Tetrahedron Printed in
Letters,Vol.30,No.l6,pp Great Britain
2037-2040,1989
0040-4039/89 $3.00 Pergamon Press plc
f
.oo
STUDIES ON THE TOTAL SYNTHESIS OF FREDERICAMYCIN A: DEVELOPMENT OF AN INTERtiOLEC-iJLAR ALKYtiECtiOMIUM CARBENE COMPLEX CYCLIZATION APPROACH TO THE ABCDE RING SYSTEM Dale L. Boger” and Irina C. Jacobson Departmentsof Chemistry and Medicinal Chemistry Purdue University, West Lafayette, Indiana, 47907, USA Abstract: The development of a synthetic approach to the fredericamycin A ABCDE ring system based on a regiospecijic intermolecular alkyne-chromium carbene complex cyclization is detailed. Fredericamycin A (1, NSC-305263),
a quinone antitumor antibiotic2 isolated from Streptomyces
a unique spiro[C4]nonene central to its
has
structure,
been
activity and confirmed in vivo
antitumor
activity
that
synthesis
oxidative
damage
to DNA
through
Consequently,
enzymes.2s srructurc
A
completed
approach
since the unambiguous
determination4
fredericamycin recently
nondiscriminant after
continues total
to
A
intermolecular
and
which
Scheme
I, 5 -+
chromium
carbene
I, 7 --) S/6.
aldol
complex
In
contrast
chromium
to
a useful carbene
related
closure
might
cyclization
failed
and
to
extensive
preliminary
studies
grised
in
on
the
and
a single tautomeric
protein
crystal
efforts6
X-ray
structures,
including
development
applicable
cytotoxic
of DNA processing
through synthetic
bearing
vitro
resolve
on the
ring system
based
assemblage
provide
one
of a general
to the total synthesis
implementation
of the fredericamycin
for introduction
for implementation for introduction
preliminary
of
a
of
regiospecifc
studies
of the
A skeleton
of a regiospecific
of the resulting
fully
~sts
spiro[4.4]nonene inter-
substituted
or intramolecular
B ring
in the preparation
on the facility
CD ring
hydroquinone:
of 2-3 that establish
system; alkyneScheme this as
A.
expectations
predominate
complex
agents
inhibition
of its structure
A ABCDE
potent
carbene complex cyclization.’
we detail
initial and
detail
possess
discriminant
studies’
of biological*
we
of this convergent
a viable approach to fredericamycin provide
Herein
42 and the feasibility
Herein
subject
and/or
establishment
to
from its inhibition of RNA
is derived
spectroscopic
of the fredericamycin
alkyne-chromium a simpIe
the
stmctura.lly
Key to the development with
be
synthesis.
to the construction
fredericamycin
extensive
shown
in
element
cyclization,
which
the
for
control
a study
electronic of
of electronic
2037
the
nature
of
the
regioselectivity
and
steric
features
alkyne of
an of
was
anticipated
intermolecular the
alkyne
that
to
alkynecontrol
2038
Scheme I
the
X-O,R-H
5
x=0
X-0H.H
6
X=OR,H
cyclization
acetylenes
mode’
revealed
alkynes
>
at
alkyne
the
and regioselectivitysJS”
that
the
adjacent
reactions.8*‘G”
the recent
efforts
alkynes). carbons
of Wulff,~
In
carbene
7
complex
t-butyldimethylsilanol that suffers
a subsequent
generally
acylate
attributed
experimentally
do not acylate
phenols
to
modest to
steric
permit
of this
the product
be
20
derived
(entry
9)
optimally
derived
through
to provide
20.
Under
was
supressed
and,
in the
reaction
(entries
6-8) and
19 with generation
that accelerate
+
the rate
%i”
the
Yamashita
X 1
8
intermolecular As
detailed versus
situ
reaction to
elimination conditions
expectations,
under
Thus,
*
conditions
& OCH,
0% Yield
R
Yield
R
&
OSiMe@tt,
H
H
1.4
A%O:J$N (1.5 eq1.5 eq), WC, hepCane. 1 b. 0.3 M
47%
AC
13
-
Bb
OS~u,
H
H
1.5
AqOZt,N (15 cql.5 eq), SOT. heptane, 3 h, 0.1 M
32%
AC
14
-
9n
OSiMe@u.
H
CQCK
1.5
WC.
22%
H
15
16
-
I.5
A@Et,N (1.5 q1.5 eq), SOT. heptane. 19 h, 0.1 M
10%
H
15
16
8%
18
6%
AC
THF. 24 h 0.03 M
9b
osPb&Bu,
H
CWH,
1.5
A@St,N (1.5 q1.5 eq), SGT. heprane.19 h. 0.1 M
7%
H
17
10
osiMe@u.
II
ClI,OSiM.@U
1.1
Ac#Et,N (1.0 ql.0 eq) 8D”c. heptane. 4 4 0.3 M
68%
H
1920
-
H
10
0.8
%N (I.0 w, 8m heptane. 16 h. 0.3 M
30%
H
19
17%
H
10
1.0
A@ (1.0 E$. 8(pc he&s-t=, 3 h, 0.3 M
66%
H
1920
9
10
1.0
SGT. kptan.
.
19
10
11
0
CH,oSi?vV@u
1.5
65°C. THF. 9 h, 0.03 M
0%
21
11
12
0
‘=WH,
1.5
65-C. THF. 9 h. 0.2 M
0%
22
17 h, 0.3 M
2n
20
of
which was that
19 or 20 may be
+
c-
in
ether
orthoquinomethane
selected.
eq.
9a
6
in
mixture
R’
with
In addition, 10 with the chromium
contrary
of reaction.
R’
7
II.
of an unstable
obtained cleanly from the reaction of 10 with 7 depending on the reaction conditions
schemeII~~~(co15
the
of alkyne.
presumably
anhydride
pattern
in
of alkyne
elimination acetic
substitution
the
of 1.0-1.5 equivalents
from the reaction
the of
(neutral
in heptane
shift
inclusion
alkynes
conducted
1,Shydrogen to the
complexes
neutral
in Scheme
reaction
6)l’
product
in
carbene
regiocontrol
are detailed
proved
with
differences
complete
study
reactions
chromium
optimal
the primary (entry
the phenol
were
of 0.3 M in the presence
conditions
proved from
addition,
results
of Fischer
conversions
sufficient
the benzannulation
(Et,O, THF) at concentrations reaction
chemical
proved
Representative
under the standard
of the reactions
benzannulation
electron-deficient
cyclization solvents
7
2 4
li 74%
H
2039
a
Scheme III 7 + IO
68% bSit&,t8u
CH,d
QJJL
X-H,OH
28
x-0
29
CH,O
R-H
18
R = CH,Ph
25
X
(Bu),NI (0.1 eq). DMF, 25YZc. IS h. (c) HOAc:THF:H%O (a) 80°C. heptane, Ac+u:Et,N (1.5 1 5 eq). 3 h. (b) PhCHzBr (1.2 eq). K&O, (10 ‘%’ (d) (COCI), (2.2 eq), DMSO (4.8 2. E&N (10 eq). CH,Cl,. -60-Z. 1 h. (e) N&H, ( .I eq), CH,OH. 40°C. 6 h. (f-J FCC (1.5 eq), CH,Cl, 2fC. (1 eq), HCOJW, (5 eq), CH,OIl. 25+, 2 h. 01) &.SH (2.5 eq), NaH (5.0 eq). DMF. 15VC. 3 h.
application
The
of
the
rcgiospecific
fredericamycin
ABCD
carbon
benzannulation
product
19 as its benzyl
proceeded
without
and secondary cleanly that
only
ensure
catalyzed
competitive
benzylic under
activation
elimination
alcohols.
Keto
methoxide
thus
alcohols
the
of
aldehyde providing
to the fredericamycin
ether
afforded
of
both
26.
alcohols
closed
functionalized
A ABCD ring system.
of
7
25 was accomplished
oxidation”
with
to the Oxidation
to
cleanly
under by
the
of
the
spirocyclic
carefully
keto
and
alcohol alcohol
conditions of
salt
that
primary
prior
conditions to
secondary exposure
viability
afforded
the
reaction
and
28 upon
the
of the
27 was accomplished
controlled
the
of
phenol
mild basic
primary
establishing
of the secondary
of a competitive retro aldol reaction and subsequent sequential deprotection
the
free
deprotection
biialkoxysulfonium of
assemblage
of the
of diol 26 to keto aldehyde
oxidation
spiro[4,4]nonene
10
followed
and required
formation formal
with
Protection
III.
r-butyldimethylsilanol
through
sulfide
27 cleanly
reaction in Scheme
Direct oxidation
of Swern
dimethyl the
is detailed
elimination
conditions
of
benzannulation
framework
(3:l:l). 4U’C, 48 h. 5 h. (g) 10% W-C
of
this
base-
benzylic to
sodium approach
29 without detection
of 29 provided 2.
Scheme IV
c
e
(a) 8C-Z kptane, A%0(1 =l). 3 h. @) PhCWr (1.5 4. K,CO, (10 eq). (Bu),NI (0.1 en). DMF. WC. 48 h (c) (Bu)+NF (5 eq), THF. 25-Z 72 h (d) (CCCI), (2.2 Y DMSO (4.8 es), &N (10 a. CYCL 67°C. 1 h. (e) NaOCH, (0.1 eq), CH,OH. WC. 3 h (fl PCC (3 es). CH,Cl, 25”. 14 h. (g) BBr, (3.6 eq), CHf& -78 to 25~~. 19
2040
The extension in Scheme
of these observations Regiospecific
IV.
1.0 equiv 31, 80°C benzannulation
heptane,
product
t-butyldimethylsilanol. spirocyclic
keto
(r
95%)
without
36,
detection
of
subsequent fredericamycin
oxidation
previously
products
35, base-catalyzed
provided
developed
32 (85%} as the predominant
37.
derived
from
aldol
closure
(0.3 M 7, or exclusive
elimination
of
of 35 to the
Deprotection
of
37
the
Institutes
provided
3
A ABCDE ring system
Acknowledgments. We gratefully acknowledge the financial (CA42056, NIDDG CA40884) and the Alfred P. Sloan Foundation. References
the conditions
subsequent
of 32 to the keto aIdehyde
and
constituting the partially functionalized
the
A ABCDE ring system is detailed
of the frederlcamycin
of 31” with 7 under
1.0 equiv Ac,O, 3 h) cleanly provided
Conversion alcohol
to the assemblage
cyclization
support
of
National
of
Health
and Notes
1. National
Institutes of Health research career development award recipient, 1983-1988 (CA01136), Alfred P. Sloan research fellow, 1985-1989. 2. In vitro and in vivo activity: Warnick-Pickle, D. J.; Byrne. K. M.; Pandey, R. C.; White, R. J. J. Antibiot. 1981, 34, 1402. Von Hoff, D. D.; Cooper, J.; Bradley, E.: Sandbach, J.; Jones, D.; Makuch, R. Am. J. Med. Derivatives: Yokoi, K.; Hasegawa, H.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizekl, S.; 1981, 70, 1027. Nakajima, T. Jpn. Patent 152468, 198.5: Chem. Abstr, 1986, 204, 33948j. Mechanism of action: Hilton, B. D.: Misra. R.: Zweier. J. L. Biochemistrv 1986. 25. 5533. 3. Prmdey, R, ‘C.; Toussaint, M. W.; S&oshane, R. M.; Kalita, C. C.; Aszalos, A. A.; Garretson, A. L.; Wei, 4. 5. 6.
7. 8.
9.
10.
11. 12. 13.
T. T.; Byrne, K. M.; Geoghegan, R. F., Jr.; White, R. J, J. Antibior. 1981, 34, 1389. Misra. R.: Pandev. R. C.: Silverton. J. V. J. Am. Chem. Sot. 1982. 104. 4478. Misri R.f Pandey; R. C.i Hilton, B. D.; Roller, P. P.; Silverton, J.’ V. i. Antibiot. 1987, 40, 786.
Fredericamycln A ABCD(E) ring construction: (a) Ramo Rao, A. V.; Reddeppa Reddy, D.; Deshpande, V. H. .I. Chem. Sot., Chem. Commun. 1984, 1119. (b) Parker, K. A.; Koziski, K. A.; Breault, G. Tetrahedron Len. 1985, 26, 2181. (c) Kende, A. S.; Ebetino, F. H.; Ohta T. Tetrahedron Lett. 1985, 26, 3063. (d) Eck, G.; (e) Eck, G.; Julia, M.; Pfeiffer, Julia, M.; Pfeiffer, B.; Rolsndo, C. Tetrahedron Left. 1985, 26, 4723. B.; Rolando, C. Tetrahedron Lerr. 1985, 26, 4725. Q Bach, R. D.; Klix, R. C. J. Org. Chem. 1986, 51, 749; 1985, 50, 5438. (g) Braun, M.: Veith, R. Tetrahedron Lett. 1986, 27, 179. (h) Bennett, S. M.; Clive, D. L. J. J. Chem. SM., Chem. Commwt. 1986, 878. (i) Bach, R. D.; Klix, R. C. Terrohedron Len. 1986. 27, 1983. (j) Mehta, G.; Subrahmanyam, D. Tetrahedron Leta. 1987, 28, 479. (k) Clive, D. L. J.; Angoh, A. G.; Bennett, S. M. J. Org. Chem. 1987, 52, 1339. (1) Ciufolini, M. A.; Browne, M. E. Tetrahedron Lerr. 1987, 28, 171. Ciufolini, M. A.; Qi, H.-B.; Browne, M. E. J. Org. Chem. 1988, 53, 4149. (m) Parker, K. A.; Spero, D. M.; Koziski, K. A. J. Org. Chem. 1987, 52, 183. (n) Ramo Rao, A. V.; Rcddeppa Reddy, D.; Annapuma, G. S.; Deshpande, V. H. Tetrahedron Lert. 1987, 28, 451. (0) Ramo Rao, A. V.; Sreenivasan, N.; Reddeppa Reddy, D.; Deshpande, V. H. Tetrahedron Lerr. 1987, 28, 455. [p) Naik, S. N.; Pandey, B.; Ayyangar, N. R. Syn. Commun. 1988, 18, 633. (9) Evans, J. C.; Klix, R. C.; Bach, R. D. J. Org. Chem. 1988, 53, 5519. Fredericamycin (C)DEF ring construction: (r) Parker, K. A.; Breault, G. A. Tetrahedron Lerr. 1986, 27, 3835. (s) Clive, D. L. J.: Sedgeworth, J. J. Heterocycl. Chem. 1987, 24, 509. (t) Ramo Rao, A. V.; Reddeppa Reddy, D. J. Chem.
Sot., Chem. Commun.
1987, 574.
Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am. Chem. Sot. 1988, 110, 6471. Kelly, T. R.; Ohashi, N.; Armstrong-Chong, R. J.; Bell, S. H. J. Am. Chem. Sot. 1986, 108, 7100. (a) D&z, K. H. Pure Appl. Chem. 1983, 55, 1689. (b) D&z, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587. (c) Wulff, W. D.: Tang, P.-C.; Ghan, K.-S.; McCallum, J. S.; Yang, D. C.; Gilbertson, S. R. Tetrahedron 1985, 41, 5813. (d) Semmelhack, M. F.; Bozell, J. J.; Keller, L.; Sate. T.; Spiess, E. J.; Wulff, W.; Zask, A. Tetrahedron 1985, 41, 5803. (e) Wulff, W. D.; Chart, K. S.; Peterson, G. A.; Brandvold, T. A.: Faron, K. L. Challener, C. A.; Hyldahl, C. J. Orgunomet. Chem. 1987, 334, 9. Krapcho, A. P. Synthesis, 1974, 383, 1976, 425. To date only the efforts of Kelly and coworkers’ descnbe me use of an aldol closure for introduction of the spire center employing a Dibal-H reduction of an cnol lactone and in situ aldol condensation; d Holland, H. L.; MacLean, D. B.; Rodrigo, R. G. A.; Manske, R. F. H. Tetrahedron Len. 1975, 4323. D&z, K. H.; Fiigen-Kbster, B.. Chem. Ber. 1980, 123, 1449. Wulff, W. D.; Tang, P.-C.; McCallum, J. S. J. Am. Chem. Sot. 1981, 103, 7677. Yamashita. A.: Scahill, T. A.; TOY. A. Tetrahedron Lerr. 1985. 26. 2969. Yamashita. A. J. Am. Chem. Sot. 1985, 107, 5823. Yamashita, A.:-Timko, J. M.: Watt, W. Terkzhedron Letr. 1988, 29. 2513. Yamashita, A.; Toy, A. Tetrahedron Lett. 1986, 27, 3471. Mancuso, A. J.; Swem, D. Synthesis 1981, 165. Prepared from 7-hydroxyindanone by the following sequence: (a) PhCH,Br, K&O,, (Bu),NI, DMF. 2s”C, 10 h, 94%; (b) Ph,PCHOCH, dioxane, 100°C 3 h, 75%; p-TsOH, dioxane-H,O (1:3), 100°C 16 h, 75%; (c) CC,H,CH(OSiMqrBu)CCLi, THF, 0°C 2 h, 79%; (d) rBuMe$iCl, imldazole, DMF, 25°C 72 h, 87%. (Received
in
USA 13
January
1989)