JOURNAL
OF
MOLECULAR
SPECTROSCOPY
75, 333-337 (1979)
LETTER TO THE EDITOR Submillimeter
Microwave
Spectrum
of the Hydrogen
Telluride
Molecule
A. V. BURENIN, A. F. KRUPNOV, S. V. MART’YANOV,A. A. MEL’NIKOV, AND L. I. NIKOLAYEV The Institute
of Applied
Physics
of Sciences of the USSR,
of the Academy
Gorky,
USSR
Hydrogen telluride (H,Te) belongs to the H2X (X = 0, S, Se . . .) class of molecules, and it is of interest both for pure and applied investigations. The H,Te spectrum has been studied earlier only in the infrared regions near 8% cm-‘, 2070 cm-‘, (1,2) and 2900 cm-’ (3). The present paper describes the first microwave investigation of HzTe rotational spectrum in the ground vibrational state. We produced hydrogen telluride electrochemically by means of electrolysis of 80% solution of orthophosphoric acid with a tellurium cathode and refined it by the fractional distillation method with removal of the head and tail fractions (4). Then H,Te was dried by passing it through a trap containing anhydrous CaCl, and P,O,. According to the data of mass-spectrometric analysis a sample of H,Te contained as impurities H2S < 10p2% by volume, HzSe < 2 x 10p2% by volume, and light hydrocarbons < 1O-5% by volume. Hydrogen telluride is a thermodynamically unstable substance and easily decomposes at room temperature. Therefore the sample was stored at liquid nitrogen temperature, and the temperature of the absorption cell in the experiment was between -5 and 0°C. The H,Te submillimeter wave spectrum was observed in the range 250-490 GHz by a microwave spectrometer RAD (5). An illustration of the spectrum recorded
I
302
I
I
303
-z-
320
I
321
I
322 4 GHz
FIG.1. A reproduction of a portion of the hydrogen .telhuide spectrum. The lines correspond eight isotopic species of the molecule. The sample pressure was about 0.8 Torr. 333
to
0022-2852/79/050333-05$02.00/O Copyright 0 1979 by Academic All rights of reproduction
Press, Inc.
in any form reserved.
Y*
431
321
211
111
221
331 4 41 5 51
* 422
* 312
*202
*000
* 212
322
%3 7 43
872 9 63
652 7 62
'52
972 8 62
771 8 81
661
541
532
432 5 42
971
'62
752 -761 6 651 42
Transition
478.07
571.51
292.44
023.16
334.95
139.58
288.47
315.13
657.85
682.89
208.09
757.99
701.92
257.42
493.85
689.36
474.49
612.12
H2 250
251
254
256
262
269
275
278
288
294
302
310
319
328
335
413
428
441
130T,
Frequencies
441
428
413
336
328
320
311
302
294
288
278
275
269
262
460.23
246.11
405.91
324.18
920.38
213.13
133.30
469.85
853.33
759.75
370.69
254.97
059.68
202.49
851.06
205.50
254 255
386.22
318.01
l2ETe
251
H2 240
of Rotational
441
428
413
337
329
320
311
302
295
288
278
275
268
262
255
254
251
H2 250
301.90
008.90
112.01
180.94
604.52
739.31
520.30
739.87
029.43
86496
428.21
225.82
976.94
066.53
674.67
121.72
196.88
156.54
126T8
I
L
441
427
412
337
329
321
311
302
295
288
278
275
261
255
254
251
250
220.37
887.09
961.15
618.83
954.19
008.26
719.21
877.88
118.89
918.64
457.30
211.02
997.37
585.02
080.50
101.06
075.65
H_l25T,
frequencies,, H 3
441
427
412
338
330
321
311
303
295
288
278
275
261
255
254
251
249
137.11
762.25
807.28
065.58
310.85
282.45
920.95
018.60
210.54
973.85
487.12
195.90
926.78
494.08
040.23
004.16
994.04
124Te
Vibrational
MHz
of H,Te in the Ground
Observed
Spectrum
TABLE
441
412
338
321
303
255
H2 249
State
051.05
650.77
537.70
560.85
160.65
402.13
912.39
123TTe
440
427
321
312
303
295
261
255
253
250
n2 249
964.64
505.67
843.80
334.Cl
306.18
397.88
782.93
308.70
962.50
807.67
829.81
122Te
111
8
63
53
43
6
6
7
542
533
*
8
7
72
62
52
432
423
*
3 12
303
322
422
413
313
212
2 02 5 32
101
'23
42
*
*
*
633 -6
409.78
136.42
364.71
605.49
349.70
093.31
325.85
185.04
333.45
982.00
382.35
201.07
130Te
Measurement
486
479
474
471
470
470
468
465
460
459
455
Hz 452
error
H 2
598.73
280.37
473.51
689.55
418.38
153.83
370.82
207.35
410.11
964.49
411.07
123.95
lz8T,
"2
Hz
-
H 2
795.15
429.84
586.37
776.61
489.30
216.32
415.91
230.05
489.15
945.78
440.64
043.24
lz6Te
130,128,126Te~
486
479
474
471
470
470
468
465
460
459
455
452
Number
of lines:
125,124,123,122Te
for lines
486
479
474
471
470
470
468
465
460
459
455
452 455
2
Te
896.13
506.55
644.09
821.27
525.60
248.24
439.23
241.46
529.48
936.00
455.79
001.62
125
184
0.2MHz.
O.lMHz,
486
479
474
471
470
470
468
465
460
459
. :
H 452
486
479
474
471
470
470
468
465
459
455
H2 451
999.43
585.06
702.62
866.65
562.59
280.82
462.99
253.09
925.73
471.06
958.83
124T‘2
487
479
474
471
470
468
465
455
Hz 451
104.54
665.05
762.51
912.72
600.28
487.28
265.02
486.70
915.46
lZ3T,
487
479
474
471
470
468
465
459
455
H_ c 451
Te
212.01
746.40
824.56
959.06
638.50
511.53
276.73
904.26
502.52
870.35
122
336
LETTER TO THE EDITOR TABLE II
Molecular Constants in the Kivelson-Wilson
Form for H,Te in the Ground Vibrational State, MHz
130 H2
Te H2
l28TTe H2
l26T,
n’
187 341.11
+ 8.74
187 385.94
+ 8.74
187 432.40
+ 8.74
B' I
182 724.87
2 9.24
182 725.03
+ 9.26
182 725.47
+
;m
91 -98.358 012.730 + 0.420 0.186
91 -98.457 023.564 ++ 0.186 0.420
91 -98.693 034.820 2 + 0.424 0.186
-85.120 + 0.228
-85.376 + 0.228
0.118
- 3.072 + 0.118
- 3.204 + 0.118
37.113 + 0.792
37.051 + 0.802
'tbbbb
-85.095
7'cccc
- 2.984 +
(tkbb Lee %bcc
9.26
+ 0.226
36.94)8 2 0.812
-26.75
-+18.16
-26.87
+18.18
-27.08
218.20
16.53
217.40
16.50
211.42
16.39
217.44
TABLE III Matrices of Correlation Coefficients for A’, B’, C’, and 7’s Constants
d
B'
n'
+1.000
B' , 5,,,
-0.999
+1.000
-+0.827 0.201
-0.818 +0.182
" bbbb
aabb
-0.226 +1.000
+l.ooo
"am
'bbcc
H 2 130 Te
is;;;:: +0.991
-0.993
+0.774
-0.229
+0.672
-0.689
+0.383
+0.489
+0.664
+l.ooo
Lee
-1.000
+1.000
-0.832
+0.190
-0.991
- 0.675
'bbcc
+l.ooo
- 1.000
+0.828
-0.187
+0.991
+0.678
-1.000
+1.000
Lx
+0.089
-0.103
-0.466
+0.168
+0.171
+0.3.30
-0.081
+0.088
d
+l.ooo
B'
-0.999
+1.000
Cl
~0.830
-0.822
+l.ooo
-.0.202
+0.184
-0.228
+1.000
+ 0.991
-0.993
co.778
-0.230
+0.672
-0.689
+0.387
+0.4ea
+0.664
tl.OOO
't:,,cc -1.000
+1.000
-0.836
+0.192
-0.991
-0.675
+1.000
z bbcc Lee
+1.000
- 1.000
+0.832
-0.189
+0.992
+0.678
-1.000
+l.ooo
+a.093
-0.103
-0.460
+0.168
+0.171
+0.380
-0.081
+cJ.o88
(,,,, t ,aabb s bbbb
+1.000
H2
+I.OOO
+l.ooo
l28T,
+1.000
A B’,
+1.000 - 0.999 +1.000 +0.833
-0.825
+l.ooo
La
- 0.205
+a.186
-0.230
+0.991 +0.672
-0.993 0.689
+0.391 +0.782
+0.486 -0.232
+a.664 +1.000
+1.000
-1.000
+1.000
-0.839
+0.194
-0.991
-0.675
+1.000
t qmc bbcc
+1.000
-1.000
+a.835
-0.192
+0.992
+0.678
-1.000
+l.ooo
Lee
+0.090
-0.104
-0.4555
+0.167
+0.171
+0.380
-0.082
+0.089
:;;;;
'ccc,
H
2
+1.000
126Te
+1.000
+1.000
LETTER
337
TO THE EDITOR
is presented in Fig. 1. The lines corresponding to eight isotopic species of this molecule of the form HzXTe are seen (X = 130 (34.5%), 128 (31.8%), 126 (18.7%), 125 (6.99%), 124 (4.61%), 123 (0.875%), 122 (2.46%), and 120 (0.09%)). In parentheses the natural abundance for each molecular species is given. The measurements of spectral line frequencies were made at a pressure -0.8 Torr in the absorption cell with an accuracy of 0.1-0.2 MHz. Experimental values of the line frequencies for the seven most abundant isotopic species of the molecule and assignments of the transitions are given in Table I. A theoretical description of the rotational spectrum of H,X-type molecules (X = 0, S, Se . . .) meets significant difficulties connected with their nonrigidity. A preliminary processing of the data was made by using the rotational Hamiltonian in the Kivelson-Wilson form (6): H, + H, = A’P”, + B’P;
+ C’P;
+ 54 C T&~P:P~ u,P
(1)
where (Y, p = a, b, and c, and Pi is the square of the angular momentum component operator along the main axis “a” in the molecule. The processing was made for three species of the molecule H :30,128,126Te using only frequencies of 10 transitions with lowest centrifugal shifts (
G. G. Devyatykh
for suggesting
the present investigation. RECEIVED:
August 2, 1978 REFERENCES
I. K. ROSSMANNAND J. W. STRALEY, 1. Chem. Phys. 24, 1276 (1956). 2. R. A. HILL, T. H. EDWARDS, K. ROSSMAN, K. NARAHARI RAO, AND H. H. NIELSEN, J. Mol. Spectrosc. 14, 221-243 (1964). 3. N. K. MONCUR, P. D. WILLSON, AND T. H. EDWARDS, J. Mol. Spectrosc. 52, 181-195 (1974). 4. M. F. CHURBANOV AND L. I. NIKOLAEV, “Obtaining and Analysis of Pure Substances,” Vol. 1, p. 38, Gorky, 1976. 5. A.
F. KRUPNOV AND A. V. BURENIN, in “Molecular Spectroscopy: Modem (K. Narahari Rao, ed.), Vol. 2, pp. 93-126, Academic Press, New York, 1976. 6. D. KIVELSON AND E. B. WILSON, J. Chem. Phys. 20, 1575-1579 (1952).
Research”