SU(3) isoscalar factors

SU(3) isoscalar factors

~ Nuclear Physics B2 (1967) 697-712. North-Holland Publ. Comp., A m s t e r d a m SU(3) ISOSCALAR FACTORS* C. - K . C H E W Physics Department. McGi...

629KB Sizes 4 Downloads 92 Views

~

Nuclear Physics B2 (1967) 697-712. North-Holland Publ. Comp., A m s t e r d a m

SU(3) ISOSCALAR FACTORS* C. - K . C H E W Physics Department. McGill University. Montreal. Canada and R. T . S H A R P ** Department of Physics. University qf lllinois. Urbana. Illinois Received 24 April 1967

Abstract: The general non-orthonormalized SU(3) i s o s e a l a r factor is e x p r e s s e d as a six-fold sum involving a t r i p l y - s t r e t c h e d 15-j coefficient which contains a quadruple sum. The s y m m e t r y p r o p e r t i e s of the s y m m e t r i c i s o s e a l a r factor and its relation to the a s y m m e t r i c i s o s c a l a r factor a r e discussed. Two o r t h o n o r m a l i z a tion s c h e m e s a r e discussed which diagonalize respectively a metric o p e r a t o r and a mixed C a s i m i r o p e r a t o r .

1. I N T R O D U C T I O N S i n c e t h e d i s c o v e r y of SU(3) s y m m e t r i e s in n u c l e a r a n d p a r t i c l e p h y s i c s t h e r e h a s b e e n m u c h i n t e r e s t in t h e g r o u p a n d in i t s C l e b s c h - G o r d a n c o e f f i c i e n t s . A u t h o r s h a v e p r e s e n t e d t a b l e s of t h e m o s t c o m m o n l y u s e d i s o s c a l a r f a c t o r s [1, 2] a n d h a v e g i v e n f o r m u l a s of v a r y i n g d e g r e e of c o m p l e x i t y and generality [3-11]. Hou [9] f o l l o w s t h e v a n d e r W a e r d e n a p p r o a c h , c o n s t r u c t i n g a s c a l a r w h i c h i s a p o l y n o m i a l in t h e v a r i a b l e s of t h r e e " o n e - p a r t i c l e " s p a c e s ; P o n z a n o [10] e x p a n d s s u c h a s c a l a r in p r o d u c t s of one p a r t i c l e s t a t e s and d e t e r m i n e s t h e g e n e r a l i s o s c a l a r f a c t o r f r o m t h e c o e f f i c i e n t s . He a v o i d s t h e tracelessness conditions by generating the general one-particle state from two i n d e p e n d e n t q u a r k (1, 0) b a s e s ; he e v a l u a t e s t h e g e n e r a l n o n o r t h o n o r m a l i z e d i s o s c a l a r f a c t o r in t e r m s of s p e c i a l 2 1 - j s y m b o l s of SU(2). H i s f o r m u l a h a s 17 s u m s . S h a r p a n d von B a e y e r [11] (we w i l l r e f e r to t h i s p a p e r a s I) d e r i v e a formula for the general isoscalar factor with fifteen summations, synthes i z i n g it out of s i m p l e r s p e c i a l i s o s c a l a r f a c t o r s . T h e i r o n e - p a r t i c l e s t a t e s a r e g e n e r a t e d f r o m one q u a r k a n d one a n t i q u a r k (0, 1) b a s i s ; t h e t r a c e l e s s n e s s c o n d i t i o n i s i m p o s e d b y d i s c a r d i n g a s u b s p a c e of " u n w a n t e d " s t a t e s . * This work was supported by the National R e s e a r c h Council of Canada and the Dep a r t m e n t of P h y s i c s , University of Illinois. ** On leave f r o m MeGill University, Montreal, Canada.

698

C. - K . C H E W a n d R . T . S H A R P

K l e i m a [12] has a l s o d e s c r i b e d q u a r k - a n t i q u a r k b a s i s p o l y n o m i a l s . In this p a p e r we follow P o n z a n o in c o n s t r u c i n g a s c a l a r p o l y n o m i a l in t h r e e o n e - p a r t i c l e s p a c e s , but we u s e the q u a r k - a n t i q u a r k v a r i a b l e s of I. The i s o s c a l a r f a c t o r s a r e e x t r a c t e d by p r o j e c t i n g on p r o d u c t s of o n e - p a r t i c l e s t a t e s ; this is m o r e d i r e c t than the synthetic method of I and y i e l d s a s i m p l e r g e n e r a l f o r m u l a , with ten s u m s . The t r a c e l e s s n e s s condition is not a c o m plication, for the o n e - p a r t i c l e s t a t e s on which the s c a l a r is p r o j e c t e d contain no unwanted s t a t e s . I s o s p i n m a n i p u l a t i o n s play an i m p o r t a n t r o l e in the calculation. An o r t h o g o n a l i z a t i o n s c h e m e b a s e d on m i x e d C a s i m i r o p e r a t o r s , d e ; s c r i b e d e a r l i e r by us [13], is shown to apply with little modification to the present approach.

2. SYMMETRIC AND ASYMMETRIC ISOSCALAR FACTORS Much of the implicit form. in our p r e s e n t scalar factors, the f o r m e r .

content of this s e c t i o n m a y be found e l s e w h e r e , at l e a s t in We thought it worthwhile to collect the r e s u l t s in one p l a c e notation. We define s y m m e t r i c and a s y m m e t r i c SU(3) i s o r e l a t e t h e m to each other, and exhibit the s y m m e t r i e s of

We use the o n e - p a r t i c l e s t a t e s [P T q } defined by eq. (3.1) of I; they a r e p o l y n o m i a l s of d e g r e e p ; q in s i x independent v a r i a b l e s ~ 77~ ;4" 77* {*, and s a t i s f y the t r a c e l e s s n e s s condition by v i r t u e of t h e i r orthogonality to the unwanted s t a t e s of the s a m e d e g r e e N G ( ~ *

+ 7777* + ~ . ) G

I P-G n TqM- G ) ; h i s

the n u m b e r of r o w s above that containing the h e a v i e s t s t a t e in the hexagonal weight d i a g r a m and is r e l a t e d to h y p e r e h a r g e Y by n = Y + ~ ( q - p ) . The p h a s e convention is that of de Swart [1] and of H a r v e y and Elliott [4], d e s c r i b e d c o r r e c t l y in I but i n c o r r e c t l y a t t r i b u t e d to B i e d e n h a r n t h e r e ; the m a t r i x e l e m e n t s of R± (the -K:~ of de Swart) a r e negative; in the B i e d e n h a r n convention, u s e d by Ponzano [10] the r e d u c e d m a t r i x e l e m e n t s of R e a r e $

negative. Our s t a t e I P,~ T q~) d i f f e r s f r o m the c o r r e s p o n d i n g s t a t e of P o n z a n o 2V~

by a p h a s e (-1)½(P+q+n)-T. We define a s c a l a r p o l y n o m i a l in t h r e e s e t s of v a r i a b l e s Su = _~ p BUl2 ~u21 ~u13 ~u31 ~u23 ~u32 (:s u 12 --21 --13 --31 --23 --32 - '

(2. la)

S u = N P B u 1 2 ~ u 2 1 R u l 3 R u 3 1 ~ u 2 3 ~ u32 ~ * s u 12 --21 --13 --31 --23 --32 v ,

(2.1b)

or

where

SU(3) ISOSCALAR FACTORS

699

~1 ~2 ~3 C=

~?1 772 7?3

,

(2.3)

~1 ~2 ~3 and C* is C with the replacements ~ --~ ~* etc. The operator P is an instruction to project out unwanted states; this operation is achieved automatically by projecting S u later on one-particle states. N u normalizes S u to unity; it is evaluated in appendix B. Our Su, eqs. (2.1a) and (2.1b) correspond to Ponjano's invariant I given by his eqs. (38) and (39) respectively. From the degree of S u in starred and unstarred variables one finds Pl =u12 +u13 + s ,

ql =u21 +u31 ,

P2 =u21 +u23 + s ,

q2 =u12 +u32 '

P3 =u31 +u32 + s ,

q3 =u13 +u23 '

Pl = u12 + u13 '

ql =u21 +~31 + s ,

P2 = u21 + u23 ,

q2 =u12 +u32 + s ,

s = ~1 ~. (Pi - q i ) z (2.4a)

Or

s = ~.

(qi-Pi) ,

(2.4b) q3 =u13 +u23 + s ' P3 = u31 + u32 ' for Su given by eq. (2.1a) or (2.1b). It is apparent that increasing u12 , u23 , u31 and decreasing u21 , u32, u13 by the same integer leaves the p and q unchanged; two Su whose u are thus related are called degenerate; the number of S u in a degenerate set is determined by the restriction that the u are non-negative integers; besides the p and q any one of the six u can be used to specify S u uniquely. We expand S u in one particle states ~11

Su =

P2

q2)

P3

q3

nln2M1M 2 T 1T2 T3

× (Pl

ql.

P2

q2.

n 1 T1M 1 ' n2 T2 M2 '

P3

q3.

u)

n3 T3 M 3 '

(2.5) ,

defining thereby an SU(3) Wigner coefficient P2 q2 -P3 q3. u ) =

( P l Tq l1'. n1

P2 q2. P3 q3. u~] \( MT 11 T 2 T 3

n 2 T 2' n 3 T 3'

)

M2 M 3 -

(2.6) '

700

C. - K . C H E W a n d R. T . S H A R P

which f a c t o r s by v i r t u e of the W i g n e r - E c k a r t t h e o r e m f o r isospin into a s y m m e t r i c i s o s c a l a r f a c t o r and an SU(2) Wigner coefficient, shown in the second line of eq. (2.6). The M s a t i s f y ZiMi = 0 and the n satisfy Zin i =

"-:i(qi - 1,i)

: ±s.

The s y m m e t r i e s of the i s o s c a l a r f a c t o r a r e a p p a r e n t f r o m eqs. (2.6) and (2.1). Interchanging two of the t h r e e s p a c e s m u l t i p l i e s S u by (-1) s and a c cording to the s y m m e t r y p r o p e r t y of the SU(2) Wigner coefficient m u l t i p l i e s the i s o s c a l a r f a c t o r by (-1)s+T1 +T2+T3. Another s y m m e t r y d e a l s with r e v e r s i n g " m a g n e t i c " quantum n u m b e r s n and M. It can be shown that

P

q)*

nTM

:

-

q

P \

T-M)

(-

1)½(p-q-n)-M

,

(2.7)

w h e r e the a s t e r i s k m e a n s substitute ~ ..... ~* etc. Putting a s t a r on (1; 2; 3 IS) in (2.6) does not change its value, s i n c e the v a r i a b l e s a r e all d u m m i e s . But it induces the r e p l a c e m e n t s p'--" q, n ...... n, M - , -M, uij ..... uji and i n t r o duces a factor

(_l)'-'i[~(Pi - qi - hi) - Mi] : (_1) 2s : 1. By the s y m m e t r y of the SU(2) Wigner coefficient the i s o s c a l a r f a c t o r changes by a p h a s e (-1)T,+T:+T3 o n r e v e r s i n g n , interchanging p with q and uij with uji. We need c o n s i d e r only eq. (2.1a) f r o m now on, since this t r a n s f o r m a t i o n int e r c h a n g e s it with (2.1b). We have s e a r c h e d u n s u c c e s s f u l l y f o r s y m m e t r i e s of the g e n e r a l SU(3) i s o s c a l a r f a c t o r analogous to the Regge s y m m e t r i e s of the SU(2) Wigner c o e f f i Cient; however by e m b e d d i n g SU(3) in SU(4) in d i f f e r e n t w a y s one could find identities s i m i l a r to the g e n e r a l i z e d Regge identities s a t i s f i e d by SU(2) Wign e r c o e f f i c i e n t s [14]. The a s y m m e t r i c i s o s c a l a r f a c t o r

p l q l . p2q2 n l T ' n2T 2

p3q3 u -n3T 3 /

is defined by

Pl ql P2 q2 q3P3 u -n3T 3 -M3}12 = n l M 1 nl T1M1) n2 T 2 M 2) T 1 T2

×~Plql P2q2

q3P3u} ~ TIT 2

\ n i T l n2T 2 -n3T 3 Here U

q3P3 _M3112 - n3 T3

T3

\ M I M 2 -M31"

(2.8)

SU(3) ISOSCALAR FACTORS

701

is the product state given by eq. (5.2) of I; the heaviest state (n 3 = 0, -M 3 = T3 = ½(P3 +q3)) is given by eq. (4.4) of I whose phase is fixed by the convention (P:

ql

. P2 ~ q2

[q3

P3

0

½(q3+P3)

½(Pl+ql) ' -s ~(p2+q2-s)

u) ) 0

the last factor in eq. (2.8) is an SU(2) Clebsch-Gordan coefficient. It is not hard to show that o

q nTM n T M

nTM

P

1 ½(p-q-n)-M

nTM n

is a n o r m a l i z e d invariant; D = ½(P+l)(q+l)(p+q+2) is the dimension of the representation (p,q). It follows that within a phase factor Su

(_l)q3+u21

D~½

~ P3 q3 n3T3M3 n3 T 3 1143)3

q3P3 u

-n 3 T 3 -M3)12 (-1) ~(p3+q3-n3)-M3 (2.9) The phase is fixed by comparing in eq. (2.1) and (2.9) the coefficients of say the state P3

q3

,

0 ½(P3+q3)-½(P3+q3))

= (p3 ! q3 ! )-½(-~3)P3~ q3 .

Substitution of eq. (2.9) in (2.6) yields

Plql P2q2 q3P3 u, {nlT1; n2T2 -n3T 3 )

1

= I (/53,+ 1)(q3 + 1)(P3 + q3 + 2) i ~ 2(2T 3 + 1)

A

1 Plql P2q2"P3q3" u), × (_l)~(P3-q3-n3)+u21+T2-T1 (nlT1; n2T 2' n3T 3' the

Incidentally the N of eq. (4.4)of I, called N u of eq. (2.1) by

N3u

in eq. (2.11), is related to 1

N3u = (P3 ! q3 ! D3)aNu •

(2.11)

3. DERIVATION OF GENERAL ISOSCALAR FACTOR In this section we extract the general i s o s c a l a r factor by projecting Su on products of one-particle states. Isospin manipulations play an important role. Taking the s c a l a r product of eq. (2.5) with

702

C. -K.CHEW and R.T.SHARP

P2

q2~ P3

q3

TI T2T3

M1M2 g i v e s an e x p r e s s i o n for the i s o s c a l a r f a c t o r

T1T2T3~,Pl

ql P2

q2 P3

q3

. P l q l , P2q2 P3q3 u)= ~ (\M1M2M3/~/\nlT1MI' " n2T2M2; n3T3M3[Su) nlT " n2T2; n3T3; MIM2

(3.1) We now e x a m i n e the isospin s t r u c t u r e of both f a c t o r s in the s c a l a r p r o d u c t on the right side of eq. (3.1). F i r s t the left f a c t o r . By eq. (3.1) of I we can w r i t e

I p q ) = ~ N'~-n'(-~*)n-n' I T' n T n' (-n')'.(n-n'): ' T* 3/

(3.2)

where 1 1 1 1 N' = ~ {-~(p+q-n)+ T+l I)'.V _{½(p+q+n)+ T+l }'~ {½(p+q+n)T}:T {½(p+q_-n)T}'. ~

(p+q+l)' {½(p+q-n)+T+n'+l}'.{½(p+q-n)-T+n'}'

I_

1

( )J33.:

In eq. (3.2) T ' is the i s o s p i n s t a t e T ' = ½(p + n ' ) f o r m e d f r o m u n s t a r r e d ~ v a r i a b l e s and T* = ½(q -n+n') is the isospin s t a t e f o r m e d f r o m s t a r r e d v a r iables; the two i s o s p i n s T'T* a r e c o m b i n e d to give a s t a t e I T ) . The isospin f a c t o r s on the left of the s c a l a r p r o d u c t in eq. (3.1) can thus 5e w r i t t e n

M1M 2

I

M1 /

M3/

M2 . ?

T

M2

T

1

= (-1)2(Tl+T2+T3)[(2Tl+l)(2T2+l)(2T3+l)] 5 (3.4) where

(~a~7b - 77a~b)a+b-c (~ bT?c _ 77b~c)b+c -a (~c~?a _ 77c~ a)C+a-b (abc) =

1

(3.5)

[(a+b-c)' (b÷c-a)' (c+a-b)' (a+b+c+l)' ]-~ is the n o r m a l i z e d van d e r W a e r d e n i n v a r i a n t which is the SU(2) analog of the s c a l a r Su in SU(3). (abc) can be expanded [15].

M1M2 ma

mc

a mb mc

The s c a l a r p r o d u c t on the right of eq. (3.4) is to be taken only with r e s p e c t to the v a r i a b l e s f o r T1T2T 3 which a p p e a r in both f a c t o r s ; the vari-

703

SU(3) ISOSCALAR FACTORS ables for ~1~1~2~2~3~3 w h i c h a p p e a r o n l y on t h e r i g h t a r e f r e e . s u b s t i t u t i o n (3.4) eq. (3.1) r e a d s !

=

AIA'2A3

5

(1 1(1 1

!

T

With the

T

1(2 2 ( 2 2

g3

nln2n 3

(3n)

× [(-~[)" (~1 -~[)' (-"~)' (~. -~[)" (-'3)' (~3 -~)' ]-1, t

9

( 2) T ' +~ n i - n ' ( 2 T i + 1)e1_N ,i . H e r e I S F u h a s b e e n w r i t t e n f o r b r e v i t y w i t h A i' = to r e p r e s e n t t h e i s o s c a l a r f a c t o r on t h e l e f t of eq. (3.1). N o w e x p a n d S u s i m i l a r l y in p o w e r s of the ( v a r i a b l e s . T h e r e s u l t c a n b e written Su = N u

, 2 , , B u ( T 3 T 1 T 2 ) ( T I T 2 T 3 ) ( T 2 T 3 T 1) nln2n 3 T 1T 2 T 3 T

T

T

T

T'



X (1 n l ~lr*nl-nl (2 n2 ~2"*n2-n2 (3 n3 g3'~*n3-n3 '

(3.8)

where (-1)

i~z

~i -~iJul2!

u21, u13! u31! u23: u32, " s'.

' U 3 2 - ~ ) . a' . ' B u = 5..(U12_5).e,.(U21_e),.~:(U13_O)!K:(U31_K),.~:(U23_~), " P.( ,

,

fi!y:

1

× [ ( T 3 + T ~ I - T ~ ) ! ( T 3" + T 2~'- T 1 )*! (T~I+T "2 - T 3 ") i ( T 3" + T 2,, + T I. + I ) " , ]2-

× [ ( T I + T 2 - T 3 ). ( T I + T 3 - T 2 ) . ( T 2 + T 3 - T 1 ) . ( T I + T 3 + T 2 + l ) ] z 1 *

v.

"

T

"

m

*

T

× [(T2+T3-T , * ,,1 )., ( T 2, ~ T ~1 - T 3•) . , ( T 3 + T 1 - T 2 ) - ( T 2 + T 1 + T 3 + l ) . ] T1T2T 3 are independent summation T1 = T

variables

and T~T

- T1 , tt

???

*

T?

~ + T *1 ,

0 = T~" - T 2 + T 3

5 = TI-I

~=T2-T

K = T~ - T 2"~ + T *1 ,

~t = T

(3.10)

*

y = T 1 + T~ - T 3

fi = T 3 + T 1 - T

3 +1 2 ,

T

= T3 - T3

2 ,

a = T 2 +T 3 -T 1 ,

(3.9)

-T 1 + T 3 ,

/x = T 3 - T 1 + T 2 ,

704 It

C.K. CHEW and R . T . S H A R P t~

T i , Ti

a r e s t a t e s in the s a m e u n s t a r r e d i v a r i a b l e s (i = 1 , 2 , 3 ) . W h e n eq. (3.8) i s s u b s t i t u t e d in eq. (3.7) t h e f i n a l r e s u l t i s

ISF u = N u

~ A'A' a' B n,ln,2n ~ 1 2~3 u T~T~T~

(3.11)

× ((T~ T i T1)(T~T'2T2)(T~TT3 T3)

(T 1 T 2 T 3 ) ( T "1T~T~)(T~

T~TI")(T~T ~T~')).

T h e e x p r e s s i o n (3.11) c o n t a i n s s i x e x p l i c i t s u m m a t i o n s . T h e i s o s p i n f a c t o r i s a t r i p l y s t r e t c h e d 1 5 - j s y m b o l . It i s e v a l u a t e d in a p p e n d i x A in t e r m s of a q u a d r u p l e s u m . H e n c e t h e r e s u l t (3.11) c o n t a i n s t e n s u m s in a l l . T h e n o r m a l i z a t i o n c o n s t a n t N u i s e v a l u a t e d in a p p e n d i x B; it i n v o l v e s a seven-fold sum. In a p p e n d i x C we s h o w t h a t a s c h e m e f o r o r t h o g o n a l i z i n g d e g e n e r a t e SU(3) i s o s c a l a r f a c t o r s b a s e d on m i x e d C a s i m i r o p e r a t o r s and d i s c u s s e d e a r l i e r b y us [13] a p p l i e s r e a d i l y to t h e p r e s e n t s c h e m e . T h e o r t h o g o n a l i z a t i o n d o e s not s p o i l t h e s y m m e t r y p r o p e r t i e s . One of us (C. - K . C) i s p r e p a r i n g a p r o g r a m f o r c o m p u t a t i o n of i s o s c a l a r f a c t o r s , o r t h o n o r m a l i z e d a c c o r d i n g to t h e s c h e m e d e s c r i b e d in a p p e n d i x C. O u r t h a n k s a r e d u e to H. C. y o n B a e y e r f o r h e l p f u l d i s c u s s i o n s .

APPEND~

A

W e w i s h to e v a l u a t e t h e i s o s c a l a r e x p r e s s i o n

Y = YT3T3

(A. 1) ?

$

?

~

t

~

~

~

tt

$

tn

~

$

v11

=- ((T1T1T1)(T2T2T2)(T3T3T3)[(T1T2T3)(T1T2T 3 )(T2T3T 1 )(T3T1T 2 )) , ' " "1 are T1T1T

w h i c h a p p e a r s in o u r f i n a l f o r m u l a (3.11).

in t h e s a m e i s o s p i n

variables ~i~/i and satisfy T~ +T~ = TI; similarly for 2 and 3. We follow closely the methods used by Bandzaitis, Karosiene and Jucys [16] to evaluate the X-coefficient to which our Y is formally similar [17]:

Fabc~ X t degh f ~ =

<(abc)(def)(ghj)l(adg)(beh)(cfJ))"

T h i n k of e x p r e s s i o n (A.1) a s t h e s c a l a r p r o d u c t of

((T3T3T3) I (T2T3 T 1 )(T1T2T 3) ) ,

(A.2)

with tT

$

tit

tt

$

tlt

~

~

,

<(T1T2T 3 )(T3TI T2 )t (TI TI T1)(T2T2T2) > •

(h.3)

In e x p r e s s i o n s (A.2) and (A.3) s c a l a r p r o d u c t s a r e to b e t a k e n w i t h r e s p e c t to v a r i a b l e s w h i c h a p p e a r in b o t h f a c t o r s ; o t h e r v a r i a b l e s a r e f r e e . A l s o t h e scalar product

SU(3) ISOSCALAR FACTORS

705

r~ rl for example, is to be i n t e r p r e t e d a s

D1

., ) M1

with T~'

DI=( =

i

.,(

T i?1

T ,1

M 1 M"1 MI

)

(T,I - M'I)I (T'1 +M'I)'



,, ~ , i (T~ - M[): (T~ + M~)I (T~ - M 1 )[ (T~ + M1 ).J

(A.4)

The state (A.3) has isospins T'~T~T1T 2 added to give T~. The states (A.2) with f r e e T3T ~ are a complete set of such states with orthonormality e x p r e s s e d by ( T 3 T~ IT3 T~ ) = 6 T3 T35 T~ T~ / (2 T 3 + 1)(2 T~ + 1) in an obvious notation. Hence we may write

<(T1T2T3 )( T3T1T2 )1 (T~T'I T1) (T~.T'2T2) >

= E ((T~T;T3)[(T~T;T~I')(T1T2T3)) r3r;

(2T 3 + 1)(2T~ +

1)YT3T~ ,

(A.5)

where the coefficient YT^T*,, is just the expression (A.1) to be evaluated. Expand both sides of ~q.~(A.5) substituting f r o m eq. (3.6) for all the threeisospin invariants and equate coefficients of

Mr

M;. M1 M2 M~

The r e s u l t is

r~ r;. rj

r; r~ <2

rl* rl rl

r*2 rl r2

M'~ ) (M~ M'I M 1) ( M~. ) D1D2D3 • IiM~ (M~ M~. M~ ) (M~ M~ M'2 M2 T* T~ T 3

T3T~

MT3

T" T~ T"I

T1 T2 T3 "

M~ M2 r e g a r d M3M3M1M 1 as free

In eq. (A.6) we may by the f r e e ones. Now multiply by

(A.6)

and

M3M~M2 as

determined

706

C.-K. CHEW and R.ToSHARP __

"

m

T"

(M; M~ M 1 with M;M 3 (and

~T!

and sum over M I M I p r o p e r t y of the Wigner coefficients a

b

T 1 T2 T3 1 M2 M3 T

hence M3) fixed, using the orthogonality

c

a

b

~, 2~+i

Y~/a The r e s u l t is T*3 T~ T 3 -1

Y

(M~ M'3 M 3

T"2 T~ T "1

M~M~M~M1

(MT~ T~ T 3 x / T 3 T I T2, ×

~,,,,,,\~,,,,}{ M~.I~, 3 '~'3

i

T l T2 T3

M~

T 1 T~ T 1

T 2 T~. T 2

M,2,,)~M~ M I M 1)(

) D1D2D3 .

M~M~M 2

(A.7) The right side of eq. (A.7) cannot depend on M3M~ which a r e still f r e e , !

~r

T

*

*

W

,

~

'T

o

T!

.

so we may s e t M 3 = T3, M 3 = - T 3. T h e n a l s o M 3-- T 3 ; t h e M 3 s u m c o n t a m s one t e r m only. T h u s

r~ T~

T3

Y : ( - T~ T'3 T ; - T 3' )

( T3"

x'T3

rl

×

T1* -M1-MI

r2

2

-1

T ~

T3 rl *

~ ('~* " " -T~ M "1 ) MIM'IM; 13-1v11 T2"

MI+M1-T3 ' "

r3

T"1

T2*

T ~"

""1 .... 1 MI-MI-T 3 T'~

r~

rl r l

( r; r~ r2 ., , ,. , . ) DID2D3 • ~M1-MI-r3 r~-r~+M1-M~+M~ T3-r3-MI

(A.8)

The last t h r e e Wigner coefficients in the summation contain one sum each, so we have a sixfold sum. The M1M 1 sums can be effected. I n s e r t the values of the s u m l e s s Wigner coefficients and substitute

SU(3) ISOSCALAR FACTORS

T~I

T'I T1

+

(-M1-M i M I M1 )=(-1)M1

707

,_TI

2T1

I(T~+T'I-TI)~ (T'I+TI-T*I)~ (T~-MI-MI)! (TI+MI)! (TI+TI+T~+I)! 1½ ×

.

t_

.

.

.

.

.

.

(T -M )' (T' +M' )' (T' -M' )' (T*+M +M' )' (T +T*-T' )' 1

1"

×~

(-

1

1"

1

1"

1

1

1"

1

1

I

1"

i)% ( 2 T ~ - x ) ! (T~+TT1-MI-%)~

(A.9)

x (T~-M1-M'I-X): (T~+T'I-TI-X):x~(TI+T'I+T~+I-x)~ Eq. (A.9) i s o b t a i n e d f r o m eq. (A.3) of r e f . [17] with ,

,

'

a = T1 - M1 - M1 ,

b = T

d:

e : T 1 + M 1 - T~ + M 1 ,

T 1 - T~ + M~ ,

+ T - T1 ,

c = T

- M1 ,

f = 0,

a n d with a R e g g e p e r m u t a t i o n a p p l i e d ,to ~r o w s a n d c o l u m n s ; an e x a c t l y a n? a - iT! l o g o u s s u b s t i t u t i o n i s m a d e f o r t h e (T2T2T2) W i g n e r c o e f f i c i e n t . T h e M1M 1 s u m s c a n t h e n b e e f f e c t e d with t h e h e l p of t h e w e l l - k n o w n f o r m u l a

X

1 (a+b+c+d)! (a+x)! (b+x)~ (c-x)! (d-x)~ = (a-¢c)~ (a+d)' (b+c)~ (b+d)! "

The result is *

Y = ( - 1) T2+ T 3 - T~'+ T ~ - 2 T ~ - T{+ T~

~

T

(T 3 +T 3 - T 3).

[

~(T2+T 3 -T~)~

×

~

(2~+T'2'-T3)! (T~+T'I-T1)'. (T'I+T1-T~)! T?T ?? ~ * T! ~. ? * TVT Vt T (T 2 +T3-T1)!(TI+T3-T2 ). ( T I + T 2 + T 3 + l ) .

(TI+TI+TI+I). (T2+T2-T2). (T2+T2-T2). }½ t 1 2 + z 3 - 1 1 ~. [ 3 1 + T 3 - T 2 ) . [TI+T1-T1). J ?

*

T

I

?

(-1)

xyM 1

?

!

*

(T;+T2+T~+I):

. 2 + T 3* + l ) . ' (T .1. .+. T

×

*

* ' '(T~'+ (T2+T2-T2).

x+y+TI+M 1

(T2+T2-

T2-Yj.

]-~

*" T 2" - T3)A

,

(2 T2-Y)'.

( T 2 + T 1- T 3 - y ) .

!

*

Tv

*

V

1

(T3+T3+T3 + 1)I ( T I +T2- T'3")!I~ (TI+T3 _T2). (TI+T2+T3+I). i

C. -K.CHEW

708

(2T!-x)!

X

y! (Tb+T2+Tz+l-y)!x!

and R.T.SHARP

(Ti-Th-Ti+Ti+T;+TT-x-y)!

(TT+Ti-Tl-x)!

(Tl+Ti+TT+l-x)!

(Tg-T{+Ti-x)!

x 1 I-(T2-Th+T$+M1)!

If T; = Tt = 0, Y reduces

APPENDIX

(A.lO)

(Tl-Ml)! to a singly stretched

9-j,

or X coefficient.

B

We wish to calculate the metric matrix (SU,,1s,> which arises when the unnormalized SU = N;lSU are used as base vectors in the degenerate space which they span. The no;ma,liza$ion constant NU which appears in eqs. (2.1)(3.11) is given by N, = (S,[ S,) -2 in terms of its diagonal elements. Because of (2.9) we may write SU = (P3! %!)3 (-1)

fi3+“21

&

43

0

%P3+43) -&3+43)

>

;3u+!D3-1)

X more terms

,

where 43

-1

+3u = N3U

0

@. 1)

u

P3

$(P3+43) $(P3+43) >12

u13 U23~*“31~*z’32 = (-1) u21 PBu12Du21 (7@2 -7?2sl)s 12 21 771 q2 1 2

=N;;

X

c T1T2n l”1

I$ll2l,~~~,,C::~

p1q1

p2q2

493

i nlT1’

n2T2

0 $(P3+43) >

I:;;::;)

u (B.2)

.

The (D3-1) other terms in eq. (B.l) refer to a summation over n3T3M3. Since all D3 terms contribute equally we have

(i,, 1itu) =

(-l)ui1-u21

p3! q3! D3< $3u, j 4,,,

s

(B.3)

SU(3) ISOSCALAR

FACTORS

709

We have only to calculate (~h3u , ]~3u ) Taking the scalar product of eq. (B. 2) with

Plql

M1

½(P3 q3)

P2q2 \ / T1T2

lniTIM1) n2T2M2/\MIM2 \

½(P3+q3) ) '

gives an expression for the a s y m m e t r i c i s o s c a l a r factor

Plql. P2q2 [q3 P3 < n 1T 1' n2 T2 ½(P3+q3) )

( T1 T2 = N3u ~M1 \M1M2

½(P3+q3)\

Plql

P2q2 n2T2M2

(p3+q3)/(nlT1MI' [

~3u>"

(B.4)

Using eq. (3.2) we can transform the left factor of the scalar product on the right side of eq. (B.4): / TIT2

½(P3+q3) \ n plql P2q2 L ½(P3+q3) / 1TIM1; n2T2M2 ) 1 2

M1

(B.5)

N,1N~2~lni~nl-n'l~2nT2~n2-n'2 T'1T~ n,ln,2

(-nl)I (nl-n~)! (-n~)! (n2-n~)I v

T~. T~.

T1

T2

½(P3+q3)

,

The isospin state on the right is formed by adding TIT 1 to give T1, then T2T 2 to give T2, and finally TIT 2 to give ½(P3+q3) (with M = ~(p3+q3)). Similarly expanding J/3u we get *

~3u = (-1)U21p

F~lnl ~1,n 1-n'1~2n2 ~2,n 2 -n'2

l/U

t

v

T 2 ~ 13+u32+nl-nl-n2) \ 1 /U v v ) T~. T 1 ~t 23+u31+n2-n2-nl) ' ½(P3+q3)

where

(B.6) T

?

u12! u21! s! (-1) -nl-n2+n2

F =

(n2-n~.)! (u12-n2+n2)!' (nl_n~): (u21-nl+nl)~' (nl_n2_nl):, , ,

v

× [(u13+nl-n2-n1)I u32'. (u12-n2+n2)!,

t

, (u12+u32+u13+s÷n 1 ,

(n2_nl_n2)!' , v

v

+1).]

1

(u13 +u32+nl-nl-n2+ l ). ×I

(u23+n~.-~l-n2)! u31: (u21-n1+n~): (u21+n23+u31+s+n'2+l )[~ ½ ' ' ' (u23 +u31+n2-n2-n l +1).

(B.7)

710

C. -K. CHEW and R. T.SHARP

When eqs. (B.5) and (B.6) a r e i n s e r t e d in the s c a l a r p r o d u c t in eq. (B.4) t h e r e a r i s e s the i s o s p i n s c a l a r p r o d u c t

T1 T1

T1

T'1 T 2 5(u13+u32+n1-nl-n2) ~

T'2 T 2

T2

T'2 T~

= GX

~(u23+u31+n2-n2-nl)

½(P3+q3)

½(P3+q3 )

,

(B.8)

/

where *

*

I

!

T 2- T 2 + T 1 -~(u23 +u 3 l + n 2 - n 2 - n l ) G : (-1)

(B.9) t

~

v

1

X [(2Tl+l)(2T2+l)(u13+u32+nl-nl-n 2 + 1) (u23+u31+n2-n2-n 1 + 1) ]~

,

and X is the X - c o e f f i c i e n t I

X =X

*

1

T

T

t

1

!

T

T'1 T 2 ~(u13+u32+nl-nl-n 2) T~ T 2 ~(u23+u31+n2-n2-n1)

LT1 T2

,

(B.10)

½(P3+q3 )

which is s t r e t c h e d in its t h i r d c o l u m n and t h e r e f o r e c o n t a i n s a double s u m

[16]. H e n c e we find

I

Plql . P2q2 I q3 P3 u \

u21

n 1 T 1 ' n 2 T 2 ] 0 ½(P3+q3)/ = (-1)

,

,

N3u ~ , N1N2FGX, nln 2

(B.11)

in t e r m s of which the m e t r i c m a t r i x is g i v e n b y ^ ,, >= /Plql P2q2 I q3 P3 u' \ ( @3u, IJ/3u ~ \ " nlTIT2 n l T l ' n 2 T 2 I 0 ½ 0 3 + q 3 ) /

x

< Pl ql . P2q2 I q3 n 1 T 1' n2T 2 0

P3

u )

½(P3+q3 )

(--uN3u')-I N3

(B.12)

a triple sum over a product of two factors each containing a quadruple sum. The matrix " A different orthogonalization scheme is discussed in appendix C. APPENDIX

C

Following a suggestion of O'Raifeartaigh, Macfarlane and Rao [18], the present authors [13] evaluated the matrix of the mixed Casimir operator

SU(3) ISOSCALAR FACTORS

711

(c.1)

G12 = ½ T r (A1A1A 2 - A2A2A1)

in the d e g e n e r a t e s u b s p a c e of the ~ 3 u of eq. (B.2). H e r e A is the m a t r i x whose e l e m e n t s a r e g e n e r a t o r s of SU(3) t r a n s f o r m a t i o n s ; G12 , a H e r m i t i a n o p e r a t o r which c o m m u t e s with all the other o p e r a t o r s of i n t e r e s t , is s u i t able f o r lifting the d e g e n e r a c y . Diagonalizing its m a t r i x y i e l d s o r t h o g o n a l eigenstates

(c.2)

:

w h e r e eg is a p h a s e f a c t o r to be assigned. In the context of the p r e s e n t p a p e r G12 should be r e p l a c e d by G123 = -~(G12 +G23 +G31 ) ,

(C.3)

to o p e r a t e on the s u b s p a c e of d e g e n e r a t e S u of eq. (2.1). Since S u is an SU(3) s c a l a r we m a y s u b s t i t u t e A 3 = -(A 1 +A2), whereupon we get G123 = G 1 2 + I ,

(C.4)

w h e r e I is a multiple of the identity in the d e g e n e r a t e s p a c e and m a y be d i s regarded here. In the f o r m (C.4), G123 is an SU(3) s c a l a r in the s p a c e of 1 and 2 and we need r e t a i n only a single t e r m in the expansion (2.9) of the o p e r a n d s t a t e Su, say the t e r m

(_l)U21~3u = N31u(_l)U21 t q3 0

!)3

u

)

½(P3+q3) ½(P3+q3 )

(we d r o p its coefficient). Thus the old s c h e m e is equivalent to the new with the r e p l a c e m e n t ~ 3u ~ (-1) u21 Su ; by eq. (C.2) the o r t h o g o n a l i z e d s c a l a r s are

sg=

gu(-1)u21Cug.

u12 It r e m a i n s to a s s i g n an o v e r a l l p h a s e to Sg. This is conveniently done by r e q u i r i n g that for e a c h g the (Pug with g r e a t e s t magnitude have the p h a s e (-1) u2~l. This choice does not affect any of the s y m m e t r i e s of the i s o s c a l a r f a c t o r d i s c u s s e d in s e c t . 2, and can be g e n e r a l i z e d to c o v e r the c a s e in which the g r e a t e s t m a g n i t u d e is a s s u m e d by m o r e than one (Pug; b e c a u s e of the a n t i s y m m e t r y of G123 in s t a r r e d and u n s t a r r e d v a r i a b l e s the e i g e n v a l u e g is r e v e r s e d in sign u n d e r r e v e r s a l of m a g n e t i c quantum n u m b e r s . The r e l a t i v e p h a s e of s y m m e t r i c and a s y m m e t r i c i s o s c a l a r f a c t o r s b e c o m e s m o r e c o m p l i c a t e d . When the u label in eq. (2.10) is r e p l a c e d by g the p h a s e f a c t o r (-1) u21 on the right is r e p l a c e d by ~, which is the sign of

(.1)e(P3+P2-Pl-q3+q21- - ql - s ) ~ u

( Pl ql ~°ug\ ~

P2 q2 P3 q3 u~'] 1 ; , ; 0 ~ ( p l + q l ) z-s ~(p2+q2-s) 0 ~(p3+q3) ;

(c.6)

712

C. -K. CHEW and R. T. SHARP

T h e c o e f f i c i e n t of e a c h (Pug i n the e x p r e s s i o n (C.6) h a s p h a s e ( - 1 ) u 2 1 ; the o v e r a l l s i g n c a n only be d e t e r m i n e d a p o s t e r i o r i i n e a c h c a s e of i n t e r e s t .

REFERENCES [1] J. J. De Swart, Rev. Mod. Phys. 35 {1963} 916, [2] P. McNamee, S.J. and F. Chilton, Rev. Mod. Phsy. 36 (1964) 1005. [3] L. C. Biedenharn, J. Math. Phys. 4 {1963} 436; G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4 {1963} 1449; 5 (1964} 1723; 5 {1964) 1730. [4] J. P. Elliott and M. Harvey, Proc. Roy. Soc. {London} A272 {1963} 557. [5] M. Moshinsky, Rev. Mod. Phys. 34 (1962) 813. [6] J. K. Kuriyan, D. Lurie and &. J. Macfarlane, J. Math. Phys. 6 {1965) 772. [7] N. Mukunda and L.K. Pandit, J. Math. Phys. 6 (1965} 746. [8] K.T. Hecht, Nucl. Phys.62 {1965} 1. [9] Hou Pei-Yu, Scientia Sinica {1965} 367. [10] G. Ponzano, Nuovo Cimento 41A (1966) 142; Istituto di Fisica, Torino, Italy preprint. [11] R. T. Sharp and H. yon Baeyer, J. Math. Phys. 7 {1966) 1105. [12] D. Kleima, Nuc].Phys. 70 {1965} 577. [13] C. -K. Chew and R. T. Sharp, Can. J. Phys. 44 (1966) 2789. [14] R. T. Sharp, Nuovo Cimento 47A (1967) 860. [15] V. Bargmann, Rev. Mod. Phys. 34 (1962) 829. [16] A. Bandzaitis, A. Karosiene and £. Jucys, Liet. Fiz. Rin. 4 {1964} 457. [17] R. T. Sharp, Nucl. Phys., to be submitted. [18] L. O'Raiffeartaigh, ~. J. Macfarlane and P. Rao, talk given by O'Raifeartaigh at Toronto Conference on Particle Symmetries, October 1965.