SUBJECT INDEX (Vol. XXI) 1. AEROSOLS 1.1 Liquid Spark Ignition of Aerosols. Arun K. Singh, Constantine E. Polymeropoulos, 513. Combustion and Microexplosion Behavior of Miscible Fuel Droplets under High Pressure. Takashi Niioka, Jun'ichi Sato, 625.
1.2 Solid Mechanisms Governing the Composition and Size Distribution of Ash Aerosol in a Laboratory Pulverized Coal Combustor. William P. Linak and Thomas W. Peterson, 399. Aggregate Formation from Vaporized Ash During Pulverized Coal Combustion. J. Helble, M. Neville and A. F. Sarofim, 411. Investigation of Particle Inception in Sooting Premixed Hydrocarbon Oxygen Low Pressure Flames. H. Bockhorn, F. Fetting, A. Heddrich, 1001. Quantitative Comparison of Fuel Soot Formation Rates in Laminar Diffusion Flames. A. Gomez and I. Glassman, 1087. Soot Formation and Burnout during the Combustion of Dispersed Pulverized Coal Particles. L. D. Timothy, D. Froelich, A. F. Sarofim andJ. M. Be6r, 1141. Quenching of Dust-Air Flames. J. Jarosinski, J. H. Lee, R. Knystautas and J. D. Crowley. 1917.
2. COAL COMBUSTION (Also see COMBUSTION IN PRACTICAL
SYSTEMS, Furnaces and Incinerators; HETEROGENEOUS COMBUSTION, Dispersed Particles, Multiphase, and Single Solid Particles) Coal-Water Fuel Combustion. Edward T. McHale, 159. Experimentally Determined Overall Burning Rates of Pulverized-Coal Chars in Specified 02 and CO 2 Environments. Reginald E. Mitchell and Ole H. Madsen, 173. Quasi-Steady and Transient Combustion of a Carbon Particle: Theory and Experimental Comparisons. A. Makino and C. K. Law, 183. An Experimental Study on Oxidation Rates of Coal at Low Temperature. L. Petarca, L. Tognotti, S. Zanelli and G. Bertozzi, 193.
Transient Phenomena in the Steam-Carbon Reaction. B. S. Haynes and M. F. R. Mulcahy, 203. The Combustion and Gasification of Coke and Coal Chars. G. Hargrave, M. Pourkashanian and A. Williams, 221. Kinetics of Combustion of Petroleum Coke and Sub-Bituminous Coal Char: Results of Ignition and Steady-State Techniques. Wieslaw Rybak and Mieczyslaw Zembrzuski, Ian W. Smith, 231. Entrained Flow Reactor and Image Analysis Study of Maceral Effects in Coal-Char Oxidation. C. Morley and R. B. Jones, 239. Laminar Burning Velocities of CH4-AirGraphite Mixtures and Coal Dusts. Derek Bradley, S. El-Din Habik and J. R. Swithenbank 249. Numerical Modeling of Three-Dimensional Flow Field and Two-Dimensional Coal Combustion in A Cylindrical Combustor of CoFlow Jets with Large Velocity Difference. Lixing Zhou, Wenyi Lin, Jian Zhang and Zuolan Wang, 257. Three-Dimensional Furnace Computer Modelling. R. K. Boyd and J. H. Kent, 265. Prediction of the Near-Burner Flow and Combustion in Swirling Pulverized-Coal Flames. J. S. Truelove, 275. Variation of Ignition Temperatures of Fuel Particles in Vitiated Oxygen Atmospheres: Determination of Reaction Mechanism. Patrick J. Brooks and Robert H. Essenhigh, 293. Volatility Model for Coal Dust Flame Propagation and Extinguishment. Martin Hertzberg, Isaac A. Zlochower, and Kenneth L. Cashdollar, 325. Explosion Development and Deflagration-toDetonation Transition in Coal Dust/Air Suspensions. B. R. Gardner, R.J. Winter and M. J. Moore, 335. Studies in Coal Dust Explosions: Influence of Additives on Extinction of High Intensity Coal Dust Flames. Taemin Choi, Saeid Rahimian, and Robert H. Essenhigh, 345. Effect of Fuel Treatment on Coal-Water Fuel Combustion. T. U. Yu, S. W. Kang, M. A. Toqan, P. M. Walsh, J. D. Teare, J. M. Be~r and A. F. Sarofim, 369. A Mechanistic Model of Coal-Water Fuel Combustion. S. Srinivasachar, M. A. Toqan, J. D. Teare and J. M. Be~r, 379.
2023
2024
SUBJECT INDEX
Coal-Fueled Diesel Engines: Analytical Evaluations of Ignition Options. Stuart R. Bell and Jerald A. Caton, 389. Mechanisms Governing the Composition and Size Distribution of Ash Aerosol in a Laboratory Pulverized Coal Combustor. William P. Linak and Thomas W. Peterson, 399. Aggregate Formation from Vaporized Ash during Pulverized Coal Combustion. J. Helble, M. Neville and A. F. Sarofim, 411. Coal Pyrolysis in Flat, Laminar, Opposed Jet Combustion Configurations. J. O. L. Wendt, B. M. Kram, M. M. Masteller and B. D. McCaslin, 419. Formation of Light Gases and Aromatic Species during the Rapid Pyrolysis of Coal. P. F. Nelson and R.J. Tyler, 427. The Spectral Emittance of Pulverized Coal and Char. Peter R. Solomon, Robert M. Carangelo, Philip E. Best, James R. Markham and David G. Hamblen, 437. The Use of Coflowing Jets with Large Velocity Differences for the Stabilization of Low Grade Coal Flames. Wei-Biao Fu, Jing-Bin Wei, Huan-Qing Zhan, Wen-Chao Sun, Lie Zhao, Yi-Li Chen, Hong-Qiao Han, WeiSheng Huang, Cheng-Kang Wu, 567. Combustion of Pulverized Coal as a Tuy~reInjectant to the Blast Furnace. A. S, Jamaluddin, T. F. Wall and J. S. Truelove, 575. Testing of a Model for Fluidized Bed Coal Combustors-Effect of Char Combustion Model. Nevin Selquk and Aygtin Pekyilmaz, 585. Soot Formation and Burnout during the Combustion of Dispersed Pulverized Coal Particles. L. D. Timothy, D. Froelich, A. F. Sarofim andJ, M. Be6r, 1141. Bench and Pilot Scale Process Evaluation of Reburning for In-Furnace NO x Reduction. S. L. Chen, J. M. McCarthy, W. D. Clark, M. P. Heap, W. R. Seeker and D. W. Pershing, 1159. Particle-Size Effects on the Distribution of Fuel Nitrogen in One-Dimensional Coal-Dust Flames. K. Clark Midkiff and Robert A. Altenkirch, 1189. A Study of Gas Composition Profiles for Low NO x Pulverized Coal Combustion and Burner Scale-Up. Shigeru Azuhata, Kiyoshi Narato, Hironobu Kobayashi, Norio Arashi, Shigeki Morita, Tadahisa Masai, 1199. A Comprehensive Kinetic Model for the Formation of Char-NO during the Combustion of a Single Particle of Coal Char. Norio Arai, Masanobu Hasatani, Yoshihiko Ninomiya, Stuart W. Churchill and Noam Lior, 1207. Influence of Temperature on the Formation
of NO x during Pulverized Coal Combustion. Hans Kremer, Waldemar Schulz, 1217. 3. C O M B U S T I O N IN P R A C T I C A L SYSTEMS
The Mechanism of Combustion of a CoalWater-Slurry in a Fluidized Bed. L. Massimilla and M. Miccio, 357. Numerical Analysis of a Pulse Combustion Burner. Y. Tsujimoto and N. Machii, 539. Response of a Pulse Combustor to Changes in Fuel Composition. J. O. Keller, Charles K. Westbrook, 547. The Influence of Fuel Properties on Drop-Size Distribution and Combustion in an Oil Spray. A. Brefia de la Rosa, A. Sobiesiak and T. A. Brzustowski, 557. A Semi-Empirical Approach to Thermal and Composition Transients Inside Vaporizing Fuel Droplets. D. G. Talley, S. C. Yao, 609. Experimental Study of Nitrogen Dioxide Formation in Combustion Systems. Morio Hori, 1181. The Effect of Inlet Conditions on the Performance and Flowfield Structure of a NonPremixed Swirl-Stabilized Distributed Reaction. R. E. Charles, J. L. Emdee, L. J. Muzio, G. S. Samuelsen. 1455. 3.1 Diesel Engines
Coal-Fueled Diesel Engines: Analytical Evaluations of Ignition Options. Stuart R. Bell and Jerald A. Caton, 389. The Control of Spontaneous Ignition under Rapid Compression. J. Franck, J. F. Griffiths and W. Nimmo, 447 The Action of Ignition Improvers in Diesel Fuels. Ting-Man Li, R. F. Simmons, 455. Explosions of Adiabatically Compressed Gases in a Constant Volume Bomb. James C. Keck and Haoran Hu, 521. Ignition Process of Fuel Spray Injected into High Pressure High Temperature Atmosphere. Jun'ichi Sato, Katsuyuki Konishi, Hiroshi Okada, Takashi Niioka, 695. Effects of Flame Temperature and Burning Rate on Nitric Oxide Emission from a Divided-Chamber Diesel Engine. Ko-Jen Wu and Richard C. Peterson, 1149. 3.2 Furnaces and Incinerators
Radiative Heat Transfer in Combustion: Friend or Foe. Adel F. Sarofim, 1, Three-Dimensional Furnace Computer Modelling. R. K. Boyd and J. H. Kent, 265. Prediction of the Near-Burner Flow and Com-
SUBJECT INDEX bustion in Swirling Pulverized-Coal Flames. J. S. Truelove, 275. Prediction of Power Station Combustors. A. S. Abbas and F. C. Lockwood, 285. Effect of Fuel Treatment on Coal-Water Fuel Combustion. T. U. Yu, S. W. Kang, M. A. Toqan, P. M. Walsh, J. D. Teare, J. M. Be6r and A. F. Sarofim, 369. A Mechanistic Model of Coal-Water Fuel Combustion. S. Srinivasachar, M. A. Toqan, J. D. Teare and J. M. Be6r, 379. Mechanisms Governing the Composition and Size Distribution of Ash Aerosol in a Laboratory Pulverized Coal Combustor. William P. Linak and Thomas W. Peterson, 399. The Use of Coflowing Jets with Large Velocity Differences for the Stabilization of Low Grade Coal Flames. Wei-Biao Fu, Jing-Bin Wei, Huan-Qing Zhan, Wen-Chao Sun, Lie Zhao, Yi-Li Chen, Hong-Qiao Han, WeiSheng Huang, Cheng-Kang Wu, 567. Combustion of Pulverized Coal as a TuyereInjectant to the Blast Furnace. A. S. Jamaluddin, T. F. Wall and J. S. Truelove, 575. Testing of a Model for Fluidized Bed Coal Combustors-Effect of Char Combustion Model. Nevin Selquk and AygiJn Pekyilmaz, 585. Influence of Atomization Quality on the Destruction of Hazardous Waste Compounds. John C. Kramlich, Wm. Randall Seeker and Gary S. Samuelsen, 593. An Experimental Study of Air-Assist Atomizer Spray Flames. Chien-Pei Mao, Geng Wang and Norman Chigier, 665. A Comparison of Spatially-Resolved Drop Size and Drop Velocity Measurements in an Isothermal Chamber and a Swirl-Stabilized Combustor. V. G. McDonell, C. P. Wood, G. S. Samuelsen, 685. Bench and Pilot Scale Process Evaluation of Reburning for In-Furnace NO x Reduction. S. L. Chen, J. M. McCarthy, W. D. Clark, M. P. Heap, W. R. Seeker and D. W. Pershing, 1 I59. Reburning Thermal and Chemical Processes in a Two-Dimensional Pilot-Scale System. W. S. Lanier, J. A. Mulholland and J. T. Beard, 1171. A Study of Gas Composition Profiles for Low NO x Pulverized Coal Combustion and Burner Scale-Up. Shigeru Azuhata, Kiyoshi Narato, Hironobu Kobayashi, Norio Arashi, Shigeki Morita, Tadahisa Masai, 1199. Influence of Temperature on the Formation of NO x during Pulverized Coal Combustion. Hans Kremer, Waldemar Schulz, 1217. Computations of Near Field Aerodynamics of
2025
Swirling Expanding Flows. R. Weber, F. Boysan, J. Swithenbank and P. A. Roberts, 1435. 3.6 Solid Rockets Crack Propagation and Branching in Burning Solid Propellants. K. K. Kuo and J. A. Moreci, 1933. Erosive Burning Mechanism of Double-Base Propellants. A. Ishihara and N. Kubota, 1975. The Acoustic Boundary Layer in Porous Walled Ducts with a Reacting Flow. U. G. Hegde and B. T. Zinn, 1993. 3.7 Spark Ignition Engines The Significance of Intermediate Hydrocarbons during Wall Quench of Propane Flames. Thomas M. Kiehne, Ronald D. Matthews and Dennis E. Wilson, 481. A Study of Spatial Distribution of Molecular Species in an Engine by Pulsed Muhichannel Raman Spectroscopy. J. P Sawerysyn, L-R. Sochet, D. Desenne, M. Crunelle-Cras, F. Grase, M. Bridoux, 491. Combustion Fluctuation Mechanism Involving Cycle-to-Cycle Spark Ignition Variation due to Gas Flow Motion in S.I. Engines. Kyugo Hamai, Hiroki Kawajiri, Takashi Ishizuka and Meroji Nakai, 505. The Combined Effect of Sulphur and Nitrogen Compounds on Alkane Combustion. C. F. Cullis, M. M. Hirschler, S. W. Wall, 1223. Application of a "Presumed P.D.F." Model of Turbulent Combustion to Reciprocating Engines. R. Borghi, B. Argueyrolles, S. Gauffie, P. Souhaite, 1591. 3.8 Turbine Combustors Radiative Heat Transfer in Combustion: Friend or Foe. Adel F. Sarofim, 1. An Experimental Study of Air-Assist Atomizer Spray Flames. Chien-Pei Mao, Geng Wang and Norman Chigier, 665. 4. D E T O N A T I O N S
4.2 Gas-Phase Criteria for Transition to Detonation in Tubes. O. Peraldi, R. Knystautas and J. H. Lee, 1629. Diffraction and Transmission of a Detonation into a Bounding Explosive Layer. J. C. Liu, J.J. Liou, M. Sichel, C. W. Kauffman and J. A. Nicholls, 1639.
SUBJECT INDEX
2026
Analyses of the Cellular Structure of Detonations. J. E. Shepherd, I. O. Moen, S. B. Murray, P. A. Thibauh, 1649. The Effect of Energy Release on the Regularity of Detonation Cells in Liquid Nitromethane. R. Guirguis, E. S. Oran and K. Kailasanath, 1659. 4.7 Structure
Analyses of the Cellular Structure of Detonations. J. E. Shepherd, I. O. Moen, S. B. Murray, P. A. Thibault, 1649. The Effect of Energy Release on the Regularity of Detonation Cells in Liquid Nitromethane. R. Guirguis, E. S. Oran and K. Kailasanath, I659. The Effect of Structure on the Stability of Detonations I. Role of the Induction Zone. J. D. Buckmaster, G. S. S. Ludford, 1669. 4.8 Theory
Diffraction and Transmission of a Detonation into a Bounding Explosive Layer. J. C. Liu, J.J. Liou, M. Sichel, C. W. Kauffman and J. A. Nicholls, 1639. 4.9 Transition to Detonation (Also see FLAMES, DDT)
Explosion Development and Deflagration-toDetonation Transition in Coal Dust/Air Suspensions. B. R. Gardner, R.J. Winter and M. J. Moore, 335. Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds. I. O. Moen, A Sulmistras, B. H. Hjertager and J. R. Bakke, 1617. Criteria for Transition to Detonation in Tubes. O. Peraldi, R. Knystautas and J. H. Lee, 1629. 5. D I A G N O S T I C METHODS
Simultaneous Measurements of Gas Flow and Flame Front Movement in a Turbulent Premixed Flame Zone. Takuji Suzuki, Norihito Kudo, Masaaki Kawamata and Toshisuke Hirano, 1385. Sound Emission from a Turbulent Flame. Masashi Katsuki, Yukio Mizutani, Mototaka Chikami and Taizo Kittaka, 1543. Instantaneous Radial Profiles of OH Fluorescence and Rayleigh Scattering through a Turbulent H2-Air Diffusion Flame. D. Stepowski, K. Labbaci and R. Borghi, 1561. Combustion Diagnostics: Planar Imaging Techniques. Ronald K. Hanson, 1677.
High-Resolution Coherent Anti-Stokes Raman Spectroscopy Measurements of Carbon Monoxide Linewidths in a Flame. R. L. Farrow, 1703. Multiple Species Laser-Induced Fluorescence in Flames. Jay B. Jeffries, Richard A. Copeland, Gregory P. Smith and David R. Crosley, 1709. CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, 1729. High Speed Thermometry Using Two-Line Atomic Fluorescence. John E. Dec, J. O. Keller, 1737. Conditional Sampling for Fuel and Soot in CARS Thermometry. Alan C. Eckbreth, Torger J. Anderson and Gregory M. Dobbs, 1747. Digital Imaging of Species Concentration Fields in Spray Flames. M. G. Allen and R. K. Hanson, 1755. Silane Combustion in an Opposed Jet Diffusion Flame. S. Koda and O. Fujiwara, 1861. 5.1 CARS (Coherent Anti Stokes Raman Spectroscopy)
Soot Distribution and CARS Temperature Measurements in Axisymmetric Laminar Diffusion Flames with Several Fuels. Laurence R. Boedeker and Gregory M. Dobbs, 1097. High-Resolution Coherent Anti-Stokes Raman Spectroscopy Measurements of Carbon Monoxide Linewidths in a Flame. R. L. Farrow, 1703. CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, 1729. Conditional Sampling for Fuel and Soot in CARS Thermometry. Alan C. Eckbreth, Torger J. Anderson and Gregory M. Dobbs, 1747. 5.2 Chromatographic
Extinction and Structure of Methane/Very Lean Methane-Air Counterflow Diffusion Flames. Ichiro Yamaoka, Hiroshi Tsuji and Yasuo Harigaya, 1837. 5.3 Fluorescence
Rate Constant for the Reaction of O(~P) with H 2 by the Flash Photolysis-Shock Tube and Flash Photolysis-Resonance Flourescence
SUBJECT INDEX Techniques; 504K -< T -< 2495K. J. W. Sutherland, J. V. Michael, A. N. Pirraglia, F. L. Nesbitt and R. B. Klemm, 929. Combustion-Torch Ignition: Fluorescence Imaging of NO 2. R.J. Cattolica, 1551. Instantaneous Radial Profiles of OH Fluorescence and Rayleigh Scattering through a Turbulent Hz-Air Diffusion Flame. D. Stepowski, K. Labbaci and R. Borghi, 1561. Combustion Diagnostics: Planar Imaging Techniques. Ronald K. Hanson, 1677. Multiple Species Laser-Induced Fluorescence in Flames. Jay B. Jeffries, Richard A. Copeland, Gregory P. Smith and David R. Crosley, 1709. Absolute Concentration Measurements of OH in Low-Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames. K. Kohse-HOinghaus, P. Koczar, Th. Just, 1719.
5.4 Laser
Simultaneous Observation of Organized Density Structures and the Visible Field in Pool Fires. A. SchOnbucher, B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas and N. Schiess, 83. A Study of Spatial Distribution of Molecular Species in an Engine by Pulsed Multichannel Raman Spectroscopy. J. P Sawerysyn, L.-R. Sochet, D. Desenne, M. Crunelle-Cras, F. Grase, M. Bridoux, 491. An Experimental Study of Air-Assist Atomizer Spray Flames. Chien-Pei Mao, Geng Wang and Norman Chigier, 665. A Spectral Scattering Method for Determining Size Distribution Functions and Optical Characteristics of Droplets Ensembles in Fuel Sprays. F. Beretta, A. Cavaliere, A. D'Alessio P. Massoli, R. Ragucci, 675. A Comparison of Spatially-Resolved Drop Size and Drop Velocity Measurements in an Isothermal Chamber and a Swirl-Stabilized Combustor. V. G. McDonell, C. P. Wood, G. S. Samuelsen, 685. The Dynamic Structure of Turbulent VShaped Premixed Flames. I. G. Shepherd, G. L. Hubbard and L. Talbot, 1377. Combustion Diagnostics: Planar Imaging Techniques. Ronald K. Hanson, 1677. Absolute Concentration Measurements of OH in Low-Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames. K. Kohse-HOinghaus, P. Koczar, Th. Just, 1719,
2027 5.5 Photographic
Static and Dynamic Radiance Structures in Pool Fires. A. Sch6nbucher, D. Goeck, A. Kettler. D. Krattenmacher and N. Schiess, 93. 5.7 Radiometric
Mass Spectrometer Sampling of a Plasma Jet Igniter with a Methane Plasma Feed. Thompson M. Sloane and John W. Ratcliffe, 1877. 5.9 Spectroscopic
The Spectral Emittance of Pulverized Coal and Char. Peter R. Solomon, Robert M. Carangelo, Philip E. Best, James R. Markham and David G. Hamblen, 437. Rate Constant for the Reaction of O(3P) with H 2 by the Flash Photolysis-Shock Tube and Flash Photolysis-Resonance Flourescence Techniques; 504 -< T -< 2495K. J. W. Sutherland, J. v. Michael, A. N. Pirraglia, F. L. Nesbitt and R. B. Klemm, 929. On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames. Nancy L. Garland and David R. Crosley, 1693. FT-IR Emission/Transmission Spectroscopy for In Situ Combustion Diagnostic. Peter R. Solomon, Philip E. Best, Robert M. Carangelo, James Markham, Po-Liang Chien, Robert J. Santoro and Hratch G. Semerjian, 1763. 6. ELECTRICAL PROPERTIES OF FLAMES
6.2 Ions
Charged Soot in Low-Pressure Acetylene/ Oxygen Flames. K. H. Homann and H. Wolf, 1013. ENGINE KNOCK
(See COMBUSTION IN PRACTICAL SYSTEMS, SI Engines) 7. EXPERIMENTAL METHODS
Temperature Dependence of CH Radical Reactions with H20 and CH20. S. Zabarnick, J. W. Fleming and M. C. Lin, 713. Experimental Study of the Structure of an Ammonia-Oxygen Flame. J. Bian, J. VanDooren and P. J. Van Tiggelen, 953. High Speed Thermometry Using Two-Line Atomic Fluorescence. John E. Dec, J. O. Keller, 1737.
2028
SUBJECT INDEX 7.1 Burners
The Dynamic Structure of Turbulent VShaped Premixed Flames. I. G. Shepherd, G. L. Hubbard and L. Talbot, 1377. Flame Stabilization and Turbulent Exchange in Strongly Swirling Natural Gas Flames. R. Hillemanns, B. Lenze, W. Leuckel, 1445. Structure and Propagation of Turbulent Premixed Flames Stabilized in a Stagnation Flow. P. Cho, C. K. Law, J. R. Hertzberg and R. K. Cheng, 1493. Joint Measurements of Velocity and Scalars in a Turbulent Diffusion Flame with Moderate Swirl. S. H. Sterner and R. W. Bilger, 1569. Stretched Laminar Flamelet Analysis of Turbulent H 2 and CO/H2/N 2 Diffusion Flames. M. C. Drake, 1579. The Effect of Gravity on Premixed Flame Propagation and Extinction in a Vertical Standard Flammability Tube. Roger A. Strehlow, Kurt A. Noe and Brian L. Wherley, 1899. 73 Explosion Vessels Observation and Simulation of Laser Induced Ignition Processes in 02-03 and H2-02 Mixtures. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, 1869. 7.4 Plug Flow Reactors An Experimental Study on Oxidation Rates of Coal at Low Temperature. L. Petarca, L. Tognotti, S. Zanelli and G. Bertozzi, 193.
Factors Controlling Scaling Laws for Buoyancy Controlled Combustion of Spherical Gas Clouds. F, G. Roper, H, C. Jaggers, D. P, Franklin, N. Slaven and A. Campbell, 1609. Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds. I. O. Moen, A. Sulmistras, B. H. Hjertager and J. R. Bakke, 1617. 8.1 Adiabatic and Nonadiabatic Explosions of Adiabatically Compressed Gases in a Constant Volume Bomb. James C. Keck and Haoran Hu, 521. 8.3 Inhibition Volatility Model for Coal Dust Flame Propagation and Extinguishment. Martin Hertzberg, Isaac A. Zlochower, and Kenneth L. Cashdollar, 325. Studies in Coal Dust Explosions: Influence of Additives on Extinction of High Intensity Coal Dust Flames. Taemin Choi, Saeid Rahimian, and Robert H, Essenhigh, 345. 8.4 Limits Flammability Limit Measurements for Dusts and Gases: Ignition Energy Requirements and Pressure Dependences. Martin Hertzberg, Kenneth L. Cashdollar and Isaac A. Zlochower, 303. Combustion of a Finite Quantity of Gas Released in the Atomsphere. J. w. Dold and J. F. Clark, 1349,
7.5 Shock Tubes Measurement of Heat Loss due to Thermal Radiation of Liquid Spray Flames using Shock Tube Technique. Takao Tsuboi, Tomo Sato, Yasunobu Kaneko, Tomohiro Nakajima, Satoshi Ira, Koh-Ichi Nagaya, 473. Rate Constant for the Reaction of O(3P) with H 2 by the Flash Photolysis-Shock Tube and Flash Photolysis-Resonance Flourescence Techniques; 504K -< T -< 2495K. J. w. Sutherland, J. v. Michael, A. N. Pirraglia, F. L. Nesbitt and R. B. Klemm, 929. 8, EXPLOSIONS
Explosion Development and Deflagration-toDetonation Transition in Coal Dust/Air Suspensions. B. R. Gardner, R.J. Winter and M. J. Moore, 335.
8.5 Safety Crack Propagation and Branching in Burning Solid Propellants. K. K. Kuo and J. A, Moreci, 1933. 8.6 Theory Diffraction and Transmission of a Detonation into a Bounding Explosive Layer. J. C. Liu, J.J. Liou, M. Sichel, C. W. Kauffman and J. A. Nicholls, 1639. 8.7 Venting Fast Flames in a Vented Duct. Paul H. Taylor, 1601.
SUBJECT INDEX 9. FIRE
Factors Controlling Scaling Laws for Buoyancy Controlled Combustion of Spherical Gas Clouds. F. G. Roper, H. C. Jaggers, D. P. Franklin, N. Slaven and A. Campbell, 1609.
9.1 Buoyant Flames and Wakes Simultaneous Observation of Organized Density Structures and the Visible Field in Pool Fires. A. Sch6nbucher, B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas and N. Schiess, 83. Static and Dynamic Radiance Structures in Pool Fires. A. SchOnbucher, D. Goeck, A. Kettler. D. Krattenmacher and N. Schiess, 93. General Correlations of Chemical Species in Turbulent Fires. L. Orloff, J. De Ris, M. A, Delichatsios, 101. Fire Plume Air Entrainment According to Two Competing Assumptions. Gunnar Heskestad, 11 I. Salt Water Modeling of Fire Induced Flows in Muhicompartment Enclosures. K. D. Steckler, H. R. Baum and J. G. Quintiere, 143. Buoyancy-Driven Wall Flows in Enclosure Fires. Y. Jaluria, 151. Factors Controlling Scaling Laws for Buoyancy Controlled Combustion of Spherical Gas Clouds. F. G. Roper, H. C. Jaggers, D. P. Franklin, N. Slaven and A. Campbell, 1609. Ignition and Flame Propagation within Stratified Methane-Air Mixtures Formed by Convective Diffusion. G. A. Karim and H. T. Lam, 1909.
9.2 Fire Dynamics Ceiling Flows of Growing Rack Storage Fires. Hsiang-Cheng Kung, Hong-Zeng You, Robert D. Spaulding, 121. Spray Cooling in Room Fires. Hong-Zeng You, Hsiang-Cheng Kung, Zhanxian Han, 129. Buoyancy-Driven Wall Flows in Enclosure Fires. Y. Jaluria, 151.
9.3 Flame Spread Free Convective Combustion with Variable Properties. M. Hegde, P. J. Paul, and H. S. Mukunda, 33. Vertical Wall Fire in a Stratified Ambient Atmosphere. A. K. Kulkarni and J. J. Hwang, 45. A Simple Algebraic Model for Turbulent Wall Fires. Michael A. Delichatsios, 53.
2029
Temperature Measurements in PMMA during Downward Flame Spread in Air Using Holographic Interferometry. Akihiko Ito and Takashi Kashiwagi, 65. Flame Spread over Porous Solids Soaked with a Combustible Liquid. Keiji Takeno and Toshisuke Hirano, 75. Experimental Investigation of Fire Behavior in a 1/6 Scale Dual Opening Compartment. Hisahiro Takeda, 137.
9.4 Safety Very Large Methane Jet Diffusion Flames. B. J. McCaffrey and D. D. Evans, 25.
9.6 Radiation Radiative Heat Transfer in Combustion: Friend or Foe. Adel F. Sarofim, 1. Very Large Methane Jet Diffusion Flames. B. J. McCaffrey and D. D. Evans, 25. Structure and Spectral Radiation Properties of Turbulent Ethylene/Air Diffusion Flames. J. P. Gore and G. M. Faeth, 1521. 10. FLAMES
Simultaneous Measurements of Gas Flow and Flame Front Movement in a Turbulent Premixed Flame Zone. Takuji Suzuki, Norihito Kudo, Masaaki Kawamata and Toshisuke Hirano, 1385. Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. B. Rogg, F Behrendt, J. Warnatz, 1533. Fast Flames in a Vented Duct. Paul H. Taylor, 1601. Absolute Concentration Measurements of OH in Low-Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames. K. Kohse-H6inghaus, P. Koczar, Th. Just, 1719. Observation and Simulation of Laser Induced Ignition Processes in 02-03 and H2-O 2 Mixtures. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, 1869.
10.1 Burning Velocity Laminar Burning Velocities of CH4-AirGraphite Mixtures and Coal Dusts. Derek Bradley, S. El-Din Habik and J. R. Swithenbank, 249. Propagation and Extinction of Stretched Premixed Flames. C. K. Law, D. L. Zhu and G. Yu, 1419.
SUBJECT INDEX
2030
Fast Flames in a Vented Duct. Paul H. Taylor, 1601. The Effect of Dilution with Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames. G. W. Koroll and S. R. Mulpuru, 1811. Ignition and Flame Propagation within Stratified Methane-Air Mixtures Formed by Convective Diffusion. G. A. Karim and H. T. Lain, 1909.
10.3 Deflagration to Detonation Transition (DDT) Explosion Development and Deflagration-toDetonation Transition in Coal Dust/Air Suspensions. B. R. Gardner, R. J. Winter and M.J. Moore, 335. Premixed Turbulent Burning during Explosions. R. G. Abdel-Gayed, D. Bradley, M. Lawes and F. K-K. Lung, 497. Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds, I. O. Moen, A. Sulmistras, B. H. Hjertager and J. R. Bakke, 1617. Criteria for Transition to Detonation in Tubes. O. Peraldi, R. Knystautas and J. H. Lee, 1629. A Model for the Deflagration of Nitramines. T. Mitani and F. A. Williams, 1965.
10.4 Diffusion Very Large Methane Jet Diffusion Flames. B, J. McCaffrey and D. D. Evans, 25. Simultaneous Observation of Organized Density Structures and the Visible Field in Pool Fires. A. Sch6nbucher, B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas and N. Schiess, 83. Static and Dynamic Radiance Structures in Pool Fires. A. Sch6nbucher, D. Goeck, A. Kettler. D. Krattenmacher and N. Schiess, 93. Mechanisms of Formation and Destruction of Soot Particles in a Laminar Methane-Air Diffusion Flame. A. Garo, J. Lahaye, G, Prado, 1023. The Structure of Coflowing, Laminar C~, Hydrocarbon-Air Diffusion Flames. A. Hamins, A. S. Gordon, K. Seshadri and K. Saito, 1077. Quantitative Comparison of Fuel Soot Formation Rates in Laminar Diffusion Flames. A. Gomez and I. Glassman, 1087. Soot Distribution and CARS Temperature Measurements in Axisymmetric Laminar Diffusion Flames with Several Fuels. Laurence R. Boedeker and Gregory M. Dobbs, 1097. Radiant Emission And Smoke Points for Lami-
nar Diffusion Flames of Fuel Mixtures. G. H. Markstein, 1107. Soot Production in Axisymmetric Laminar Diffusion Flames at Pressures from One to Ten Atmospheres. W. L. Flower, C. T. Bowman, 1115. Laminar Flamelet Concepts in Turbulent Combustion. N. Peters, 1231. Time-Dependent Simulation of Small Scale Turbulent Mixing and Reaction. Howard R. Baum, Daniel M. Corley and Ronald G. Rehm, 1263. Effects of Heat Release and Flame Distortion in the Transverse Fuel Jet. A. R. Karagozian and T. T. Nguyen, 1271. Structure and Behavior of Diffusion Flames in a Pressure Gradient. Frank E. Marble and GavinJ. Hendricks, 1321. Joint PDF Calculations of a Non-Equilibrium Turbulent Diffusion Flame. S. B. Pope, S. M. Correa, 134 I. A Reynolds-Stress Model for the Prediction of Diffusion Flames. J. Janicka, 1409. Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region. S. R. Gollahalli, O. Sava~, R. F. Huang and J. L. Rodriquez Azara, 1463. The Influence of Combustion on the Fluid Structure in a Counter-Flow Diffusion Flame. M. I. G. Bloor, T. David, G. DixonLewis and P. H. Gaskell, 1501. Turbulent Non-Premixed Flames of Hydrocarbon Fuels Near Extinction: Mean Structure from Probe Measurements. A. R. Masri and R. W. Bilger, 1511. Structure and Spectral Radiation Properties of Turbulent Ethylene/Air Diffusion Flames. J. P. Gore and G. M. Faeth, 1521. Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. B. Rogg, F Behrendt, J. Warnatz, 1533. Instantaneous Radial Profiles of OH Fluorescence and Rayleigh Scattering through a Turbulent Ha-Air Diffusion Flame. D. Stepowski, K. Labbaci and R. Borghi, 1561. Joint Measurements of Velocity and Scalars in a Turbulent Diffusion Flame with Moderate Swirl. S. H. Sterner and R. W. Bilger, 1569. Stretched Laminar Flamelet Analysis of Turbulent H 2 and CO/H2/N 2 Diffusion Flames. M. C. Drake, 1579. A Comparison between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air. M. D. Smooke, I. K. Puri and K. Seshadri, 1783. Structure and Tip-Opening of Laminar Diffu-
SUBJECT INDEX sion Flames. Satoru Ishizuka and Yukio Sakai, 1821. The Infinite Candle and Its Stability--A Paradigm for Flickering Diffusion Flames, J. Buckmaster, N. Peters, 1829. Silane Combustion in an Opposed Jet Diffusion Flame. S. Koda and O. Fujiwara, 186l. 10.5 Extinction
Analysis of a Nonadiabatic Flame Propagating through Gradients of Fuel or Temperature. Edward J. Bissett and David L. Reuss. 531. Flame Extinction in a Temporally Developing Mixing Layer. P. Givi, W.-H. Jou, and R. W. Metcalfe, 1251. Theory of Nonadiabatic Flame Propagation in Dissociation Equilibrium. B. H. Chao and C. K. Law, 1793. Extinction and Structure of Methane/Very Lean Methane-Air Counterflow Diffusion Flames. Ichiro Yamaoka, Hiroshi Tsuji and Yasuo Harigaya, 1837. Extinction of Interacting Premixed Flames: Theory and Experimental Comparisons. S. H. Chung, J. S. Kim and C. K. Law, 1845. An Analysis of Lewis Number and Flow Effects on the Ignition of Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. 10.8 Laminar
Analysis of a Nonadiabatic Flame Propagating through Gradients of Fuel or Temperature. Edward J. Bissett and David L. Reuss. 531. A Comparative Study of Methane and Ethane Flame Chemistry by Experiment and Detailed Modelling, R.J. Hennessy, C. Robinson and D. B. Smith, 76 I. Mechanisms of Formation and Destruction of Soot Particles in a Laminar Methane-Air Diffusion Flame. A. Garo, J. Lahaye, G. Prado, 1023. A Hybrid Newton/Time-Integration Procedure for the Solution of Steady, Laminar, OneDimensional, Premixed Flames. Joseph F. Grcar, Robert J. Kee, Mitchell D. Smooke and James A. Miller, 1773. 10.9 Limits
The Effect of Gravity on Premixed Flame Propagation and Extinction in a Vertical Standard Flammability Tube. Roger A. Strehlow, Kurt A. Noe and Brian L. Wherley, 1899
2031 10.10 Premixed
Premixed Turbulent Burning during Explosions. R. G. Abdel-Gayed, D. Bradley, M. Lawes and F. K-K. Lung, 497. Measurements of CH Radical Concentrations in an Acetylene/Oxygen Flame and Comparisons to Modeling Calculations. R. G. Joklik, J. w. Daily, W. J. Pitz, 895. Hydrocarbon/Nitric Oxide Interactions in Low-Pressure Flames. Lawrence R. Thorne, Melvyn C. Branch, David W. Chandler, Robert J. Kee and James A. Miller, 965. Charged Soot in Low-Pressure Acetylene/ Oxygen Flames. K. H. Homann and H. Wolf, 1013. Concentration Profiles in Rich and Sooting Ethylene Flames. Stephen J, Harris, Anita M. Weiner, Richard J. Blint, J. E. M. Goldsmith, 1033. Measurements about the Influence of Pressure on Carbon Formation in Premixed Laminar C2H4-Air Flames. H. M~itzing and H. Gg. Wagner, 1047. Laminar Flamelet Concepts in Turbulent Combustion. N. Peters, 1231. Pair-Exchange Model of Turbulent Premixed Flame Propagation. Alan R. Kerstein, 1281. Numerical and Experimental Study of "Tulip" Flame Formation in a Closed Vessel. D. Dunn-Rankin, P. K. Barr, R. F. Sawyer, 1291. Aerothermodynamic Properties of Stretched Flames in Enclosures. D. A. Rotman and A. K. Oppenheim, 1303. Numerical Simulation of Flame Propagation in Constant Volume Chambers. Ahmed F. Ghoniem and Omar M. Knio, 1313. Flame-Generated Turbulence and Mass Fluxes: Effect of Varying Heat Release. A. Gulati and J. F. Driscoll, 1367. The Dynamic Structure of Turbulent VShaped Premixed Flames. I. G. Shepherd, G. L. Hubbard and L. Talbot, 1377. Characteristic Time-Scale Distribution and Mean and Most Probable Length Scales of Flamelets in Turbulent Premixed Flames. Akira Yoshida, 1393. Statistical Calculations of Spherical Turbulent Flames. S. B. Pope, W. K. Cheng, 1473. Combustion-Torch Ignition: Fluorescence Imaging of NO 2. R.J. Cattolica, 1551. A Hybrid Newton/Time-Integration Procedure for the Solution of Steady, Laminar, OneDimensional, Premixed Flames. Joseph F. Grcar, Robert J. Kee, Mitchell D. Smooke and James A. Miller, 1773. Theory of Nonadiabatic Flame Propagation in
SUBJECT INDEX
2032
Dissociation Equilibrium. B. H. Chao and C. K. Law, 1793. Extinction of Interacting Premixed Flames: Theory and Experimental Comparisons. S. H. Chung, J. S. Kim and C. K. Law, 1845. 10.11 Quenching The Significance of Intermediate Hydrocarbons during Wall Quench of Propane Flames. Thomas M. Kiehne, Ronald D. Matthews and Dennis E. Wilson, 481. Heat Transfer during Laminar Flame Quenching: Effect of Fuels. W. M. Huang, S. R. Vosen and R, Greif, 1853. An Analysis of Lewis Nun3ber and Flow Effects on the Ignition of Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. The Effect of Gravity on Premixed Flame Propagation and Extinction in a Vertical Standard Flammability Tube. Roger A. Strehlow, Kurt A. Noe and Brian L. Wherley, 1899. Quenching of Dust-Air Flames. J. Jarosinski, J. H. Lee, R. Knystautas and J. D. Crowley, 1917. 10.12 Stretch Propagation and Extinction of Stretched Premixed Flames. C. K. Law, D. L. Zhu and G. Yu, 1419. Flame Curvature and Preferential Diffusion in the Burning Intensity of Bunsen Flames. C. K. Law, P. Cho, M. Mizomoto and H. Yoshida, 1803. An Analysis of Lewis Number and Flow Effects on the Ignition o f Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. 10.13 Structure Simultaneous Observation of Organized Density Structures and the Visible Field in Pool Fires. A. Sch6nbucher, B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas and N. Schiess, 83. Experimental Study o f the Structure of an Ammonia-Oxygen Flame. J. Bian, J. VanDooren and P. J. Van Tiggelen, 953. Numerical and Experimental Study of "Tulip" Flame Formation in a Closed Vessel. D. Dunn-Rankin, P. K. Barr, R. F. Sawyer, 1291. The Effect of Inlet Conditions on the Performance and Flowfield Structure of a NonPremixed Swirl-Stabilized Distributed Reaction. R. E. Charles, J. L. Emdee, L.J. Muzio, G. S. Samuelsen. 1455.
The Influence of Combustion on the Fluid Structure in a Counter-Flow Diffusion Flame. M. I. G. Bloor, T. David, G. DixonLewis and P. H. Gaskell, 1501. Turbulent Non-Premixed Flames of Hydrocarbon Fuels near Extinction: Mean Structure from Probe Measurements. A. R. Masri and R. W. Bilger, 1511. Structure and Spectral Radiation Properties of Turbulent Ethylene/Air Diffusion Flames. J. P. Gore and G. M. Faeth, 1521. CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, 1729. Flame Curvature and Preferential Diffusion in the Burning Intensity of Bunsen Flames. C. K. Law, P. Cho, M. Mizomoto and H. Yoshida, 1803. The Effect of Dilution with Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames. G. W. Koroll and S. R. Mulpuru, 1811. Structure and Tip-Opening of Laminar Diffusion Flames. Satoru Ishizuka and Yukio Sakai, 1821. Extinction and Structure of Methane/Very Lean Methane-Air Counterflow Diffusion Flames. lchiro Yamaoka, Hiroshi Tsuji and Yasuo Harigaya, 1837. Extinction of Interacting Premixed Flames: Theory and Experimental Comparisons. S. H. Chung, J. S. Kim and C. K. Law, 1845. Silane Combustion in an Opposed Jet Diffusion Flame. S. Koda and O. Fujiwara, 1861. 10.14 Theory Fire Plume Air Entrainment According to Two Competing Assumptions. Gunnar Heskestad, I 11. Reduced Reaction Schemes for Methane, Methanol and Propane Flames. G, Paczko, P. M. Lefdal and N. Peters, 739. Combustion of a Finite Quantity of Gas Released in the Atomsphere. J. W. Dold and J. F. Clark, 1349. Flame Induced Vorticity: Effects of Stretch. M.-Z. Pindera and L. Talbot, 1357. Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. B. Rogg, F. Behrendt, J. Warnatz, 1533. A Hybrid Newton/Time-lntegration Procedure for the Solution of Steady, Laminar, OneDimensional, Premixed Flames. Joseph F. Grcar, Robert J. Kee, Mitchell D. Smooke and James A. Miller, 1773.
SUBJECT INDEX Extinction of Interacting Premixed Flames: Theory and Experimental Comparisons. S. H. Chung, J. S. Kim and C. K. Law, 1845.
10.15 Turbulent General Correlations of Chemical Species in Turbulent Fires. L. Orloff, J. De Ris, M. A, Delichatsios, 101. Fire Plume Air Entrainment According to Two Competing Assumptions. Gunnar Heskestad, 111. Premixed Turbulent Burning during Explosions. R. G. Abdel-Gayed, D. Bradley, M. Lawes and F. K-K. Lung, 497. Laminar Flamelet Concepts in Turbulent Combustion. N. Peters, 1231. Flame Extinction in a Temporally Developing Mixing Layer. P. Givi, W.-H. Jou, and R. W. Metcalfe, 1251. Time-Dependent Simulation of Small Scale Turbulent Mixing and Reaction. Howard R. Baum, Daniel M. Corley and Ronald G. Rehm, 1263. Pair-Exchange Model of Turbulent Premixed Flame Propagation. Alan R. Kerstein, 1281. Second-Order Closure for Turbulent Nonpremixed Flames: Scalar Dissipation and Heat Release Effects. R. W. Dibble, W. Kollmann, M. Farshchi and R. W. Schefer, 1329. Joint PDF Calculations of a Non-Equilibrium Turbulent Diffusion Flame. S. B. Pope, S. M. Correa, 1341. Flame-Generated Turbulence and Mass Fluxes: Effect of Varying Heat Release. A. Gulati and J. F. Driscoll, 1367. The Dynamic Structure of Turbulent VShaped Premixed Flames. I. G. Shepherd, G. L. Hubbard and L. Talbot, 1377. Characteristic Time-Scale Distributions and Mean and Most Probable Length Scales of Flamelets in Turbulent Premixed Flames. Akira Yoshida, 1393. Studies of Ignition and Flame Propagation in Turbulent Jets of Natural Gas, Propane and a Gas with a High Hydrogen Content. M. T. E. Smith, A. D. Birch, D. R. Brown, and M. Fairweather, 1403. A Reynolds-Stress Model for the Prediction of Diffusion Flames. J. Janicka, 1409. Flame Stabilization and Turbulent Exchange in Strongly Swirling Natural Gas Flames. R. Hillemanns, B. Lenze, W. Leuckel, 1445. Statistical Calculations of Spherical Turbulent Flames. S. B. Pope, W. K. Cheqg, 1473. Modeling of Wrinkled Laminar Flames with Intermittency and Conditional Statistics. J.Y. Chen, J. L. Lumley, F. C. Gouldin, 1483.
2033
Structure and Propagation of Turbulent Premixed Flames Stabilized in a Stagnation Flow. P. Cho, C. K. Law, J. R. Hertzberg and R. K. Cheng, 1493. Turbulent Non-Premixed Flames of Hydrocarbon Fuels near Extinction: Mean Structure from Probe Measurements. A. R. Masri and R. W. Bilger, 1511. Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. B. Rogg, F. Behrendt, J. Warnatz, 1533. Sound Emission from a Turbulent Flame. Masashi Katsuki, Yukio Mizutani, Mototaka Chikami and Taizo Kittaka, 1543. Joint Measurements of Velocity and Scalars in a Turbulent Diffusion Flame with Moderate Swirl. S. H. Sterner and R. W. Bilger, 1569. Stretched Laminar Flamelet Analysis of Turbulent H 2 and CO/Hz/N 2 Diffusion Flames. M. C. Drake, 1579. Application of a "Presumed P.D.F." Model of Turbulent Combustion to Reciprocating Engines. R. Borghi, B. Argueyrolles, S. Gauffie, P. Souhaite, 1591. Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds. I. O. Moen, A. Sulmistras, B. H. Hjertager and J. R. Bakke, 1617. 11. FLUID D Y N A M I C S
Fast Flames in a Vented Duct. Paul H. Taylor, 1601.
11 .I Atomization of Liquids Influence of Atomization Quality on the Destruction of Hazardous Waste Compounds. John C. Kramlich, Wm. Randall Seeker and Gary S. Samuelsen, 593.
11.3 Boundary Layer Phenomena Free Convective Combustion with Variable Properties. M. Hegde, P.J. Paul, and H. S. Mukunda, 33. Vertical Wall Fire in a Stratified Ambient Atmosphere. A. K. Kulkarni and J. J. Hwang, 45. A Simple Algebraic Model for Turbulent Wall Fires. Michael A. Delichatsios, 53. Buoyancy-Driven Wall Flows in Enclosure Fires. Y. Jaluria, 151.
SUBJECT INDEX
2034 11.4 Jets
Very Large Methane Jet Diffusion Flames. B. J. McCaffrey and D. D. Evans, 25. Numerical Modeling of Three-Dimensional Flow Field and Two-Dimensional Coal Combustion in A Cylindrical Combustor of CoFlow Jets with Large Velocity Difference. Lixing Zhou, Wenyi Lin, Jian Zhang and Zuolan Wang, 257. The Use of Coflowing Jets with Large Velocity Differences for the Stabilization of Low Grade Coal Flames. Wei-Biao Fu, Jing-Bin Wei, Huan-Qing Zhan, Wen-Chao Sun, Lie Zhao, Yi-Li Chen, Hong-Qiao Han, WeiSheng Huang, Cheng-Kang Wu, 567. Effects of Heat Release and Flame Distortion in the Transverse Fuel Jet. A. R. Karagozian and T. T. Nguyen, 1271. Studies of Ignition and Flame Propagation in Turbulent Jets of Natural Gas, Propane and a Gas with a High Hydrogen Content. M. T. E. Smith, A. D. Birch, D. R. Brown, and M. Fairweather, 1403. Flame Stabilization and Turbulent Exchange in Strongly Swirling Natural Gas Flames. R. Hillemanns, B. Lenze, W. Leuckel, 1445. Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region. S. R. Gollahalli, O. Sava~, R. F. Huang and J. L. Rodriquez Azara, 1463. 11.5 Mixing
Salt Water Modeling of Fire Induced Flows in Muhicompartment Enclosures. K. D. Steckler, H. R. Baum and J. G. Quintiere, 143. An Experimental Study of Air-Assist Atomizer Spray Flames. Chien-Pei Mao, Geng Wang and Norman Chigier, 665. Flame Extinction in a Temporally Developing Mixing Layer. P. Givi, W.-H. Jou, and R. W. Metcalfe, 1251. Time-Dependent Simulation of Small Scale Turbulent Mixing and Reaction. Howard R. Baum, Daniel M. Corley and Ronald G. Rehm, 1263. The Effect of Inlet Conditions on the Performance and Flowfield Structure of a NonPremixed Swirl-Stabilized Distributed Reaction. R. E. Charles, J. L. Emdee, L.J. Muzio, G. S. Samuelsen. 1455. Modeling of Wrinkled Laminar Flames with Intermittency and Conditional Statistics. J.Y. Chen, J. L. Lumley, F. C. Gouldin, 1483. Joint Measurements of Velocity and Scalars in a Turbulent Diffusion Flame with Moderate Swirl. S. H. Sfflrner and R. W. Bilger, 1569.
The Infinite Candle and Its Stability--A Paradigm for Flickering Diffusion Flames. J. Buckmaster, N. Peters, 1829. 11.6 Nozzle Flow
A Spectral Scattering Method for Determining Size Distribution Functions and Optical Characteristics of Droplets Ensembles in Fuel Sprays. F. Beretta, A. Cavaliere, A. D'Alessio P. Massoli, R. Ragucci, 675. 11.7 Particle Trajectories
The Influence of Fuel Properties on Drop-Size Distribution and Combustion in an Oil Spray. A. Brefia de la Rosa, A. Sobiesiak and T. A. Brzustowski, 557. Far-Field Coalescence Effects in Polydisperse Spray Jet Diffusion Flames. J. B. Greenberg and Y. Tambour, 655. 11.8 Plumes
Ceiling Flows of Growing Rack Storage Fires. Hsiang-Cheng Kung, Hong-Zeng You, Robert D. Spaulding, 121. 11.10 Others
Numerical Analysis of a Pulse Combustion Burner. Y. Tsujimoto and N. Machii, 539. Response of a Pulse Combustor to Changes in Fuel Composition. J. O. Keller, Charles K. Westbrook, 547. A Detailed Study of Burning Fuel Droplets. Harry A. Dwyer and Billy R. Sanders, 633. Aerothermodynamic Properties of Stretched Flames in Enclosures. D. A. Rotman and A. K. Oppenheim, 1303. Numerical Simulation of Flame Propagation in Constant Volume Chambers. Ahmed F. Ghoniem and Omar M. Knio, 1313. Structure and Behavior of Diffusion Flames in a Pressure Gradient. Frank E. Marble and Gavin J. Hendricks, 132 h Second-Order Closure for Turbulent Nonpremixed Flames: Scalar Dissipation and Heat Release Effects. R. W. Dibble, W. Kollmann, M. Farshchi and R. W. Schefer, 1329.
Flame Induced Vorticity: Effects of Stretch. M.-Z. Pindera and L. Talbot, 1357. A Reynolds-Stress Model for the Prediction of Diffusion Flames. J. Janicka, 1409. High-Frequency Combustion Oscillations Produced by Mode Selective Acoustic Excitation. Souad Zikikout, S6bastien Candel, Thierry
SUBJECT INDEX Poinsot, Arnaud Trouv6 and Emile Esposito, 1427. Computations of Near Field Aerodynamics of Swirling Expanding Flows. R. Weber, F. Boysan, J. Swithenbank and P. A. Roberts, 1435. Sound Emission from a Turbulent Flame. Masashi Katsuki, Yukio Mizutani, Mototaka Chikami and Taizo Kittaka, 1543. Combustion-Torch Ignition: Fluorescence Imaging of NOz. R.J. Cattolica, 1551. 12. H E A T T R A N S F E R
Temperature Measurements in PMMA during Downward Flame Spread in Air Using Holographic Interferometry. Akihiko Ito and Takashi Kashiwagi, 65. Experimental And Theoretical Investigation into the Ignition and Combustion Processes of Single Coal Particles under Zero and Normal Gravity Conditions. M. Gieras, R. Klemens, P. Wolafiski, S. W6jcicki, 315. The Control of Spontaneous Ignition under Rapid Compression. J. Franck, J. F. Griffiths and W. Nimmo, 447. Rapid Vaporization and Heating of Two Parallel Fuel Droplet Streams. R. H. Rangel and W. A. Sirignano, 617. Spray Cooling in Room Fires. Hong-Zeng You, Hsiang-Cheng Kung, Zhanxian Han, 129. Ignition Studies of Fuel Droplet Streams. Holger T. Sommer, 641.
2035
Turbulent Ethylene/Air Diffusion Flames. J. P. Gore and G. M. Faeth, 1521. 13. HETEROGENEOUS COMBUSTION
Coal-Water Fuel Combustion. Edward T. McHale, 159. Transient Phenomena in the Steam-Carbon Reaction. B. S. Haynes and M. F. R. Mulcahy, 203. Entrained Flow Reactor and Image Analysis Study of Maceral Effects in Coal-Char Oxidation. C. Morley and R. B. Jones, 239. The Use of Coflowing Jets with Large Velocity Differences for the Stabilization of Low Grade Coal Flames. Wei-Biao Fu, Jing-Bin Wei, Huan-Qing Zhan, Wen-Chao Sun, Lie Zhao, Yi-Li Chen, Hong-Qiao Han, WeiSheng Huang, Cheng-Kang Wu, 567. Combustion of Pulverized Coal as a Tuy6reInjectant to the Blast Furnace. A. S. Jamaluddin, T. F. Wall and J. S. Truelove, 575. Testing of a Model for Fluidized Bed Coal Combustors-Effect of Char Combustion Model. Nevin Selquk and Aygfin Pekyilmaz, 585. 13.1 Catalytic Combustion Supercriticat Liquid Fuel Combustion. Akira Umemura, 463.
12.2 Convection
13.2 Dispersed Particles
Heat Transfer during Laminar Flame Quenching: Effect of Fuels. W. M. Huang, S. R. Vosen and R. Greif, 1853.
Coal-Water Fuel Combustion. Edward T. McHale, 159. Variation of Ignition Temperatures of Fuel Particles in Vitiated Oxygen Atmospheres: Determination of Reaction Mechanism. Patrick J. Brooks and Robert H. Essenhigh, 293. Flammability Limit Measurements for Dusts and Gases: Ignition Energy Requirements and Pressure Dependences. Martin Hertzberg, Kenneth L. Cashdollar and Isaac A. Zlochower, 303. Experimental And Theoretical Investigation into the Ignition and Combustion Processes of Single Coal Particles under Zero and Normal Gravity Conditions. M. Gieras, R. Klemens, P. Wolafiski, S. W6jcicki, 315. Volatility Model for Coal Dust Flame Propagation and Extinguishment. Martin Hertzberg, Isaac A. Zlochower, and Kenneth L. Cashdollar, 325. Studies in Coal Dust Explosions: Influence of Additives on Extinction of High Intensity
12.3 Radiation Radiative Heat Transfer in Combustion: Friend or Foe. Adel F. Sarofim, 1. Prediction of Power Station Combustors. A. S. Abbas and F. C. Lockwood, 285. Measurement of Heat Loss due to Thermal Radiation of Liquid Spray Flames using Shock Tube Technique. Takao Tsuboi, Tomo Sato, Yasunobu Kaneko, Tomohiro Nakajima, Satoshi Ita Koh-Ichi Nagaya, 473. The Influence of Fuel Properties on Drop-Size Distribution and Combustion in an Oil Spray. A. Brefia de la Rosa, A. Sobiesiak and T. A. Brzustowski, 557. Radiant Emission And Smoke Points for Laminar Diffusion Flames of Fuel Mixtures. G. H. Markstein, 1107. Structure and Spectral Radiation Properties of
SUBJECT INDEX
2036
Coal Dust Flames. Taemin Choi, Saeid Rahimian, and Robert H. Essenhigh, 345. The Mechanism of Combustion of a CoalWater-Slurry in a Fluidized Bed. L. Massimilla and M. Miccio, 357. Aggregate Formation from Vaporized Ash during Pulverized Coal Combustion. J. Helble, M. Neville and A. F. Sarofim, 411. Coal Pyrolysis in Flat, Laminar, Opposed Jet Combustion Configurations. J. O. L. Wendt, B. M. Kram, M. M. Masteller and B. D. McCaslin, 419. Unsteady Combustion and Vaporization of a Spherical Fuel Droplet Group. F. C. Zhuang, B. Ynag, J. Zhou, H. Yang, 647. Soot Formation and Burnout during the Combustion of Dispersed Pulverized Coal Particles. L. D. Timothy, D. Froelich, A. F. Sarofim andJ. M. Bedr, 1141. Quenching of Dust-Air Flames. J. Jarosinski, J. H. Lee, R. Knystautas and J. D. Crowley. 1917. Combustion Behavior of Free Boron Slurry Droplets. F. Takahashi, F. L. Dryer and F. A. Williams, 1983.
13.3 Multiphase
Flame Spread over Porous Solids Soaked with a Combustible Liquid. Keiji Takeno and Toshisuke Hirano, 75. Coal-Water Fuel Combustion. Edward T. McHale, 159. Laminar Burning Velocities of CHa-AirGraphite Mixtures and Coal Dusts, Derek Bradley, S. El-Din Habik and J. Swithenbank, 249. Numerical Modeling of Three-Dimensional Flow Field and Two-Dimensional Coal Combustion in A Cylindrical Combustor of CoFlow Jets with Large Velocity Difference. Lixing Zhou, Wenyi Lin, Jian Zhang and Zuolan Wang, 257. Three-Dimensional Furnace Computer Modelling. R. K. Boyd and J. H. Kent, 265. Prediction of the Near-Burner Flow and Combustion in Swirling Pulverized-Coal Flames. J. S. Truelove, 275. FT-IR Emission/Transmission Spectroscopy for In Situ Combustion Diagnostics. Peter R. Solomon, Philip E. Best, Robert M. Carangelo, James R. Markham, Po-Liang Chien, Robert J. Santoro and Hratch G. Semerjian, 1763.
13.4 Single Droplet Liquid-Phase Diffusional Resistance in Muhicomponent Droplet Gasification. A. L. Randolph, A. Makino and C. K. Law, 601. A Semi-Empirical Approach to Thermal and Composition Transients Inside Vaporizing Fuel Droplets. D. G. Talley, S. C. Yao, 609. Combustion and Microexplosion Behavior of Miscible Fuel Droplets under High Pressure. Takashi Niioka, Jun'ichi Sato, 625. A Detailed Study of Burning Fuel Droplets. Harry A. Dwyer and Billy R. Sanders, 633. Ignition Studies of Fuel Droplet Streams. Holger T. Sommer, 641. Time-Resolved Gasification and Sooting Characteristics of Droplets of Alcohol/Oil Blends and Water/Oil Emulsions. A. L. Randolph, C. K. Law, 1125. Combustion Behavior of Free Boron Slurry Droplets. F. Takahashi, F. L. Dryer and F. A. Williams, 1983.
13.5 Single Solid Particle Experimentally Determined Overall Burning Rates of Pulverized-Coal Chars in Specified 02 and CO 2 Environments. Reginald E. Mitchell and Ole H. Madsen, 173. Quasi-Steady and Transient Combustion of a Carbon Particle: Theory and Experimental Comparisons. A. Makino and C. K. Law, 183. Critical Conditions for Carbon Combustion. C. Trevifio and F. Higuera and A. Lififin, 211. The Combustion and Gasification of Coke and Coal Chars. G. Hargrave, M. Pourkashanian and A. Williams, 221.
13.6 Solid Propellants Oxidation of Furan and Furfual in a WellStirred Reactor. Mark M. Thornton, Philip C. Malte, Alden L. Crittenden, 979. Super-Rate Burning of Catalyzed HMX Propellants. N. Kubota and N. Hirata, 1943. Erosive Burning Mechanism of Double-Base Propellants. A. Ishihara and N. Kubota, 1975. Modification of Solid Propellant Deflagration Rates Due to Random Nonhomogeneities. Robert C. Armstrong and Stephen B. Margolis, 2001.
13.7 Solid-Solid Free Convective Combustion with Variable Properties. M. Hegde, P.J. Paul, and H. S. Mukunda, 33.
SUBJECT INDEX Temperature Measurements in PMMA during Downward Flame Spread in Air Using Holographic Interferometry. Akihiko Ito and Takashi Kashiwagi, 65.
13.8 Sprays Effect of Fuel Treatment on Coal-Water Fuel Combustion. T. U. Yu, S. W. Kang, M. A. Toqan, P. M. Walsh, J. D. Teare, J. M. Bedr and A. F. Sarofim, 369. A Mechanistic Model of Coal-Water Fuel Combustion. S. Srinivasachar, M. A. Toqan, J. D. Teare and J. M. Bedr, 379. Measurement of Heat Loss due to Thermal Radiation of Liquid Spray Flames using Shock Tube Technique. Takao Tsuboi, Tomo Sato, Yasunobu Kaneko, Tomohiro Nakajima, Satoshi Ira, Koh-Ichi Nagaya, 473. The Influence of Fuel Properties on Drop-Size Distribution and Combustion in an Oil Spray. A. Brefia de la Rosa, A. Sobiesiak and T. A. Brzustowski, 557. Influence of Atomization Quality on the Destruction of Hazardous Waste Compounds. John C. Kramlich, Wm. Randall Seeker and Gary S. Samuelsen, 593. Rapid Vaporization and Heating of Two Parallel Fuel Droplet Streams. R. H. Rangel and W. A. Sirignano, 617. Ignition Studies of Fuel Droplet Streams. Holger T. Sommer, 641. Far-Field Coalescence Effects in Polydisperse Spray Jet Diffusion Flames. J. B. Greenberg and Y. Tambour, 655. An Experimental Study of Air-Assist Atomizer Spray Flames. Chien-Pei Mao, Geng Wang and Norman Chigier, 665. A Spectral Scattering Method for Determining Size Distribution Functions and Optical Characteristics of Droplets Ensembles in Fuel Sprays. F. Beretta, A. Cavaliere, A. D'Alessio, P. Massoli, R. Ragucci, 675. A Comparison of Spatially-Resolved Drop Size and Drop Velocity Measurements in an Isothermal Chamber and a Swirl-Stabilized Combustor. V. G. McDonell, C. P. Wood, G. S. Samuelsen, 685. Ignition Process of Fuel Spray Injected into High Pressure High Temperature Atmosphere. Jun'ichi Sato, Katsuyuki Konishi, Hiroshi Okada, Takashi Niioka, 695. Spray Vaporization and Soot Formation in Flames Generated by Light Oils with Different Chemical Composition. F. Beretta, A. D'Alessio, C. Noviello, 1133. Effects of Flame Temperature and Burning Rate on Nitric Oxide Emission from a
2037
Divided-Chamber Diesel Engine. Ko-Jen Wu and Richard C. Peterson, 1149. Digital Imaging of Species Concentration Fields in Spray Flames. M. G. Allen and R. K. Hanson, 1755. 14. I G N I T I O N Experimental And Theoretical Investigation into the Ignition and Combustion Processes of Single Coal Particles under Zero and Normal Gravity Conditions. M. Gieras, R. Klemens, P. Wolaflski, S. W6jcicki, 315. The Action of Ignition Improvers in Diesel Fuels. Ting-Man Li, R. F. Simmons, 455, Combustion Fluctuation Mechanism Involving Cycle-to-Cycle Spark Ignition Variation due to Gas Flow Motion in S.I. Engines. Kyugo Hamai, Hiroki Kawajiri, Takashi Ishizuka and Meroji Nakai, 505. Combustion-Torch Ignition: Fluorescence Imaging of NO 2. R.J. Cattolica, 1551. Plasma Propellant Jet Ignition. F. B. Carleton, G. K. Cheriyan, N, Klein and F. J. Weinberg, 1885. Combustion Behavior of Free Boron Slurry Droplets. F. Takahashi, F. L. Dryer and F. A. Williams, 1983.
14.1 Delay Kinetics of Combustion of Petroleum Coke and Sub-Bituminous Coal Char: Results of Ignition and Steady-State Techniques. Wieslaw Rybak and Mieczyslaw Zembrzuski, Ian W. Smith, 231. Variation of Ignition Temperatures of Fuel Particles in Vitiated Oxygen Atmospheres: Determination of Reaction Mechanism. Patrick J. Brooks and Robert H. Essenhigh, 293. Coal-Fueled Diesel Engines: Analytical Evaluations of Ignition Options. Stuart R. Bell and Jerald A. Caton, 389. Ignition Studies of Fuel Droplet Streams. Holger T. Sommer, 641. Ignition Process of Fuel Spray Injected into High Pressure High Temperature Atmosphere. Jun'ichi Sato, Katsuyuki Konishi, Hiroshi Okada, Takashi Niioka, 695.
14.2 Energy Requirements Flammability Limit Measurements For Dusts and Gases: Ignition Energy Requirements and Pressure Dependences. Martin Hertzberg, Kenneth L. Cashdollar and Isaac A. Zlochower, 303. The Control of Spontaneous Ignition under
SUBJECT INDEX
2038
Rapid Compression. J. Franck, J. F. Griffiths and W. Nimmo, 447. Spark Ignition of Aerosols. Arun K. Singh, Constantine E. Polyrneropoulos, 513. Observation and Simulation of Laser Induced Ignition Processes in 02-03 and H2-O 2 Mixtures. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, 1869. Mass Spectrometer Sampling of a Plasma Jet Igniter with a Methane Plasma Feed. Thompson M. Sloane and John W. Ratcliffe, 1877. An Analysis of Lewis Number and Flow Effects on the Ignition of Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. 14.3 Gases Studies of Ignition and Flame Propagation in Turbulent Jets of Natural Gas, Propane and a Gas with a High Hydrogen Content. M. T. E. Smith, A. D. Birch, D. R. Brown, and M. Fairweather, 1403. An Analysis of Lewis Number and Flow Effects on the Ignition of Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. Mass Spectrometer Sampling of a Plasma Jet Igniter with a Methane Plasma Feed. Thompson M. Sloane and John W. Ratcliffe, 1877. 15. I N H I B I T I O N
15.1 Heterogeneous Studies in Coal Dust Explosions: Influence of Additives on Extinction of High Intensity Coal Dust Flames. Taemin Choi, Saeid Rahimian, and Robert H. Essenhigh, 345. Quenching of Dust-Air Flames. J. Jarosinski, J. H. Lee, R. Knystautas and J, D. Crowley. 1917. 16. INSTABILITY
Analyses of the Cellular Structure of Detonations. J. E. Shepherd, I. O. Moen, S. B. Murray, P. A. Thibault, 1649. The Effect of Structure on the Stability of Detonations I. Role of the Induction Zone. J. D. Buckmaster, G. S. S. Ludford, 1669. 16.1 Acoustic High-Frequency Combustion Oscillations Produced by Mode Selective Acoustic Excitation. Souad Zikikout, S6bastien Candel, Thierry Poinsot, Arnaud Trouv6 and Emile Esposito, 1427. The Acoustic Boundary Layer in Porous
Walled Ducts with a Reacting Flow. U. G. Hegde and B. T. Zinn, 1993. 16.2 Fluid Dynamic Numerical and Experimental Study of "Tulip" Flame Formation in a Closed Vessel. D. Dunn-Rankin, P. K. Barr, R. F. Sawyer, 1291. Aerothermodynamic Properties of Stretched Flames in Enclosures. D. A. Rotman and A. K. Oppenheim, 1303. Numerical Simulation of Flame Propagation in Constant Volume Chambers. Ahmed F. Ghoniem and Omar M. Knio, 1313. Characteristic Time-Scale Distributions and Mean and Most Probable Length Scales of Flamelets in Turbulent Premixed Flames. Akira Yoshida, 1393. High-Frequency Combustion Oscillations Produced by Mode Selective Acoustic Excitation. Souad Zikikout, S~bastien Candel, Thierry Poinsot, Arnaud Trouv~ and Emile Esposito, 1427. Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region. S. R. Gollahalli, O. Sava~, R. F. Huang and J. L, Rodriquez Azara, 1463. The Infinite Candle and Its Stability--A Paradigm for Flickering Diffusion Flames. J. Buckmaster, N. Peters, 1829. 17. KINETICS
Combustion, A Chemical and Kinetic View. Sidney W. Benson, 703. Kinetics of the Reaction of C3H 3 with Molecular Oxygen from 293-900 K. Irene R. Slagle and David Gutman, 875. Direct Measurements of the Reaction NH 2 + CH 4--* NH 3 + CH 3 in Temperature Range 743 -< T/K -< 1023. W. Hack, H. Kurzke, P. Rouveirolles and H. Gg. Wagner, 905. Kinetics of the Reaction of NCO with Ethene and Oxygen over the Temperature Range 295-662K. Robert A. Perry, 913. A Theoretical Analysis of the Reaction between Hydroxyl and Hydrogen Cyanide at High Temperature. James A. Miller and Carl F. Melius, 919. An HTFFR Kinetics Study of the Reaction between AICI and 02 from 490 to 1750 K. Donald F. Rogowski and Arthur Fontijn, 943. On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames. Nancy U Garland and David R. Crosley, 1693.
2039
SUBJECT INDEX
17.1 Elementary Reactions Transient Phenomena in the Steam-Carbon Reaction. B. S. Haynes and M. F. R. Mulcahy, 203. Combustion, A Chemical and Kinetic View. Sidney W. Benson, 703. Temperature Dependence of CH Radical Reactions with H20 and CH20. S. Zabarnick, J. W. Fleming and M. C. Lin, 713. The Reaction of Atomic Hydrogen with the Formyl Radical. Lawrence B. Harding and Albert F. Wagner, 721. A Shock Tube Study of CN Radical Reactions with H 2 and NO Verified by H, N and O Atom Measurements. K. Natarajan and P. Roth, 729. Formation of Hydrogen Atoms in Pyrolysis of Ethylbenzene behind Shock Waves, Rate Constants for the Thermal Dissociation of the Benzyl Radical. V. Subba Rao and Gordon B. Skinner, 809. Shock Wave Study of Benzyl UV Absorption Spectra: Revised Toluene and Benzyl Decomposition Rates. W. Mi~ller-Markgraf and J. Troe, 815. Reactions of Phenyl Radicals with Ethene, Ethyne, and Benzene. Askar Fahr, W. Gary Mallard and Stephen E. Stein, 825. Kinetics of the Reactions of CH 2 ()~ 3BI)Radicals with C2H 2 and C4H 2 in the Temperature Range 296 K -< T -< 700 K. T. B6hland, F. Temps and H. Gg. Wagner, 841. Direct Study of the Reactions of Vinyl Radicals with Hydrogen and Oxygen Atoms. P. Heinemann, R. Hofmann-Sievert and K. Hoyermann, 865. Kinetics of the Reaction of C3H 3 with Molecular Oxygen from 293-900 K. Irene R. Slagle and David Gutman, 875. Acetylene Oxidation: The Reaction C2H2 + O at High Temperatures. P. Frank, K. A Bhaskaran and Th. Just, 885. Direct Measurements of the Reaction NH 2 + CH 4 ~ NH 3 + CH 3 in Temperature Range 743 -< T/K -< 1023. W. Hack, H. Kurzke, P. Rouveirolles and H. Gg. Wagner, 905. Kinetics of the Reaction of NCO with Ethene and Oxygen over the Temperature Range 295-662K. Robert A. Perry, 913. A Theoretical Analysis of the Reaction between Hydroxyl and Hydrogen Cyanide at High Temperature. James A. Miller and Carl F. Melius, 919. Rate Constant for the Reaction of O(3P) with H 2 by the Flash Photolysis-Shock Tube and Flash Photolysis-Resonance Flourescence Techniques; 504K --< T --< 2495K. J. W. Suth-
erland, J. v. Michael, A. N. Pirraglia, F. L. Nesbitt and R. B. Klemm, 929. Experimental Study of the Structure of an Ammonia-Oxygen Flame. J. Bian, J. VanDooren and P. J. Van Tiggelen, 953. Addition of Benzene and Toluene to Slowly Reacting Mixtures of Hydrogen and Oxygen at 773K. R. R. Baldwin, M. Scott and R. W. Walker, 991. On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames. Nancy L. Garland and David R. Crosley, 1693.
17.4 Modeling The Significance of Intermediate Hydrocarbons during Wall Quench of Propane Flames. Thomas M. Kiehne, Ronald D. Matthews and Dennis E. Wilson, 481. Explosions of Adiabatically Compressed Gases in a Constant Volume Bomb. James C. Keck and Haoran Hu, 521. Response of a Pulse Combustor to Changes in Fuel Composition. J. O. Keller, Charles K. Westbrook, 547. Reduced Reaction Schemes for Methane, Methanol and Propane Flames. G. Paczko, P. M. Lefdal and N. Peters, 739. Complications of One-Step Kinetics for Moist CO-Oxidation, R. A. Yetter, F. L. Dryer and H. Rabitz, 749. Tests of Published Mechanisms by Comparison with Measured Laminar Flame Structure in Fuel-Rich Acetylene Combustion. Phillip R. Westmoreland, Jack B. Howard and John P. Longwell, 773. Chemical Kinetic Modeling of the Oxidation of Large Alkane Fuels: N-Octane and IsoOctane. E. I. Axelsson, K. Brezinsky, F. L. Dryer, W. J. Pitz, C. K. Westbrook, 783. Development of a Variational Method for Chemical Kinetic Sensitivity Analysis. D. Grouset, P. Plion, E. Znaty, S. Galant, 795. High Temperature Oxidation of N-Alkyl Benzenes. K. Brezinsky, G. T. Linteris, T. A. Litzinger, and I. Glassman, 833. The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube. Meredith B. Colket, III, 851. Acetylene Oxidation: The Reaction C2H 2 + O at High Temperatures. P. Frank, K. A. Bhaskaran and Th. Just, 885. Measurements of CH Radical Concentrations in an Acetylene/Oxygen Flame and Comparisons to Modeling Calculations. R. G. Joklik, J. W. Daily, W.J. Pitz, 895. Hydrocarbon/Nitric Oxide Interactions in Low-Pressure Flames. Lawrence B. Thorne,
2040
SUBJECT INDEX
Melvyn C. Branch, David W. Chandler, Robert J. Kee and James A. Miller, 965. Concentration Profiles in Rich and Sooting Ethylene Flames. Stephen J. Harris, Anita M. Weiner, Richard J. Blint, J. E. M. Goldsmith, 1033. Measurements about the Influence of Pressure on Carbon Formation in Premixed Laminar C2H4-Air Flames. H. M~itzing and H. Gg. Wagner, 1047. Chemical Production Rates of Intermediate Hydrocarbons in a Methane/Air Diffusion Flame. J. Houston Miller, W. Gary Mallard and Kermit C. Smyth, 1057. Effect of Fuel Structure on Pathways to Soot. Michael Frenklach, David W. Clary, William C. Gardiner, Jr., Stephen E. Stein, 1067. A Comprehensive Kinetic Model for the Formation of Char-NO during the Combustion of a Single Particle of Coal Char. Norio Arai, Masanobu Hasatani, Yoshihiko Ninomiya, Stuart W. Churchill and Noam Lior, 1207. Stretched Laminar FLamelet Analysis of Turbulent H z and CO/H2/N 2 Diffusion Flames. M. C. Drake, 1579. Observation and Simulation of Laser Induced Ignition Processes in 02-03 and H2-O 2 Mixtures. U. Maas, B. Raffel, J. Wolfrum, j. Warnatz, 1869. 17.5 Overall Rates
Experimentally Determined Overall Burning Rates of Pulverized-Coal Chars in Specified O 2 and CO 2 Environments. Reginald E. Mitchell and Ole H. Madsen, 173. An Experimental Study on Oxidation Rates of Coal at Low Temperature. L. Petarca, L. Tognotti, S. Zanelli and G. Bertozzi, 193. The Combustion and Gasification of Coke and Coal Chars. G. Hargrave, M. Pourkashanian and A. Williams, 221. Kinetics of Combustion of Petroleum Coke and Sub-Bituminous Coal Char: Results of Ignition and Steady-State Techniques. Wieslaw Rybak and Mieczyslaw Zembrzuski, Ian W. Smith, 231. Entrained Flow Reactor and Image Analysis Study of Maceral Effects in Coal-Char Oxidation. C. Morley and R. B. Jones, 239. Variation of Ignition Temperatures of Fuel Particles in Vitiated Oxygen Atmospheres: Determination of Reaction Mechanism. PatrickJ. Brooks and Robert H, Essenhigh, 293. Oxidation of Furan and Furfural in a WellStirred Reactor. Mark M, Thorton, Philip C. Malte, Alden L. Crittenden, 979. Particle-Size Effects on the Distribution of Fuel
Nitrogen in One-Dimensional Coal-Dust Flames, K. Clark Midkiff and Robert A. Altenkirch, 1189. Silane Combustion in an Opposed Jet Diffusion Flame. S. Koda and O. Fujiwara, 1861. 18. MODELING A N D SCALING
Ceiling Flows of Growing Rack Storage Fires. Hsiang-Cheng Kung, Hong-Zeng You, Robert D. Spaulding, 121. Salt Water Modeling of Fire Induced Flows in Multicompartment Enclosures. K. D. Steckler, H. R. Baum and J. G. Quintiere, 143. Prediction of Power Station Combustors. A. S. Abbas and F. C. Lockwood, 285. Numerical and Experimental Study of "Tulip" Flame Formation in a Closed Vessel. D. Dunn-Rankin, P. K. Barr, R. F. Sawyer, 1291. Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds. I. O. Moen, A. Sulmistras, B. H. Hjertager and J. R. Bakke, 1617. Analyses of the Cellular Structure of Detonations. J. E. Shepherd, I. O. Moen, S. B. Murray, P. A. Thibault, 1649. 18.1 Empirical
General Correlations of Chemical Species in Turbulent Fires. L. Orloff, J. De Ris, M. A, Delichatsios, 101. Experimental Investigation of Fire Behavior in a 1/6 Scale Dual Opening Compartment. Hisahiro Takeda, 137. The Mechanism of Combustion of a CoalWater-Slurry in a Fluidized Bed. L. Massimilla and M. Miccio, 357. A Semi-Empirical Approach to Thermal and Composition Transients Inside Vaporizing Fuel Droplets. D. G. Talley, S. C. Yao, 609. Factors Controlling Scaling Laws for Buoyancy Controlled Combustion of Spherical Gas Clouds. F. G. Roper, H. C. Jaggers, D. P. Franklin, N. Slaven and A. Campbell, 1609. 18.2 Fundamental
Vertical Wall Fire in a Stratified Ambient Atmosphere. A. K. Kulkarni and J. Hwang, 45. A Simple Algebraic Model for Turbulent Wall Fires. Michael A. Delichatsios, 53. Spray Cooling in Room Fires. Hong-Zeng You, Hsiang-Cheng Kung, Zhanxian Han, 129. Quasi-Steady and Transient Combustion of a Carbon Particle: Theory and Experimental
SUBJECT INDEX Comparisons. A. Makino and C. K. Law, 183. Critical Conditions for Carbon Combustion. C. Trevifio and F. Higuera and A. Lift,n, 211. Numerical Modeling of Three-Dimensional Flow Field and Two-Dimensional Coal Combustion in A Cylindrical Combustor of CoFlow Jets with Large Velocity Difference. Lixing Zhou, Wenyi Lin, Jian Zhang and Zuolan Wang, 257. Three-Dimensional Furnace Computer Modelling. R. K. Boyd and J. H. Kent, 265. Prediction of the Near-Burner Flow and Combustion in Swirling Pulverized-Coal Flames. J. S. Truelove, 275. Coal-Fueled Diesel Engines: Analytical Evaluations of Ignition Options. Stuart R. Bell and Jerald A. Caton, 389. Supercritical Liquid Fuel Combustion. Akira Umemura, 463. Numerical Analysis of a Pulse Combustion Burner. Y. Tsujimoto and N. Machii, 539. Testing of a Mode[ for Fluidized Bed Coal Combustors-Effect of Char Combustion Model. Nevin Sel~uk and Ayg/in Pekyihnaz, 585. Rapid Vaporization and Heating of Two Parallel Fuel Droplet Streams. R. H. Rangel and W. A. Sirignano, 617. A Detailed Study of Burning Fuel Droplets. Harry A. Dwyer and Billy R. Sanders, 633. Unsteady Combustion and Vaporization of a Spherical Fuel Droplet Group. F. C. Zhuang, B. Ynag, J. Zhou, H. Yang, 647. Complications of One-Step Kinetics for Moist CO-Oxidation. R. A. Yetter, F. L. Dryer and H. Rabitz, 749. Tests of Published Mechanisms by Comparison with Measured Laminar Flame Structure in Fuel-Rich Acetylene Combustion. Phillip R, Westmoreland, Jack B. Howard and John P. Longwell, 773. Effect of Fuel Structure on Pathways to Soot. Michael Frenklach, David W. Clary, William C. Gardiner, Jr., Stephen E. Stein, 1067. Time-Dependent Simulation of Small Scale Turbulent Mixing and Reaction. Howard R. Baum, Daniel M. Corley and Ronald G. Rehm, 1263. Effects of Heat Release and Flame Distortion in the Transverse Fuel Jet. A. R. Karagozian and T. T. Nguyen, 1271. Structure and Behavior of Diffusion Flames in a Pressure Gradient. Frank E. Marble and Gavin J. Hendricks, 1321. Second-Order Closure for Turbulent Nonpremixed Flames: Scalar Dissipation
2041
and Heat Release Effects. R. W. Dibble, W. Kollmann, M. Farshchi and R. W. Schefer, 1329. Joint PDF Calculations of a Non-Equilibrium Turbulent Diffusion Flame. S. B. Pope, S. M. Correa, 1341. Combustion of a Finite Quantity of Gas Released in the Atomsphere. J. W. Dold and J. F. Clark, 1349. Flame Induced Vorticity: Effects of Stretch. M.-Z. Pindera and L. Talbot, 1357. A Reynolds-Stress Model for the Prediction of Diffusion Flames. J. Janicka, 1409. Computations of Near Field Aerodynamics of Swirling Expanding Flows. R. Weber, F. Boysan, J. Swithenbank and P. A. Roberts, 1435. Statistical Calculations of Spherical Turbulent Flames. S. B. Pope, W. K. Cheng, 1473. Modeling of Wrinkled Laminar Flames with Intermittency and Conditional Statistics. J.Y. Chen, J, L. Lumley, F. C. Gouldin, 1483. The Influence of Combustion on the Fluid Structure in a Counter-Flow Diffusion Flame. M. I. G. Bloor, T. David, G. DixonLewis and P. H. Gaskell, 1501. Application of a "Presumed P.D.F." Model of Turbulent Combustion to Reciprocating Engines. R. Borghi, B. Argueyrolles, S. Gauffie, P. Souhaite, 1591. The Effect of Energy Release on the Regularity of Detonation Cells in Liquid Nitromethane. R. Guirguis, E. S. Oran and K. Kailasanath, 1659. The Effect of Structure on the Stability of Detonations I. Role of the Induction Zone. J. D. Buckmaster, G. S. S. Ludford, 1669. A Hybrid Newton/Time-Integration Procedure for the Solution of Steady, Laminar, OneDimensional, Premixed Flames. Joseph F. Grcar, Robert J. Kee, Mitchell D. Smooke and James A. Miller, 1773. A Comparison between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air. M. D. Smooke, I. K. Puri and K. Seshadri, 1783. Theory of Nonadiabatic Flame Propagation in Dissociation Equilibrium. B. H. Chao and C. K. Law, 1793. Flame Curvature and Preferential Diffusion in the Burning Intensity of Bunsen Flames. C. K. Law, P. Cho, M. Mizomoto and H. Yoshida, 1803. Extinction of Interacting Premixed Flames: Theory and Experimental Comparisons. S. H. Chung, J. S. Kim and C. K. Law, 1845. Heat Transfer during Laminar Flame Quench-
SUBJECT INDEX
2042
ing: Effect of Fuels. W. M. Huang, S. R. Vosen and R. Greif, 1853. Observation and Simulation of Laser Induced Ignition Processes in O2-O3 and H2-O2 Mixtures. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, 1869. An Analysis of Lewis Number and Flow Effects on the Ignition of Premixed Gases. P. S. Tromans and R. M. Furzeland, 1891. The Acoustic Boundary Layer in Porous Walled Ducts with a Reacting Flow. U. G. Hegde and B. T. Zinn, 1993. Modification of Solid Propellant Deflagration Rates Due to Random Nonhomogeneities. Robert C. Armstrong and Stephen B. Margolis, 2001. 18.3 Other
A Model for the Deflagration of Nitramines. T. Mitani and F. A. Williams, 1965. 19. OXIDATION (Also see KINETICS) An Experimental Study on Oxidation Rates of Coal at Low Temperature, L. Petarca, L. Tognotti, S. Zanelli and G. Bertozzi, 193. The Control of Spontaneous Ignition under Rapid Compression. J. Franck, J. F. Griffiths and W. Nimmo, 447. Explosions of Adiabatically Compressed Gases in a Constant Volume Bomb. James C. Keck and Haoran Hu, 521. Chemical Kinetic Modeling of the Oxidation of Large Alkane Fuels: N-Octane and IsoOctane. E. I. Axelsson, K. Brezinsky, F. L. Dryer, W. J. Pitz, C. K. Westbrook, 783. High Temperature Oxidation of N-Alkyl Benzenes. K. Brezinsky, G. T. Linteris, T. A. Litzinger, and I. Glassman, 833. Oxidation of Furan and Furfual in a WellStirred Reactor. Mark M. Thorton, Philip C. Malte, Alden L. Crittenden, 979, Addition of Benzene and Toluene to Slowly Reacting Mixtures of Hydrogen and Oxygen at 773K. R. R. Baldwin, M. Scott and R. W. Walker, 991. PARTICULATES (see AEROSOLS) 20. PHASE CHANGES 20.2 Evaporation
Supercritical Liquid Fuel Combustion. Akira Umemura, 463. Liquid-Phase Diffusional Resistance in
Multicomponent Droplet Gasification. A. L. Randolph, A. Makino and C. K. Law, 601. Rapid Vaporization and Heating of Two Parallel Fuel Droplet Streams. R. H. Rangel and W. A. Sirignano, 617. 20.3 Nucleation
Combustion and Microexplosion Behavior of Miscible Fuel Droplets under High Pressure. Takashi Niioka, Jun'ichi Sato, 625. 21. POLLUTANTS Formation of Light Gases and Aromatic Species during the Rapid Pyrolysis of Coal. P, F. Nelson and R.J. Tyler, 427. 21.2 NO 2
A Shock Tube Study of CN Radical Reactions with H z and NO Verified by H, N and O Atom Measurements. K. Natarajan and P. Roth, 729. Effects of Flame Temperature and Burning Rate on Nitric Oxide Emission from a Divided-Chamber Diesel Engine. Ko-Jen Wu and Richard C. Peterson, 1149. Bench and Pilot Scale Process Evaluation of Reburning for In-Furnace NO x Reduction. S. L. Chen, J. M, McCarthy, W. D. Clark, M. P. Heap, W. R. Seeker and D. W. Pershing, 1159. Reburning Thermal and Chemical Processes in a Two-Dimensional Pilot-Scale System. W. S. Lanier, J. A. Mulholland and J. T. Beard, 1171. Experimental Study of Nitrogen Dioxide Formation in Combustion Systems. Morio Hori, 1181. Particle-Size Effects on the Distribution of Fuel Nitrogen in One-Dimensional Coal-Dust Flames. K. Clark Midkiff and Robert A. Altenkirch, 1189. A Study of Gas Composition Profiles for Low NO x Pulverized Coal Combustion and Burner Scale-Up. Shigeru Azuhata, Kiyoshi Narato, Hironobu Kobayashi, Norio Arashi, Shigeki Morita, Tadahisa Masai, 1199. A Comprehensive Kinetic Model for the Formation of Char-NO during the Combustion of a Single Particle of Coal Char. Norio Arai, Masanobu Hasatani, Yoshihiko Ninomiya, Stuart W, Churchill and Noam Lior, 1207. Influence of Temperature on the Formation of NO x during Pulverized Coal Combustion. Hans Kremer, Waldemar Schulz, 1217. The Combined Effect of Sulphur and Nitro-
SUBJECT INDEX gen Compounds on Alkane Combustion. C. F. Cullis, M. M. Hirschler, S. W. Wall, 1223. 21.5 Particulates (also see AEROSOLS)
Ag.gregate Formation from Vaporized Ash during Pulverized Coal Combustion. J. Helble, M. Neville and A. F. Sarofim, 411. 21.6 Soot (also see SOOT)
Soot Production in Axisymmetric Laminar Diffusion Flames at Pressures from One to Ten Atmospheres. W. L. Flower, C. T. Bowman, 1115. Spray Vaporization and Soot Formation in Flames Generated by Light Oils with Different Chemical Composition. F. Beretta, A. DAiessio, C. Noviello, 1133. Soot Formation and Burnout during the Combustion of Dispersed Pulverized Coal Particles. L. D. Timothy, D. Froelich, A. F. Sarofim andJ. M. Be~r, 1141. 21.7 SO 2
The Combined Effect of Sulphur and Nitrogen Compounds on Alkane Combustion. C. F. Cullis, M. M. Hirschler, S. W. Wall, 1223. 21.8 Others Influence of Atomization Quality on the Destruction of Hazardous Waste Compounds. John C. Kramlich, Wm. Randall Seeker and Gary S, Samuelsen, 593. 22. PROPAGATION RATES
Simultaneous Measurements of Gas Flow and Flame Front Movement in a Turbulent Premixed Flame Zone. Takuji Suzuki, Norihito Kudo, Masaaki Kawamata and Toshisuke Hirano, 1385. Modification of Solid Propellant Deflagration Rates due to Random Nonhomogeneities. Robert C. Armstrong and Stephen B. Margolis, 2001.
2043
drogen Flames. G. W. Koroll and S. R. Mulpuru, 1811. The Effect of Gravity on Premixed Flame Propagation and Extinction in a Vertical Standard Flammability Tube. Roger A. Strehlow, Kurt A. Noe and Brian L. Wherley, 1899. Ignition and Flame Propagation within Stratified Methane-Air Mixtures Formed by Convective Diffusion. G. A. Karim and H. T. Lam, 1909. 22.3 Liquids
Flame Spread over Porous Solids Soaked with a Combustible Liquid. Keiji Takeno and Toshisuke Hirano, 75. 22.4 Solids
Erosive Burning Mechanism of Double-Base Propellants. A. Ishihara and N. Kubota, 1975. 22.5 Turbulent Flames
Experimental Investigation of Fire Behavior in a 1/6 Scale Dual Opening Compartment. Hisahiro Takeda, 137. Pair-Exchange Model of Turbulent Premixed Flame Propagation. Alan R. Kerstein, 1281. Structure and Propagation of Turbulent Premixed Flames Stabilized in a Stagnation Flow. P. Cho, C. K. Law, J. R. Hertzberg and R. K. Cheng, 1493. 23. PROPERTY MEASUREMENTS
High Speed Thermometry Using Two-Line Atomic Fluorescence. John E. Dec, J. O. Keller, 1737. Silane Combustion in an Opposed Jet Diffusion Flame. S. Koda and O. Fujiwara, 1861. 23.1 Composition
22.2 Laminar Flames
Analysis of a Nonadiabatic Flame Propagating through Gradients of Fuel or Temperature. Edward J. Bissett and David L. Reuss. 531. Propagation and Extinction of Stretched Premixed Flames. C. K. Law, D. L. Zhu and G. Yu, 1419. The Effect of Dilution with Steam on the Burning Velocity and Structure of Premixed Hy-
A Study of Spatial Distribution of Molecular Species in an Engine by Pulsed Multichannel Raman Spectroscopy. J. P Sawerysyn, L-R. Sochet, D. Desenne, M. Crunelle-Cras, F. Grase, M. Bridoux, 491. Extinction and Structure of Methane/Very Lean Methane-Air Counterflow Diffusion Flames. Ichiro Yamaoka, Hiroshi Tsuji and Yasuo Harigaya, 1837.
2044
SUBJECT INDEX
23.2 Electric Properties (also see ELECTRIC PROPERTIES OF FLAMES) On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames. Nancy L. Garland and David R. Crosley, 1693.
23.3 Species Identification High-Resolution Coherent Anti-Stokes Raman Spectroscopy Measurements of Carbon Monoxide Linewidths in a Flame. R. L. Farrow, 1703. Multiple Species Laser-Induced Fluorescence in Flames. Jay B. Jeffries, Richard A. Copeland, Gregory P. Smith and David R. Crosley, 1709. Extinction and Structure of Methane/Very Lean Methane-Air Counterflow Diffusion Flames. Ichiro Yamaoka, Hiroshi Tsuji and Yasuo Harigaya, 1837. Mass Spectrometer Sampling of a Plasma Jet Igniter with a Methane Plasma Feed. Thompson M. Sloane and John W. Ratcliffe, 1877.
23.4 Spectra The Spectral Emittance of Pulverized Coal and Char. Peter R. Solomon, Robert M. Carangelo, Philip E. Best, James R. Markham and David G. Hamblen, 437. FT-IR Emission/Transmission Spectroscopy for In Situ Combustion Diagnostic. Peter R. Solomon, Philip E. Best, Robert M. Carangelo, James Markham, Po-Liang Chien, Robert J. Santoro and Hratch G, Semerjian, 1763.
23.5 Temperature FT-1R Emission/Transmission Spectroscopy for In Situ Combustion Diagnostic. Peter R. Solomon, Philip E. Best, Robert M. Carangelo, James Markham, Po-Liang Chien, Robert J. Santoro and Hratch G. Semerjian, 1763. PYROLYSIS (See THERMAL DECOMPOSITION) 24. REACTION MECHANISMS Combustion, A Chemical and Kinetic View. Sidney W. Benson, 703. Temperature Dependence of CH Radical Reactions with HzO and CH20. S. Zabarnick, J. W. Fleming and M. C, Lin, 713. A Shock Tube Study of CN Radical Reactions
with H 2 and NO Verified by H, N and O Atom Measurements. K. Natarajan and P. Roth, 729. Reduced Reaction Schemes for Methane, Methanol and Propane Flames. G. Paczko, P. M. Lefdal and N. Peters, 739. Complications of One-Step Kinetics for Moist CO Oxidation. R. A. Yetter, F. L. Dryer and H. Rabitz, 749. A Comparative Study of Methane and Ethane Flame Chemistry by Experiment and Detailed Modelling. R. J. Hennessy, C. Robinson and D. B. Smith, 761. Tests of Published Mechanisms by Comparison with Measured Laminar Flame Structure in Fuel-Rch Acetylene Combustion. Phillip R. Westmoreland, Jack B. Howard and John P. Longwell, 773. Chemical Kinetic Modeling of the Oxidation of Large Alkane Fuels: N-Octane and IsoOctane. E. I. Axelsson, K. Brezinsky, F. L. Dryer, W. J. Pitz, C. K. Westbrook, 783. Development of a Variational Method for Chemical Kinetic Sensitivity Analysis. D. Grouset, P. Plion, E. Znaty, S. Galant, 795. Formation of Hydrogen Atoms in Pyrolysis of Ethylbenzene behind Shock Waves. Rate Constants for the Thermal Dissociation of the Benzyl Radical. V. Subba Rao and Gordon B. Skinner, 809. Shock Wave Study of Benzyl UV Absorption Spectra: Revised Toluene and Benzyl Decomposition Rates. W. Mtiller-Markgraf and J. Troe, 815. Reactions of Phenyl Radicals with Ethene, Ethyne, and Benzene. Askar Fahr, W. Gary Mallard and Stephen E. Stein, 825. High Temperature Oxidation of N-Alkyl Benzenes. K. Brezinsky, G. T. Linteris, T. A. Litzinger, and I. Glassman, 833. Kinetics of the Reactions of CH 2 (Y~3Ba)Radicals with C2H 2 and C4H2 in the Temperature Range 296 K -< T <- 700 K, T. B6hland, F. Temps and H. Gg. Wagner, 841. Direct Study of the Reactions of Vinyl Radicals with Hydrogen and Oxygen Atoms. P. Heinemann, R. Hofmann-Sievert and K. Hoyermann, 865. Kinetics of the Reaction of C3H3 with Molecular Oxygen from 293-900 K. Irene R. Slagle and David Gutman, 875. Kinetics of the Reaction of NCO with Ethene and Oxygen over the Temperature Range 295-662K. Robert A. Perry, 913. An HTFFR Kinetics Study of the Reaction between AIC1and 02 from 490 to 1750 K. Donald F. Rogowski and Arthur Fontijn, 943. Experimental Study of the Structure of an
SUBJECT INDEX Ammonia-Oxygen Flame. J. Bian, J. VanDooren and P. J. Van Tiggelen, 953. Combustion Mechanism of T A G N . N. Kubota, N. Hirata and S. Sakamoto, 1925. Super-Rate Burning o f Catalyzed HMX Propellants. N. Kubota and N. Hirata, 1943.
24.1 Identification of Intermediates and Products T h e Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube. Meredith B. Colket, III, 851. Measurements of CH Radical Concentrations in an Acetylene/Oxygen Flame and Comparisons to Modeling Calculations. R. G. Joklik, J. W. Daily, W. J. Pitz, 895. Direct Measurements o f the Reaction NH 2 + CH 4 ---> NH 3 + CH 3 in T e m p e r a t u r e Range 743 -< T/K -< 1023. W. Hack, H. Kurzke, P. Rouveirolles and H. Gg. Wagner, 905. T h e Structure of Coflowing, Laminar C 2, H y d r o c a r b o n - A i r Diffusion Flames. A. Hamins, A. S: Gordon, K. Seshadri and K. Saito, 1077. T h e Effect of Dilution with Steam on the Burning Velocity and Structure of Premixed Hyd r o g e n Flames. G. W. Koroll and S. R. Mulpuru, 1811. Mass Spectrometer Sampling o f a Plasma Jet Igniter with a Methane Plasma Feed. T h o m p son M. Sloane and J o h n W. Ratcliffe, 1877.
24.2 Reaction Pathways T h e Reaction of Atomic H y d r o g e n with the Formyl Radical. Lawrence B. H a r d i n g and Albert F. Wagner, 721. A Theoretical Analysis o f the Reaction between Hydroxyl and H y d r o g e n Cyanide at High T e m p e r a t u r e . J a m e s A. Miller and Carl F. Melius, 919. Hydrocarbon/Nitric Oxide Interactions in Low-Pressure Flames. Lawrence B. Thorne, Melvyn C. Branch, David W. Chandler, Robe r t J . Kee and J a m e s A. Miller, 965. Oxidation of Furan and Furfual in a WellStirred Reactor. Mark M. Thorton, Philip C. Malte, Alden L. Crittenden, 979. Addition of Benzene and T o l u e n e to Slowly Reacting Mixtures of H y d r o g e n and Oxygen at 773K. R. R. Baldwin, M. Scott and R. W. Walker, 991. Chemical Production Rates of Intermediate Hydrocarbons in a Methane/Air Diffusion Flame. J. Houston Miller, W. Gary Mallard and Kermit C. Smyth, 1057. Effect of Fuel Structure on Pathways to Soot. Michael Frenklach, David W. Clary, William C. Gardiner, Jr., Stephen E. Stein, 1067.
2045
Reburning Thermal and Chemical Processes in a Two-Dimensional Pilot-Scale System. W. S. Lanier, J. A. Mulholland and J. T. Beard, 1171. Experimental Study o f Nitrogen Dioxide Formarion in Combustion Systems. Morio Hori, 1181. Thermochemistry o f the Decomposition o f Nitramines in the Gas Phase. C. F. Melius a n d J . S. Binkley, 1953. 25. REVIEW PAPERS
Radiative Heat Transfer in Combustion: Friend or Foe. Adel F. Sarofim, 1. Coal-Water Fuel Combustion. Edward T. McHale, 159. Combustion, A Chemical and Kinetic View. Sidney W. Benson, 703. Laminar Flamelet Concepts in T u r b u l e n t Combustion. N. Peters, 1231. Combustion Diagnostics: Planar Imaging Techniques. Ronald K. Hanson, 1677. SAFETY (See FIRE, Safety; EXPLOSION, Safety) 26. SOOT
Measurement of Heat Loss d u e to T h e r m a l Radiation of Liquid Spray Flames using Shock T u b e Technique. Takao Tsubi, T o m o Sato, Yasunobu Kaneko, T o m o h i r o Nakajima, Satoshi Ita, Koh-Ichi Nagaya, 473. Charged Soot in Low-Pressure Acetylene/ Oxygen Flames. K. H. H o m a n n and H. Wolf, 1013. Mechanisms of Formation and Destruction of Soot Particles in a Laminar Methane-Air Diffusion Flame. A. Garo, J. Lahaye, G. Prado, 1023. Concentration Profiles in Rich and Sooting Ethylene Flames. Stephen J. Harris, Anita M. Weiner, Richard J. Blint, J. E. M. Goldsmith, 1033. Radiant Emission and Smoke Points for Laminar Diffusion Flames of Fuel Mixtures. G. H. Markstein, 1107. Structure and Spectral Radiation Properties of T u r b u l e n t Ethylene/Air Diffusion Flames. J. P. Gore and G. M. Faeth, 1521.
26.1 Control Conditional Sampling for Fuel and Soot in CARS Thermometry. Alan C. Eckbreth, T o r g e r J. Anderson and Gregory M. Dobbs, 1747.
2046
SUBJECT INDEX 26.2 Formation
27.1 Gas
Investigation of Particle Inception in Sooting Premixed Hydrocarbon Oxygen Low Pressure Flames. H. Bockhorn, F. Fetting, A. Heddrich, 1001. Measurements about the Influence of Pressure on Carbon Formation in Premixed Laminar CzH4-Air Flames. H. M~tzing and H. Gg. Wagner, 1047. Quantitative Comparison of Fuel Soot Formation Rates in Laminar Diffusion Flames. A. Gomez and I. Glassman, 1087. Soot Distribution and CARS Temperature Measurements in Axisymmetric Laminar Diffusion Flames with Several Fuels. Laurence R. Boedeker and Gregory M. Dobbs, 1097. Soot Production in Axisymmetric Laminar Diffusion Flames at Pressures from One to Ten Atmospheres. W. L. Flower, C. T. Bowman, 1115. Time-Resolved Gasification and Sooting Characteristics of Droplets of Alcohol/Oil Blends and Water/Oil Emulsions. A. L. Randolph, C. K. Law, 1125. Spray Vaporization and Soot Formation in Flames Generated by Light Oils with Different Chemical Composition. F. Beretta, A. D'Alessio, C. Noviello, 1133. Soot Formation and Burnout during the Combustion of Dispersed Pulverized Coal Particles. L. D. Timothy, D. Froelich, A. F. Sarofim andJ. M. Bedr, 1141.
Formation of Hydrogen Atoms in Pyrolysis of Ethylbenzene behind Shock Waves, Rate Constants for the Thermal Dissociation of the Benzyl Radical. V. Subba Rao and Gordon B. Skinner, 809. Shock Wave Study of Benzyl UV Absorption Spectra: Revised Toluene and Benzyl Decomposition Rates. W. Mtiller-Markgraf and J. Troe, 815. The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube. Meredith B. Colket, III, 851. Thermochemistry of the Decomposition of Nitramines in the Gas Phase. C. F. Melius andJ. S. Binkley, 1953.
26.5 Precursors
Reactions of Phenyl Radicals with Ethene, Ethyne, and Benzene. Askar Fahr, W. Gary Mallard and Stephen E. Stein, 825. Chemical Production Rates of Intermediate Hydrocarbons in a Methane/Air Diffusion Flame. J. Houston Miller, W. Gary Mallard and Kermit C. Smyth, 1057. Effect of Fuel Structure on Pathways to Soot. Michael Frenklach, David W. Clary, William C. Gardiner, Jr., Stephen E. Stein, 1067. The Structure of Coflowing, Laminar C2, Hydrocarbon-Air Diffusion Flames. A. Hamins, A. S. Gordon, K. Seshadri and K. Saito, 1077.
27.3 Solid
Coal Pyrolysis in Flat, Laminar, Opposed Jet Combustion Configurations. J. O. L. Wendt, B. M. Kram, M. M. Masteller and B. D. McCaslin, 419. Formation of Light Gases and Aromatic Species during the Rapid Pyrolysis of Coal. P. F, Nelson and R. J. Tyler, 427. Combustion Mechanism of TAGN. N. Kubota, N. Hirata and S. Sakamoto, 1925. Super-Rate Burning of Catalyzed HMX Propellants. N. Kubota and N. Hirata, 1943. Erosive Burning Mechanism of Double-Base Propellants. A. Ishihara and N. Kubota, 1975. 28. THERMOCHEMISTRY A N D THERMODYNAMICS
Combustion Mechanism of TAGN. N. Kubota, N. Hirata and S. Sakamoto, 1925. Super-Rate Burning of Catalyzed HMX Propellants.' N. Kubota and N. Hirata, 1943. Thermochemistry of the Decomposition of Nitramines in the Gas Phase. C. F. Melius andJ. S. Binkley, 1953. 29. T R A N S P O R T PROPERTIES
29.1 Diffusion
27. T H E R M A L DECOMPOSITION
A Model for the Deflagration of Nitramines. T. Mitani and F. A. Williams, 1965.
Structure and Tip-Opening of Laminar Diffusion Flames. Satoru Ishizuka and Yukio Sakai, 1821.