Scuola Normale Superiore, Pisa, Italy Received 4 December 1965
Dashen and G e l l - M a n n and Lee [1] have shown that by c o n s i d e r i n g the a l g e b r a g e n e r a t e d by the m o m e n t s of the v e c t o r and axial v e c t o r c u r r e n t s it is p o s s i b l e to deduce an a p p r o x i m a t e r e l a t i o n between the m a g n e t i c m o m e n t and the root m e a n s q u a r e r a d i u s of the proton. This r e l a t i o n is obt a i n e d by taking the m a t r i x e l e m e n t of the c o m m u t a t o r of two m a g n e t i c m o m e n t o p e r a t o r s between proton s t a t e s at r e s t . Only s t a t e s of the octet and decuplet a r e kept in the s u m r u l e ; f u r t h e r m o r e the t r a n s i t i o n m a g n e t i c m o m e n t of N into N* is a s s u m e d to have the v a l u e given by SU(6) [2]. In this note we p r e s e n t an exact s u m r u l e obtained f r o m the c o m m u t a t i o n r e l a t i o n s of the e l e c t r i c dipole m o m e n t o p e r a t o r s
Di = f dSx ]L (x) x ,
(1)
where ]io(X) is the t i m e component of the i s o s p i n c u r r e n t (i = 1, 2, 3). F r o m the c o m m u t a t i o n r e l a t i o n s [3] * of the jio(X, O) it follows
[D'~, Di] = 2 f d3xj3(x)(xl)2 .
(2)
If we now take the m a t r i x e l e m e n t of eq. (2) between proton s t a t e s of m o m e n t u m p' and p along the t h i r d axis and s e p a r a t e the one n e u t r o n c o n t r i b u t i o n ** we obtain: E2\
2M ' J 5 ( p - p ' ) = A(p,p') , (3)
where r 2 is r e l a t e d to the i s o v e c t o r c h a r g e f o r m factor of the n u c l e o n by • We note that our results depend only on the commutation relations of the isospin densities, and not on the more controversial parts of the current algebra used in ref. 1. • * The technique used in deriving our sum rule is essentially that of Fubini and Furlan [4].
_~r2 =
dG~
1
(4)
- dq 2 + 8M 2 '
M i s the n u c l e o n m a s s , ~ and ~n the m a g n e t i c m o m e n t s of proton and neiltron, and A(p,p') the i n e l a s t i c c o n t r i b u t i o n to the s u m r u l e :