Submillimeter microwave spectrum of the hydrogen telluride molecule

Submillimeter microwave spectrum of the hydrogen telluride molecule

JOURNAL OF MOLECULAR SPECTROSCOPY 75, 333-337 (1979) LETTER TO THE EDITOR Submillimeter Microwave Spectrum of the Hydrogen Telluride Molecul...

259KB Sizes 0 Downloads 44 Views

JOURNAL

OF

MOLECULAR

SPECTROSCOPY

75, 333-337 (1979)

LETTER TO THE EDITOR Submillimeter

Microwave

Spectrum

of the Hydrogen

Telluride

Molecule

A. V. BURENIN, A. F. KRUPNOV, S. V. MART’YANOV,A. A. MEL’NIKOV, AND L. I. NIKOLAYEV The Institute

of Applied

Physics

of Sciences of the USSR,

of the Academy

Gorky,

USSR

Hydrogen telluride (H,Te) belongs to the H2X (X = 0, S, Se . . .) class of molecules, and it is of interest both for pure and applied investigations. The H,Te spectrum has been studied earlier only in the infrared regions near 8% cm-‘, 2070 cm-‘, (1,2) and 2900 cm-’ (3). The present paper describes the first microwave investigation of HzTe rotational spectrum in the ground vibrational state. We produced hydrogen telluride electrochemically by means of electrolysis of 80% solution of orthophosphoric acid with a tellurium cathode and refined it by the fractional distillation method with removal of the head and tail fractions (4). Then H,Te was dried by passing it through a trap containing anhydrous CaCl, and P,O,. According to the data of mass-spectrometric analysis a sample of H,Te contained as impurities H2S < 10p2% by volume, HzSe < 2 x 10p2% by volume, and light hydrocarbons < 1O-5% by volume. Hydrogen telluride is a thermodynamically unstable substance and easily decomposes at room temperature. Therefore the sample was stored at liquid nitrogen temperature, and the temperature of the absorption cell in the experiment was between -5 and 0°C. The H,Te submillimeter wave spectrum was observed in the range 250-490 GHz by a microwave spectrometer RAD (5). An illustration of the spectrum recorded

I

302

I

I

303

-z-

320

I

321

I

322 4 GHz

FIG.1. A reproduction of a portion of the hydrogen .telhuide spectrum. The lines correspond eight isotopic species of the molecule. The sample pressure was about 0.8 Torr. 333

to

0022-2852/79/050333-05$02.00/O Copyright 0 1979 by Academic All rights of reproduction

Press, Inc.

in any form reserved.

Y*

431

321

211

111

221

331 4 41 5 51

* 422

* 312

*202

*000

* 212

322

%3 7 43

872 9 63

652 7 62

'52

972 8 62

771 8 81

661

541

532

432 5 42

971

'62

752 -761 6 651 42

Transition

478.07

571.51

292.44

023.16

334.95

139.58

288.47

315.13

657.85

682.89

208.09

757.99

701.92

257.42

493.85

689.36

474.49

612.12

H2 250

251

254

256

262

269

275

278

288

294

302

310

319

328

335

413

428

441

130T,

Frequencies

441

428

413

336

328

320

311

302

294

288

278

275

269

262

460.23

246.11

405.91

324.18

920.38

213.13

133.30

469.85

853.33

759.75

370.69

254.97

059.68

202.49

851.06

205.50

254 255

386.22

318.01

l2ETe

251

H2 240

of Rotational

441

428

413

337

329

320

311

302

295

288

278

275

268

262

255

254

251

H2 250

301.90

008.90

112.01

180.94

604.52

739.31

520.30

739.87

029.43

86496

428.21

225.82

976.94

066.53

674.67

121.72

196.88

156.54

126T8

I

L

441

427

412

337

329

321

311

302

295

288

278

275

261

255

254

251

250

220.37

887.09

961.15

618.83

954.19

008.26

719.21

877.88

118.89

918.64

457.30

211.02

997.37

585.02

080.50

101.06

075.65

H_l25T,

frequencies,, H 3

441

427

412

338

330

321

311

303

295

288

278

275

261

255

254

251

249

137.11

762.25

807.28

065.58

310.85

282.45

920.95

018.60

210.54

973.85

487.12

195.90

926.78

494.08

040.23

004.16

994.04

124Te

Vibrational

MHz

of H,Te in the Ground

Observed

Spectrum

TABLE

441

412

338

321

303

255

H2 249

State

051.05

650.77

537.70

560.85

160.65

402.13

912.39

123TTe

440

427

321

312

303

295

261

255

253

250

n2 249

964.64

505.67

843.80

334.Cl

306.18

397.88

782.93

308.70

962.50

807.67

829.81

122Te

111

8

63

53

43

6

6

7

542

533

*

8

7

72

62

52

432

423

*

3 12

303

322

422

413

313

212

2 02 5 32

101

'23

42

*

*

*

633 -6

409.78

136.42

364.71

605.49

349.70

093.31

325.85

185.04

333.45

982.00

382.35

201.07

130Te

Measurement

486

479

474

471

470

470

468

465

460

459

455

Hz 452

error

H 2

598.73

280.37

473.51

689.55

418.38

153.83

370.82

207.35

410.11

964.49

411.07

123.95

lz8T,

"2

Hz

-

H 2

795.15

429.84

586.37

776.61

489.30

216.32

415.91

230.05

489.15

945.78

440.64

043.24

lz6Te

130,128,126Te~

486

479

474

471

470

470

468

465

460

459

455

452

Number

of lines:

125,124,123,122Te

for lines

486

479

474

471

470

470

468

465

460

459

455

452 455

2

Te

896.13

506.55

644.09

821.27

525.60

248.24

439.23

241.46

529.48

936.00

455.79

001.62

125

184

0.2MHz.

O.lMHz,

486

479

474

471

470

470

468

465

460

459

. :

H 452

486

479

474

471

470

470

468

465

459

455

H2 451

999.43

585.06

702.62

866.65

562.59

280.82

462.99

253.09

925.73

471.06

958.83

124T‘2

487

479

474

471

470

468

465

455

Hz 451

104.54

665.05

762.51

912.72

600.28

487.28

265.02

486.70

915.46

lZ3T,

487

479

474

471

470

468

465

459

455

H_ c 451

Te

212.01

746.40

824.56

959.06

638.50

511.53

276.73

904.26

502.52

870.35

122

336

LETTER TO THE EDITOR TABLE II

Molecular Constants in the Kivelson-Wilson

Form for H,Te in the Ground Vibrational State, MHz

130 H2

Te H2

l28TTe H2

l26T,

n’

187 341.11

+ 8.74

187 385.94

+ 8.74

187 432.40

+ 8.74

B' I

182 724.87

2 9.24

182 725.03

+ 9.26

182 725.47

+

;m

91 -98.358 012.730 + 0.420 0.186

91 -98.457 023.564 ++ 0.186 0.420

91 -98.693 034.820 2 + 0.424 0.186

-85.120 + 0.228

-85.376 + 0.228

0.118

- 3.072 + 0.118

- 3.204 + 0.118

37.113 + 0.792

37.051 + 0.802

'tbbbb

-85.095

7'cccc

- 2.984 +

(tkbb Lee %bcc

9.26

+ 0.226

36.94)8 2 0.812

-26.75

-+18.16

-26.87

+18.18

-27.08

218.20

16.53

217.40

16.50

211.42

16.39

217.44

TABLE III Matrices of Correlation Coefficients for A’, B’, C’, and 7’s Constants

d

B'

n'

+1.000

B' , 5,,,

-0.999

+1.000

-+0.827 0.201

-0.818 +0.182

" bbbb

aabb

-0.226 +1.000

+l.ooo

"am

'bbcc

H 2 130 Te

is;;;:: +0.991

-0.993

+0.774

-0.229

+0.672

-0.689

+0.383

+0.489

+0.664

+l.ooo

Lee

-1.000

+1.000

-0.832

+0.190

-0.991

- 0.675

'bbcc

+l.ooo

- 1.000

+0.828

-0.187

+0.991

+0.678

-1.000

+1.000

Lx

+0.089

-0.103

-0.466

+0.168

+0.171

+0.3.30

-0.081

+0.088

d

+l.ooo

B'

-0.999

+1.000

Cl

~0.830

-0.822

+l.ooo

-.0.202

+0.184

-0.228

+1.000

+ 0.991

-0.993

co.778

-0.230

+0.672

-0.689

+0.387

+0.4ea

+0.664

tl.OOO

't:,,cc -1.000

+1.000

-0.836

+0.192

-0.991

-0.675

+1.000

z bbcc Lee

+1.000

- 1.000

+0.832

-0.189

+0.992

+0.678

-1.000

+l.ooo

+a.093

-0.103

-0.460

+0.168

+0.171

+0.380

-0.081

+cJ.o88

(,,,, t ,aabb s bbbb

+1.000

H2

+I.OOO

+l.ooo

l28T,

+1.000

A B’,

+1.000 - 0.999 +1.000 +0.833

-0.825

+l.ooo

La

- 0.205

+a.186

-0.230

+0.991 +0.672

-0.993 0.689

+0.391 +0.782

+0.486 -0.232

+a.664 +1.000

+1.000

-1.000

+1.000

-0.839

+0.194

-0.991

-0.675

+1.000

t qmc bbcc

+1.000

-1.000

+a.835

-0.192

+0.992

+0.678

-1.000

+l.ooo

Lee

+0.090

-0.104

-0.4555

+0.167

+0.171

+0.380

-0.082

+0.089

:;;;;

'ccc,

H

2

+1.000

126Te

+1.000

+1.000

LETTER

337

TO THE EDITOR

is presented in Fig. 1. The lines corresponding to eight isotopic species of this molecule of the form HzXTe are seen (X = 130 (34.5%), 128 (31.8%), 126 (18.7%), 125 (6.99%), 124 (4.61%), 123 (0.875%), 122 (2.46%), and 120 (0.09%)). In parentheses the natural abundance for each molecular species is given. The measurements of spectral line frequencies were made at a pressure -0.8 Torr in the absorption cell with an accuracy of 0.1-0.2 MHz. Experimental values of the line frequencies for the seven most abundant isotopic species of the molecule and assignments of the transitions are given in Table I. A theoretical description of the rotational spectrum of H,X-type molecules (X = 0, S, Se . . .) meets significant difficulties connected with their nonrigidity. A preliminary processing of the data was made by using the rotational Hamiltonian in the Kivelson-Wilson form (6): H, + H, = A’P”, + B’P;

+ C’P;

+ 54 C T&~P:P~ u,P

(1)

where (Y, p = a, b, and c, and Pi is the square of the angular momentum component operator along the main axis “a” in the molecule. The processing was made for three species of the molecule H :30,128,126Te using only frequencies of 10 transitions with lowest centrifugal shifts (
G. G. Devyatykh

for suggesting

the present investigation. RECEIVED:

August 2, 1978 REFERENCES

I. K. ROSSMANNAND J. W. STRALEY, 1. Chem. Phys. 24, 1276 (1956). 2. R. A. HILL, T. H. EDWARDS, K. ROSSMAN, K. NARAHARI RAO, AND H. H. NIELSEN, J. Mol. Spectrosc. 14, 221-243 (1964). 3. N. K. MONCUR, P. D. WILLSON, AND T. H. EDWARDS, J. Mol. Spectrosc. 52, 181-195 (1974). 4. M. F. CHURBANOV AND L. I. NIKOLAEV, “Obtaining and Analysis of Pure Substances,” Vol. 1, p. 38, Gorky, 1976. 5. A.

F. KRUPNOV AND A. V. BURENIN, in “Molecular Spectroscopy: Modem (K. Narahari Rao, ed.), Vol. 2, pp. 93-126, Academic Press, New York, 1976. 6. D. KIVELSON AND E. B. WILSON, J. Chem. Phys. 20, 1575-1579 (1952).

Research”