3(C4H9)(C6Hs)2PI (C4H9)3[(CH3)2C = CHCH2]PBr (CsH 170)2(CHeC1)P(O) (n-C6H130)2P(O)C(O)N(C2H5)2

1964, 22H 1965, l l H 1963, 1 H 1960, 23 (No. 180) H 1959, 3 H 1964, 88H 1965, 4 7 H 1965, 4 7 H 1960,22,23(No.46)H 1960, 23(No. 208) H

PC18H15

(C6Hs)3P

PClsH15C17Sb PC18H1502

(C6Hs)3PC1 • SbC16 (C6Hs)2P(O)C6I-I4OH (C6Hs)2P(O)OC6H5 (C6HsO)3P

1959, 6; 1960, 22, 23 (No 50); 1963, 61; 1964, 52, 53a, 63; 1965, 39H 1963, 61H 1964, 4 0 H 1965, 6 H 1960, 22, 23 (No. 27); 1961, 13H 1964,40H 1960, 22, 23(No. 28); 1961, 13H 1964,40H 1964, 63H

I O--C(CH3)C(O)CH3

C6HsP(O)[OCH(i-C3H7)CH3]2 C6H 5P(O)[OCH(C2Hs)2] 2

PC16H2704

(C4H90) 2P(O)[OC6H3(CH3) 2] (C6HsO)(CsH110)2P(O)

PC 16H34Cl PC16H34NO4 PC16H3503

PClsH1503

(C4H9)3[CH2 = C(CH3)CH2]PC1

(n-C6H130)2P(O)CH2C(O)N(CH3)2

C6HsP(O)(C6H4OH)2 PClsH1504

(C6HsO)3P(O)

PC18H15S

(C6H4OH)3P(O) (C6Hs)3P(S) ~N

PC18H16N PC18H16NO

C6H5P

~

(C6Hs)zP(O)NH(C6Hs)

1962, 12H 1964, 1 H

328

G. MAVEL F O R M U L A INDEX II. PROTON RESONANCE STUDIES O N ORGANIC C O M P O U N D S

Formula PC18H16NO3 PC18H17N202

Compound (C6HsO) 2P(O)NH(C6Hs) C6HsOP(O)[NH(C6H5)]2

--~P

(0) (0CH3)z

PClaH1704

1964, 68 P 1964,68 P 1965, 101 H, P

C6H{" ~0~ PClaHlsN30 PC18H1905

References

"C6H5

P(O)[NH(C6Hs)]3 C6H5C(O)CH2CH[C(O)C6H5]P(O)(OCH3)2

1964, 68, 69P 1964, 77; 1965, 101 H, P

PC18H20BF4N2S2

1964,40H

CzHs PC18H2102 PClsH22B

(C6Hs)2P(O)(O cyc/o-C6H11)

C6H5 B~_~+ C6H5

PC18H2304 PC18H24N PC18H2504

[C6Hs(CH2)30]2P(O)H (C6Hs)2PN(C3H7)2 (s'C4H90) 2(C1oH70)P(O)

PClsH28N206 PC18H3oNO4 PC18H3104

(CH2 = CHCH2)P+(C3H7)3, picrate (n-C4H90) 2P(O)CH2C(O)N(C2Hs)C6H5

(neo-C5HnO)2P(O)[OC6H3(CH3)2] (2-C 6H130)2P(O)(OC6H5)

PC18H33N2 PC18H3304 PClsH38NO4 PCtsH390 PC18H3903 PCIsH3904 PC19H13 PC 19H15BrNO2 PC19H16BrD2 PC 19H 16Br2D PC 19H16C12D PC19H16DI2 PC 19H16NO2 PC 19H17Br2 PC19H1702 PC 19H18Br PCl 9H 1sCI PC19H 181

C6HsP[N(C3H7)212

(cyclo-C6HnO)3P(O) (n-C6H 130)2P(O)CHzC(O)N(C2H5) 2 (n-C4HgO)2P(O)CH2C(O)N(n-C4H9)2 (C6H13)3P(O) C6H13P(O)(OC6H13)2 (C6HI30)3P(O) (C6Hs)2P(C -= C)2CH3 (C6Hs) 2P(O)C(O)NH(C6H4Br) (C6H5)3P+CHD2. Br(C6Hs) 3P+CHDBr. Br(C6Hs)3P+CHDC1. C1(C6Hs)aP+CHDI .I(C6Hs) 2P(O)C(O)NH(C6Hs) (C6Hs)3P+CH2Br. Br( C 6 H 5)2P(O)(C6H4. O C H 3 )

CHa(C6Hs)aPBr CH3(C6Hs)3PC1 CH3(C6Hs)3PI

1965, 6 H 1964,17H, B 1963,16H 1964, 45H 1960, 23 (No. 110, 111); 1962, 36H 1963, 29H 1960, 23 (No. 209) H 1960, 23 (No. 112); 1962, 36 H 1960, 23 (No. 78); 1962, 36 H 1964, 45 H 1960, 22, 23 (No. 29) H 1960, 23 (No. 402) H 1960, 23 (No. 403) H 1960, 23 (No. 390) H 1960,22, 23 (No. 30) H 1960, 22, 23 (No. 31, 32); 1962, 36 H 1964, 22 H 1963, 1 H 1964, 79d H 1964, 79d H 1964, 79d H 1964, 79d H 1963, 1 H 1964, 30 H 1964, 60 H 1965, 53 H 1965, 47 H 1964, 52 H

329

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEX1I. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula PC19H18N PC19H19BrN2 PC19H20IN2 PCI9H2105

References

Compound (C6Hs)3P = NCH3 (C6Hs) 3P+NHNCH3. Br(C6H5)3P+N(CH3)NH2. I C6HsC(O)CH2C = C(OCH3)C6H5

I P(O)(ocn3)2 C 6H 5C(O)CH2C--C(O)C6H5

1963, 37 H 1963, 37 H 1964, 102 H 1964, 77; 1965, 101 H, P 1965, 101,102H, P

II

PC19H2107 PC19H2306S PCIgH2503 PC19H3oN206 PC19H3104 PC19H34 PC19H34CI PC19H4oNO4 PC2 oH18Br PC20H18BrO2 PC20H19C1DO PC20H19CIDS PCEoH1903 PC20H20Br PC2oH2oC1 PC2oH2oCIO PC2oH2oI PC2oH2oNO PC2oH21BrN PC2oH22BrN2 PC2oH2306S PC2oH2508

P(OCH3) 3 [C6H 5C(O)CHO]2P(OCH3)3 1965, 97 H, P ./0~ .CHzOSOzCsH4CH3 C~H5CHzP(O)'---O,....~Z CH3 1965, 128H (i-C3HTO)2P(O)CH(C 6H 5)2 CH2 = CHCH(CH3)P+(CaH7)3, picrate CH3CFI = CHCH2P+(C3H7)3, picrate (C4H90) 2P(O)C(O)C6H4. C4H9 (C4H9)3P+CH2C6H5 (C4H9)3(C6HsCH2)PCI (n-C4H90)2P(O)CH(CH3)C(O)N(C4H9)2

1960, 23 (No. 182) H 1963, 29 H 1963, 29 H 1964, 8 H 1964, 38 H 1965, 47 H 1960, 23 (No. 404) H

(C6Hs)3(CH2 = CH)PBr (C6Hs) 3(CH2COOH)PBr (C6Hs)3P+HD(OCH3). C1(~6Hs)3P+HD(SCH3). C1C6HsP(O)(C6H4 .OCH3)2 CaHs(C6Hs)3PBr C2Hs(C6Hs)3PC1 (CH3OCH2)(C6Hs)3PCI CzHs(C6Hs)3PI (C6Hs)2P(O)[C6H4.N(CH3)2] (C6Hs)3[N(CHa)2]PBr (C6Hs)3P+NHN(CH3)2 .Br/0

1964, 8 7 H 1965, 4 7 H 1964, 79dH 1964, 79dH 1964, 60H 1965, 4 7 H 1965, 2 1 H 1964, 52H 1964, 52H 1964, 60H 1963, 37H 1964, 102H

[C2HsOC(O)(CH2)2] 2PCH2CHCOOC2H5

1961, 23aH

Br P( O ) ' ~ O S O z

C~H4CH3

1965, 128H

I

CH2CH2 COOC2H5

PCzoH26N302

PCzoH34BrO PC2oH35Br

oy[N (C4H 9)3(C 6I'-I5COCH 2)PBr (C4H9)3[C6H4(CH2) 2]PBr

1965, 97H, P

1965, 4 7 H 1965, 4 7 H

330

G. MAVEL

I~ORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

PC2oH35C1 PC2oH3504

(C4H9)3[C6H4(CH2)21PC1 C6H5OP(O)[OCH(C3HT)2]2

PC2oH36C1

(C4Hg)3(CH3C6H4CH2)PC1

PC2oH41IN3S

References 1965, 47H 1960,23(No.79,113); 1962,36H 1965, 4 7 H 1963, 68H

3 PC2oH44CIO4

(neo-esH1IO) 4PC1

1964, 28aH

PC21H6F3904 PC21H9F3604 PC21H1507 PC21H18C10 PC21H 19BrD PCzlHtgBrDO2 PCzlHzgC1DO PCzlH20Br PC21H20C1 PC21H20C10 PC21H20C102 PC21H21 PC21H210 PC21H2103

[CHFz(CF2) 5CHFOI3P(O) [CHF2(CF2) 5CH20] 3P(O) P(O)(C6H4 .COOH)3 (C6Hs)3P ~ CHC(O)CHzC1 (C6H5)3P+CHD(CH = CH2).Br(C6H53P+CHD(COOCH3). Br(C6Hg)3P+CHD(COCH3. C1(C6Hs)3P+CH = CHCH3).Br(C6Hs)3P+CH = CHCH3.C1(C6Hs)3P+CH2COCH3. C1(C6Hs)3P+CH2COOCH3. C1(CH3C6H4)3P (CH3C6H4)3P(O) (CH3OC6H4)3P

PC21H2104

(C6HsCH20)3P(O)

1960, 22H 1960, 23 (No. 44) H 1964, 40H 1963, 32 H 1964, 79d H 1964, 79d H 1964, 79d H 1964, 54b, H 1964, 54b H 1964, 52 H 1964, 52 H 1964, 53a H 1964, 40 H 1960, 22,23, (No. 33); 1964, 40 H 1960, 5, 22, 23 (No. 34) H 1964, 40 H 1960, 23 (No. 35, 36, 37) H 1964, 79d; 1965, 47 H 1964, 52 H 1963,37;196~ 102H

(CH3OC6H4)3P(O) (CI-I3.C6H40)3P(O) PC21H22Br PC21H22I PCzlH24IN2 PC21H28N303

(C6Hs) 3(i-C3HT)PBr (C6H5)3P(i-C3H7)I (C 6H5)3P+N(CHa)N(CH3)2.IC6HsCOII COP+[N(CH3) 2]3

1965, 97H, P

I

C6H5C = O P+SCH2CH = CH2.Br-

1963, 68H

PC21H41BrN3S

E C>NH~3

laC21H43BrN3S

E @-NH~

PC21H4504

(C7H150)3P(O)

1960, 22, 23 (No. 38, 39) H

PC22H1702 PC22H22BrO2 PC22H23BrD

(C6Hs) 2P(O)(OCloH7) (C6Hs)a(CzH 5COOCH2)PBr (C6H4)3P+CHD(n-C3H7) .]3r-

1965, 6 H 1965,47H 1964,79dH

3P+SC3H7"Br-

1963, 68H

STUDIES OF PHOSPHORUS COMPOUNDS

331

FORMULAINDEX IL PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

References

PC22H2304

C 6H 5OP(O)[OC6H3(CH3)212

PC22H24BF403 PC22H24Br PCz2H24[ PC22H24[O3 PC22H24N PC22H25]N PC22H25N20 PC22H2902 PC22H39C1 PC22H4703

(CH3C6H 50) 2P(O)[OC6H4C2H5] (CH30)3P+C(C6H5)3 .BF4(C6H5)3(t-C4H9)PBr (C6H5)3(i-C4H9)PI CH3(CH3OC6H4) 3PI (C6Hs)3P = NC(CH3)3 (C6Hs)3P+NHC(CH3)3 .IC6HsP(O)[C6H4 .N(CH3)212 (C6He)2P(O)(OC6HlO. t-C4Hg) (C4H9)3P[(CH3)2xylylene]C1 (n-C4H90)2P(O)C14H 29

1960, 23 (No. 114); 1962,36H 1965, 32H 1965, 128H 1964, 88;1965, 47H 1964, 52H 1964, 40; 1965, 47H 1963, 37H 1963, 37H 1964,40H 1965, 6 H 1965, 4 7 H 1960,22,23(No.40)H

C6H5~ C H a . , ,)P&^ "C6H5 C6H5 0 [(CH3)2C = CHCH2](C6Hs)3PBr

PC23H190 PC23H24Br PC23H2504

1965, 16H 1965, 4 7 H 1965, 32H 1965, 32H 1965, 32H 1963, 37H

(CH3C6H40) 2P(O)(OC 6H4C3H 7) (CH3C6H40)P(O)(OC6H4CEHs) 2 (CH3C 6H40)P(O) [OC6H3(CH3) 2]2 (C6H5) 3P+N(CH3)C(CH3)3 .I-

PC23H27IN PC24H1903

~ - - - - ~ C H (COOH) C6H5-~'~/p~.-"~ C6H5

1965, 16H

PC24H2oN

(C6Hs)3P = NC6H5

t965, 32H

PC24H210

[ F ' - - - ~ C H (CH3) C~HSC6H~P%"~OC~H5

1965, 16H

PC24H2107 PC24H22C103

P(O)[C6H4 .COOCH313 (C6Hs)3P = ~/COCH2C1 ~COOC2H5

1964, 4 0 H 1965, 2 2 H

PC24H22IN20

(C6Hs)3P+N(CH3)N = CH - - L ) " N/

I-

1965, 120H

O

PC24H230 PC24H24BF403 PC24H24C10

C5I-I903P+C(C6H5) 3.BF4(C6H5) 3P+[OC6H 1o].CI-

1965, 2 1 H 1965, 128H 1965, 2 1 H

PC24H24C103

(C6H~)3CP( 0 1 4 ~

1965, 128H

PC24H2704

[(CH3)2C6H30]3P(O) and isomers [(CH3)2C 6H30] 2P(O)[OC6H4 .C2H5] P(O)[C6H4 .N(CH3)213 (C4H9)3P+--CH2. Br-

PC24H3oN30 PC24H4oBr

II [

I

C6H5C - - C(CH3)2

HzCL

1965, 32H 1965, 32H 1964, 4 0 H 1964, 54bH

332

G. MAVEL FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula PC24H5104

Compound

References

(CsH170)3P(O)

1960, 22, 23 ('No. 41, 42) H

1965,56H

PC25H19 CH3

PC25H21BrNO2 PC25H2tC1D PC25H21C1NO2 PC 25H21C12 PC25H2103

C H .._J] C~H5

PC25H22 PC25Hz2Br PC25H24BF403 PC25H24BrN2 PC25H24C103 PC25H24C107 PC25H25Os PC25H2802 PC25H2904

CH~

(C6HshP+(CHzC6H4.NOz).Br(C6Hs)sP+CHD(C6Hs) .Cl(C6Hs)3P+(CH2C6H4.NO2) .CI(C6Hs)3P+(CH2C6H4.C1).C1~CH

(COOCH 3)

1965, 16H

0

(C6Hs)3P+CHzC6H5 (C6HflaP+CH2C6H5.BrC6H9OaP+C(C6H4)3.BF4(C6Hs)3P+NHN(CH3)C6Hs.Br:o

(CsHs)3CP( O ~ c 1

C6HgOaP+C(C6Hsh.C104C ........ t~/~C(C6Hs)OCH2C6H5

PC25H30BF403

6ta5~u)~rlE~p(o)(OCH3)2 (C6Hs)3P+(CH2)4COOC2H5 (CH3C6H40)P(O)(OC6H4.C3H7)2; (CaH7C6H40)P(O)[OC6H3(CH3)2] (C2HsO)aP+C(C6H5)3.BF4-

PC26H21C1 PC26H21CIDO

(C6Hs)3P(CH2CH = CHC6Hs)C1 (C6Hs)3PCHD(COC6Hs)C1

1964, 38H 1965, 47H 1965, 128H 1964, 102H 1965, 128H 1965, 128 H 1964, 77; 1965, 101 H,P 1962, 31 H 1965, 32H 1965, 128H 1965, 47H 1964,79dH

1965, 56H

PC26H22I

PC26H23CllN2 PC26H23IN302 PC26H230 PC26H24Br

1965, 47H 1964,79dH 1965, 47H 1965,47H

(C6H~)3P+N(CH3)N = CH(C6H4C1).I(C6Hs)3P+N(CH3)N = CH(C6H4NO2).IC6HsCH2C6HsCHP(O)(C6Hs)z (C6Hs)3P(CH2C6H4.CH3)Br

1965, 120H 1965, 120H 1965, 2aH 1965,47H

333

STUDIES OF PHOSPHORUS COMPOUNDS FORMULA INDEX II.

Formula PC26H24BrO PC26H24IN2 PC26H2504 PC26H26IN2 PC26H3002 PC26H3104 PC26H54NO4 PC27H24BrO2 PC27I-[2402 PC27H24C102 PC27H2506 PC27H3202 PC27H3304

PC2sH22N PC2sH3202 PC2sH33CIO2 PC2sH3504 PC28H3902

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Compound

References

(C6Hs)3P+(CH2)2OC6H5 ,Br-; (C6Hs)3P+CH(CH3)OC6Hs.Br (C6Hs)3P+CH2(C6H4.OCH3).Br (C6Hs)3P+N(CH3)N = CH(C6Hs).I(C6Hs)aPC(COOCH3)C(COOCH3)CH(CH3) (C6Hs)aP+N(CH3)N(CH3)C6Hs.I (C6Hs)aP+(CH2)sCOOC2H5 [(CH3)2C6H30]P(O)(OC6H4.C3H7)2 (n-CloH210)2P(O)CH2C(O)N(C2Hs)2 (C6Hs)3P+(CH2C6H4 .COOCH3) .Br(C6Hs) 3P+CH2(C6H4COOCH3) (C6Hs) 3P+(CH2C6H4.COOCH3) .CI[C6H 5CH2OC 6H40] 2P(O)(OCH3) (C6H s)3P+(CH2)6COOC2H 5 (C3HTC6H40)3P(O) ; [CH3(C2H5)C6H30]3P(O)

~

NP(C6HsIz

1964, 87 H 1965, 47 H 1965, 120 H 1964,9, 10 H 1963, 37; 1964, 102 H 1963, 31 H 1965, 32 H 1960, 23 (No. 405) H 1965,47H 1964, 38H 1965,47H 1964, 73H 1963, 31H 1965, 32 H 1965, 32 H

i-C3H7C(O)C(CH3)2CO-CHP+(C6Hs)3 i-C3H7C(O)C(CH3)2COCH2P+(C6Hs)3 .(2t(C 2I-I5.C6HgO)P(O)[OC6H3(C2Hs)2]2 C6HsC(O)CH2CC(O)C6H5 Jr P(n-C4H9)3

1964, 57H 1964, 57H 1965, 32H 1965,44H

PC29H3704

(C6Hs)3P+N(CH3)N = camphorylidene.I(C6Hs)3P+N(CH3)N = fenchonylidene.I(C3H 7C6H40)P(O)[OC6H4 .C2H512

1965, 120 H 1965, 120 H 1965, 32 H

PC3oH2703

C6H 5C(O)CH2CC(O)C6H 5

1964, 78; 1965, 102 H

PC30H2708 PC30H6304

(C6Hs)2P(O)C2H5 (C6Hs) 3P[C(COOCH3)]4 (C6H 5)2P[C(COOCH3)]4(C6H5) (CloH210)3P(O)

1961, 14; 1963, 23 H 1963, 23 H 1960, 22, 23 (No. 43) H

PC31H26C1 PC31H27OSn PCalH28[N2

(C6Hs)3P+CH(C6Hs)2 .C1(C6H 5)2P(O)CH2Sn(C 6H5)3 (C6H 5)3P+N(CH3)N(C6Iz[5)2 .[-

1965,47H 1963, 65H 1964, 102H

PC32H26BrO

(C 6H5)3P+[CH(C6Hs)COC6H5].Br-

1965,47H

PC29H34IN2

PC32H26IN2

(C~Hs)sP"N(CHs)N = = ~

I"

1965, 120H

334

G. MAVEL FORMULA INDEX II.

PROTON RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula PC32H2705

Compound

References 1961, 13, 14 H

PC32H28IN2

C6H5C--~O C(COOCH3) II II CH--P(C6Hs)3--CCOOCH3 (C6Hs)3P+N(CHa)N= C(C6H5)2.I-

PC34H2702

C6HsC(O)CH2CC(O)C6H5

1965, 102 H

1965, 120 H

II P(C6Hs)3 PC35H2903

C6HsC(O)CH2C = C(C6Hs)OCH2C6H5

1964, 78 H, P

I P(O)(C6Hs)2 PCasH3oC10 PCasH45BBr P2 P2CH2CI4S2 P2C2H3Cl12N2Sb P2CzH4F402 P2C2H6F6N2 P2CEHpNO6 PECaH6C14N3 PEC3H6C1402 P2C3H6Cll2NaSb P2C3H603 P2C3H603S P2C3H604S P2C3H605 P2C4HloC12F4N2 P2C4H12 P2C4HI2C12N4 P2C4H1206 P2C4H12S P2C4H12S2 P2CsH21N307 P2C6H4F402 P2C6HloCllo PzC6HI206 P2C6H16F4N2 P2C6H1606 P2C 6H 16° 6S P2C6H18N6 P2C6H18N602 P2C6H18N6S2 P2CsH6Cllo P2C8HIoO5 P2CsH14CIlo

[C6H5C = C(C6Hs)][P+O(C6Hs)3]C1-

1963, 67 H 1964, 54b H

[C12P(S)]2CH2 [{C13PN)2C(CH3)]SbC16 [F2P(O)CH2]2 [F3PNCH3]2 [CH2P(O)(OH)E]2NH CHaC[NPC12]ENCH3 [C12P(O)]2(CH2)3 [{C13PN}2C{N(CH3)2}]SbC16 P(OCH2)3P P(S)(OCHz)3P P(S)(OCH2)3P(O) P(O)(OCHE)3P(O). [CH2C1PFz(NCH3)]2 (CHa) 2PP(CH3)2 C1P[NCH3NCH3]2PCI CH3(CH30)P(O)OP(O) (OCH3)2 (CH3)2PP(S)(CH3)2 (CH3)2P(S)P(S)(CH3)2 (CH3)2CHCHEOP20 6(NH4)3 F2P(O)C6H4P(O)F2 C3H7CH ~ CC1CHzP+C13.P-C16 CH20\ 7

1965, 73 P 1964, 80 H 1965, 105 H, P, F 1965, 27, 112 H, F 1962, 32 P 1964, 80 H 1965, 73 P 1964, 80 H 1965, 25a H 1965, 25a H 1965, 25a H 1965, 25a H 1965, 112 H, F 1960, 20; 1964, 44 H 1965, 92 H 1962, 31 H 1964, 44 H 1964, 44; 1965, 27 H 1965, 94 H 1965, 105 H, P, F 1965, 83 H

I

I /)POCH2/ CH20 A2

[CzHsPF2(NCH3)]2 (CH30) 2P(O)P(O)(OC2H5)2; CH3(CH30)P(O)OP(O)(OC2Hs)2 (CH30)(CH3S)P(O)OP(O)(OCzH s)2 P[NCH3NCH3]3P P(O)[NCH3NCH3]3P(O) P(S)[NCH3NCH3]3P(S) C6HsCC1 = CHPC13+. PC16[CH3(i-C3HvO)P(O)]20 n-CsH11CH = C C 1 C H 2 P C I 3 + . PCI6-

1960, 22, 23 (No. 4) H 1965, 112 H, F 1962, 3 H 1962, 31 H 1965, 92 H 1965, 92 H 1965, 92 H 1965, 83 H 1962, 31 H 1965, 83 H

335

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS

Formula

Compound

References

P2CsH22F6Si P2CsH24N4 P2C9H1403 P2CgH21NaO6 P2C9H2204S2 P2C9H2206

(CHa)3SiCH(CH3)P(CH3)3 + , PF6{P[N(CH3)212}2 (CH3) 2P(O)CH2P(O)(C 6Hs)OH [(C2HsO) 2P(O)]zCHNa [(C2HsO)2P(S)] 2CH2 [(C2HsO)2P(O)]2CH2

1965, 85 H 1961, 19 H 1965, 65 H 1962, 2 H 1962, 29 H 1960, 23 (No. 157); 1962, 2; 1965, 119

P2CloH2407 P2C1oH2408 P2CloH25NO3S3 P2CllH2606

[(C2H 50) 2P(O)]2C(CH3)OH [(C2H 50) 2P(O)]2OC(CH3)OH (CH3S) 2P(O)S(CH2)2NHP(O) (OI-C3H 7)2 (CzHsO)2P(O)(CH2)3P(O)(OC2Hs)2 (C2HsO)2P(O)CH2P(O)(Oi'CaH7)2 [(CH3)3Si]2C(CH3)P(CH3)3+ •PF6(C6H50)2P(O)NHP(O)(OK) 2 (C6H 50) 2P(O)NHP(O)(OH) 2 [CH3COOC(CH3)P(O)(OCHs)2]z

1962, 1l H, P 1962, 11 H, P 1965, 32 H 1960, 23 (No. 164) H 1965, 119 H 1963, 85 H 1964, 69 P 1964, 69 P 1965, 49 H 1965, 119 H 1965, 112, l14H, P, F 1962, 37 H 1965, 65 H 1962, 1l H, P 1962, 1l H, P 1960, 23 (No. 179 )H 1964, 84, H, P, F 1965, 48 H 1965, 48 H 1960, 23 (No. 387, 388, 389); 1965, 119 H 1964, 67 H, P 1960, 23 (No. 181) H 1965, 127 H 1960, 23 (No. 183) H 1960, 23 (No. 184) H 1965, 119 H 1960, 23 (No. 185) H 1964, 67 H, P 1964, 1 H 1964, 1 H 1965, 24 H, P 1964, 67 H, P 1965, 24 H, P 1960, 23 (No. 186) H 1965, 48 H 1964, 2 H 1964, 1 H 1962, 37 H 1964, 2 H 1964, 1 H 1964, 2 H

H

P2C11H30F6Si2 P2C12H11KzNO6 P2C12H13NO6 P2C12H24Olo P2C13H3oO6 P2C14H16F4Nz P2C14H16N2S2 P2C14H1603 P2C15H2607 PzC15H2608 P2C15H3406 PzC 16H22F6N2 PzC16H2806 P2C17H3oO6 P2C17H3806 P2C18HlsN205 P2C18H4006 P2C19H1803 P2C19H4206 P2C20H4406 P2C21H4206 PzC23HsoO6 P2C24H21NO6 P2C25H22 152C25H2202 P2C25H23N P2C25H23NO6 P2C25H26C1N3 P2C25H5406 P2C26H22S2 P2C26H24 P2C26H24N2S2 P2C26H24O P2C26H2402 P2C26H24S2

[(i-CaH70)2P(O)]zCH2 [C6HsPF2--NCH3]2 [C6HsP(S)--NCH3]2 CH3(C6H 5)P(O)CH2P(O) (C 6H 5)OH [(C 2H 50) 2P(O)]2C(C 6H 5)OH [(C2H 50) 2P(O)]2OC(C 6H 5)OH [(C2H50) 2P(O)]2CH(n-C6H 13)• [C6HsPF{N(CH3) 2}2]+[C6H4PFs][(CzHsO) 2P(O)]zCH(C6Hs)CH2 [(C2H50) 2P(O)]zCH(CHa)CH(C6Hs)

[(CaH90)2P(O)]2CH2 (C 6H50) 2P(O)NHP(O) (OC6H 5)NH2 [(C4H90) 2P(O)CH212 (C 6H 5)2P(O)CHzP(O)(C6Hs)OH [(C4H90) 2P(O)]2(CH2)3 [(C4H90) 2P(O)(CH2) 2]2 [(C5H110)2P(O)]2CH2

[(C4H90)2P(O)]zCH(n-C6H13)

[(C6HsO) 2P(O)]2NH [(C6H5)2P]2CH2 [(C6Hs)2P(O)]2CH2 [(C6Hs)2P]2NCH3 [(C6H50)2P(O)]2NCH3 [NHP(C6Hs)2NCH3P(C6FIs)2NH2]+CI-

[(n-C6H130)zP(O)]2CH2 [(C4H90) 2P(O)]2CH2CH(CyH 1~) [(C6H5) 2P(S)CH] 2 [(C6Hs)zPCH2]2 [C6HsCH2N--P(S)(C6Hs)]2 (C6H5) 2P(O)[CH2]2P(C 6H 5)2 [(C6Hs) 2P(O)CH212 [(C6Hs)2P(S)CH2]2

336

G. NAVEL FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

P2C28H2807 P2CaoH5806 P2C33H50N4012 PzCa4H52N4012 P2C37H31BF4 P2C37H3tBr

[(C6Hs)2P]2NC2H5 [(C6Hs)2P]2NN(CH3)2 [NHP(C6H5) 2N(C2H5)P(C6H5)2NH2]+C1[CH3CH = CHCH2P+(CaH7)a]2PtCI6(C2Hs)3P+CH = CHCH2P+(CaH7)3, dipicrate (C6HsCH20)4P203 [(C4H90) 2P(O)CH(C 6H5)]2 [(C3H7)3P]2++(CH2CH = CH), dipicrate [(C3H7)3PCHzCH]2++, dipicrate [{(C6Hs)3P}2CH]+BF4[((C6Hs)3P)2CH]+Br-

P2C37H311 P2C37H32Br2 PzCa8H34C12 P2C42H34N2

[{(C6Hs)3P}zCH]+I([(C6Hs)3P+]2CH2}Br2- [C1P(C6H5)3CH2]2 C6H4[(C6H5)3PN]2

P2C26H25N PzC26H26N2 P2C26H28CIN3 P2C26H56C16Pt P2C27H38N4012

P2C44H34

P2C44H36Br2

[~~ ~

References 1965, 24H, P 1963, 52H 1965, 24H, P 1963, 29H 1963, 29 H 1960, 5 H 1965, 48 H 1963, 29 H 1963, 29 H 1962, 27H 1962, 27; 1964, 30; 1965, 53H 1962, 27; 1964, 30H 1964, 30; 1965, 53 H 1965, 21H 1965,32H

P(CGH5)3 P(C6H5)3

1964, 13H

P(C6Hs)3Br P(C6H5)~ Br

1964, 13H

P2C55H45B P2C61H51B P2Cv2H6oSn4

[(C6H5)3P]2CB(C6Hs)3 [((C6Hs)3P}2CH]+B(C6H5)-4 {[(C6H5)3Sn]2P}2

1962, 27H 1962, 27; 1964, 30H 1964, 86H

P3 P3C2H4C15N4 P3C2H6C15N4 P3C2HsCI4N5 P3C3HsC14N5 P3C3H12NO9 P3C4HsC14N5 P3C4HloC14N3S2 P3C4H12C14N5

P3N3C15(NC2H4) P3N3CIs[N(CH3)2] P3N3C14[NH(CH3)]2 P3N3CI4[NHCH2]2CH2 [P(O)(OH)2CH2]3N P3N3CI4(NCzH4)2 P3N3C14(SC2H5)2 P3N3C14[N(CH3)212

P3C6H12C13N6 P3C6H 18C13N6

P3NaC13(NC2H4)3 P3N3C13[N(CH3)213

P3C6H 18N30 6 P3C6H24N9 P3C7H21N3 P3CsH 16C12N7 P3C8H20C12N7 P3CsH22C12N7 P3CsH24C12N7

P3N3(OCH3)6 P3N3[NH(CH3)]6 [P3N3(CH3)7]+ P3N3CI2(NC2H4)4 P3N3CIE(NC2H4)2[N(CH3)2]2 P3N3C12(NC2H4)[N(CH3)2]3 P3N3CI2[N(CH3)214

1964, 74H 1961, 29H 1965, 37H 1964, 17b H, P 1962, 32 P 1964, 74 H 1962, 3 P 1961, 29; 1964, 34; 1965, 64, 66H 1964,74H 1961, 29; 1964, 34; 1965, 64, 66H 1965,2H 1965, 37H 1964, 3 H 1964,74H 1964, 74H 1964, 74H 1961, 29; 1964, 34; 1965, 64H

337

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

P3CsH28N9 P3CloH2oC1N8 P3CloH22N702 P3CloH24Nlo P3C11H23NsO P3C11H24N9 P3C12H 12F18N306 P3C12H24N9 P3C12H26N9 P3CI2H28N9 P3C12H3oN9 P3C12H32N9 P3C12H34N9 P3C12H36N9 P3C14HlsC12N5 P3C16H22C12N5 P3ClaH26N7 P3C18H15Br3N3 P3ClsH48N9 P3C2oH23C1N5 P3C2oH3oC12N5 P3C2oH34N7 P3C24H24N307

P3N3(NH2)2[N(CH3)214 P3N3CI(NC2H4)5 P3N3(OCH3)2(NC2H4)4 P3N3(NHNH2)(NC2H4)5 P3N3(OCH3)(NC2H4)5 P3N3[NH(CH3)](NC2H4)5 P3Na(OCH2CF3) 6 P3N3(NC2H4)6 P3N3(NC2H4)5[N(CH3)2] P3N3(NC2H4)4[N(CH3)2]2 P3N3(NC2H4)3[N(CH3)213 P3N3(NC2H4)2[N(CH3)214 PaN3(NC2H4)[N(CH3)2]5 P3N3[N(CFI3)2]6 P3N3C12(C6Hs)2[NH(CI-I3)]2 P3N3C12(C6H5)2[N(CH3)2]2 P3N3(C6H5)2[NH(CH3)]4 P3N3Br3(C6Hs)3 P3N3[NH(C3H7)]6 P3N3CI(C6Hs)3[NH(CH3)]2 P3N3C12[N(CH3)212[C6H3(CH3)212 P3N3(C6Hs)2[N(CH3)2]4 (C 6H50) 2P(O)NHP(O)(OC6H 5)NHP(O) (OC6Hs)NH2

P3C24H33N6 P3C24H33N603 P3C28H32N5 P3C3oH25Olo

P3N3(C6H5)4[N(CH3)2]2 P3N3(OC6Hs)3[N(CH3)213 P3N3(C6H5)3[N(CH3)213 (C6HsO) 2P(O)OP(O)(OC6H 5)OP(O)

P3C3oH27N208 P3C32H31N4 P3C36H3oN306 P4 P4C6H18N4 P4C6H18N6

1964, 34H 1964,74H 1964,74H 1964, 74H 1964, 74H 1964, 74H 1965, 2 H 1964, 74H 1964, 74H 1964, 74H 1964, 74H 1964, 74H 1964,74H 1961, 29; 1965, 2 H 1965, 37H 1964, 34H 1965, 37H 1963, 50aP 1963, 50H 1965, 37H 1964, 34H 1964, 34H 1964, 67 P , H ; 1964, 69H 1965, 53aH 1965, 36H 1965, 53aH

(OC6Hsh (C6HsO)EP(O)NHP(O)(OC6HgNHP(O)

1964, 69 P

(OC6H5)2 P3N3(C6Hs)sN(CH3)2 P3N3(OC6Hs)6

1964, 69P 1965, 53aH 1965, 2 H

] P4N4(CH3)6 P4[NCH3]6

P4C6H18N6S4 P4C8H2oO12 P4CsH24N408 P4C9H27N4 P4C 12H38C1N6 P4C16H 16F24N408 P4C16H48N 12 P4C 18H26° 6Zn P4C24H2o P4C24H2oC14N4

References

[P(S)]4[NCH3]6 [P(O)O(OC2Hs)]4 P4N4(OCH3)8 [P4N4(CH3)9]+ [(C2H5)2PNH2NPNH2(C2H 5)]2C1 P4N4[OCH2CF3]8 P4N4[N(CH3)218 [(CH3)2P(O)CH2P(O)(C6Hs)O] 2Zn [P(C6H5)]4 P4N4C14(C6Hs)4

1961, 16 P , H 1960, 10; 1963, 26; 1965, 92H 1963, 26H 1965,15H 1965, 2 H 1964, 3 H 1965, 121P,H 1965, 2 H 1965, 2 H 1965, 65H 1963, 22H ~1964, 90H i

"338

G. MAVEL FORMULAINDEXII. PROTONRESONANCESTUDIESON ORGANICCOMPOUNDS Formula

P4C28H3oO6Zn P4C32H44Ns P4C38H3406Zn P4C48H4oN408 P5 PsC2H6CI9N6 PsCloH3oNsOlo PsC2oH2oF3oN5 Olo P4C2oH6oN15 PsC6oHsoNsO 1o P6 P6C12H36N6012 P6C24H24F36N6 Ot2 P6C24H72N18 P6C72H60N6012 P7 P7C14H42N7OI 5 PTC28H28F42N7 O14 P7C28H84N21 P7C84H7oN7014 P8 PsCI6H48N8016 PsC32H32F48Ns O16 PsC32H96N24 PaC96HsoNsOI6

Compound

References

[CH3(C6Hs)P(O)CH2P(O)(CaHs)OlzZn P4N4(C6H5)4[N(CH3)214 [(C6Hs)zP(O)CH2P(O)(C6Hs)OI2Zn P4N4(OC6Hs)8

1965, 65 H 1964, 42, 90 H 1965, 65 H 1965, 2 H

PsNsC19[N(CH3)2] PsNs(OCH3) lo

1965, 2 H 1965, 2 H

PsN5(OCH2CF3) 10 PsNs[N(CH3) 2]lO PsNs(OC6Hs) 10

1965, 2 H 1965, 2 H 1965, 2 H

P6N6(OCH3) 12

1965,2H

P6N6(OCH2CF3) 12 P6N6[N(CH3)2]12 P6N6(OC6Hs) 12

1965, 2 H 1965, 2 H 1965, 2 H

P7N7(OCH3) 14

1965,2H

P7NT(OCH2CF3)14 P7N7[N(CH3)2] 14 P7NT(OC6t-I5)14

1965, 2 H 1965, 2 H 1965, 2 H

P8Ns(OCH3)16

1965, 2 H

P 8N8(OCH2CF3)16 PsNs[N(CH3) 2]16 P8Ns(OC6H5) 16

1965,2H 1965,2H 1965, 2 H

FORMULAINDEXnl. FLUORINERESONANCESTUDIESON INORGANICCOMPOUNDS Formula

Compound

PBr2F3 PC1F2 PC1FzO

P(O) C1F2

References 1963, 51; 1964, 66; 1965, 75 F 1963, 28 F 1951, 1, 2 P, F; 1953, 1; 1963, 28F; 1964, 71 P

339

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXIII. FLUORINERESONANCESTUDIESON INORGANICCOMPOUNDS Formula PCIF4 PC12F PC12FO

Compound

P(O)C12F

PC12F3 PCI3F2 PC14F PC19FSb PFC2N20 PFH2Oa PFNa203 PF2CNO PF2H PF2HO2

PFC13 .SbCI6 PF(NCO)2 FP(O)(OH)2 FP(O)(ONa)2 PF2(NCO) F2P(O)OH

PFa

PF30

P(O)F3

PF5

PF6Cs PF6H PF6K PF6Na PF6Rb P2C12F203 P2F403 P3C12F4N3 P3C13F3N3 P3C14F2N3 P4ClxFs-xN4 (x = 0 to 7)

[OPFC1]20 [OPF2120 P3N3(F4CI2) P3N3(F3C13) P3N3(F2CI4) P4N4(ClxFs-x)

References 1965, 17 F 1963, 28 F 1951, 1, 2; 1964, 27 P, F; 1953, 1 ; 1963, 28 F; 1964, 71 P 1963, 28, 51 ; 1964, 53, 66; 1965, 75 F 1963, 28; 1964, 53 F 1963, 28; 1964, 53 F 1963, 61 F 1964, 33 P 1953, 1, 2; 1958, 2 F; 1957, 6, 7 I f ; 1959, 1 P,F 1953, 1 F; 1957, 6 Lf 1964, 33 P 1965, 110 F, H 1953, 1, 2; 1958, 2 F; 1957, 6, 7 Lf; 1959, 1 P,F 1953, I; 1959, 7; 1960, 18; 1963, 28; 1965, 123 F; 1964, 33, 71 P; 1965, 105 P, F 1953, 1; 1962, 32, 1963, 28 F; 1964, 71P 1953, 1; 1959, 7; 1960, 16, 18; 1962, 32; 1963, 28, 51 F; 1965, 112 P 1963, 48 F 1953, 1, 2; 1959, 7 F; 1957, 6; 1960, 7 Lf 1964, 71 P 1953, 1 F 1963, 48 F 1963, 48 F 1964, 27 P, F 1962, 34 F 1961, 3a P, F 1961, 3a P, F 1961, 12 F; 1961, 3a P,F 1963, 2 P, F

340

G. MAVEL

FORMULAINDEXIV. FLUORINERESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

PCBr2CI3F2

(CC13)PF2Br2

PCBr2F3 PCCI2F3 PCC13F2

(CF3)PBr2 (CF3)PC12 (CCI3)PF2

PCClaF4

(CCI3)PF4

PCClsF2

(CCI3)PC12F2

PCF312 PCF4C1 PCF5 PCF7

(CFa)PI2 (CFa)PCIF (CFa)PF2 (CFa)PF4

PCHF7 PCHzC1F2

(CF3)P+F4H (CH2CI) PF2

PCH2C1F20

(CHzC1)P(O)F2

PCH2C1F4

(CH2CI)PF4

PCH2CI2FO PCH2CI3 PCH3F2 PCH3F20

(CH2CI)P(O)CIF (CH2C1)PC12 CH3PF2 CH3OPF2

References 1963, 53; 1965, 90, 112P, F; 1964, 71 P 1965, 89 F 1965, 89 F 1963, 53; 1964, 71; 1965, 90, 113 P, F 1964, 71 P; 1965, 90, l12P, F 1963, 53; 1964, 71; 1965, 90, 112 P, F 1965, 89 F 1964, 70a F, H 1964, 71 P; 1965, 89 F 1960, 16; 1963, 51 F; 1964, 71 P, 1965, 112 P, F 1964, 21 F, H 1964, 71 P; 1965, 113

F,P,H

CHaP(O) F2 PCHaF4

CH3PF4

PCH3F5PCH4FO2

(CHaPF5)CHaP(O)(OH)F

PC2BrF6

(CFa)2PBr

PC2C1F6

(CFa)EPC1

PC2C13F6 PC2F6I

(CF3) 2PCI3 (CF3) 2PI

PCzF7

(CF3) 2PF

PCEF9

(CF3) 2PF3

1962, 32, 1964, 71 P; 1963, 62 F; 1964, 85 F, P 1963, 51 F; 1964, 71 P; 1964, 85; 1965, 112 P, F 1962, 32 P 1963, 62 F 1965, 113 P, F 1951, I, 2 P, F; 1953, 1F 1964, 85 P, F; 1964, 17a; 1965, 88 F 1963, 51, 1965, 88 F; 1964, 71 P; 1964, 85, 1965, 112 P, F 1965, 88 F 1964, 17a F 1963, 54 P, F; 1964, 41; 1965, 89 F 1963, 54 P, F; 1964, 41 ; 1965, 89 F 1963, 54 P, F 1963, 54 P, F; 1964, 41; 1965, 89 F 1963, 54 P, F; 1964, 71 P; 1965, 89 F 1963, 54 F; 1964, 71 P; 1965, 112 P, F

STUDIES OF PHOSPHORUSCOMPOUNDS FORMULA INDEX IV.

341

FLUORINE RESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

References 1965, 112 F 1957, 1 F; 1963, 54 F,H 1964, 19 F, P, H 1964, 71 F; 1965, 105

PCzF9 PCzHF6

(C2Fs)PF4 (CFa)2PH

PC2HF6S

PC2HsF 20

(CF3)2P(SH) CH20\ I ~PF CH20 / C2HsP(O)F2

PC2HsF202

(C2HsO)P(O)F2

PC2HsF4

(C2Hs)PF4

PC2HsF40 PC2HsFsPC2H6FO

(C2HsO)PF4 C2H5PFs(CHa)2P(O)F

1962, 32; 1964, 71 P; 1963, 62 F 1963, 51; 1964, 66 F, 1964, 71 P; 1964, 85; 1965, 112 P, F 1963, 62 F 1965, 88 F 1964, 71 P; 1964, 85

PC2H6FO2 PC2H6FO3 PC2H6F2N

CH3(CH30)P(O)F (CH30) 2P(O)F [(CH3)2N]PF2

1964, 17a F 1964, 17a F 1964, 18; 1965, 105,

PC2H6F3

(CH3)2PF3

PCzH6F4N

[(CH3)2N]PF4

1963, 51; 1964, 53 F; 1964, 71 P; 1964, 85; 1965, 112 P, F 1964, 14 F, P, H; 1964, 66; 1965, 112

PC2H4FO2

F, P, H

1964, 71 F; 1964, 85 F, P

P, F

120 F, P, H

F

PC3C12F9

(C3F7)PC12F2

1964, 71 P; 1965, 112

PC3F6N PC3F6NO PC3F9

(CF3)2P(CN) (CF3)2P(CNO) C3F7PFz (CF3)3P (CFa)3PO (CF3)3PS (CF3)2P(SCF3) (CF3)zP(SeCF3) (CFa) 3PF2

1963, 54 F, P 1963, 54 F, P 1964, 71 P 1963, 54 F, P 1963, 54 F, P 1964, 20 F 1963, 54 F, P 1963, 54 F, P 1963, 51 F; 1964, 71 P; 1965, 112 F, P 1965, 112 F, P 1964, 19 F, P, H 1965, 105 F, P, H 1964, 70a F, H 1965, 105 F, P, H 1964, 17a F 1964, 17a F 1964, 81; 1965, 113 F 1964, 17a F

F,P

PC3F90 PC3F9S PC3F9Se PC3F11 PC3H3F6S PC3HsF20 PC3H6F4N PCaH7F20 PC3HsFO2 PC3H9FN PC3H9FNO

(C3FT)PF4 (CF3)2P(SCH3) (CH2CHCHzO)PF2 CF3PF[N(CH3) 2] (C3H70)PF2 CHa(C2HgO)P(O)F CEHg(CH30)P(O)F CHaPF[N(CH3) 2] CHa[(CH3)2N]P(O)F

342

G. MAVEL FORMULAINDEXIV. FLUORINERESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

References

PC3HgF2

(CHa)3PF2

1963, 51; 1964, 53 F; 1964, 85, 1965, 112 F,P 1964, 81; 1965, 112 F

PCaH9F3N

CH3PFa[N(CH3)2]

PC4F13 PC4H3F60 PC4H5F60 PC4H6F6N

(C2F5)2PF3 (CF2)3C(OH)PH2 (CF3) EP(OCEHs) (CF3) 2P[N(CH3) 2]

PC4H8F3

(CFI2)4PF3

PC4H9F20 PC4H9F4

C4H9P(O)F2 (C4HgO)PF2 C4H9PF4

PC4HloFO2

CH3(C3H70)P(O)F

PC4HloFO3 PC4HloF2N

C2H5(C2H50)P(O)F (C2HsO)2P(O)F [(C2H5)2"N]PF2

PC4HloF2NO PC4HIoF3

[(C2H5)2N]P(O)F2 (C2H5)2PF3

PC4HloF4N

[(C2Hs)2N]PF4

PC4H12FN2

[(CH3)2N]2PF

PC4H12FaN2

[(CH3)2N]2PF3

PCsH~oF2N

CsHloNPF2

PC 5H 1oF3 PCsH11F20 PCsHlzFO PC5H12FO2 PC5H12F3N2 PCsH13FNO

(CH2) sPF3 C 5H 11P(O)F2 CH3(i-C3HT)P(O)F CH3(C4H90)P(O)F C2Hs(C3HTO)P(O)F CF3P[N(CH3)z]2 CH3[(CzHs)2N]P(O)F

1964, 83 F; 1965, 105 F, P, H 1963, 51; 1965, 112 F 1964, 71 P 1964, 71 P 1964, 17a F 1964, 17a F 1964, 70a F, H 1964, 17a F

PC6C1F14 PC6C12F5 PC6F14I PC6F7

(C3F7)2PC1 C6FsPC12 (C3F7)2PI C6F5PF2

1962; 33 F 1965, 4 F 1962, 33 In' 1965, 4 F

1964, 66; 1965, 112 F 1965, 91 F, H 1963, 54 F, P, H 1963, 54 F, P, H; 1964, 41 F 1963, 51 F; 1964, 71 P; 1965, 112 F, P,H 1964, 71 P 1965, 105 F, P, H 1963, 51 F; 1965, 112 F,P 1964, 17a F, 1964 71P 1964, 17a F 1964, 17a F 1964, 83 F; 1965, 105 F, P, H 1964, 71 P 1963, 51 F; 1964, 71 P; 1964, 85; 1965, 112 F, P 1964, 14; 1965, 112 F, P, H; 1964, 82 F, P 1964, 18; 1965, 105 F, P, H; 1964, 71 P 1964, 14 F, P, H; 1964, 66; 1965, 112 F

343

STUDIES OF PHOSPHORUS COMPOUNDS

FORMULAINDEXIV. FLUORINERESONANCESTUDIESON ORGANICCOMPOUNDS Formula PC6F15 PC6F17 PC6H2F5 PC6FI4CIF20 PC6H4C1F4

Compound (C3FT)2PF (C3F7) 2PF3 C6F5PH2 (C1C6H4)P(O)F2 (ClC6H4)PF4

PC6H4FO2

References 1964, 71 P 1965, 112 F 1965, 4 F 1963, 62 F 1963, 51, 62 F 1964, 71 P; 1965, 105 F, P, H 1964, 71 P 1964, 66; 1965, 112 F 1965, 113 F, P 1964, 71 P; 1964, 85 F, P; 1965, 88 F 1964, 71 F 1964, 71 P; 1964, 85 F, P; 1963, 51; 1965, 88, 112 F 1965, 88 F 1964, 66; 1965, 112 F 1964, 17a F 1964, 17a F 1964, 14 F, P, H 1963, 51 ; 1965, 112 F; 1964, 85 F, P 1964, 66 F; 1965, 112, 115 F, P, H

PC6H4F6N2 PC6HsC1F3 PC6HsF2 PC6HsF20

(p-C6HgN2)+(PF6} C6H5PF3C1 C6HsPF2 CaHsP(O)F2

PC6HsF 20 2 PC6HsF4

(C6HsO)P(O)F2

PC6HsFsPC6H6F3 PC 6H 14FO2 PC6H14FO3 PC6H14F4N PC6H15F2

C6HsPFsC6HsPF3H C2H 5(i-CaHgO)P(O)F (n,i-C3H70)2P(O)F [(C3H7)2N]PF4 (C2Hs)3PF2

PC6H15F3N

C2H5PF3[N(C2H5) 2]

PC7H4F7 PC7HTF20 PCTH7F202 PC7H7F4

CF3 .C6H4PF4 ell3 .C6H4P(O)F2 (CH30) C6HaP(O)F2 C6HsCH2PF4 (m,p-CH3)C6H4PF4

PCTH7F40 PC7HsF3

(CH30)C6H4PF4 CH3(C6H5)PF3

PG7H9F3N PC7HloC1F404 PC7HloC13F204 PC7HloC1504 PC7H12FO2 PC 7H 18F2N3

C6Hs(CH3NH)PF3 (C2H50) 2P(O)OC(CF2C1)CF2 (C2H50) 2P(O)OC(CFCla)CFCl (C2H50) 2P(O)OC(CCI3)CCI 2 CH2CH(i-C4H90)P(O)F [(CHa)2N]3P = CF2

1965, 112 F 1963, 62 F 1963, 62 F 1963, 51; 1965, 112 F 1963, 51, 62; 1965, 112F; 1964, 71 P 1963, 62 F 1963, 51 F; 1964, 71 P; 1965, 112 F, P 1965, 112, 115 F, P, H 1964, 100 F, H 1964, 100 F, H 1964, 100 F, H 1964, 17a F 1964, 64 F

PCsH3F1202 PCsH6C1FsN PCsH6F5 PCsH7F4 FCsH9F4 PCsHloFO2

[(CF2)3C(OH)]2PH C 6F sP[N(CH3) 2]Cl C6FsP(CH3)2 C6Hs(CH)2PF4 (CH3)2C6H3PF 4 C6Hs(C2HsO)P(O)F

1965, 91 F, H 1965, 4 F , H 1965, 4F, H 1963, 51; 1965, 112F 1963, 51 F 1964, 17a F

C6HsPF4

344

G. MAVEL FORMULA INDEX IV.

FLUORINERESONANCE STUDIES ON ORGANIC COMPOUNDS

Formula

Compound

References 1964, 81; 1965, l13F 1964, 66, 81 F; 1964, 82 F, P; 1965, 112, 115 F, P, H 1963, 51; 1965, 112 F 1964, 17a F 1963, 51; 1965, 112 F 1964, 82 F, P; 1965, 112, 115 F, P, H

PCsHllFN PCsHllF3N

C6HsPF[N(CH3)2] C6HsPF3[N(CH3) 2]

PCsHIsF4 PC 8H 18FOa PCsH 18F3 PCsH2oF3N2

i-CsHlsPF4 (n, i-C4H90)2P(O)F (n'C4H9) 2PF3 [(C2Hs) 2N]2PF3

PC9HllF20 PC9HIIF4 PC9H12FO2

C3H7 .C6H4P(O)F2 (m,p-C3H7C6H4)PF4 C6Hs(n, i-CaH70)P(O)F

1963, 51 F 1963, 51, 62 F 1964, 17a F

PCloHloF5 PCloHI2F5N2 PCloH13F2 PCloHlaFO2 PCloH15F3N

C6FsP(C2Hs)2 C6FsP[N(CH3)2]2 (CH3 .C4H7)PFE(C6Hs) C6Hs(n-C4H90)P(O)F C6HsPF3[N(C2Hs)2]

PCloH17FsN

[(C2H5)2NH2]+[C6HsPFs] -

1964, 82; 1965, 112 F, P 1965, 4 F, H 1965, 4 F, H 1963, 51 F 1964, 17a F 1964, 66, 81 F; 1965, 112, 115 F, P, H 1965, 115 F, P, H

PCllH15FaN PClIH17FsN

CsHloNPFa(C6Hs) (CsHloNH2)+[C6HsPFs] -

1965, 112, 115 F, P,H 1965, 115 F, P, H

PC12C1Flo PC12HFlo PC12HloFO

(C6F5)2PC1 (C6Fs)2PH (C6Hs)2P(O)F

PC12H1oFO3 PC12HloF3

(C6HsO)2P(O)F (C6Hs)2PF3

PC12H13FNO2 PC12H26FO3 PC12H27F2

(C6HsNH3)+[C 6H 5P(O)FO] (C6H 130)2P(O)F (n-C4H9)3PF2

1965, 4 F, H 1965, 4 F, H 1964, 71 P; 1964, 85 F, P 1964, 17a F 1963, 51; 1965, 34, 112 F; 1964, 71 P; 1964, 85 F, P 1964, 71 P 1964, 17a F 1963, 51; 1965, 112 F; 1964, 71 P

PC13H3oF2N3

[(C2H5)2N]3P= CF2

1964, 64 F, P, H

PC14H2oFsN2

C6F5P(NHt'C4H9)2

1965, 4 F, H

PClsF15 PClsHIsF2

(C6Fs)3P (C6Hs)aPF2

1965, 4 F, H 1963, 51; 1965, 34, 112 F; 1964, 85 F, P

P2C2H4F402 P2C2H6F6N2

F2P(O)(CH2)2P(O)F2 [F3P(NCH3)]2

1965, 105, F, P, H 1965, 112 F, P, H

PCloH9F3N

345

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXIV. FLUORINERESONANCESTUDIESON ORGANICCOMPOUNDS Formula

Compound

P2C4H9F3 P2C4HloC12F4N2 P2C6F12

P(CH3)3 = P(CF3) [CH2CIPF2(NCH3)]2 CF3C~PCF3

II

References 1961, 3 F 1965, 112 F, P, H 1964, 62 F

I

CF3C--PCF3 P2C6H4F402

F2P(O)~P(O)F2

1965, 105 F, P, H

PEC6HI 6F4N2 P2C13HE7F3 P2C 14H 16F4N2

[CEHsPF2(NCH3)]2 P(n-C4H9)3 = P(CF3) C6H5P(F2)--NCH3

1965, 112 F, P, H 1961, 3 F 1965, 112, lI4F, P , H

P2C 16H22F6N2

CH3N PF2(C6Hs) [C6HsPFs]-[C6HsPF{N(CH3) 2}2]

!

I

CF3C--P(CF3) P(CF3) CF3C--P(CF3)

P3C7H15

1964, 71 P; 1964, 84 F, P 1964, 62 F, P

FORMULAINDEXV. RESONANCESTUDIESON METALCOMPLEXES Formula

Complex

References

Ag PC14H13AgNO3 P2C28H26AgNO3

(C6Hs)2PCH = CH2.AgNO3 [(C6H5)2PCH ~ CI-I212 . AgNO3

1965, 134H 1965, 134H

mu PC 14H15AuBr30

[CH30 .C6H4P(CH3)(C6Hs)] .AuBr3

1963,24, 42H

PC28H29CoO4 PC31H35CoO4 PC34Hs1CoI3N

[CH2CHCH(CH3)(COCH3]Co(CO) z. P(C6H5)3 [CH3COCHCOCH3]2Co .P(C6Hs)3 [CH3COCHCOCH3]2Co .P(CH3 .C6H4)3 [(C4Hg)4N][(C6Hs)3P.CoI3]

1963, 21H 1964, 53aH 1964, 53aH 1964, 59; 1965, 6 9 H

P2C11H 12C0307 P2C19H36Co2N60z P2C30H20C0206 P2Ca6H30Br2Co

[(CH3)2P]2C03(CO)7 [Co(CO)] 4[C0(CO)3 .P{N(CH3)2}3] [C0(CO)312.P(C6Hs) 2 CoBrz. [P(C6Hs)312

1964,48H 1963, 38H 1964, 48H 1963, 30; 1965, 6 9 H

Co PC27H26CoO3

12

PNMRS

346

~ . MAVEL

FORMULAINDEXV° RESONANCESTUDIESON METALCOMPLEXES Formula

Complex

References

P2C42H42BrECO P2C52H66CoI2N

CoBr 2. [P(CH3 .C6H4)312 [(C4H9) 4NIl {(C6H5)3P}2CoI2]

1963, 30; 1965, 69 H 1964, 59; 1965, 69 H

P4C24H72C12Co N12012 P4CoF12I-I

Co(C104)2[{(CH3)2N}aPO]4 HCo(PF3)4

•965, 132 H 1965, 67 H

Cr PCloH9CrO8 PC~ 1H18CrN305

[PO3CsI-I9].Cr(CO)5 P[N(CHa)2]3.Cr(CO)5

1965, 129 H 1963, 38 H

P2C12H12Cr208 P2C14H12Cr2Olo P2C14H18CrOlo P2C16H36CrN604

[(CH3)2P.Cr(CO)4]2 [(CH3)2P]2.[Cr(CO)5]2 [PO3C5I-I912.Cr(CO) 4 {P[N(CH3)213}2 .Cr(CO) 4

1964, 25, 47 H 1964, 25, 47 H 1965, 129 H 1963, 38 H

Cu PCllH2oCu

o--CsH5Cu.P(C2H5)3

1956, 3 H

P4C24H72C12Cu N12012

Cu(C104)e[(CH3)2N}3PO]4

1965, 132 H

Fe PC9H9FeO7 PC 1oH 18FeN30 4 PC12H11F6FeO2 PC13H23FeN302 PC14H 17Fe202 PC22H15FeO4 PC24H21Fe202 PC25H21FeO2 PC40H36BrFe204

[PO3CsH9].Fe(CO)4 P[N(CH3)2]3.Fe(CO)4 [(CsHs)2FeH(CO)2].PF6 P[N(CH3)2]a.[CsHs.Fe(CO)2] [Fe(CO)(CsHs).P(CH3)2.Fe(CO)(CsHs)] P(C 6I-I5)3.Fe(CO)4 [Fe(CO)(CsHs) .P(C6H5) 2 .Fe(CO)(CsHs)] (CsHs)FeH(CO)2 .P(C6H5)3 {[C5H5(CO) 2Fe]2P(CH3)2}+B(C6H5)4-

1965, 129 H 1963, 38 H 1963, 19 H 1963, 38 H 1963, 20a H 1960, 4 H 1963, 20aH 1961, 6 H 1964, 4 9 H

[(NO) 2Fe.P(CH3) 2]2 [(NO) 2(CO)Fe.P(CH3)2]2 [(CO)3Fe .P(CH3) 212 [PO3C5I-I912.Fe(CO)3 {P[N(CH3)2]3}2.Fe(CO)3 [CsHs(CO)Fe .P(CH3) 2]z [CsHs(CO)Fe.P(C6Hs)2]2 [P(C6H5)312 .Fe(CO) 3

1964, 50H 1964, 50H 1964, 4 7 H 1965, 129H 1963, 38H 1963,20a; 1964, 5 1 H 1963, 20a; 1964, 51H 1960, 4 H

[(NO) 2Fe. {P(CH3)2}]2 FeHCI{C2H4[P(CH3)2] 2)2 FeHCI{C2H4[P(C2Hs)2]2}2 FeHI{CzH4[P(C2Hs)2]2}2

1964, 50H 1960, 2 H 1960, 2; 1961, 4 H 1961, 4 H

Fe(C10 4)2[((CH3)2N)3PO] 4

1965, 132H

P2C4H12Fe2N404 PzC6H12Fe2N406 P2CloHI2Fe206 P2C13H18FeO9 P2C 15H36FeN603

P2C16H22Fe202 P2C36H3oFe202 P2C39H3oFeO3 P4CsH24Fe2N404 P4C12H33C1Fe P4C2oH49C1Fe P4C2oH49FeI P4C24H72C12Fe N12012

STUDIES OF PHOSPHORUS COMPOUNDS

347

FOgMEmAINDrXV. R~SOtqANCESTUDIESON METALCOMPLEXES Formula

Complex

References

P4C28H49C1Fe P4C28HsoFe

FeHCI{o-C6H4[P(C2Hs) 212)2 FeH2(o-C6H4[P(C2H 5)2]2}2

1960, 2; 1961, 4 H 1960, 2 H

Ir P2CalH30Br3IrO P2C21H30C13IrO P2C21H31Br2IrO P2C21H31CI2IrO

IrBr3(CO). [P(C2Hs)2(C6Hs)]2 IrCI3(CO). [P(C2Hs)2(C6Hs)]2 IrHBr2(CO). [P(CzHs)z(C6Hs)]z IrHCI2(CO). [P(CaHs)2(C6Hs)]z

1964, 24H 1964, 24H 1964, 24H 1964, 24H

P3C18H46ClzIr P3C24H33C13Ir P3C55H46IrO

IrHC12[P(C2Hs)3]3 IrC13[P(CH3)2(C6H5)]3 IrH(CO)[P(C6H5)3]3

1960, 3 H 1965, 118 H 1963, 4 H

Mn PCloBrF6Mn208 PCIoC1F6Mn208 PCloF6IMn208 PCloHF6Mn208 PC13H6F6Mn2 NO9 PC13HI2Mn2NO9 PC22H18MnO5

Mn2(CO)s.P(CF3)2Br Mne(CO) s .P(CF3)2C1 Mn2(CO) s .P(CF3)2I Mn2(CO) 8.P(CF3)2H

1964, 41 F 1964, 41F 1964, 41F 1964, 41F

Mn2(CO) 9.P(CF3)2[N(CH3)2] Mn2((]O) 9.P(CH3) 2[N(CH3)2] Mn(CO)3(C6Hs)[CH3P(OC 6H5)2]

1964, 41F 1964, 41F 1965, 3 H

PaClzHlzMn208 PaC13H12Mn209 PzC32H2oMn2Os PaC39H30BrMnO9

[(CH3)2P .Mn(CO)4]2 [{(CH3)2P}2.Mn2(CO)9] [P(C6H5)2 .Mn(CO)4]2 [P(OC6Hs)3]2.Mn(CO) 3Br

1964, 4 8 H 1964, 4 8 H 1962, 13H 1962, 1 I t

P4C24H72ClzMn N12012

Mn(C10 4)2[{(CH3)2N}3PO]4

1965, 132H

Mo PCloH9MoO8 PCI1HlsMoN305 PC13H23MoN302 PC14HzsMoN30

[PO3C5H9],Mo(CO) 5 P[NCH3) 2]3.Mo(CO) 5 P[N(CH3) 2]3.Mo(CO) 2(CsHs) P[N(CH3)2]3.Mo(CO)(C7HT)

1965, 129H 1963, 38H 1963, 38H 1963, 38H

[(CH3)2P.Mo(CO) 4]2 [(CH3)4P2.Mo 2(CO) 1o] [PO3C5H912.Mo(CO)4 [(CsHs)MoH(CO)2 .P(CH3)]2 [Mo(CO) 2(CsHs)] P2C16H36MoN60~ {P[N(CHs)213)2.Mo(CO) 4 P2C18Hz2Mo204 [(CsHs)(CO)2Mo .P(CH3) z]z P2C38H30Mo204 [(CsHs)(CO)2Mo .P(C6Hs)z]z P2ClaH12Mo2Os P2C14H12Mo208 P2C14H18MoO1o P2C16H17Mo204

1964, 25,47H 1964, 25, 47H 1965, 129H 1963,20H 1963,38H 1963,20; 1964, 5t H 1964, 51H

Ni

PC3F3NiO3

Ni(CO) 3.PF3

1965, 23 F

G. MAVEL

348

FORMULAINDEXV. RESONANCESTUDIESON METALCOMPLEXES Formula

Complex

References

PCsH9NiO6 PC21H2oC1Ni PC22H22C1Ni PC28H29NiO4 PC31H35NiO4 PC34HslI3NNi

[PO3CsH9] .Ni(CO)3 [(CH2)2CH]NiC1.P(C6Hs)3 [(CH2)2CCHa]NiC1.P(C6Hs) 3 [{CH3C(O))2CH]2Ni .P(C6Hs)3 [{CH3C(O)}2CH]2Ni.P(CH3 .C6H4)3 [(C4H9)4N][(C6Hs)3P.NiI3]

1965, 129H 1961, l l H 1961, l l H 1964, 53aH 1964, 53aH 1964, 59; 1965, 6 9 H

P2C2F6NiO2 P2C1oHa2Ni20 6 P2C12H lsNiOs P2C14H22Ni2 P2C14H36N6NiO2 P2C34H3oNi2 P2C36H3oBr2Ni P2C36H3oCI2Ni P2C36H3oI2Ni P2C42H52Br2Ni P2C52H6612NNi

Ni(CO) 2(PF3)2 [Ni(CO) 3.P(CH3) 212 [(C5H5) .NiP(CH3)2]2 Ni(CO) 2 .{P[N(CH3)213}2 [(CsHs)Ni.P(C6Hs)2]2 NiBr2. [P(C6Hs)312 NiC12. [P(C6Hs)312 Nil2. [P(C6Hs)312 NiBr2. [P(CH3 .C6H4)312 [(C4H9)4N][NiI2.{P(C6Hs)3}2]

1965, 23 F 1964, 4 7 H 1965,129H 1963, 20; 1964, 51 H 1963, 38H 1963, 20; 1964, 51 H 1964, 58H 1964, 58H 1964, 58H 1964, 58H 1964, 59H

P3CF9NiO P3C16H27NiOlo

Ni(CO)(PF3)3 [PO3CsH9]3.Ni(CO)

1965, 23 F 1965, 129 H

P4CzoH36NiOI2 P4C24H72C12N12 NiO12 P4F12Ni

[PO3C$H9]4Ni

1965, 61 129H

Ni(C10 4)2[{(CH3)2N}aPO]4 (PF3)aNi

1965, 132H 1965, 23, 123 P, F

Os P4C2oH49C1Os

OsHCI{C2H4[P(C2Hs)2]2}2

1960, 2 H

Pd PC22H22CIPd PC24H24CIOPd

PdCI[(CH2)2CCH3] .P(C6Hs)3 PdCI[{CH3C(O)}2CH].P(C6Hs) 3

1965, 95H 1962, 32aH

P2CI6H2212Pd

PdI2(P(CH3)2(C6Hs)}2

•963, 36 H

P4C8H26C12Pd2 P4F12Pd

[PdCI{P(CH3)2}(HP(CH3)2}]2 Pd(PF3) 4

1964, 4 6 H 1965, 123 P, F

Pt P2C12H31BrPt

PtHBr. [P(CzHs)312

P2C12H31C1Pt

PtHC1. [P(C2Ft5)312

1962, 6a; 1964, 16; 1965, 96H 1957, 3; 1962, 6a; 1964, 16; 1965, 96

P2C12H3tlPt

PtHI. [P(C2Hs)a]z

PzC12H31NO2Pt

PtH(NO2). [P(C2Hs)312

[PO3C5H912.Ni(CO)2

H

1962, 6a; 1964, 16; 1965,96H 1962, 6a; 1964, 16; 1965, 96H

349

STUDIES OF PHOSPHORUS COMPOUNDS FORMULAINDEXV, RESONANCESTUDIESON METALCOMPLEXES Formula

Complex

References

Pt(NCS)(FC6H4)[P(CEH 5)3]2 Pt(CHa)(FC6H4)[P(C 2H5)312 Pt(FC6H4) 2[P(C2H5)3]2 Pt(C6H5)(FC6H4)[P(C2Hs)3]2

1962, 6a; 1964, 16; 1965, 9 6 H 1965, 9 6 H 1962, 6a; 1964, 16; 1965, 9 6 H 1962, 6a; 1964, 16; 1965, 9 6 H 1963, 36H 1964, 75aH 1964, 75aH 1964, 75aH 1964, 75aH 1964, 75aH 1964, 75aH 1964, 75aH 1964, 75aH

Re P2C2oH3oC13ReO P2C2oH3oC14Re P2C36H35Re

ReOC13. [P(C2Hs)2(C6H5)]2 ReC14. [P(C2H5)2(C6H5)]2 ReH5. [P(C6H5)312

1964, 2 3 H 1964, 2 3 H 1964, 62cH

P3C24H33C13Re P3C54H5oRe

ReC13[P(CH3)2(C6H5)]3 ReH5[P(C6Hs) 3]3

1965, 118H 1964, 62cH

Rh P3C24H33C13Rh P3C54H45C1Rh P3C55H46ORh

RhC13[P(CH3) 2(C6H5)]3 RhCI[P(C6H5) 3]3 RhH(CO)[P(C6H5)3]3

1965, 118I-1 1965, 135H 1963, 4 H

Ru P3C24H33C13Ru P3C31H46C1Ru

RuC13[P(CH3) 2(C 6H5)]3

RuHCI(CO )[P(C2H 5)2(C6H5)]3

1965, 118H 1960, 3 H

P 4C 12H34Ru P4C 18H38Ru P4C20H49C1Ru P4C22H40Ru P4C22H42Ru

RuH2[{(CH3) 2PCH2}2]2 RuH(C6H5)[{(CH3) 2PCH2}2]2 RuHCI[C2H4{P(CEH 5)2}212 RuH(fl-C aoH 7)[{(CH3)2PCH2) 2]2 RuH(C 1oH9)[{(CH3)2PCH2}2]2

1965, 19H 1965, 19H 1960, 2 H 1965, 19H 1965, 19H

V PC14H23N303V

V(CO)3(C5Hs) .P[N(CH3) 2]3

1963, 38H

W PCloH9OsW

[PO3C5H9]W(CO)5

1965, 129 H

P2C12H12OsW2 P2C14H12OloW2

[W(CO)4.P(CH3)2]z [W(CO)5.P(CH3)2]2

1964, 25, 47 H ! 1965, 129 H

P2C 12H31NOaPt

PtH(NO3). [P(C2H5)312

PEClaH31NOPt P2ClaHalNPt

PtH(CNO). [P(C2Hs)312 PtH(CN). [P(C2H5)312

P2C13H31NPtS

PtH(NCS). [P(C2Hs)312

P2C 16H22C12Pt P2C 18I-I34BrFPt P2C 18H34C1FPt P2C 18H34FIPt P2CI9H34FNPt P2C19H34FNPtS P2C19H37FPt P2C24H38F2Pt P2C24H39FPt

PtC12[P(CH3) 2(C 6H5)]2 PtBr(FC6H4)[P(C2H 5)3]2

PtCl(FC6H4)[P(C2H5)3]z PtI(FC6H4)[P(CEH5)3] 2

Pt(CN)(FC6H4)[P(C 2Hs)3]2

G. MAVEL

350

FORMULAINDEX V. RESONANCESTUDIESON METALCOMPLEXES

Formula

Complex

References

P2C14HlsOloW P2C 16H36N60 4W P2C18H2204W2 P2C 3sH3oO4W2

[PO3CsH912W(CO)4 [W(CO)4{P[N(CH3)213}2] [W(CO)2(C5H5).P(CH3)2]2 [W(CO)2(CsHs) .P(C6Hs) 212

1965, 129H 1963, 38H 1963, 20; 1964, 51 H 1964, 51H

Zn P4C24H72C12N12 O12Zn

Zn(CIO 4)2[{(CH3)2N}3PO]4

1965, 132H

REFERENCES Titles of papers are quoted where they have a direct bearing on the subject of this Chapter. 1950 1. R. NEWMAN, Proton nuclear magnetic resonance studies in KH2PO4, KH2AsO4, NH4H2PO4 and NH4H2AsO4, J. Chem. Phys. 18, 669 (1950). 1951 1. H. S. GUTOWSKYand D. W. McCALL, Nuclear magnetic resonance fine structure in liquids, Phys. Rev. 82, 748 (1951). 2. H. S. GUTOWSKY, D. W. McCALL and C. P. SLICHTER,Coupling among nuclear magnetic dipoles in molecules, Phys. Rev. 84, 589 (1951). 1953 1. H. S. GUTOWSKY,D. W. MCCALLand C. P. SLICHTER, Nuclear magnetic resonance multiplets in liquids, J. Chem. Phys. 21, 279 (1953). W. E. QUINN and R. M. BROWN, Nuclear magnetic resonance splittings in weak fields, J. Chem. Phys. 21, 1605 (1953). 1954 1. L. PRATTand R. E. RICHARDS,Nuclear magnetic resonance spectra of phosphonium iodide and phosphonium bromide, Trans. Faraday Soc. 50, 670 (1954). 2. A. SAIKAand C. P. SLICHTER,J. Chem. Phys. 22, 26 (1954). 1955 1. J.N. SHOOLERY,The relation of high resolution nuclear magnetic resonance spectra to molecular structure, D~c. FaradaySoc. 19, 215 (1955). 1956 1. R. E. GLICKand A. A. BOTHNER-BY,Fine spIittings in the nuclear magnetic resonance spectra of alkyl derivatives, J. Chem. Phys. 25, 362 (1956). la. L. KOLDITZ,Z. anorg, allg. Chem. 286, 307 (1956); 284, 144 (1956).

STUDIES OF PHOSPHORUS COMPOUNDS

351

N. MULLER, P. C. LAUTERBURand J. GOLDENSON, Nuclear magnetic resonance spectra of phosphorus compounds, J. Amer. Chem. Soc. 78, 3557 (1956). 3. T. S. PIPER and G. WILKINSON,Alkyl and aryl derivatives of cr-cyclopentadienyt compounds of chromium, molybdenum, tungsten and iron, J. Inorg. Nucl. Chem. 3, 104 (1956). 4. J. R. VAN WAZER, C. F. CALLIS, J. N. SHOOLERYand R. C. JONES, Principles of phosphorus chemistry. II. Nuclear magnetic resonance measurements, J. Amer. Chem. Soc. 78, 5715 (1956). 2.

1957 1. A. B. BURG and W. A. MAHLER,A new synthesis of bis-trifluoromethylphosphine (CF3)2PH, J. Amer. Chem. Soc. 79, 4242 (1957). 2. C . F . CALLIS,J. R. VAN WAZER, J. N. SHOOLERYand W. A. ANDERSON,Principles of phosphorus chemistry. IlL Structure proofs by nuclear magnetic resonance, J. Amer. Chem. Soc. 79, 2719 (1957). 3. J. CI~ATT, L. A. DUNCANSONand B. L. SHAW, A volatile chlorohydride of platinum, Proc. Chem. Soe. 1957, p. 343. 3a. L. KOLDITZ,Z. anorg, allg. Chem. 293, 147 (1957). 4. P . C . LAUTERBtm, 13C nuclear magnetic resonance spectra, J. Chem Phys. 26, 217 (1957). 5. J . M . ROCARD,R6sonance magn&ique nucl6aire ~t 8,4kc/s. Sensibilit6 et applications d'un spectrom6tre sans modulation B.F., Arch. Sci., Gendve 10, 209 (1957). 6. D. Rotrx, Interactions indirectes de spin ell r6sonance nucl6aire dans les champs faibles, Arch. Sci., Geneve 10, 217 (1957). 7. D. RoLrx and G. J. BENE, NucIear magnetic resonance splittings in very weak fields (35-15 gauss), J. Chem. Phys. 26, 968 (1957). 8. R . W . TArT et al., J. Amer. Chem. Soc. 79, 1045 (1957). 1958 1. H. FINEGOLD, Complementary use of nuclear magnetic resonance and infra-red absorption studies in organic phosphorus chemistry, Ann. N.Y. Acad. Sci. 70, 875 (1958). 2. P.J. FRANK,Couplages indirects de spins nucl6aires dans des mol6cules comportant des liaisons F-P et H-P, Helv. Phys. Aeta 31,542 (1958). 3. A . A . MOROZOV, A. V. MEL'NIKOV and F. I. SKRIPOV, Methods of free nuclear induction in weak magnetic fields applied to some problems of high resolution radiospectroscopy, Iyv. Akad. Nauk S.S.R, Ser. Fiz. 22, 1141 (1958) (in Russian; C.A. 53, 865b). 4. D. ROLrX, Interactions indirectes entre spins nucl6aires dans les champs faibles, ThOse, GenOve, 1958. 5. W . G . SCHNEIDER,H. J. BERNSTEINand J. A. POPLE, Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules, J. Chem. Phys. 28, 601 (1958). 5a. R. W. TArT et al., J. Amer. Chem. Soe. 80, 2436 (1958). 6. T. YAMASAKr, On the preparation of 0, 0 dialkyl hydrogen thiophosphonate (In Japanese). Nippon Kagaku Zasshi 79, 832 (1958). Cf. 1959, 9. 1959 1. D. P. AMES,S. OHASI-n,C. F. CALLISand J. R. VAN WAZER, Principles of phosphorus chemistry. IV. The system of fluorophosphoric acids, J. Amer. Chem. Soc. 81, 6350 (1959). 2. R. C. AXTMANN,W. E. SI-IVLERand J. H. EBERLY, IH--31p spin coupling in trialkylphosphates, J. Chem. Phys. 31,850 (1959). 3. G. O, DLrDEK and F. H. W E S X I ~ R , The solvolysis of tetrabenzylpyrophosDhate. J. Amer. Chem. Soc. 81, 2641 (1959).

352 4. 5. 6. 7. 8. 8a. 9.

a. MAVEL A. HENGLEIN,Preparative radiation chemistry: New syntheses of dichloro-phosphines and nitroso compounds, Large Radiation Sources in Ind., Proc. Conf. Warsaw 2, 139 (1959). R . A . Y . JONES, A. R. KATRITZKYand J. MICHALSKI, The structure of tetraethyl monothiopyrophosphate and monoseleno pyrophosphate, Proc. Chem. Soc. 1959, p. 321. G. MAWL, R6sonance magn6tique nucl6aire du proton dans divers compos6s du phosphore, Compt. Rend. 248, 3699 (1959). E . L . MUETTERTIESand W. D. PHILLIPS,Structure and exchange processes in some inorganic fluorides by nuclear magnetic resonance, J. Amer. Chem. Soc. 81, 1084 (1959). B . B . MURRAYand R. C. AXTMANN,Water content of tributyl-phosphate by high resolution nuclear magnetic resonance, Anal. Chem. 31, 450 (1959). R. W. TAFT et al., J. Amer. Chem. Soc. 81, 4342, 4353 (1959). T. YAMASAKI,Preparation and properties of alkyl phosphonothioates (RO)2P(S)H, Sci. Rpts. Research Inst. Tohoku Univ. A l l , 73 (1959).

1960 1. H. A. BENT, Canad. J. Chem. 38, 1235 (1960); Chem. Revs. 60, 275 (1960). la. R. S. BERRY, J. Chem. Phys. 32, 933 (1960). lb. R. BLINC and D. HAD~I, Infra-red and proton magnetic resonance spectra of solid substances containing very short hydrogen bonds, Spectrochim. Acta 16, 852 (1960). lc W. BRttGEL, T. ANKEL and F. KRt3CK~BERG,Der Kernresonanzspektrum der Vinylgruppe, Z. elektroch. 64, 1121 (1960). 2. J. CrIATT, F. A. HART and R. G. HAYTER,Some new hydrides of iron and osmium, Nature 187, 55 (1960). 3. J. CHATT and B. L. SHAW, A novel route tO hydrido and carbonyl complexes of transition metals, Chem. Ind. 1960, p. 931. 4. A. DAVISONand G. WILKINSON,Protonation of transition metal carbonyl complexes, Proc. Chem. Soc. 1960, p. 356. 5. G. O. DUDEK, 1H-31P spin coupling in phosphate esters, J. Chem. Phys. 32, 624 (1960). 6. A. ERBEIA,Interactions indirectes de spins en champ faible, dans l'acide phosphoreux, Compt. Rend. 251, 1493 (1960). 7. A. ERBEIAand G. BENZ, Interactions indirectes de spin et croisement de fr6quences dans l'acide hexafluorophosphorique, Compt. Rend. 250, 3467 (1960). 8. H. FINEGOLD,Structure of O - O ' diethyl-methyl-phosphonothioate and conjugative properties of the P = S bond, J. Amer. Chem. Soc. 82, 2641 (1960). 9. J. HENNEQUIN,Exp6riences de r6sonance nucl6aire en champ faible sur un courant de liquide, Arch. Sci., Gendve 13, 634 (1960). 9a. R. A. HOrFMAN,J. Chem. Phys. 33, 1256 (1960). 10. R. R. HOLMESand J. A. FORSTNER,A new class of phosphorus-nitrogen compounds, J. Amer. Chem. Soc. 82, 5509 (1960). 11. F. HOSSENLOPP, M. McPARTLIN and P. J. EBEL, Recherches sur les acides phosphoreux condens6s, Bull. Soc. Chim. Fr. 1960, p. 791 ; (see 1965, 57). l l a . R. F. HUDSONand L. KEAY, J. Chem. Soc. 1859, 1865 (1960). 12. B. B. HUNT, B. C. SAUNDERSand P. SIMPSON, Esters of ethynylphosphonic acids, Chem. Ind. 1960, p. 47. 13. C. D. JARDnTZKY and O. JARDETZKY, Investigation of the structure of purines, pyrimidines, ribose nucleosides and nucleotides by proton magnetic resonance, iI, J. Amer. Chem. Soc. 82, 222 (1960). 14. M. LEPAGE,R. ]~VIUMMAand A. A. BENSON, Plant phospholipids, iI. Isolation and structure of glycero phosphoryl inositol, J. Amer. Chem. Soc. 82, 3713 (1960). 14a. F. A. LONG and P. BALLINGER,J. Amer. Chem. Soc: 82, 795 (1960). 15. R. M. LYNDEN-BELL,High resolution nuclear magnetic resonance spectra of diphosphine and monophosphine, Trans. Faraday Soc. 57, 888 (1961).

STUDIES OF PHOSPHORUS COMPOUNDS

353

16. W. MAHLERand E. L. MUETTERTIES,19F spectra of phosphorus (V) fluorides, J. Chem. Phys. 33, 636 (1960). 17. J. MICHALSKIand A. SKOWRONSKA,Organo-phosphorus compounds of sulphur and selenium. XVI. Dialkyl and alkylarylthiopyrophosphinates RR'P(S)OP(O)RR'. Action of hydrogen sulfide on dialkyl and alkylarylphosphonic chlorides, Roczn. Chem. 34, 1381 (1960). 18. E.L. MUETTERTIES,T. A. BITHER, M. W. FARLOWand D. D. COFrMAN,Chemistry of phosphorus fluorides, d. Inorg. Nucl. Chem. 16, 52 (1960). 19. G . W . PARSHALL, Synthesis of methyldichlorophosphine and dimethylchlorophosphine, d. Inorg. Nucl. Chem. 12, 372 (1960). 20. G. W. PARSHALL, A new synthesis of tetramethylethylenediphosphine, d. Inorg. Nucl. Chem. 14, 291 (1960). 21. E. SCH~VARZMANNand J. R. VAN WAZER,Preparation of pure pyrophosphorous acid, J. Inorg. NucL Chem. 14, 296 (1960). 21a. W. E. SHULER,Nitric acid species in tri-n-butyl phosphate solutions, A.E.C. Rept. DP 513, Sept. 1960. 22. W . E . SHULERand R. C. AXTMAN,Nuclear magnetic resonance spectra of trialkylphosphates and related compounds. I. Proton magnetic resonance spectra, A.E.C. Research and Development Rept. DP-474, 1960. 23. Catalogue o f N M R Spectral Data, MCA, Texas A and M University, College Station, 1960 (and following years). 1961 1. A. L. ALLRED and A. L. HENSLEY, Electronegativity of nitrogen, phosphorus, arsenic, antimony and bismuth, J. Inorg. Nucl. Chem. 17, 43 (1961). la. H. A. BENT, J. Inorg. Nucl. Chem. 19, 43 (1961). 2. G. BERKELHAMMER,S. DU BREUILand R. W. YOUNG, 0-0 dialkyl S-(carbamoylalkyl) phosphorodithioates, d. Org. Chem. 26, 2281 (1961). 2a. H. J. BERNSTEINand R. J. ABRAHAM,Canad. J. Chem. 39, 216 (1961). 3. A. B. BURG and W. MAHLER, Bicoordinate phosphorus: base--PCF3 adducts, J. Amer. Chem. Soc. 83, 216 (1961). 3a. A. C. CHAPMAN,D. H. PAINE, H. T. SEARLE,D. R. SMITH and R. F. M. WHITE, Phosphonitrilic derivatives. Part V. The triphosphonitrilic fluoride chlorides, J. Chem. Soc. 1961, p. 1768. 4. J. CHATT and R. G. HAYTER, Some hydrido complexes of iron (II), J. Chem. Soc. 1961, p. 5507. 5. M. COHN and T. R. HUGHES, Nuclear magnetic resonance spectra of adenosin diand triphosphate. IL Effect of eomplexing with divalent metal ions, J. Biol. Chem. 237, 176 (1962). 5a. D. W. J. CRUICKSHANK,J. Chem. Soc. 5486 (1961). 6. A. DAVlSON, M. L. H. GREEN and G. WILKINSON, zr-cyclopentadienyl- and cyclopentadiene-iron carbonyl complexes, J. Chem. Soc. 1961, p. 3172. 6a. G. O. DOAK and L. D. FREEDMAN,Chem. Rev. 61, 31 (1961). 7. M. EPSTEINand S. A. BUCKLER, A novel phosphorus heterocyclic system from the reactions of phosphine and primary phosphines with 2,4-pentanedione, J. Amer. Chem. Soe. 83, 3279 (1961). 8. H. FINEGOLD,private communication. 9. G.G. HAMMES,G. E. MAClELand J. S. WAUGH,The conformation of metal adenosinetriphosphate complexes in solution, J. Amer. Chem. Soc. 83, 2394 (1961). 10. P. R. HAMMOND, A.3.Isotope exchange measurement using nuclear magnetic resonance; B.1. Acid catalysis of the ionization of the P-H bond in diethyl phosphonate, U.C.R.L. Rpt. 9652, 1961. 11. R . F . HECK, J. C. W. CHIEN and D. S. BRESLOW,~z-allylchloro (triphenylphosphine) nickel, Chem. Ind. 1961, p. 986. 12. M . L . HEFWRNANand R. F. M. WHITE, The nuclear magnetic resonance spectra of triphosphonffrilic 1,1-difluoride-3,3,5,5-tetrachloride, J. Chem. Soe. 1961, p. 1382.

354

~. MAVEL

13. J.B. HENDRICKSON,Synthesis of a phosphorane heterocycle, J. Amer. Chem. Soc. 83, 2018 (1961). 14. J. ]3. HENDRICKSON,R. E. SPENGERand J. J. StMS, Synthesis of a pentacovalent arsenic heterocycle, Tetrahedron Letters, 1961, p. 477. 15. J. H_eNNEQUIN,Un spectrom6tre de pr6cision pour la r6sonance magn&ique des liquides en champ faible, Thesis, Paris, 1961. 16. R . R . HOLMES,Phosphorus nitrogen chemistry. III. The preparation and properties of phosphorus tri-N-methylimide, J. Amer. Chem. Soc. 83, 1334 (1961). 16a. M. KARVLUSand T. P. DAS, J. Chem. Phys. 34, 1683 (1961). 17. G. MARTINand G. MAWL, Etude par r6sonance magn6tique nucl6aire de compos6s organophosphor6s: II. CH3PCI2 et homologues, Compt. Rend. 253, 644 (1961). 18. G. MARTINand G. MAWL, Etude par r6sonance magn6tique nucl6aire de compos6s organophosphor6s: IV. C2HsP(X)C12 et homologues, Compt. Rend. 253, 2523 (1961). 19. G. MAVELand G. MARTIN,Etude par r&onance magn6tique nucl6aire de quelques compos6s organo-phosphor6s (I), Compt. Rend. 252, 110 (1961). 20. ]3. MILLERand T. P. O'LEARV,Reaction of thiourea with dialkylphosphates, Chem. Ind. 1961, p. 55. 21. C. MORIN,Applications de la r6sonance magn&ique nucl6aire ~tl'6tude des compos6s du phosphore, Bull. Soc. Chim. Fr. 1961, p. 1447. 22. P.T. NARASnV~JANand M. T. ROGERS,Proton magnetic resonance spectra of compounds of the type X(C2Hs)n. Relative signs of the X-H spin coupling constants, J. Chem. Phys. 34, 1049 (1961). 23. H.W. PATTON,NMR study of solvent effects on P-H coupling, Spectrochim. Acta, 17, 1105 (1961). 23a, M. M. RAUHUT,H. A. CURRrER,A. M. SEMSELand V. P. WYSTRACI-I,The free radical addition of phosphines to unsaturated compounds, J. Org. Chem. 26, 5138 (1961). 24. T.H. SIDDALL,C. A. PROHASKAand W. E. S~LER, Doubling of the proton magnetic resonances of certain organo-phosphorus compounds, Nature 190, 903 (1961). 25. ]3. SILVERand Z. Loz, Rates and mechanism of protolysis of trimethylphosphonium ion in aqueous solution studied by proton magnetic resonance, J. Amer. Chem. Soc. 83, 786 (1961). 26. A . R . STILES, C. A. REILLY, G. R. POLLARD, C. H. TIEMAN,L. F. WARD, D. D. PHILLIPS,S. B. SOLOWAYand R. R. WHETSTONE,Preparation, physical properties and configuration of the isomers in phosdrin insecticide, J. Org. Chem. 26, 3960 (1961). 27. J.B. STOTrmRSand E. Y. SVENCER,Nuclear magnetic resonance spectra of a vinyl phosphate and thionophosphate isomers (phosdrin and "thionophosdrin"), Canad. J. Chem. 39, 1389 (1961). 28. J.S. WAUGHand F. A. COTTON,Interpretation of the magnetic resonance spectrum of the methylene group in certain unsymmetrically substituted compounds, J. Phys. Chem. 65, 562 (1961). 29. R . F . M . WrlrrE in S. K. RAy and R. A. SHAW, Phosphorus-nitrogen chemistry. Part i. Alkylamino and dialkylamino derivatives ofcyclotriphosphazatriene, J. Chem. Soc. 1961, p. 872. 1962 1. R. J. ANGELICI,17. BASOLOand A. J. POE, Isomerism of disubstituted manganese

pentacarbonyl bromide, Nature 195, 993, (1962). 2. J.D. BALDESCHV~qELER,F. A. COTTON,B. D. N. RAO and R. A. SCHUNN,Preparation, nuclear resonance spectra and structure of bis(diethoxyphosphonyl) rnethano sodium, J. Amer. Chem. Soc. 84, 4454, (1962). 3. N. ]~ODEN,J. W. EMSLEY,J. FEENEYand L. H. SUTCLIFF~,NMR spectra of mercaptophosphazenes, Chem. Ind. 1962, p. 1909. 4. I.J. BOROW~TZand L. I. GROSSMAN,The reaction of ~-bromoketones with triphenyl phosphine I. A novel debromination reaction, Tetrahedron Letters 1962, p. 471. 5. S.A. BUCKLERand M. EPS~IN, Reactions of phosphine with ketones: a route to primary phosphine oxides, Tetrahedron 18, 1211 (1962)0

STUDIES OF PHOSPHORUS COMPOUNDS

355

S.A. BUCKLERand M. EPSTEIN,The preparation and reactions of primary phosphines oxides, Tetrahedron 18, 1221 (1962). 6a. J. CHAXTand B. L. SrlAW,Hydrido complexes of platinum (iI), J. Chem. Soe. 1962, p. 5075. 6b. H. DAVID, D.E.S. Paris, 1962. 7. H. DAVID,G. MARTIN,G. MAVELand G. STURTZ,Etude par r6sonance magn6tique nucl6aire de compos6s organo-phosphor6s. VIII. C6tophosphonates et compos6s similaires. Etude des groupements P(O)CHzC(O), Bull. Soc. Chim. Ft. 1962, p. 1616. 8. J.E. DRAKEand W. L. JOLLY, High resolution proton magnetic resonance spectra of silylphosphine, silyl arsine, germyl phosphine and germyl arsine, Rpt. UCRL 10422, 1962. 9. W. DV,~NTrIand A. LO~WENSTEIN,Mechanism of reactions of unsaturated ethers and thioethers. VI. Nuclear magnetic resonance studies of acetylenic ethers and thinethers, Ree. Tray. Chim. 81,635 (1962). 10. D. FIAT, M. HALMA~'~,L. KUGELand J. REtraiN, The synthesis and nuclear magnetic resonance spectrum of methylphosphinic acid, J. Chem. Soe. 1962, p. 3837. 11. S.J. FITC~ and K. MOEDRrrZER,NMR study of the P--C--(OH)--P to P--C---O--P rearrangement: tetraethyM-hydroxyalkylidene diphosphonates, J. Amer. Chem. Soc. 84, 1876 (1962). 12. M. Gm~LAGrmRand F. G. MAW, The structure and properties of certain polycyclic indolo- and quinolo-derivatives. Part XV. Derivatives of 1-phenyl 4-piperidone and its phosphorus and arsenic analogues, J. Chem. Soe. 1962, p. 5110. 13. M. L. H. GREEN and J. T. MOELWYN-Hu~n~S, A binuclear carbonyl hydride of manganese, Z. Naturforseh. 17b, 783 (1962). 14. L . C . D . GROENWEGHE,L. MAIERand K. MOEDmTZER,Nuclear magnetic resonance studies of the 31p nucleus in phosphorus compounds, Y. Phys. Chem. 66, 901 (1962). 15. L.I. GROSSMAN,The reactions of tripheuylphosphine with halocyclohexanones. A new debromination reaction of secondary bromoketones Baskerville Chem. J. (City College, N. Y.) 11, 9 (1962). (C.A., 58, 6856c). Cf. 1962, 4. 16. P. R. HAMMOND,Ionisation of the PH bond. Deuterium exchange studies with diethyl and ethyl hydrogen phosphonate, J. Chem. Soe. 1962, p. 1365. 17. P.R. HAMMOND,Nuclear magnetic resonance of the methyl esters of some inorganic acids, J. Chem. Soe. 1962, p. 1370. 18. R.R. HOLMESand J. A. FORSTNER,Phosphorus nitrogen chemistry. V. New synthetic routes leading to oxidized phosphorus nitrogen structures, Inorg. Chem. 1, 89 (1962). 19. B.I. IONIN and A. A. PeTrtov, Arbuzov rearrangement involving acetylenic halides with the halogen atom at the triple bond, Zh. Obseh. Khim 32, 2387 (1962). J.Gen. Chem. USSR, 32, 2355 (1962). 20. R. A. Y. JONES and A. R. KATRITZKY,Phosphorus nuclear magnetic resonance spectroscopy, Angew. Chem. Intern. 1, 32 (1962). 20a. G. KLOSE,Ann. Phys. (Leipzig) 9, 262 (1962). 21. V.A. KU~TIN, K. M. KmILLOVA.R. R. SnA~mULLIN,YU. YU. SAMITOV,N. A. LYAZ~A and N. F. RAKOVA,Some new forms of regrouping of Arbuzov. XIV. Investigation of the addition products of trialkyl phosphites and diacetyl by physical methods, Zh. Obseh. Khim. 32, 2039, 1962; Y. Gen. Chem. USSR 32, 2020 (1962). 22. Z. Loz and/3. SmWR, NMR study of the exchange of phosphorus bonded hydrogen in dimethyl and diethyl phosphonate, catalyzed by acetate ion, J. Amer. Chem. Soc. 84, 1095 (1962). 23. J. J. McBRn3E, E. JUNGEgMANN,J. V. K~Lr~FrER and R, J. CLUTTER,A new phosphorylation reaction of olefins. IL A novel synthesis of a four membered phosphorus containing compound, Y. Org. Chem. 27, 1833 (1962). 24. V. MARK,A facile SNi rearrangement: the formation of 1,2-alkadienyl phosphonates from 2-alkynyl phosphites, Tetrahedron Letters, 1962, p. 281. 25. G. MARTINand G. MAVEL,Etude par r6sonance magn6tique nucl6aire de compos6s organo-phosphor6s. VI. Groupements (CH3)zNP et (CzHs)zNP, Compt. Rend. 255, 2095 (1962). 6.

356 26. 26a. 27. 28. 29. 30. 31. 32. 32a. 33. 33a. 34. 34a. 35.

36. 37. 38. 39.

G. MAVEL G. MARTINand G. MAVELAnalyse de compos6s organo-phosphor6s par resonance magn6tique nucl6aire du proton, Comm. 116 Colloque Amp6re, in Magnetic and Electric Resonance and Relaxation, J. Smidt ed., North Holland, 1962. M. MARTIN,Thesis, Paris 1962. C.N. MATTHEWS,J. S. DRISCOLL,J. E. HARRISand R. J. WINEMAN,Photochromism in mesomeric phosphonium salts, d. Amer. Chem. Soc. 84, 4349 (1962). G. MAVEL, R61e de l'hybridation du second ordre et de l'61ectron6gativit6 des carbones dans la transmission des couplages spin-spin en r6sonance nucl6aire du proton, d. Chim. Phys. 59, 683 (1962). G. MAVELand G. MARTIN,Etude par r6sonance magn&ique nucl6aire de compos& organo-phosphor6s. V. Groupements C2HsOP et C2HsSP, Compt. Rend. 254, 260 (1962). G. MAVELand G. MARTIN,Etude par r6sonance magn&ique nucl6aire de compos~s organo-phosphor&. III. Groupement CH3OP et CH3SP, J. Chim. Phys. 59, 762 (1962). G. MAWL, G. MARTIN, H. DAvm and A. BESNARD,Travaux in6dits, 1962, 1963; also, G. MAVELand G. MARTIN,Rpt. D R M E 158, 1962, Dec. 1963. K. MOEDRITZER,L. MAIER and L. C. D. GROENWEGHE,Phosphorus-31 nuclear magnetic resonance spectra of phosphorus compounds, J. Chem. Eng. Data 7, 307 (1962). G. W. PARSHALLand G. WILKINSON, Mesityl oxide complexes of palladium and platinum, Chem. Ind. 1962, 261 and Inorg. Chem. 1, 896 (1962). E. PITCHER,A. D. BUCKINGHAMand F. G. A. STONE,Spectroscopic study of organo metallic compounds. V. Fluorine nuclear magnetic resonance spectra of some perfluoroalkyl and perfluoroacyl metal compounds, J. Chem. Phys. 36, 124 (1962). J. A. POI,LE, Discuss. Faraday Soc. 34, 7 (1962). E. A. ROBINSON, The preparation and Raman spectrum of diphosphoryl tetrafluoride: comparison with the spectrum of diphosphoryl tetrachloride, Canad. J. Chem. 40, 1725 (1962). R. A. SHAW,B. W. FITZSIMMONSand B. C. SMITH, The phosphazenes (phosphonitrilic compounds), Chem. Revs. 62, 247 (1962). T. S. SIDDALLand C. A. PROHASKA,Conformation of organophosphorus compounds. I. Proton magnetic resonance studies of some phosphinates, phosphinic acids, phosphinyl chlorides and phosphonyl dichlorides, d. Amer. Chem. Soc. 84, 2502 (1962). T.H. SIDDALLand C. A. PROHASKA,Conformation of organophosphorus compounds. II. Proton magnetic resonance studies of some phosphites, phosphonites, phosphates, phosphonates and additional phosphinates, d. Amer. Chem. Soc. 84, 3467 (1962). S. TRIPPETT, Phosphine imide dimers, d. Chem. Soc. 1962, p. 4731. MARIANASSOCIATES,High Resolution N M R Spectra Catalog, Vol. 1, 1962. J.G. VERKADEand R. W. KING, Phosphorus nuclear magnetic resonance spectra of polycyclic phosphorus compounds, Inorg. Chem. 1,948 (1962).

1963 1. A.A. AGUIAR,J. GIACINand H. J. GREENBERG,Reaction of lithium diphenylphosphide and carbonyl compounds, J. Org. Chem. 28, 3545 (1963). 2. G. ALLEN, M. BARNARD, J. EMSLEY,N. L. PADDOCKand R. F. M. WHITE, Trimeric and tetrameric phosphonitrilic fluoride chlorides, Chem. Ind. 1963, p. 952. 3. W . A . ANDERSON,R. FREEMANand C. A. REILLY,Assignment of NMR spectra with the aid of double quantum transitions, J. Chem. Phys. 39, 1518 (1963). 3a. E. B. BAKERand L. W. BURD,Frequency-swept and proton-stabilized NMR spectrometer for all nuclei using a frequency synthesizer, Rev. Scient. Instr. 34, 238 (1963). 3b. E. B. BAKER,L. W. BURDand G. N. ROOT,Two synthesizer nuclear spin decoupling, INDOR spectroscopy, Rev. Sci. Instru. 34, 243 (1963). 4. S.S. BATHand L. VASKA,Five coordinate hydrido-carbonyl complexes of rhodium and iridium and their analogy with Coil(CO)4, J. Amer. Chem. Soc. 85, 3500 (1963).

STUDIES OF PHOSPHORUS COMPOUNDS

357

4a. G. J. B~Ng, Chim. Anal. 45, 162 (1963). 5. G. J. Bf~N~, E. DUVAL, A. FINAZ and G. HOCHSTRASSER,R&onance magn6tique nucl6aire. Spectres de haute r6solution dans le champ magn&ique terrestre, Compt. Rend. 256, 2365 (1963). 6. G. J. B~N~, E. DURAL, A. FINAZ, G. HOCrlSTRASSERand S. KOIDE, R6sonance magn6tique nucl6aire des compos6s organo-phosphor6s dans Ie champ magn&ique terrestre: couplages 31P--1H, Phys. Lett. 7, 34 (1963). 7. W.G. BENTRUDEand E. R. WTIT, Trialkylphosphites: novel ring opening reactions with dimethylketone dimers, J. Amer. Chem. Soe. 85, 2522 (1963). 8. A. BESNARO, Etude par r6sonance magn6tique nucl6aire de mol6cules organophosphor6es h l'&at pur et en solution, D.E.S. Paris 1963. 9. G.M. BOGOLYUBOVand A. A. PETROV,Styrylphosphine, Zh. Obseh. Khim. 33, 3774, 1963; J. Gen. Chem. USSR, 33, 3710 (1963). 10. E. BULLOCKand D. G. TucK, Interaction of tri-n-butyl phosphate with water, Trans. Faraday Soc. 59, 1293 (1963). 11. R. BURGADA,G. MARTINand G. MAVEL,Etude par r6sonance magn&ique nucl6aire de compos6s organo-phosphor6s. X. Etude de la cin&ique de l'alcoolyse de la tris (dimethylamino) phosphine, Bull. Soe. Chim. Ft. 1963, p. 2154. l la. L. L. BURGER,The neutral organo-phosphorus compounds as extractants, Nuel. Se. Eng. 16, 428 (1963). 12. H. A. CrmlST and P. DIEHL, L6sungsmitteleinflfisse und spin-kopplungen in der Kernmagnetischen Resonanz yon 170, Helv. Phys. Aeta 36, 170 (1963). 13. F.A. COTTONand R. A. SCmrNN, Metal salts and complexes of dialkoxyphosphonyl acetylmethanide ions, J. Amer. Chem. Soe. 85, 2394 (1963). 14. C. DOREMnEux-MoRINand G. MARTIN, Etude par r6sonance magn6tique nucl6aire des solutions organiques d'acide phosphorique, J. Chim. Phys. 60, 1341 (1963). 15. J.E. DRAI~ and W. L. JOLLY,Proton magnetic resonance spectra of silyl phosphine, silyl arsine, germyl phosphine and germyl arsine, J. Chem. Phys. 38, 1033 (1963). 16. J . R . FERRAROand D. F. PEPPARD, Proton magnetic resonance studies of acidic organo-phosphorus compounds, J. Phys. Chem. 67, 2639 (1963). 16a. E. FLOCK, Der Kernmagnetisehe Resonanz und ihre Anwendung in der Anorganisehen Chemic, Springer, 1963. 16b. A. FRATIELLOand E. W. ANDERSON,Kinetic study of the HzPOOH-D20 exchange by nuclear magnetic resonance, J. Amer. Chem. Soe. 85, 519 (1963). 17. M. GREEN, The preparation and properties of diethyl methyl thiomethyl phosphonate, J. Chem. Soe. 1963, p. 1324. 18. M. GREEN, The reaction of bicyclo(2,2,1)heptadiene with methylphosphorus dichloride, Proc. Chem. Soc. 1963, p. 177. 19. M . L . H . GREENand P. L. I. NAVY, Protonation of cyclopentadienyl-a-cyclopentadienyl dicarbonyl iron, Z. Naturforseh 18b, 162 (1963). 20. R. G. HAYTER, Phosphorus and arsenic bridged complexes of metal carbonyls. II. Cyclopentadienyl-nickel, molybdenum and tungsten complexes, Inorg. Chem. 2, 1031 (1963). 20a. R. G. HAYTER, Phosphorus and arsenic bridged complexes of metal carbonyls. I. Cyclopentadienyl iron complexes, J. Amer. Chem. Soe. 85, 3120 (1963). 21. R . F . HECK, The addition of acyl and alkyl cobalt carbonyls to conjugated dienes, J. Amer. Chem. Soe. 85, 3381 (1963). 22. W. A. HENDERSON,M. EPSTEINand F. S. SEICHTER,Some aspects of the chemistry of cyclopolyphosphines, ]. Amer. Chem. Soc. 85, 2462 (1963). 23. J. B. HENDRICKSON,R. E. SPENGERand J. J. SLMS,The reactions of triphenyl phosphine and arsine with dimethyl acetylenedicarboxylate, Tetrahedron 19, 707 (1963). 24. R. C. HINTON, F. G. MANN and D. TODD, The abnormal hydrolysis of certain fl-(diarylphosphino) propionic esters. Part I, d. Chem. Soe. 1963, p. 5454. 25. R. R. HOLMESand R. P. CARTER,A displacement study and proton nuclear magnetic resonance investigation of the relative base strength of the dimethyl amino phosphines with triethylborane, Inorg. Chem. 2, 1146 (1963).

~J

358

G. MAWL

26. R . R . HOLMESand J. A. FORSTNER,Phosphorus nitrogen chemistry. VI. Preparation and properties of thiophosphorus tri-n-methylimide, P4SgN6(CH3)6, Inorg. Chem. 2, 377 (1963). 27. R . R . HOLMESand J. A. FORSTNER,Phosphorus-nitrogen chemistry. VII. Reactions of phosphorus trichloride, phosphoryl chloride and thiophosphoryl chloride with primary amines, Inorg. Chem. 2, 380 (1963). 28. R . R . HOLMESand W. P. GALLAGHER,The preparation and Fluorine-19 nuclear magnetic resonance investigation of the phosphorus chlorofluorides, Inorg. Chem. 2, 433 (1963). 29. P. E. HORN and E. ROTHSTEIN,The reactions of organic derivatives of elements capable of valency-shell expansion. Part VII. Further experiments with quaternary phosphonium salts, J. Chem. Sue. 1963, p. 1036. 30. W.D. HORROCKSand G. N. LA MAR, Spin densities in tetrahedral cobalt complexes by nuclear magnetic resonance contact shifts; evidence for a pseudo-contact interaction, J. Amer. Chem. Sue. 85, 3512 (1963). 31. H.O. HOUSEand H. BABAD,A new synthesis of cyclic ketones, J. Org. Chem. 28, 90 (1963). 32. R . F . HUDSONand P. A. CHOI'ARD,The preparation of chloromethyl vinyl ketones, 3. Org. Chem. 28, 2446 (1963). 33. B. I. IONIN, V. B. LEBEOEVand A. A. PETROV, Esters of phosphonic acids with diacetylenic radicals, Dokl. Akad. Nauk. S.S.S.R., 152, 1354 (1963), Proc. Acad. Sc. U.S.S.R., Chem. Section, 152, 831 (1963). 34. B.I. IoNn~ and A. A. PETROV, Prototropic isomerization of esters of alkenyl phosphonic acids, Zh. Obsch. Khim. 33, 432 (1963); 3". Gen. Chem. USSR, 33, 426 (1963). 35. B. I. IO~N and A. A. PETROV, Investigation in the field of conjugated systems. CLXXIII. Synthesis and properties of the ethyl esters of phosphonic acids with enyne radicals, Zh. Obsch. Khim. 33, 2863 (1963); J. Gen. Chem. USSR 33, 2791 (1963). 35a. O. JARDETZKY,N. G. WADEand J. J. FISCHER,Proton magnetic resonance investigation of enzyme-coenzyme complexes, Nature 197, 183 (1963). 36. J.M. JENKINSand B. L. S ~ w , Nuclear magnetic resonance method of determining the stereochemistry of tertiary-phosphine metal complexes, Proc. Chem. Soc. 1963, p. 279. 36a. E. T. KAISER,M. PANARand F. H. WESTm~rMER,J. Amer. Chem. Soc. 85, 602 (t963). 37. F. KA'eLAN,G. SINaH and H. ZIMM~R,Nuclear magnetic resonance spectroscopy. Long range phosphorus-31 hydrogen-1 spin-spin coupling, J. Phys. Chem, 67, 2509 (1963). 38. R. 13. KIN~, Complexes of trivalent phosphorus derivatives. II. Metal carbonyl complexes of tris (dimethyl-amino) phosphine, lnorg. Chem. 2, 936 (1963). 38a. Y. KO~AYASHI,L. A. CrIASlNand L. B. CLAPP, Chemistry of ethylene imine. X. Reactions with phosphorus nitrilo-chloride trimer, Inorg. Chem. 2, 212 (1963). 38b. W. KORYTNYKand R. P. SINGH,Proton magnetic resonance spectra of compounds in the vitamin 136 group, J. Amer. Chem. Soc. 85, 2813 (1963). 39. R . U . LEMmtrx and J. W. LOWN,The B-D-configuration of the ribosyl nicotinamide portion of diphosphopyridine nucleotide, Canad. or. Chem. 41, 889 (1963). 39a. C. R. McCoY and A. L. ALLm~D,Chemical shifts of the methyl derivatives of the representative elements, J. Inorg. NucL Chem. 25, 1219 (1963). 40. L. MAmR, Organische phosphor verbindungen. VIII. Die direkte Synthese von Alkyl-und Aryl-halogen phosphinen, HeM Chim. Acta 46, 2026 (1963). 41. S.L. MANATT,G. L. JUVINALLand D. D. ELLEMAN,The relative signs of phosphorus proton nuclear magnetic resonance coupling constants, J. Amer. Chem. Soc. 85, 2664 (1963). 42. F . G . MANN,B. P. TONGand V. P. WVSTRACH,The abnormal hydrolysis of certain fl-diarylphosphino-propionic esters. Part II. Correction and extension, J. Chem. Sac. 1963, p. 1155. 43. G. MARTINand A. BESNAm~,Etude par r6sonance magn6tique nucl6aire de l'effet

STUDIES OF PHOSPHORUS COMPOUNDS

359

de la dilution dans des solvants non polaires de compos6s organo-phosphor6s: variation de l'effet de couplage JHP, Compt. Rend. 257, 898 (1963). 44. G. MARTINand A. BESNARD,Etude par r6sonance magn6tique nucl6aire du pouvoir complexant des compos6s organo-phosphor6s, Compt. Rend. 257, 2463 (1963). 45. G. MAVELand G. MARTIN,Etude par r6sonance magn6tique nucl6aire de compos6s organo-phosphor6s. IX. Couplages 13C--ill dans divers compos6s m&hyl6s, Compt. Rend. 257, 1703 (1963). 46. G. MAVELand G. MARTIN,Etude par r6sonance magn6tique nucl6aire de compos6s organo-phosphor6s. VII. Groupements n e t i-C3H7. Spectres th6oriques du type A3(A'3)BX, J. Phys. Radium 24, 108 (1963). 47. J.A. MAYNARDand J. M. SWAN,Organo-phosphorus compounds. 1. 2-chloroalkylphosphonic acids as phosphorylating agents. II. Preparation of phosphonic acid esters using the dicyclohexylcarbodiimide reagent, Austral. J. Chem. 16, 596, 609 (1963). 48. G.R. MILLERand H. S. GtYIOWSKY,NMR study of the alkali hexafluorophosphates' dynamic structures, d. Chem. Phys. 39, 1983 (1963). Also G. R. MILLER,Thesis, Univ. Illinois, 1962; Diss. Abstr. 23, 462 (1962). 49. K. MOEDRITZER,G. M. BURCrI,J. R. VAN WAZERand H. K. HOrMEISTER,Principles of phosphorus chemistry. XIV. Interchanges in esters of monophosphorous acids, Inorg. Chem. 2, 1152 (1963). 50. T. MOELLERand S. G. KOKALIS,The Lewis base behaviour of some hexa-n-alkylamino-triphosphonitriles, J. Inorg. Nacl. Chem. 25, 875 (1963). 50a. T. MOELLERand P. NANNELLI,Identification of eis and trans tribomo triphenyl triphosphonitriles, Inorg. Chem. 2, 659 (1963). 51. E.L. MUETTERTIES,W. MAHLERand R. SCHMUTZLER,Stereochemistry of phosphorus (V) fluorides, Inorg. Chem. 2, 613 (1963). 52. R.P. NIELSENand H. H. SISLER,Hydrazino-phosphorus compounds. I. Preparation of some substituted hydrazino-phosphines, hydrazino-phosphine oxides and hydrazino-phosphine sulfides, Inorg. Chem. 2, 753 (1963). 53. J . F . NlXON, Fluorophosphines and fluorophosphoranes, Chem. Ind. 1963, p. 1555. 53a. A. A. OSWALD,K. GRIESBAUMand B. E. HUDSON,Organic sulfur compounds. IX. Addition of diethyl dithiophosphonic acid to dienes, d. Org. Chem. 28, 1262 (1963). 54. K. J. PACKER, The nuclear magnetic resonance spectra of some perfluoro-alkyl phosphorus derivatives, d. Chem. Sue. 1963, p. 960. 55. F. RAMmEZ and N. B. DESAI,Organic compounds with pentavalent phosphorus. viii. Cyclic unsaturated oxyphosphoranes from the reaction of tertiary phosphite esters with o-quinones and with c~-d~etones, J. Amer. Chem. Sue. 85, 3252 (1963). 56. F. RAM1REZ,N. ]3. DESAIand N. RAMANATI4AN,Cyclic phosphate esters from the hydrolysis of cyclic oxyphosphoranes. Evidence for pentavalent phosphorus in the oxyphosphoranes, or. Amer. Chem. Soc. 85, 1874 (1963). 57. F. RAMmEZ,N. B. DESAIand N. RAMANATHAN,A new carbon-carbon condensation via cyclic oxyphosphoranes. Tartaric acids from c~-keto esters, Tetrahedron Letters, 1963, p. 323. 58. F. RAMIREZ,N. RAMANATHAN,A. V. PATWARDHAN,N. B. DESAIand C. V. GRECO, A new synthesis of c~,fl-dihydroxy-),-ketoestersand of %fl-dihydroxyketones via cyclic oxyphosphoranes, J. Amer. Chem. Soc. 85, 3056 (1963). 59. F. RAMIREZ,N. RAMANATI-IANand N. B. DESAI,Cyclic saturated oxyphosphoranes and their hydrolysis to cyclic phosphate esters. The diastereo-isomeric 2: 1 biacetyltrimethyl phosphite adduct, J. Amer. Chem. Soc. 85, 3465 (1963). 60. N . A . RAZUMOVAand A. A. PETROV, Studies in the field of conjugated systems. CLXIX. Addition of dialkyl phosphorous acid chlorides to diene hydrocarbons, Zh. Obseh. Khim. 33, 783 (1963); or. Gen. Chem. USSR, 33, 771 (1963). 60a. G. S. REDDYand J. H. GOLDSTEIN,J. Chem. Phys. 38, 2736 (1963). 60b. J. REUBEN, D. SAMUELand 13. L. SILVER, Deuterium exchange between phenylphosphonous acid and water, J. Amer. Chem. Soc. 85, 3093 (1963). 61. J . K . RUDE,A simple preparation of substituted chlorophosphonium salts; the salt FPC13SbC16, Inorg. Chem. 2, 813 (1963).

360 62. 63. 64. 65.

65a. 66. 67. 68. 69. 69a. 69b. 70. 70a. 71.

G. MAVEL R. SCHMUTZLER,Phosphorus-fluorine chemistry. I. Fluorides of phosphonic and phosphinic acids, J. Inorg. NucL Chem. 25, 335 (1963). H. SCHROEDER,Chemistry of decaborane-phosphorus chemistry. II. Synthesis and reactions of diphenyl-phosphino-decaborane-14, Inorg. Chem. 2, 390 (1963). R. L. SCROGGS, T. KIM and N. C. LI, Nuclear magnetic resonance and solvent extraction studies. I. Complexes involving thenoyltrifluoroacetone and some neutral organo-phosphorus esters, J. Phys. Chem. 67, 2194 (1963). n . SEYFERTH,D. E. WELCHand J. K. HEEREN, A new and convenient route to organo functional phosphine oxides and sulfides, J. Amer. Chem. Soc. 85, 642 (1963). J. N. SHOOLERY,Ref. 95 in J. D. BALDESCHWIELERand E. W. RANDALL, Chemical applications of nuclear magnetic double resonance, Chem. Revs. 53, 81 (1963). T . H . SIDDALLand C. A. PROHASKA,Preparation of t-alkylphosphonic dichlorides, J. Org. Chem. 28, 2908 (1963). A . J . SPEZIALEand R. D. PARTOS, Isolation and extraction of a stable enol phosphonium salt, J. Amer. Chem. Sac. 85, 3312 (1963). H. TOLKMITH, Nucleophilic reactivity of phosphoramidothionates. I. Halogen displacements on tetrahedral carbon by phosphorotriamidothionates, J. Amer. Chem. Soc. 85, 3246 (1963). MARIANASSOCIATES,High resolution nuclear magnetic resonance spectra. Catalog Vol. 2 1963. P. R. WELLS, Chem. Rev. 63, 171 (1963). E. L. WAGNER,J. Amer. Chem. Soe. 85, 161 (1963). G. M. WHITESIDES, J. L. BEAUCHAMPand J. D. ROBERTS, Relative signs of the 3 1 p _ l H and 3lp__C__l H nuclear magnetic resonance coupling constants, J. Amer. Chem. Soc. 85, 2665 (1963). R. WOLF, J. R. MIQUELand F. MATHIS, Sur quelques esters de l'acide p-xylyl phosphinique, Bull. Soc. Chim. Fr. 1963, p. 825. A . I . Z~mRNOVOIand G. I. YAKOVLEV,The observation of negative hydration by the nuclear magnetic resonance method, Zh. Strukt. Khim. 4,914 (1963), J. Struct. Chem. USSR, 4, 840 (1963).

1964 1. A . M . AGUIARand J. ]~EISLER,The cleavage of methylene-bis(diphenylphosphine) by phenyl azide, J. Org. Chem. 29, 1660 (1964). 2. A . M . AGUIARand D. DAIGLE,Reduction and isomerization of cis and trans 1,2-vinylene bis(diphenylphosphines) and disulphides, J. Amer. Chem. Soc. 86, 5354 (1964). 3. G. ALLEN, J. DYSONand N. L. PADDOCK,N-alkyl phosphonitrilium salts, Chem. Ind. 1964, p. 1832. 4. H . P . ANGSTADT,The alkylation of elemental phosphorus, J. Amer. Chem. Soc. 86, 5040 (1964). 5. B . A . ARBUZOV,YU. Yu. SAMITOV,A. O. VIZEL' and T. V. ZYKOVA, The structure and features of the N M R proton spectra of phosphacyclopentene derivatives with substituents unsymmetrically located on the ring, Dokl. Akad. Nauk S.S.S.R. 159, 1062 (1964); Proc. Acad. Sc. USSR. Chem. Section, 159, 1302 (1964). 5a. B. A. ARBUZOV,A. D. VIZEL', Yu. YU. SAMITOVand K. M. IVANOVSKAYA,1-oxophosphacyclopent-3-ene derivatives. Synthesis and structure of isomers (In Russian), Dokl. Akad. Nauk S.S.S.R. 159, 582 (1964), Proe. Acad. Sc. USSR, Chem. Section, 159, 1205 (1964). 6. C. BEGUIN,R6sonancemagn6tique nucl6aire du fluor, Bull. Soc. Chim. Fr. 1964,p. 2711. 7. K . D . BERLIN, C. HILDEBRAND, A. SOUTH, D. M. HELLWEGE, M. PETERSON, E. A. PIER and J. G. VERKADE,The stereochemistry of certain bicyclic phosphonates. The Michaelis-Arbuzov rearrangement with 1-phospha-2,8,9-trioxa-adamantane. II., Tetrahedron 20, 323 (1964). 8. K . D . BERLIN and H. A. TAYLOR, The reactions of aroyl halides with phosphites. Esters of aroylphosphonic acids, J. Amer. Chem. Soc. 86, 3862 (1964). 8a. R. A. BERNHEIMand H. BATIZ-FERNANDEZ,J. Chem. Phys. 40, 3446 (1964).

STUDIES OF PHOSPHORUS COMPOUNDS

361

8b. G. BINSCH, J. B. LAMBERT,B. W. ROBERTSand J. D. ROBERTS,dr. Amer. Chem. Soc. 86, 5564 (1964). 9. H . J . BESTMANN,Neue Reaktionen yon Phosphin-alkylenen und ihre pr~iparativen Mbglichkeiten, Pure Appl. Chem. 9, 285 (1964). 10. H.J. BESTMANNand O. ROTHE,Uber die Umsetzung yon Triphenylphosphinalkylenen mit Aeetylendicarbonsatireestern, Angew. Chem. 76, 569 (1964). 11. H . J . BESTMANN,H. ]7L~BERLEINand I. PIES, Reaktionen mit Phosphinalkylenen. IX. Zum Mechanismus des Hoffman-Abbaues quartfirer Triphenyl-phosphonium Salze, Tetrahedron 20, 2079 (1964). 12. G . M . BLACKBURN,J. S. COHEN and LORD TODD, Cyclic phosphate and phosphite triesters. A 31p N M R study, Tetrahedron Letters 1964, p. 2873. 13. A . T . BLOMQUISTand V. J. HRuBY,1,2-bis(triphenylphosphoranyl)benzocyclobutene, J. Amer. Chem. Soc. 86, 5041 (1964). 14. D . H . BROWN, G. W. FRASERand D. W. A. SHARP, Dialkylamido phosphorus(V) fluorides, Chem. Ind. 1964, p. 367. 15. G . C . BRUMLIK,The synthesis of the S-methylthiophenium ion, J. Amer. Chem. Soe. 86, 5360 (1964). 16. A. D. BUCkINgHAM and P. J. STEPHENS, Proton chemical shifts in the nuclear magnetic resonance spectra of transition metal hydrides: square planar platinum(II) complexes, J. Chem. Soc. 1964, p. 4583. 17. G.B. BUTLERand G. L. STATTON,Synthesis of a novel heterocycloalkane containing boron and phosphorus, J. Amer. Chem. Soc. 86, 5045 (1964). 17a. V. F. BYSTROV, A. A. NEIMYSHEVA,A. U. STEPANYANTSand I. L. KNUNYANTS, Additive relationships for the chemical shifts in the magnetic resonance spectra of 19F nuclei in fluorophosphates and fluorophosphonates, Dokl. Akad. Nauk S S S R 156, 637 (1964), J. Gen. Chem. USSR, 156, 512 (1964). 17b. B. C~a~DILLO, G. MATTOGNO,A. MELERA and F. TARLr, Reazione dell' esa-clorociclotrifosfazatriene con reagenti nucleofili bifunzionali. II. Struttura del 2,2-(spiro)propilen diamido 4,4,6,6-tetracloro ciclotrifosfazatriene, Atti. Accad. naz. Lincei, Rendi Conti, 37, 194 (1964). 18. R. G. CAVELL, Preparation and properties of dimethylamino-difluorophosphine, J. Chem. Soc. 1964, p. 1992. 19. R . G . CAVELLand H. J. EMELEUS,Some bis-trifluoromethyl phosphino derivatives of sulphur, J. Chem. Soc. 1964, p. 5825. 20. R . G . CAWLL and H. J. EtVmLEUS,Tris(trifluoromethyl)phosphine sulphide (CF3)3PS, J. Chem. Soc. 1964, p. 5896. 21. R . G . CAVELL and J. F. NIXON, The hydrotetrafluoro-trifluoromethyl phosphate anion: CFaPF4I-I-, Proc. Chem. Soe. 1964, p. 229. 22. C. CHARRn~R, M. P. SrMONN~N, W. CHODKmWICZ and P. CADIOT, Phosphines ac6tyl6niques et d6riv6s: pr6paration, 6tude spectrographique, Compt. Rend. 258, 1537 (1964). 23. J. CHATT, J. D. GAR_FORa'H,N. P. JOHNSONand G. A. ROWE, Complex compounds of tertiary phosphines with rhenium(IV) and rhodium(V), J. Chem. Soe. 1964, p. 601. 24. J. C~TT, N. P. JOHNSONand B. L. SHAW, Carbonyl and hydridocarbonyl complexes of iridium(HI) halides stabilized by phosphines, arsines and stibines, or. Chem. Soe. 1964, p. 1625. 25. J. CHATTand D. T. THOMPSON,Dinuclear phosphorus and arsenic bridged carbonyl compounds. II, J. Chem. Soe. 1964, p. 2713. 25a. T. CHINA, Deuteron magnetic resonance studies of some crystals containing an O D . . . O bond, J. Chem. Phys. 41, 1352 (1964). 25b. V. F. CHUVAEV,Y. YA. KABANOVand V. I. SPITSYN, Nuclear magnetic resonance study of the state of water in phosphomolybdic acid, Dokl. Akad. Nauk 155, 908 (1964); Proe. Acad. Se. USSR, Phys. Chem. Section, 155, 376 (1964). 26. M. COCIVERA, E. GRUNWALD and C. F. JUMPER, Acid dissociation and proton transfer of p-toluidinium ion and dimethylphenyl phosphonium ion in methanol, J. Phys. Chem. 68, 3234 (1964).

362

G. MAVEL

26a. F. A. COTTON,Chemical Applications of Group Theory, p. 116 et seq., Interscience, 1964. 27. M.M. CRUTCHFmLD,C. F. CALLISand J. R. VANWAZER,Nuclear magnetic resonance studies of P203C12F2 and its reorganization products, Inorg. Chem. 3, 280 (1964). 28. D.B. DENN~Yand H. M. PO~LLES,Pentaethoxyphosphorus, d. Amer. Chem. Soc. 86, 3897 (1964). 28a. D. B. D~NNE¥ and I-L M. ILELL~S,Formation and decomposition of tetrasubstituted phosphonium salts, Tetrahedron Letters 1964, p. 573. 28b. P. DiErm and TH. LEreERT, Deuteronen Kernresonanzspektroskopie, Helv. Chim. Acta 47, 545 (1964). 29. K. DxraROra and P. HOI~FMAN,Phosphocyanine, eine neue Stoffklasse mit dreibindigem Phosphor, Angew. Chem. 76, 433 (1964). 30. J.S. DRISCOLL,D. W. GRISLEY,J. V. PUSTINGER,J. E. HARRISand C. N. MATTHEWS, Properties and reactions of mesomeric phosphonium salts, J. Org. Chem. 29, 2427 (1964). 31. E. DUVAL, R6sonance magn6tique nucl6aire de compos6s organo-phosphor6s dans le champ magn6tique terrestre; couplages31P--1H, Revue LF.P. 19, 1 (1964). 31a. J. R. F~m~RO, Proton magnetic resonance of several new chelates, J. Inorg. NucL Chem. 26, 225 (1964). 3lb. J. R. FER~RO in Progress in Infra-red Spectroscopy 2, 127, Szymansky ed., Plenum Press, N.Y., 1964. 32. S. J. FITCH, Synthesis of hypophosphite esters from ortho-carbonyl compounds, J. Amer. Chem. Soc. 86, 61 (1964). 33. E. FLUCK, 31p Kernmagnetische Resonanzspektren der Phosphor-thiocyanate und Phosphor-isothiocyanate, Z. Naturforsch., 19b, 869 (1964). 34. C . T . FORD, F. E. DICKSON and I. I. BEZMAN,Positional and eis-trans isomeric dimethylamino triphosphonitriles. The use of 1H nuclear magnetic resonance in confignrational analysis, Inorg. Chem. 3, 177 (1964). 35. T.R. FUKUTO,E. O. HORNIGand R. L. METCALV,Nuclear magnetic resonance in the examination of the thermal decomposition of 0,0-dimethyl 0-(4(methylthio)3-tolyl)phosphorothioate, J. Agr. Food. Chem. 12, 169 (1964). 36. S.D. GOKHALEand W. L. JOLLY,Disitanyl phosphine and disilyl phosphine, Inorg. Chem. 3, 1141 (1964). 36a. J. H. GOLDSTEIN,L. T. MAa~IS and J. M. READ, Spectrochimica Acta 21, 85 (1964). 37. H. GOLDWrrrrE, Stereochemistry of some cyclic compounds containing phosphorus, Chem. Ind. 1964, p. 494. 38. M. GORDONand C. E. GRn~rlN, Solvent dependence of geminal phosphorus proton coupling constants in benzylphosphonium salts, J. Chem. Phys. 41, 2570 (1964). 39. R.J. GREENLEY,M. L. NIELSENand L. PARTS,Heterocyclic diamides of phosphorus from imidazole and pyrrole. Synthesis and utilization in polymerization reactions, ]. Org. Chem. 29, 1009 (1964). 40. C.E. GmrFIN, The proton magnetic resonance spectra of para-substituted triarylphosphine oxides, Tetrohedron 20, 2399 (1964). 41. J. GROBE, Eine neue Klasse yon Zweikerncomplexen des Manganes: Perfluoromethylphosphor und arsen Derivate des Mangancarbonyls, Zeits. Anorg. Allg. Chem. 331, 63 (1964). 42. B. GRUSHKIN,J. L. MCCLANAHANand R. G. RICE, Structural identification of a geometric isomer of tetrameric phenyl phosphonitrilic chloride, J. Amer. Chem. Soe. 86, 4204 (1964). 42a. H. S. GUTOWSKYand C. J. JAMESON,J. Chem. Phys. 40, 1714 (1964). 43. P. HAAKE,W. N. MrLLERand D. A. TVSSEE,The amount of x-bonding in phosphorusoxygen and sulfur--oxygen bond, J. Amer. Chem. Soe. 86, 3577 (1964). 44. R.K. Hggms and R. G. HAYTER,Nuclear magnetic resonance studies of compounds related to tetramethyl diphosphine disulphide, Canad. J. Chem. 42, 2282 (1964). 45. W. A. HaRT and H. H. SISLER, The chloramination of some aminophosphines, Inorg. Chem. 3, 617 (1964).

STUDIES OF PHOSPHORUS COMPOUNDS

363

46. R. G. I-IAYTER,Transition metal complexes of secondary phosphines. IV. Some complexes of ruthenium, rhodium and palladium, Inorg. Chem. 3, 301 (1964). 47. R.G. HAYTER,Phosphorus and arsenic bridged complexes of metal carbonyls. VI. Reactions of tetrasubstituted biphosphines and a biarsine with monomeric metalcarbonyls, Inorg. Chem. 3, 711 (1964). 48. R.G. HAYTER,Phosphorus and arsenic bridged complexes of metal carbonyls. III. Cobalt and manganese complexes, J. Amer. Chem. Soe. 86, 823 (1964). 49. R . G . I-IAYTERand L. F. WmLIAMS,Phosphorus and arsenic bridged complexes of metal carbonyls. V. Single bridged ionic complexes derived from n-eyclopentadienyl iron dicarbonyl bromide, Inorg. Chem. 3, 613 (1964). 50. R . G . HAYTERand L. F. WILLIAMS,Phosphorus and arsenic bridged complexes of metal carbonyls. VII. Complexes derived from iron dicarbonyl dinitrosyl, Inorg. Chem. 3, 717 (1964). 51. R . G . HAYTERand L. F. WILLIAMS,Phosphorus and arsenic bridged complexes of metal carbonyls. VIII. Cyclopentadienyl cobalt and manganese complexes, Jr. Inorg. Nucl. Chem. 26, 1977 (1964). 52. J.B. I-~NDRICKSON,M. L MADDOX,J. J. SIMSand H. D. KAESZ, Correlation of proton chemical shift and 31p--1H spin couplingconstants, Tetrahedron 20,449 (1964). 53. R.R. HOLMES,R. P. CARTERand G. E. PET~RSON,Molecular structures of PC14F, PC13F2 and PC12F3: pure chlorine nuclear quadrupolar resonance and low temperature I9F nuclear magnetic resonance, Inorg. Chem. 3, 1748 (1964). 53a. W. D. HORROCrCS,R. C. TAYLORand G. N. LA MAR, Isotropic proton magnetic resonance shifts in zr-bonding ligands coordinated to paramagnetie nickel(I1) and cobalt(II) acetylacetonates, J. Amer. Chem. Soe. 86, 3031 (1964). Also W. D. HORROCKSand G. N. LA MAR, Isotropic NMR shifts in paramagnetic cobalt and nickel phosphine complexes, Proc. 8th Int. Conf. Coord. Chem. (Vienna) 1964, p. 52. 53b. R. F. HuDsoN, Pure Appl. Chem. 9, 371 (1964). 53c. B. I. IoNI~ and A. A. PETROV, Prototropic isomerization of phosphonic esters containing acetylenic, dienic and enynic groups, Zh. Obsch. Khim, 34, 1174 (1964); J. Gen. Chem. USSR 34, 1174 (1964). 54. K. ISSLEmand G. THOMAS,Basizit~its, IR und NMR Untersuchungen an Carboxyalkylphosphinen und deren Derivaten, Zeits. Anorg. Allg. Chem. 330, 295 (1964). 54a. O. JARDETZI~Y,The study of specific molecular interactions by nuclear magnetic relaxation measurements, Adv. in Chem. Phys. Vol. VII, J. Duchesne ed., 1964, p. 499 sqq. 54b. P. T. KEOUGrIand M. GRAYSON,Phosphonioethylation. Michael addition to vinyl phosphonium salts, J. Org. Chem. 29, 631 (1964). 55. H.J. KoI~R, Hochaufgel6ste magnetische Protoneresonanzspektren des Diehlormethylphosphin und des Dichlor~ithylphosphin, Z. Phys. Chem. (Leipzig) 226, 283 (1964). 56. S. KO~DEand E. DURAL, Long range spin-spin interaction between nuclei in the saturated compounds, J. Chem. Phys. 41, 315 (1964). 57. E.L. LA LANCETTE,The reaction of tetramethyl-l,3-cyclobutadione with triphenylphosphine methylene, or. Org. Chem. 29, 2957 (1964). 58. E.L. LA LANCETTEand D. R. EATON,Nuclear magnetic resonance contact shifts in bis(triphenylphosphine)nickel(II) halides. Evidence for d~-p= bonding between nickel and phosphorus, J. Amer. Chem. Soe. 86, 5145 (1964). 59. G.N. LA MAR, Isotropic shifts of some ionic complexes of cobalt(iI) and nickel(II). Evidence for ion pairing, J. Chem. Phys. 41, 2992 (1964). 60. A. L. L~,,~V~R and H. TIECKELMANN,The thermal rearrangement of diethyl-emethylallyl and diethyl-crotyl phosphites, Tetrahedron Letters 1964, p. 3053. 61. Z. LtJz and S. MEmOOM, Rate and mechanism of proton exchange in aqueous solutions of phosphate buffer, Y. Amer. Chem. Soe. 86, 4764 (1964). 62. W. MAHLER,Polyphosphine heterocycles, or. Amer. Chem. Soe. 86, 2306 (1964). 62a. L. MAmR,Organische Phosphorverbindungen. XV. Eine neue Methode zur Darstellung yon Aminophosphinen und einige ihrer Reaktionen (1), Helv. Chim. Acta 47, 2129 (1964).

364

G. MAVEL

62b. L. MAIER, Organische Phosphorverbindtmgen. XVI. Reduktion von Phosphinsulfiden zu den entsprechenden dreiwertigen Phosphorverbindungen (1), Helv. Chim. Aeta 47, 2137 (1964). 62c. L. MALATESTA,M. FRENI and V. VALENSI, Nuovi idruri trifenilfosfinici di renio, Gazz. Chim. Ital. 94, 1278 (1964). 63. S. C. MALHOTRA, Interaction of metathioborie acid with some phosphines and amines, Inorg. Chem. 3, 902 (1964). 64. V. MARK, Nucleophilic reactions of trivalent phosphorus compounds. Synthesis of stable difluoromethylenephosphorane analogues, Tetrahedron Letters 1964, p. 3139. 65. V. MARK and J. R. VAN WAZER,Tri-t-butyl phosphite and some of its reactions, J. Org. Chem. 29, 1006 (1964). 65a. G. MAVEL,J. Chim. Phys. 61, 1191 (1964). 66. E . L . MUETTERTIES, W. MAHLER, K. J. PACKERand R. SCHMUTZLER,Five-coordination stereochemistry, Inorg. Chem. 3, 1298 (1964). 67. M. L. NIELSEN, The formation of P - - N and P ~ N - - P bonds by elimination of phenol in a basic condensation, Inorg. Chem. 3, 1760 (1964). 68. M. L. NIELSEN and J. V. PUSTINGER, Phosphorus-31 nuclear magnetic resonance studies of phosphorus-nitrogen compounds, J. Phys. Chem. 68, 152 (1964). 69. M . L . NIELSEN,J. V. PUSTINGERand J. STROBEE,Phosphorus-31 nuclear magnetic resonance chemical shifts of phosphorus compounds, J. Chem. Eng. Data 9, 167 (1964). 70. J. F. NrxoN, The preparation and properties of trichloromethyl phosphorous acid, J. Chem. Soe. 1964, p. 2471. 70a. J. F. NIXON and R. G. CAVELL,Amine substitution and halogen exchange reactions of dihalogeno trifluoromethyl phosphines, J . Chem. Soc. 1964, p. 5983. 71. J. F. NIXON and R. SCHMOTZLER,Phosphorus-31 nuclear magnetic resonance studies of phosphorus-fluorine compounds, Speetroehimica Acta 20, 1835 (1964). 72. H. N6TH and W. SCHR~,CLE,Beitrage zur Chemie des Bors. XXX. Zur Kenntnis yon monomeren Bis (dimethylamino) difithyl phosphino boran, Bet. 97, 2218 (1964). 73. D . W . OSRORNE,The pyridinolysis of diaryl methyl phosphates, J. Org. Chem. 29, 3570 (1964). 74. G. OTTMANN,H. AGAHIGIAN,H. HOOKS, G. D. VICKERS, E. KOBER and R. R~.TZ, (1-Aziridinyl)cyclotriphosphaza-l,3,5-trienes, lnorg. Chem. 3, 753 (1964). 75. J. PARELLO, Couplage entre spins nucl6aires en r6sonance magn&ique nucl6aire (RMN) et m6thode de double r6sonance, Bull. Soc. Chim. Ft. 1964, p. 2033. 75a. G. W. PARSI-IALL,Electronic factors in the trans effect, J. Amer. Chem. Soc. 86, 5367 (1964). 75b. J. A. POI~LEand D. P. SANXRY,MOI. Phys. 8, 1 (1964). 76. L . D . QUINN, J. A. PETERS, C. E. GRIErIN and M. GORDON, Preservation of the 3-phospholene nucleus in reactions of diene-methylphosphonous dichloride adducts, Tetrahedron Letters 1964, p. 3689. 77. F. RAMmEZ, Condensation of carbonyl compounds with phosphite esters, Pure AppL Chem. 9, 337 (1964). 78. F. RAMIREZ,O. P. MADAN and C. P. SMITH,A crystalline alkoxydiary alkylidene phosphorane from the reaction of ethyl diphenyl phosphonite with an a,fl-unsaturated ketone, J. Amer. Chem. Soc. 86, 5339 (1964). 79. F. RAMIREZ,A. V. PATWHARDANand S. R. HEELER,The reaction of trialkyl phosphites with aliphatic aldehydes. 31p and 1H nuclear magnetic resonance spectra of tetra-oxyalkyl phosphoranes, J. Amer. Chem. Soc. 86, 514 (1964). 79a. L. W. REEVES, Absolute correlations of nuclear spin-spin coupling constants with atomic number. III. JxH in isoelectronic series of lighter elements , J. Chem. Phys. 40, 2132 (1964). 79b. N. A. RAZUMOVA and A. A, PETROV, Phosphorus containing heterocycles. II. Condensation of fl-glycol chlorophosphites with diene hydrocarbons, Zh. Obsch. Khim. 34, 1886 (1964), J. Gen. Chem. USSR 34, 1897 (1964). 79c. M. SAUZADEand F. SALLE,Influence d'un blindage magn&ique sur l'homogdnie d'un

STUDIES OF PHOSPHORUS COMPOUNDS

365

champ magn&ique cr66 par une paire de bobines en position de Helmholtz. Application ~t un spectrographe/~ rdsonance nucl6aire ~t champ faible, Compt. Rend. 259, 73 (1964). 79d. M. SCHLOSSER,Eine Methode zur Darstellung selektiv deuterierten Verbindungen, Ber. 97, 3219 (1964). 79e. H. SCHMIDBAURund W. SIEBERT,Notiz fiber die Protonresonanzspektren des H2S und HSD, Ber. 97, 2090 (1964). 80. A. SCHMrD~TER, K. DULL and R. B/3HM, Offenkettige und cyclische Chlorophosphazenium Salze, Angew. Chem. 76, 605 (1964). 81. R. SCHMUTZLER, Alkyl(aryl)-dialkylamino Fluor-phosphorane und-phosphine, Angew. Chem. 76, 570 (1964). 82. R. SCrtMUTZLER, Eine neue Methode zur Darstellung von Phosphor-Stickstoff Verbindungen, Angew. Chem. 76, 893 (1964). 83. R. SCHMUTZLER,Phosphorus-fluorine chemistry. V. Dialkylamino difluoro phosphines and their coordination compounds with transition metals, Inorg. Chem. 3, 415 (1964). 84. R. SCHMUTZL~R,Phenyl bis(dimethylamino)fluorophosphonium. Phenyl pentafluoro phosphate, J. Amer. Chem. Soc. 86, 4500 (1964). 85. R. SCHMUTZLER, Phosphorus-fluorine chemistry. VIII. Some comments on the "group shift theory" as applied to the 31p N M R spectra of certain phosphorus fluorides, 9". Chem. Soc. 1964, p. 4551. 86. H. SCHUMANN,H. K6PF and M. SCHMIDT,Abbau yon Phosphor-Phosphor-Bindungen durch Zinntetraphenyl, Ber. 97, 1458 (1964). 87. E. SCI-IWEIZ~Rand R. D. BACH, Phosphonium salts. II. 2-bromophenetole and triphenylphosphorus as novel phosphonio ethylation precursors, J. Org. Chem. 29, 1746 (1964). 88. D. SEYFERTH,M. A. EISERT and J. K. HEEREN, Studies in phosphinemethylene chemistry. IX. The reaction of organolithium reagents with tert-butyltriphenyl phosphonium bromide, J. Organometal. Chem. 2, 101 (1964). 89. M . P . SIMONNIN,R M N des phosphines ac6tyl6niques et de leurs d6riv6s, Bull. Soc. Chim. Ft. 1964, p. 1703. 90. J . H . SMALLEY,F. E. DICKSONand I. I. BEZMAN,Configurations of isomeric phenyl-Ndimethylamino tetraphosphonitriles. The use of 1I-I nuclear magnetic resonance and double resonance techniques, Inorg. Chem. 3, 1780 (1964). 90a. G. W. SMITH,Comment on the letter of Wells and Reeves: a relation of Z(NMR) to Z and to s character, J. Chem. Phys. 40, 2037 (1964). 90b. J. B. STOTrlERSand J. B. ROBINSON,N M R spectra of 0,0 dialkyl organo phosphorus esters. 31p chemical shifts by heteronuclear decoupling, Canad. J. Chem. 42, 967 (1964). 91. G. STURTZ,Action des phosphites sod6s sur les c6tones halog6n6es, R--CO--(CH2)n - - X , Bull. Sue. Chim. Fr. 1964, p. 2333. 92. N . T . THUON6, C. CLERGUE,E. LARRUATand P. CI-IABRIER,Contribution h l'6tude des combinaisons organiques des acides d6riv6s du phosphore. I. Etude cin6tique de la r6action de quaternisation de quelques amines tertiaires par un groupement alcoyl6 li6 par est6rification aux acides d6riv6s du phosphore trivalent, Bull. Sue. Chim. Fr. 1964, p. 1407. 93. A. K. TsoLIS, W. E. McEw~y and C. A. VANDERWERF,Reactions of compounds of trivalent phosphorus with N-haloamides, Tetrahedron Letters 1964, p. 3217. 94. H. ULRICH and A. A. R. SAVI~IJ, 2-phospha-l,3-diazetidinone, eine neue Verbindungsklasse, Angew. Chem. 76, 647 (1964). 95. J. G. VEI~KAD~,R. W. KING and C. W. HEITSCH,Phosphorus complexes of group III acids. IV. laB, 19F, 1H and 31p nuclear magnetic resonance studies of boron complexes of polycyclic phosphites, Inorg. Chem. 3, 884 (1964). 96. H. J. V~TTER, P M R Spektren einiger Dimethylamino-phosphane und arsane, Naturwiss. 51,240 (1964). 97. W. VOSKtnL and J. T. ARENS, Triethynyl-phosphine, -arsine and -stibine, Ree. Tray, Chim. 83, 1301 (1964).

366 98. 98a. 99.

100. 101. 102.

G. MAVEL T. WADA, R6sonance magndtique nucl6aire des protons dans le cristal de l'acide phosphomolybdique (H3PMo12040.29 H20), Compt. Rend. 259, 553 (1964). Y. WADA and R. ODA, Reaction of diethyl vinyl phosphonate with diazonium salts (In Japanese), Kogyo Kagaku Zasshi 67, 2093 (1964) (12. A. 62, 13177e). H. WEITKAM~and F. KORTE, Spektroskopische bestimmung der Doppel-bindungslage in Phosphotinen, Z. Anal. Chem. 204, 245 (1964). Also K. HUNaER, V. HASSELRODT and F. KORTE, Phospholin-Derivate II. Untersuchung tiber die Lage der Doppelbindung in Phospholinen, Tetrahedron 20, 1593 (1964). And E. W. MULLER and F. KORTE, Urnlagerung yon 1-oxo-l-~ithoxyphospholin(2) in 1-oxo-14ithoxyphospholin(3), Tetrahedron Letters 1964, p. 3039. D. W. WlL~Y and H. E. SnWMONS,Fluoroketones. II. Reactions with trialkyl phosphites, J. Org. Chem. 29, 1876 (1964). G. A. WILEY, B. M. REIN and R. L. HERSHKOWrrz, Studies in organo-phosphorus chemistry. II. Mechanism of the reaction of tertiary phosphine dihalides with alcohols, Tetrahedron Letters 1964, p. 2509. H. ZIMMERand G. SINGH, Synthesis and some reactions of triphenyl phosphinaminoand (fl-N-disubstituted amino) imines, J. Org. Chem. 29, 1579 (1964).

1965

1. E . W . ABEL and R. P. BUSH,Some cyclic derivatives of ethylenediamine containing silicon, boron, phosphorus and arsenfc, J. Organomet. Chem. 3, 245 (1965). 2. G. ALLEN,D. J. OLDFIELD,N. L. PADDOCK,F. RALLO,J. SERREGIand J. M. TODD, Phosphonitrilic derivatives of medium ring size, Chem. Ind. 1965, p. 1032. 2a. D. ALLEN, J. C. TrBBY and D. H. W~LLL~MS,The reaction of triphenyl phosphine with phenylacetylene, Tetrahedron Letters 1965, p. 2361. 2b. N. E. AUBREYand J. R. VAN WAZER, J. Inorg. Nuel. Chem. 27, 1761 (1965). 3. W . D . BANNISTER,M. GREEN and R. N. HAZELDINE,The reactions of ligands with phenyl- or methyl-manganese carbonyl, Chem. Comm. 1965, p. 54. 4. M . G . BARLOW,M. GREEN, H. J. HmSON and R. N. HAZELDINE,Organophosphorus chemistry. Part VI. High resolution nuclear magnetic resonance spectra of pentafluorophenyl phosphorus compounds, J. Chem. Soc. (in press). 5. O . T . BEACriLEYand G. E. COATES, Trimethylgallium. Part V. The reactions of trimethyl-aluminium, -gallium and -indium with some primary and secondary phosphincs and arsines, J. Chem. Soc. 1965, p. 3241. 5a. P. J. BERKELEY,Ph.D. thesis, University of Colorado; Dissertation Abstracts 25, 5579 (1965). 6. K . D . BERLIN,T. H. AUSTIN and M. NAGABHUSHANAM,A convenient synthesis of esters of diphenyl-phosphinic acid. III, d. Org. Chem. 30, 1267 (1965). 7. K. I). BERLIN, D. M. HELLWEGE and M. NAGABHUSHANAM,Dialkyl esters of acylphosphonic acids, J. Org. Chem. 30, 1265 (1965). 8. K . D . BERLINand L. A. WILSON, Reactions of phosphoryl azides with norbornene. Formation of a novel phosphorylated triazoline, Chem. Comm. 1965, p. 280. 8a. T. BIV,CrlALL and W. L. JOLLY,J. Amer. Chem. Soc. 87, 300 (1965). 9. P.H. BIRD and M. G. H. WALLBRIDGE,A study of metal borohydrides. The reaction of aluminium borohydride with various ligand molecules, or. Chem. Soc. 1965, p. 3923. 10. D. E. BISSING and A. J. SPEZIALE, Reactions of phosphorus compounds. IX. The opening of epoxides with tertiary phosphines, d. Amer. Chem. Soc. 87, 2683 (1965). 11. G . M . BOGOLYUBOVand A. A. PETROV,Zh. Obseh. Khim. 35, 982 (1965). 12. A. K. BOSE and R. T. DAmLL, Steroids III. Transformations o f steroid ketones using phosphonate carbanions, J. Org. Chem. 30, 505 (1965). 12a. A. A. BOTHNER-BYand J. A. POELE, Ann. Rer. Phys. Chem. 16, 43 (1965). 13. F . E . BRINCKMAN,H. S. HAISSand R. A. ROBB, Metal-nitrogen bonding. Covalent complexes of 1,3-dimethyl-triazene with elements of groups I, II, III, IV and V, Inorg. Chem. 4, 936 (1965).

STUDIES OF PHOSPHORUS COMPOUNDS 14. 15. 16. 17. 18, 19, 20.

21. 21a. 22. 23. 24. 24a. 25. 25a. 26. 26a. 27. 28. 28a. 29. 29a. 30. 31. 32.

367

J . L . BU1LDETTand L. L. BURGER, Organophosphorus-uranyl complexes studied by nuclear magnetic resonance spectroscopy, Canad. J. Chem. 44, 11, 1966. G. BURKnARDT,M. P. KLEIN and M. CALVIN,The structure of the so-called "Ethyl Metaphosphonate" (Langheld ester), J. Amer. Chem. Soc. 87, 591 (1965). I . G . M . CAMVBELL,R. C. Coot, soN, M. B. HOCKr~G and A. N. Ho~HEs, Synthesis and chemistry of phospholes, J. Chem. Soc. 1965, p. 2184. R . P . CARTERand R. R. HOLMES,Penta coordinated molecules. V. The preparation and properties of PC1F4, Inorg. Chem. 4, 738 (1965). D. CHAVMAN, Nuclear resonance studies of phospholipids, Comm. 8th European Congress Molecular Spectroscopy, August 1965, Copenhagen. J. CHATT and J. M. DAVIDSON,The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0) and the preparation of new types of hydrido complexes of ruthenium(II), J. Chem. Soc. 1965, p. 843. E. CHERBULIEZ, S. JACCARD, R. PRINCE and J. RABINowrrz, Recherches sur la formation et la transformation des esters. LVII. Acides ou chlorures d'acides de pIII et alcools ~-ac6tyl~niques: est6rification sans ou avec rearrangement, Helv. Chim. Aeta 48, 632 (1965). P . A . CHOVARD,R. F. HUDSONand G. KLOPMAN,Nucleophilic reactivity. Part VI. The reaction between triphenyl phosphine and ~-dihalogenated ketones, J. Chem. Soc. 1965, p. 1379. P. A. CHOVAm3, R. F. HUDSON and R. J. G. S~ARLE, The reaction of stable phosphoranes with phthalic anhydride. A case of cis-trans isomerism Tetrahedron Letters 1965, p. 2375. P . A . CHOVARD,R. J. G. SEARLEand F. H. DEVlTT, The reaction of stable phosphoranes with acid anhydrides. A new synthesis of acetylenic ketones, J. Org. Chem. 30, 1015 (1965). R.J. CLARKand E. O. BR~MM,Trifluoro-phosphine complexes of nickel, Inorg. Chem. 4, 651 (1965). D . F . CLErCmNSand H. H. SISLER, Further studies in the chloramination of some aminophosphines, Inorg, Chem. 4, 1222 (1965). J. COHEN, 31p and 1H N M R studies of tetramethoxy phosphonium hexachloroantimonate and related compounds, Tetrahedron Letters, 1965, p. 3491. E . J . CoHEY and R. A. E. WINTER,The structure of the product C21I'{1206 from o-phenylene thionocarbonate and trimethyl phosphite, Chem. Comm. 1965, p. 208. K. J. COSKRANand J. G. VERKADE,Polycyclic group V ligands, iI. 2,6,7-trioxa-l,4diphosphabicyclo-[2,2,2]-octane and derivatives, Inorg. Chem. 4, 1655 (1965). I-L I-L COWLEYand S. T. COHEN, The iodides of phosphorus. I. Lewis basicity and structure, Inorg. Chem. 4, 1200 (1965). J. R. Cox, R. E. WALL and F. H. WESTHEIMER,J. Amer. Chem. Soc. 87, 2320 (1965). A . V . CrYNLIFEE,R. K. HARMS and C. M. WOODMAN,Comments on the analysis of spectra for large spin systems, Comm. 8th European Congress Molecular Spectroscopy, August 1965, Copenhagen. D . B . DENNEV and S. T. D. GooGI-I, "Penta-alkoxyphosphoranes". J. Amer. Chem. Soc. 87, 138 (1965). R. S. DRAGO and N. A. MATWIYOFF,J. Organomet. Chem. 3, 62 (1965). H. DREESKA~I', The mechanism of indirect heteronuclear spin-spin coupling, Comm. 8th European Congress Molecular Spectroscopy, August 1965, Copenhagen. A. J. DOWNS and R. SCIIMUTZLER,Spectrochimica Acta 21, 1927 (1965). E. DURAL,J. RANFT and G. J. BENE, Determination des signes relatifs des constantes de couplage 31p--1H duns le tripropyl phosphate par R M N dans le champ magnetique terrestre, Mol. Phys. 9, 427 (1965). E . A . V . EBSWORTHand G. M. SHELDRICK,The N M R spectra of some derivatives of phosphine, Comm. 8th Congress Molecular Spectroscopy, August !965, Copenhagen. R. FAVELIERand G, MAVEL,unpublished results, 1965,

368

G. MAVEL

J . R . FERRARO,D. F. PEPPARD and G. W. MASON,Physical studies of organophosphorus acids of the type (RO)PO(OH)2 and RPO(OH)2, J. Inorg.'NucL Chem. 27, 2055 (1965). 34. W. C. FIRTH, S. FRANCK,M. GARBER and V. P. WYSTRACH,Reactions of tetrafluorohydrazine with di- and tri-phenyl phosphine. A new method for preparation of fluoro phosphoranes, Inorg. Chem. 4, 765 (1965). 35. B. FONTAL and H. GOLDWI~TE,Addition of phosphorus tribromide to olefins, Chem. Comm. 1965, p. 111. 36. C . T . FORD,F. E. DICKSONand I. I. BEZraAN, Substitution pattern in phenoxyphosphonitrilates, Inorg. Chem. 4, 419 (1965). 37. C . T . FORD, F. E. DICKSON and i. I. BEZMAN, Positional and cis-trans N-methylaminotriphosphonitrile. The use of 1H nuclear magnetic resonance in configurational analysis, Inorg. Chem. 4, 890 (1965). 38. R. FOSTERand C. A. FYFE, An investigation by nuclear magnetic resonance spectroscopy of some Group V elements in heterocyclic compounds, Spectrochimica Acta 21, 1785 (1965). 38a. R. FREYMANN,Compt. Rend. 261, 2637 (1965). 38b. H. J. FRIEDRICH,Angew. Chem. 77, 724 (1965). 39. M . A . FRISCH,H. G. HEAL,]~. MACKLEand I. O. MADDEN,Bonding and reactivity in triphenylphosphineborane, J. Chem. Soc. 1965, p. 899. 40. O. GAGNAIREand J. B. ROBERT,Resonance magnetique nucleaire de dioxolannes et d'un homologue phosphor6: stereochimie du phosphore tricoordin6, Bull. Soc. Chim. Fr. 1965, p. 2424. 41. S . D . GOKHALEand W. L. JOLLY,The synthesis of disilanylphosphine and disilylphosphine in a silent electric discharge, Inorg. Chem. 4, 596 (1965). 42. H. GOLDWHITE,Free radical addition of phosphine to allene, J. Chem. Soc. 1965, p. 3901. 43. H. GOLDWHITE,private communication, 1965. 44. H. GOLDWHITE,R. N. HAZELDINEand D. G. ROWSELL,Phospha-alkenes as intermediates in polymer synthesis, Chem. Comm. 1965, p. 83. 45. R. GREENHALGHand M. A. WEINBERGER,private communication, 1965. 46. N . N . GREENWOOD,E. J. F. Ross and A. STORR, Gallium hydride adducts of trimethylphosphine and triphenylphosphine, J. Chem. Soc. 1965, p. 1400. 47. C.E. GRIFFINand M. GORDON,Some observations of the proton magnetic resonance spectra of phosphonium salts, J. Organometal. Chem. 3, 414, 1965. 48. C . E . GRn~nN and T. D. MITCHELL, Phosphonic acids and esters. IX. Thermal reactions of trialkylphosphites with non-activated acetylenes, J. Org. Chem. 30, 1935 (1965). 49. C . E . GRIffIN and T. D. MITCHELL, Phosphonic acids and esters. X. Oxygen to carbon methyl migration in the reaction of trimethyl phosphite with acetylene dicarboxylate, J. Org. Chem. 30, 2829, 1965. 50. C. E. GRIFFIN, R. P. PELLER, K. R. MARTIN and J. A. PE~RS, Preparation and ultraviolet spectra of tri-2-hetero-aryl phosphine oxides, J. Org. Chem. 30, 97 (1965). 51. C . E . GRIFFIN, R. P. PELLERand J. A. PETERS, Phosphonic acids and esters. VIII. Facile hydrolytic cleavage of carbon-phosphorus bonds in pyrrylphosphonates and oxides, J. Org. Chem. 30, 91 (1965). 52. C.E. GRIFFIN, E. H. UHINO and A. D. F. ToY, Chemistry of chloromethylphosphinic acid. II. Evidence for a 1,2 shift hydride from phosphorus to carbon in the hydrolytic conversion of chloromethylphosphinic acid to methylphosphinic acid, J. Amer. Chem. Soe. 87, 4757, 1965. 53. D . W . GRISLEY,J. C. ALM and C. N. MAT~EWS, A study of the reaction course of triphenyl-phosphine with bromomethyl triphenylphosphonium bromide, Tetrahedron 21, 5 (1965). 53a. B. GR~SKKIN, M. G. SANCI-IrZ,M. V. ERNEST,J. L. MCCLANArIAN,G. E. ASHBYand R. G. RICE, Phenyl phosphonitriles. II. Friedel-Crafts reactions of 2,4,6-trichloro2,4,6-triphenyl phosphoni~rile with benzene, Inorg. Chem. 4, 1538 (1965).

33.

STUDIES OF PHOSPHORUS COMPOUNDS 54. 55. 56. 56a. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 72a. 73.

74.

369

R . K . HARRIS,private communication, 1965. C . W . HEITSCH,The nuclear magnetic resonance spectra of some boron complexes, Inorg. Chem. 4, 1019 (1965). D. HELLWINKEL,At-Komplexe mit sechsbindigem Phosphor, Ber. 98, 576 (1965). R. R. HOLMESand R. P. CARTER,J. Chem. Phys. 43, 1645 (1965). F. HOSS~NLOVand J. P. EBEL, Recherches sur les acides phosphoreux condens6s. III. Sur l'existence d'acides polyphosphoreux sup6rieurs it l'acide pyrophosphoreux, Bull. Soc. Chim. Ft. 1965, p. 2229. F. I-IOSSENLOI'M. , MCPARTLINand J. P. EBEL,Recherches sur les acides phosphoreux condens6s. II. Etude de quelques r6actions de formation de l'acide pyrophosphoreux, Bull. Soc. Chim. Ft. 1965, p. 2221. D. HOUALLA,M. SANCHEZ and R. WOLF, Prdparations et quelques propri6t6s de compos6s contenant la liaison phosphore trivalent-azote, Bull. Soc. Chim. Ft'. 1965, p. 2368. R. HULL and R. FARRAND, The reaction of o-phenylene thionocarbonate with trialkyl phosphites, Chem. Comm. 1965, p. 164. T.J. HUTTEMAN,]~. M. FOXMAN,C. R. SPERATIand J. G. VERKADE,Transition metal complexes of a constrained phosphite ester. IV. Compounds of cobalt(I), cobalt(III), nickel(II) and nickel(0), Inorg. Chem. 4, 950 (1965). R. A. JONES and J. A. LINDNER, Pyrrole studies. V. Applications of the Wittig reaction to the synthesis of substituted pyrroles, Austral. J. Chem. 18, 875 (1965). H . D . KAESZ and M. L. MADDOX,private communication, 1965. R. KrAT and R. A. SHAW, Phosphorus-nitrogen compounds. Part IX. The reaction of dimethylamine with hexachlorocyclotriphosphazatriene. The replacement pattern and the structure of the compounds, J. Chem. Soe. 1965, p. 2215. J. P. KIN6, B. P. BLOCK and I. C. POPOFF, Phosphinyl methyl phosphinates as chelating agents, Inorg. Chem. 4, 198 (1965). H. KOOPMAN, F. J. SVRUIT, F. VAN DEtn~SEN and J. BAr~KER,The structure of the tetrachlorobisdimethylamino- and trichlorotrisdimethylamino- 1,3,5,2,4,6-triazaphosphorine, Ree. Tray. Chim. 84, 341 (1965). T. KRUCK, W. LANG and A. EN6ELMANN,Synthese yon tetrakis (trifluorphosphin)-kobalthydrid und hexakis (trifluorphosphin) wolfram(0), Angew. Chem. 77, 132 (1965). S . J . KtJHN and J. S. MCINTYR~, Reactions of amides and related compounds. I. N M R (proton) investigation of N,N-dimethylformamide--Lewis acid adducts and remarks on the relative strength of Lewis acids, Canad. J. Chem. 43, 375 (1965). G . N . LA MAR, Interpretation of the proton magnetic resonance spectra of some triarylphosphine complexes of cobalt(II) and nickel(II), Thesis, Princeton Univ., 1964; Diss. Abstr., 25, 3861 (1965). R. G. LAUGI-IHN, The synthesis of unsymmetrical aliphatic phosphine oxides via diphenyl alkyl phosphonates and Grignard reagents, J. Org. Chem. 30, 1322 (1965). J . H . LETC~R and J. R. VAN WAZER, Topics in Phosphorus Chemistry, Interscience, N.Y., 1965, Vol. IV, Chap. 3. R . J . LEVENE,D. B. POWELLand D. STEEI.~,Vibrational spectra of orthophosphoric acid in organic solvents, Comm. 8th European Congress Molecular Spectroscopy, August 1965, Copenhagen. P. L. LEvI~qSand W. i. ROGERS, N M R study of stability of a salt of N,N-bis-(2chloroethyl) phosphoradiamic acid, Cancer Chemoth. Rpt. 44, 15 (1965). L. MAIER, Organische Phosphorverbindungen. XVII. Darstellung yon Alkylenbis-phosphon s~iure Chloriden und Alkylen-bis-thiophosphon sfiure Chloriden und deren Reaktion mit Grignard-Verbindungen, Helv. Chim. Acta 48, 133 (1965). L. MAmR, Organische Phosphorverbindungen. XX. Zur Kenntnis der Reaktion yon prim~irer aliphatischen Phosphinen mit Schwefel und yon Phenylphosphin mit rotem Selen(1), Helv. Chim. Acta 48, 1190 (1965).

370 75.

G. MAVEL

W. MAHLER and E. L. MtmTTERTmS, Stereochemical non-rigidity in PF3C12 and PF3Br2, lnorg. Chem. 4, 1520 (1965). 76. R . T . MAJOR and R. J. HEDRICK,Reactions of diethyl N-alkoxyphosphoramidat, e anions with carbon dioxide and carbon disulphide, J. Org. Chem. 30, 1268 (1965). 77. K . B . MALLIONand F. G. MANY, The mechanism of methyl group migration from oxygen to phosphorus in m-methoxyphenyl phenyl phosphine, J. Chem. Soc. 1965, p. 4115. 78. G. MARTIN, B. CASTROand M. MARTIN, Etude par r6sonance magn6tique nucl6aire de quelques compos6s chlor6s ~-fonctionnels, Compt. Rend. 261, 395 (1965). 79. P. MARTINETand H. DoovEux, Action du tribromure de phosphore sur le diphenyl-1,1--propyne--2--ol, Compt. Rend. 261, 2498 (1965). 80. A . G . MASSBV,E. W. RANDALLand D. SHAW, Nuclear magnetic resonance studies of tetra-alkyl compounds of group II[ and group V elements. II, Spectrochimica Acta 21,263 (1965). 81. G. MAVEL, Apport de la r6sonance magn6tique du proton ~k la connaissance des compos6s organophosphor6s, Conf. Colloque C.N.R.S. Comp. Organo-phosphords, 1965, Toulouse. 81a. G. MAWL, Theories moldculaires de la R~sonance magndtique nucldaire, Dunod, 1965. 82. G. MAWL and G. MARTIN, Etude structurale des compos6s organo-phosphor6s par r6sonance magn~tique nucl6aire, J. Chim. Phys. 62, 475 (1965). 83. A. MEIST~RSand J. M. SWAN, Organo-phosphorus compounds. IV. The reaction of alk-l-ynes with phosphorus pentachloride and a new route to alka-l,2-dienes, Austral. J. Chem. 18, 155 (1965). 84. B. MILLER, Reactions of trivalent phosphorus derivatives with sterically hindered 4-bromocyclohexadienones, J. Org. Chem. 30, 1964 (1965). 85. N . E . MILLER, Trimethyl silyl ylides, Inorg. Chem. 4, 1458 (1965). 86. N . E . MILLER, A pyrolytic synthesis of ylides. Isolation of trimethylphosphinetrimethyl silylmethylene, J. Amer. Chem. Soc. 87, 390 (1965). 87. G . W . MOERSCI-Iand N. A. NEUr~LlSS, The formylation of steroidal ketones with phosphorus oxychloride and dimethylformamide, J. Chem. Soc. 1965, p. 788. 87a. E. L. MOETTERTmS,lnorg. Chem. 4, 769 (1965). 88. E. L. MUETTERTIESand W. MAHLER, Donor-acceptor function in organo fluoro phosphoranes, Inorg. Chem. 4, 119 (1965). 89. J. F. NlXON, Fluorine nuclear magnetic resonance spectra of some perfluoroatke halogenophosphines, J. Chem. Soc. 1965, p. 777. 90. J . F . NlXoN, Studies on trichloromethyl phosphorus fluorides, d. lnorg. NucL Chem. 27, 1281 (1965). 90a. H. N6TrI, L. MEINELand H. MADERSTEIH,Spaltung der Si-N-Bindung in Silazanen durch Phosphor, Angew. Chem. 77, 734 (1965). 91. G . W . PAP,SHALL,Reactions of hexafluorocyclobutanone with metalloid compounds, Inorg. Chem. 4, 52 (1965). 92. D . S . PAYNE,H. N6TH and G. HENNIGER,A bicyclic hydrazo diphosphine, Chem. Comm. 1965, p. 327. 93. D . J . PETERSONand H. R. HAYS,3d-orbital resonance in trivalent organophosphines. I. Metallation of methyl phosphines, J. Org. Chem. 30, 1939 (1965). 94. H. PLIENINGER and H. IMMEL,Die Darstellung yon reinem ?,),-Dimethylallylpyrophosphat nach dem Verfahren yon F. Cramer, Ber. 98, 414 (1965). 95. J. POWELL,S. D. ROBINSONand B. L. SHAW,Intermediate in the conversion of ~zinto a allylic palladium(II) complexes, Chem. Comm. 1965, p. 78. 96. J. POWELLand B. L. SHAW, The proton magnetic resonance spectra of some complex platinium hydrides, J. Chem. Soc. 1965, p. 3879. 96a. L. D. QUIN, J. P. GRATZ and R. E. MONTGOMERY, Geometrical isomers for the Diels-Alder synthesis of 3-phospholene derivatives, Tetrahedron Letters 1965, p. 2187. 9o19. L. D. QUIN and H. E. SHooK, Geometrical isomerism of 4-ethyl-l-methyl-4-phosphorinanol, Tetrahedron Letters 1965, p. 2193.

STUDIES OF PHOSPHORUS COMPOUNDS 97. 98. 99.

100. 101. 102. 103.

104.

105. 106. 107. 108. 109, 110. I 11. llla. 112. 113. 114. 115. l15a. 116. l16a. 117.

371

F. RAMm~Z, Developpements r6cents de la Chimie des oxy-phosphoranes, Conf. Colloque C.N.R.S. Comp. Organo-phosphor~s 1965, Toulouse. F. RAMm~Z,H. J. KOGLeRand C. P. SMITH,Nucleophilic 1,2-addition to the carbonyl group ofp-quinones and a new molecular rearrangement of a penta-oxyphosphorane, Tetrahedron Letters 1965, p. 261. F. RA~rmEZ, O. P. MADANand S. R. HELLER,A crystalline tetra-alkoxyalkyl phosphorane from the reaction of trimethyl phosphite with an unsaturated ketone, 3-benzylidene-2,4-pentanedione, 31p and 1H nuclear magnetic resonance, J. Amer. Chem. Soc. 87, 731 (1965). F. RAraIm3Z, O. P. MADANand C. P. S~x'rn, Enediol cyclic phosphates, J. Amer. Chem. Soc. 87, 670 (1965). F. RAMlmZZ,O. P. MADANand C. P. SMIXH, Trialkoxy alkylidene phosphoranes from the reaction of trialkyl phosphites with cis and trans dibenzoylethylene. Phosphorus-31 nuclear magnetic resonance spectra, J. Org. Chem. 30, 2284 (1965). F. RAMmEZ, O. P. MADANand C. P. SMITH, Trialkyl and triaryl alkylidene phosphoranes from the reaction of tertiary phosphines with trans-dibenzoylethylene, Tetrahedron Letters 1965, p. 201. F. RAMrarZ, A. V. PATWARDHAN,N. B. DESAIand S. R. I-I~LLER,The hydrolysis of five-membered cyclic oxyphosphoranes to cyclic phosphate esters. 31p nuclear magnetic resonance and stereo-isomerism at phosphorus in cyclic phosphates, J. Amer. Chem. Soc. 87, 549 (1965). F. RAMIe,EZ, A. V. PATWAROHAN,N. RAMANATHAN,N. B. DESAI,C. V. GRECOand S. m. HELLER, A new synthesis of c%fl-dihydroxyketones via oxyphosphoranes. Condensation of aliphatic c~-diketoneswith aldehydes by means of trialkyl phosphites. 31p and 1H nuclear magnetic resonance spectra, d. Amer. Chem. Soc, 87, 543 (1965). G.S. R~DDYand R. SCHMUTZLER,Nuclear magnetic resonance studies on fluorides of trivalent phosphorus, Z. Naturforsch. 20b, 104 (1965). J. Rmss, D6rivds phosphor6s d'hormones st6roides. I. Phosphates de st6roides, Bull. Soe. Chim. t~r. 1965, p. 18. J. Rmss, D6riv6s phosphor6s d'hormones st6roides. II. Acides bis-st6roide phosphoriques et P1 P2 bis-st6roide pyrophosphoriques, Bull. Soc. Chim. Ft. 1965, p. 29. J. Rmss, R6organisation des compos6s du phosphore par 6change des substituants, Conf. Colloque C.N.R.S~ Comp. Organo-phosphords, 1965, Toulouse. J. Rmss and G. OUP,ISSON,D6riv6s phosphor6s d'hormones st6roides. III, St6roides methyl phosphonates, Bull. Soe. Chim. Ft. 1965, p. 933. R.W. RUDOLPrIand R. W. PARRY,Fluorophosphine ligands. I. The preparation and characterization of difluorophosphine, lnorg. Chem. 4, 1339 (1965). F. SCHINDLER, Hexamethyl-aluminium-phosphoroxyd und -galliumarsenoxyd, Angew. Chem. 77, 170 (1965). A. SCrlMID~eETER,B. WOLF und K. DOLL, Die Alkylierung yon Phosphin-Chalkogeniden und Phosphinylamiden, Angew. Chem. 77, 736 (1965). R. SCHMUTZLER,Chemie und Stereochemie der Fluorphosphorane, Angew. Chem. 77, 530 (1965). R. SCHMUTZLER,Uber phenyl-difluor-phosphin, Bet. 98, 552 (1965). R. SCI-IMtlTZLER,Fluoro-l,3-2,4-diazadiphosphetidines, Chem. Comm. 1965, p. 19. R. SCHMUTZLERand G. S. REDDY,Phosphorus-fluorine chemistry. XlIi. The adduct of nitrosyl fluoride with phenyl tetrafluorophosphorane. New fluorophosphates, Inorg. Chem. 4, 191 (1965). G. N. ScI~AUzEg, V. P. MAYWEGand W. HE1NRICH,Concerning the synthesis of dithio g-diketone complexes of transition metals from thiophosphates of 1,2-dithiols, Inorg. Chem. 4, 1615 (1965). E . E . SCrlWEIZERand G. J. O'NEILL, Reactions of phosphorus compounds. Vi. A general synthesis of cycloalkenes, or. Org. Chem. 30, 2082 (1965). T. A. SEITZand W. N. LIPSCOMB,d. Amer. Chem. Soc. 87, 2488 (1965). D. SEYFERTI-Iand W. B. HUGHES, Studies in phosphine metbylene chemistry. X. The reaction of organolithium reagents with alkyltriphenyl phosphonium halides.

372

118. 119. 120. 121. 121a. 122.

122a. 123. 124. 125. 126.

127. 127a. 128. 129.

130. 131. 131a. 132. 132a. 132b.

G. MAWL The mechanism of phosphine methylene formation, J. Amer. Chem. Soc. 87, 2847 (1965). D. SHAW and E. W. RANDALL, Contact shifts and decoupling in proton magnetic resonance spectra of rhenium(III) complexes, Chem. Comm. 1965, p. 82. Erratum, ibid. p. 267. T . H . SIDDALLand C. A. PROHASKA,Studies of adducts of metal salts with tetra alkyl alkyldiphosphonate. I. Proton magnetic resonance spectra of uranyl nitrate adduets of methylenediphosphonates in CDC13, Inorg. Chem. 4, 783 (1965). G. SINGH and H. ZIMMER, Synthesis and reactions of some triphenyl phosphazines. The use of long range PH coupling for structure determination, J. Org. Chem. 30, 417 (1965). H . H . SISLER and S. E. FRAZlZR, The reactions of dialkylchlorophosphines with gaseous chloramine and ammonia, lnorg. Chem. 4, 1204 (1965). G. W. SMITH, Nuclear spin-spin coupling of the type JX-C-H, J. Chem. Phys. 42, 435 (1965). R . F . SMITHand R. A. KENT, Quinazolines. I. The structure of the polychlorinated products obtained by the phosphorus pentachloride-phosphorus trichloride chlorination of 2-methyl-4-quinazoline and 2-ethyl-4-quinazoline, J. Org. Chem. 30, 1312 (1965). V. I. SPITSYN, V. F. CHUVAEV and S. A. BAKHCHISARAITSEVA,Investigation by nuclear magnetic resonance of the water of constitution of some hetero polymers (In Russian), Dokl. Akad. Nauk. S.S.S.R. 160, 658 (1965). G . f . SVATOSand E. E. FLAGG,Preparation and properties of tetrakis (trifluorophosphine) palladium(0), Inorg. Chem. 4, 422 (1965). H. TAKAHASHI,S. TAI and M. YAMAGUCHI,Linear dimerization of butadiene with ferric chloride-triphenyl phosphine-triethylaluminium catalysts, J, Org. Chem. 30, 1661 (1965). N . T . THUONG, F. CONVERT,G. MARTINand P. CHABRIER,Contribution ~tl'&ude des diesters asym6triques des acides alcoyl et aralcoyl phosphoriques, Bull. Soc. Chim. Ft. 1965, p. 1925. M. TOMOEDA,M. ISHIKAZI, H. KOBAYASHI,S. KANAMOTO,T. KOGA, M. INUZUKA and T. FURUTA,Studies on conformation and reactivity. I. The polyphosphoric acid catalysed ring opening of 4,5-epoxy-3-oxo-steroids. The synthesis of 4-ethylthiocholest-4-en-3-one and its analog, Tetrahedron 21, 733 (1965). P. S. TRAYLOR and F. H. WESTHEIMER,Mechanisms in the hydrolysis of phosphorodiamic chlorides, J. Amer. Chem. Soc. 87, 553 (1965). D. A. USHER, E. A. DENNIS and F. H. WESTHEIMER,J. Amer. Chem. Soc. 87, 2320 (1965). J . G . VERKADE,T. J. HUTTEVU~NN,M. K. FUNG and R. W. KING, Linear correlation of the phosphorus-hydrogen spin coupling constant with proton chemical shifts in a series of polycyclic phosphorus compounds, Inorg. Chem. 4, 83 (1965). J . G . VERRADE,R. E. McCARLEY, D. G. HENDRICKERand R. W. KING, Transition metal complexes of a constrained phosphite ester. III. Metal carbonyl complexes of 4-methyl-2,6,7~trioxa-l-phospha bicyclo-(2.2.2)-oetane, Inorg. Chem. 4, 228 (1965). D . H . WADSWORTH,O. E. SCHUPP, E. J. SENSand J. A. FORD, The stereochemistry of the phosphonate modification of the Wittig reaction, J. Org. Chem. 30, 680 (1965). W . R . WALKER and N. C. Lt, Metal complexes involved in solvent extraction and their role in the synergystic effect, J. Inorg. Nucl. Chem. 27, 411 (1965). H. K. WANG, Aeta Chem. Scand. 19, 879 (1965). B.B. WAYLANDand R. S. DRAC,O, Trends in transition metal ion iigand covalency from nuclear magnetic resonance contact shifts, J. Amer. Chem. Soc. 87, 2372 (1965). R. E. WILLIAMS and F. J. GERHART, A six boron carborane (CI-I3)2C2B6H6 and B6H10--P(C6Hs)3 from hexaborane(10), J. Amer. Chem. Soc. 87, 3513 (1965). M . Y . DE WOLE, The N M R spectra of dimethyl methyl phosphonate, J. Mol. Spectroscopy, 18, 59 (1965).

STUDIES OF PHOSPHORUS COMPOUNDS

373

133. R. WOLF, Apport de l'infra-rouge et de la r6sonance magn&ique nucl6aire (31p) ia connaissance de la structure de quelques compos6s organiques du phosphore, Conf. Colloque C.N.R.S., Comp. Organo;phosphor~s 1965, Toulouse. t34. C. Wu and F. J. WELCH, Silver(I) complexes of vinyl diphenyl phosphine, J. Org. Chem. 30, 1229 (1965). 135. J.F. YOUNG,J. A. OSBORN,F. H. JARDIN~and G. WmKINSON,Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts, Chem. Comm. 1965, p. 131.